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The renormalized expectation value of the stress energy tensor of the
conformally invariant massless fields in the Israel-Hartle-Hawking state in
the Schwarzschild spacetime is constructed. It is achieved through solving
the conservation equation in conformal space and utilizing the regularity
conditions in a physical metric. Specifically, the relation of the results of
the present approach to the stress tensor constructed within the framework
of the Hadamard renormalization is analysed. Finally, the semi-analytic
models reconstructing the numerical estimates of the tangential component
of the stress-energy tensor with the maximal deviation not exceeding 0.7%
are constructed.

PACS numbers: 04.62.+v, 04.70.Dy

In a recent publication [1] we have constructed the approximate mean
value of the regularized stress-energy tensor of the massless and confor-
mally invariant quantized scalar field in the Israel-Hartle-Hawking state in
the Schwarzschild spacetime. We employed the Hadamard regularization
which has proven to be a powerful tool in such calculations [2-8]. In the
Hadamard regularization one must solve the constraint equations for three
unknown functions of radial coordinate and insert them into the general ex-
pression for (T}') [4]. Unfortunately, since the constraint equation involves
three unknown functions, one of which being closely related to the vacuum
fluctuation of the quantized field (¢?), the problem, beside the boundary
conditions, must be supplemented by some additional informations regard-
ing the nature of the sought functions [9,10].

(971)
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In Ref. [1] we have assumed that unknown functions (and (¢?)) have a
simple form
kl
Z (1 - I)me("L‘)7 kakl > 07 (1)

m=—k

where z = 2M/r, and W,,(z) for each value of m, is a polynomial in z,
and showed that it is relatively easy to construct solutions, which lead to
the stress-energy tensor and the vacuum fluctuation which reflects principal
features of the exact (¢?)ren, and (T}')ren With a reasonable accuracy. Result-
ing two-parameter stress-energy tensor may be further determined from the
known horizon value of the one of the components of (T} )ien, say (T} ren,
and making use of the equation

kd 16 2
E%w Jren + 15 15

where £ is the surface gravity and Ty stands for the black hole temperature.
The remaining free parameter has been fixed by some sort of a best fit
argument.

In this note we shall show how the results of Ref. [1] may be obtained
and generalized in a more systematic and simpler way, without recourse
to (¢?)ren. Moreover, a great advantage of the adopted method is that it
could be, contrary to the Hadamard regularization, easily extended to con-
formally invariant massless spinor and vector fields. Our present approach is
based on the method adopted earlier in the different context and uses scaling
properties of the one-loop renormalized effective action under the conformal
transformations, or more precisely their consequences for appropriate trans-
formations of the renormalized stress-energy tensors [11-15]. The notation
is essentially that of Refs. [16, 17], to which the reader is referred for details.
In this method, employing the Christensen—Fulling asymptotic analyses [9],
one assumes that the tangential component of the stress-energy tensor in
the optical companion to the Schwarzschild space has a simple polynomial
form

<T: (2M)>ren = THa (2)

(T ren = Tp(s Z anz"” (3)

with ag = 1, where T = 72T%;/90 and p(s) is a numerical coefficient de-
pending on the spin of the field. Here p(0) = 1, p(1/2) = 7/4, and p(1) = 2.
We distinguish quantities evaluated in the conformal space by a tilde. Sub-
sequently, solving the conservation equation in the conformal space for the
radial component of the stress tensor and utilizing regularity conditions on
the event horizon in the physical space one reduces the number of unknown
coefficients a;. Their number may be substantially reduced accepting one
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of the two thermal hypotheses, which state that the stress tensor in the
Israel-Hartle-Hawking vacuum should have the form

(T} )ren = p(s)T (3 — 4050)) + O(@™*), (4

m
1+ (n+1)z"
n=1

with m = 2 for the weak thermal hypothesis and m = 5 for the strong
one [18]. The weak thermal hypothesis is usually motivated by the observa-
tion that since the curvature is proportional to 23 the curvature corrections
to the stress-energy tensor are expected to be of that order. On the other
hand, in the strong version of this ansatz one assumes that the curvature
corrections are proportional to x5, i.e. (curvature?). In practice, it is help-
ful to invert the order of operations, and to analyse the consequences of
the regularity conditions and thermal hypotheses imposed on the tangential
component in the Schwarzschild geometry before solving the conservation
equation.

The stress-energy tensor under the conformal transformation, g'” =
exp(—2w)g,w, transforms as

(T} )ren = exp (—4w)TY' + a(s) Al + b(s) B + ¢(s)CY, (5)
where
4 . . 2 Ay -
AR = 8R°"“’ﬂw;a5 - 5%’“” + 29" <2w’a/<;a + k2 + 5!];-@) — 8rilkeyV)

—8wtwk, (6)

B* = SRO‘“Vﬁw;ag + SRQ“V’Bw;aw;g — 8w w,, " — 8k ) — 8wtV

. . 1
+4g" <w;a5w’aﬂ + K qw® + 5/42) , (7)

CH = g (20K + 3K% + bw,o k') — 126wt — 123 HW?) — 2517 (8)

and Kk = w,ow’®. The numerical coefficients as predicted by (—function renor-
malization are given by

a = (2%457%) 71 [1%(0) + 18h <%) +72h(1)] , (9)

b = (2%°457%)71 [—4h(0) —11h (%) - 124h(1)] , (10)
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and
c = —(2%457%)"1120h(1), (11)

where h(s) denotes the number of helicity states for fields of spin s, while
the dimensional renormalization gives

c(l) =0. (12)

Since the transformational rule for a general geometries is much more com-
plicated we restricted ourselves to the Ricci-flat metrics. The stress tensor
in the optical space naturally splits into two parts:

(T )ien = T + garga®043 (13)
where T/ is a conserved traceless tensor and the second term in the right
hand side of (13) is constructed from the trace anomaly.

Now, we assume N = 10 and restrict ourselves to the scalar field.
Hence, taking w = 1/21n(|gy|) and making use of the regularity condition
(T )ren| < 00, one obtains

8
ag =— Y (10 — n)ay, (14)
n=1
and
8
ayp = Z(Q —n)ap. (15)
n=1

Moreover, accepting the strong thermal hypothesis one concludes that the
coefficients a; for 4 < 5 should vanish.

Further, solving the conservation equation for (Tf )ren in the optical
space, transforming the resulting tensor back to the physical space and em-
ploying the Christiensen—Fulling conditions, i.e. the conditions which guar-
antee the regularity of the stress-energy tensor in the local frames on the

event horizon one has

<T15L>ren = <T#>P + Al;a (16)

1 — 254 — 32)?
(T = T{ 2”1 (_ o7 z) diag[—3,1,1,1]* + 242 diag[3, 1,0, 0]‘;} :
(17)
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is the stress tensor evaluated within the framework of the Page approxima-
tion [14], and the conserved and traceless tensor A} is given by

1 11
Al = 3T [a—ﬁxﬁ + —(9ag — 64ag)z” — —(3a¢ — ag)xs] , (18)

2 366 61
AT = 7 %56 _ L (1345 — 16a8)s” — —(3ag — ag)x (19)
r 2 122°°7° s T
and
Af=A?=T |a :EG—i(a + 20a )$7—§(3a — ag)z® (20)
0 — ¢ = 6 61 6 8 61 6 8 .

Further determination of the model requires two pieces of numerical data.
Taking, for example, a horizon value of the tangential component of the
stress tensor (the radial component and hence (T}(1));en may be easily ob-
tained from the trace anomaly) one gets

ag — %(619 — 732 — ag), (21)

where © = 1/T(T{(1))ren. Finally, the remaining constant a4 may be fixed
by some sort of the best fit argument. Here however we proceed differently:
we perform the least-quare fit to the available numerical data. There are
two published sources of information: the numerical estimates carried out
by Candelas and Howard [19, 20], and more recently by Anderson, Hiscock,
and Samuel [21, 22]|. Although the latter authors presented their results only
graphically some of their results concerning the tangential component may
by found in Ref. [18]. In the region [2M,5M] we adopted the Anderson,
Hiscock, and Samuel data as presented in Ref. [18], whereas for r > 5M we
accept the results of numerical calculations carried out by Howard [20]. We
discarded 3 points because the numerically determined trace exceeded the
exact one by more than 1%. Performing the linear least-square analysis we
obtained

ag = —74.230, (22)

and
ay = —329.135. (23)

It should be noted that the logarithmic term appearing in the solution of
the conservation equation i.e. (T} )ren survives if the regularity condition of
(Tf)ren is imposed. However, since the coefficient in front of the logarithmic

term involves a1 and ao such a term by the thermal hypotheses vanish.
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We complete the discussion of the scalar N = 10 case by comparing ob-
tained approximation (16)—(20) to the model developed earlier. Introducing
a new set of parameters a4 and Ag in place of ag and ag

17

ag = 75 4s B, (24)
469
ag = = As 63 (25)

one obtains precisely the results of Ref. [1]. Indeed, inserting (24), (25) into
(17)-(20) after simple rearrangements one has

M? 1 M3 /4 4
8W2A£:_<£+_7a4)__<33 +£+—A8)

6 \240 " 6 7\ 27 T 120 T 105
M4 /11 385
#3 (s + g 26)

2 3
o

76 \720 " 18™) T 5T 27 “ T 360 T 205
M* (35 Ag
L (P + 22 2
+r8<6a4+180)’ (27)
and
M? (17 B M3 (277 B Ag
{riAY — [ = i - (20 o, 8
8 r6 <9a4+360>+r7 <27a4+180+162>
M* (245 7
(4 2
r8<18a4+540 8)’ (28)
where a4 by (2) is given by
Ly (29)
oy = ——— .
17 o607

For completeness we write out the general expression for the field fluctuation.
2 Th 2 3 4 5
(¢ )renzﬁ(l—i—x—i—x + 27 + aux” — ayx’). (30)
which is necessary ingredient of the Hadamard regularization.

Now let us consider the consequences of the assumption that the cur-
vature corrections to the stress-energy tensor are of order z*. From the

analyses carried out by Jensen and Ottewill [23] we know that analytical
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approximation of the stress-energy tensor of the vector field satisfies the
energy condition in its weak form.

Let g be the order of the polynomials that describe resulting stress-
energy tensor. Taking N = 10 and repeating the calculations for fields of
arbitrary spin one obtains g = 8 involving 5 unknown parameters. On the
other hand N = 8 yields p = 6 polynomials with 3 undetermined constants.
To simplify our discussion, in the further analyses we take N = 8. Since
in the optical space the trace anomaly of the conformally coupled massless
vector field does not vanish one has to take into account an analog of the
Zannias term. After some algebra one finds for scalar, spinor, and vector
fields

<Ttt>ren = —3pT {1+2I+3I2+4I3
_$4<9_7_176a_% 32y 1las  17as %)

3 9% 3 3p 9 18 ' 3
4 <_ 730 N 1232cx N 4488 224y Tdas  95as 7a6)

9 27p 9p 9p 27 54
1225 144 2 224y 11
4 5+ 8oz+5 Oﬁ_ v 119as T70as Tag 61
9 27p 9 9p 27 27 9

2|

(TTYven = pT {1 + 23 + 32°
4 4 2 12 4 4
$3<@_70a_ 566+ 87+56a4+3a5+a6>

3 9p 3p 3p 9 9 ' 3
575 880a 3208 160y  6las 85as  Bag
4 —_— _ _—
+$<3 o  3p " 3p T 9 18 3
578  880a 3208 160y 58as T3as 5
(oo (218 880a 3205 160y | B8ay | Tias | Bag
3 o 3 ' 3p 9 18 3
2480 883 32y 17ay 10
o (175 248 886 32y MTas | 105 AL g
3p p p 3 3

and

(T )ven = pT {1 + 2z + 327

3 212 352a n 1285 64y 28a4 17as 2ag
PO BN ettt Wit i it AR ettt SOl Aot 4
3 9p 3p 3p 9 9 3
! _@ n 704 n 2563 B 128~ B 47ay B 34as B 4&
3 9p 3p 3p 9 9 3
2 12 4 22 14
vob (o1 4 3020 (1288 B4y 220y a5 )
P D 3 3



978 J. MATYJASEK

875 1312 464 160y 85 50 5
16 (B0, 13120 4045 160y 8as  S0as _Bag) | g
3 9p 3p 3p 9 9 3

where o = a(64M*T)~1, B = b(64M*T)~!, and v = c(64M*T)~ 1. Surpris-
ingly, the time component, (T}')ren is of the form (4) with m = 3. It could be
shown that similar approximate stress-energy tensor may be obtained from
the formulae derived by Visser [18].

Inspection of (31)—(33) shows that for N < 8 the result is described by
polynomials of order 6, because of the geometrical terms that contribute
to (T} )ren- Indeed, for example making use of the additional constraints
(obtained from equations a7y = 0 and ag = 0)

350 398 39
a5 = —664 502 39039, (34)
P P 2p

47 515 5ly
=45 —— ——+—+ 35
0 2 A (35)
one obtains a simple stress-energy tensor that depends on undetermined
parameter a4 [16-25]. The free parameter may be fixed from the known
value of one component of the stress-energy tensor, say, (Té9 )ren ON the event
horizon. Taking, for example, in the vector case,

1

0 —
T

(36)
results in the approximation that coincides with the analytic part of the
Jensen and Ottewill evaluation of the stress-energy tensor [23, 25]. The in-
teresting property of N = 6 model is that the difference (T} )ren — (T )yen does
not depend on the parameter a4 and consequently the entropy of quantized
fields could be constructed [16].

To this end, we report the results of our N = 11 calculations which
generalize Egs. (16)—(20). The stress tensor of the scalar field is described
by p = 9 polynomials with 3 free parameters and has a general form (16)
with

1 1
TAgziﬁﬁ&M—4M@—lmg—ﬂm@x6
1
+ 17 (2626 — 3024 + 17ag + 22a10) z’

4
+'%Rm@+3mm—2mﬂx&%ﬁwm@—2w—amﬂﬁ (37)
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1 1
fA; = 3 (4870 — 5844 + 17ag + 27ayg) z°
1
34

1
+ 3 (1908 — 1596 — Tayo) z° + 334 (252 — 210 + ayp) 2”, (38)

(3588 — 2996 — 17ag — 23a19) "

and

- iAt—i(5844—487@—17a — 27aqq) 25
37t 34 K 10
1

+ 10—2(709@—8508+51ag+65a10)x7
1 13
— (5130 — 61 2 8+ — (210 — 252 — 9,

+ 15 (5130 — 6156 + 29a1o) z +102( © —252 —a)z’. (39)

Although generalization of the method to N > 11 is obvious it seems that
such models are of little use.

Final determination of the model is achieved by performing the least
square fit of the (Ta‘g )ren to the numerical data discussed earlier. Performing
the linear least-square fit we find

ag = 123.347, (40)
a9 = —1.071, (41)

and
e = 10.245. (42)

Note that one of the parameters is the horizon value of the tangential compo-
nent of the stress-energy tensor. The maximal deviation of obtained (Té9 Yren
does not exceed 0.3%. It is belived that the Anderson-Hiscock-Samuel data
is accurate to three significant digit near the event horizon.

The fit may be considered as a good one and therefore constructed
(T} )ren may be used as a source term of the semi-classical Einstein field
equations. Such calculations in the black hole external region with the stress-
energy tensor presented in [1] have been carried out in Ref. [26]. It should
be noted however that maximal deviation of the stress-energy tensor of the
quantized conformally coupled massless scalar field constructed by means
of the Hadamard regularization is 2.5% for (T%)ren and 7.3% for (T})ren.
In spite of that one expects that outside the event horizon there are no
substantial differences between the results of the first order back-reaction
calculations obtained with Al given by (37)-(39) and these obtained with
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the improved stress-energy tensor of Ref. [1]. On the other hand however,
there are importand differences in the region inside the event horizon. Since
the linearized semi-classical Einstein field equations have been solved inside
the event horizon with the source term given by the Page approximation [27]
it would be interesting to reexamine the problem with the aid of (16) with
(37)-(39). We intend to return to this group of problems in a separate
publication.
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