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hT �� iren OF THE QUANTIZED CONFORMAL FIELDSIN THE SCHWARZSCHILD SPACETIME:ISRAEL�HARTLE�HAWKING STATEJerzy MatyjasekInstitute of Physi
s, Maria Curie Skªodowska Universitypl. Marii Curie Skªodowskiej 1, 20-031 Lublin, Polande-mail: matyjase�tytan.um
s.lublin.plor jurek�iris.um
s.lublin.pl(Re
eived De
ember 23, 1998)The renormalized expe
tation value of the stress energy tensor of the
onformally invariant massless �elds in the Israel�Hartle�Hawking state inthe S
hwarzs
hild spa
etime is 
onstru
ted. It is a
hieved through solvingthe 
onservation equation in 
onformal spa
e and utilizing the regularity
onditions in a physi
al metri
. Spe
i�
ally, the relation of the results ofthe present approa
h to the stress tensor 
onstru
ted within the frameworkof the Hadamard renormalization is analysed. Finally, the semi-analyti
models re
onstru
ting the numeri
al estimates of the tangential 
omponentof the stress-energy tensor with the maximal deviation not ex
eeding 0:7%are 
onstru
ted.PACS numbers: 04.62.+v, 04.70.DyIn a re
ent publi
ation [1℄ we have 
onstru
ted the approximate meanvalue of the regularized stress-energy tensor of the massless and 
onfor-mally invariant quantized s
alar �eld in the Israel�Hartle�Hawking state inthe S
hwarzs
hild spa
etime. We employed the Hadamard regularizationwhi
h has proven to be a powerful tool in su
h 
al
ulations [2�8℄. In theHadamard regularization one must solve the 
onstraint equations for threeunknown fun
tions of radial 
oordinate and insert them into the general ex-pression for hT �� i [4℄. Unfortunately, sin
e the 
onstraint equation involvesthree unknown fun
tions, one of whi
h being 
losely related to the va
uum�u
tuation of the quantized �eld h�2i; the problem, beside the boundary
onditions, must be supplemented by some additional informations regard-ing the nature of the sought fun
tions [9, 10℄.(971)



972 J. MatyjasekIn Ref. [1℄ we have assumed that unknown fun
tions (and h�2i) have asimple form k0Xm=�k(1� x)mWm(x); k; k0 � 0; (1)where x = 2M=r; and Wm(x) for ea
h value of m; is a polynomial in x;and showed that it is relatively easy to 
onstru
t solutions, whi
h lead tothe stress-energy tensor and the va
uum �u
tuation whi
h re�e
ts prin
ipalfeatures of the exa
t h�2iren; and hT �� iren with a reasonable a

ura
y. Result-ing two-parameter stress-energy tensor may be further determined from theknown horizon value of the one of the 
omponents of hT �� iren; say hT rr iren;and making use of the equationhT rr (2M)iren = �6 ddr h�2iren + 1615�2T 4H ; (2)where � is the surfa
e gravity and TH stands for the bla
k hole temperature.The remaining free parameter has been �xed by some sort of a best �targument.In this note we shall show how the results of Ref. [1℄ may be obtainedand generalized in a more systemati
 and simpler way, without re
ourseto h�2iren: Moreover, a great advantage of the adopted method is that it
ould be, 
ontrary to the Hadamard regularization, easily extended to 
on-formally invariant massless spinor and ve
tor �elds. Our present approa
h isbased on the method adopted earlier in the di�erent 
ontext and uses s
alingproperties of the one-loop renormalized e�e
tive a
tion under the 
onformaltransformations, or more pre
isely their 
onsequen
es for appropriate trans-formations of the renormalized stress-energy tensors [11�15℄. The notationis essentially that of Refs. [16, 17℄, to whi
h the reader is referred for details.In this method, employing the Christensen�Fulling asymptoti
 analyses [9℄,one assumes that the tangential 
omponent of the stress-energy tensor inthe opti
al 
ompanion to the S
hwarzs
hild spa
e has a simple polynomialform h ~T �� iren = Tp(s) NXn=0 anxn; (3)with a0 = 1; where T = �2T 4H=90 and p(s) is a numeri
al 
oe�
ient de-pending on the spin of the �eld. Here p(0) = 1; p(1=2) = 7=4; and p(1) = 2:We distinguish quantities evaluated in the 
onformal spa
e by a tilde. Sub-sequently, solving the 
onservation equation in the 
onformal spa
e for theradial 
omponent of the stress tensor and utilizing regularity 
onditions onthe event horizon in the physi
al spa
e one redu
es the number of unknown
oe�
ients ai: Their number may be substantially redu
ed a

epting one



hT�� iren of the Quantized Conformal Fields... 973of the two thermal hypotheses, whi
h state that the stress tensor in theIsrael�Hartle�Hawking va
uum should have the formhT �� iren = p(s)T "1 + mXn=1(n+ 1)xn# (Æ�� � 4Æ�0 Æ0�) +O(xm+1); (4)with m = 2 for the weak thermal hypothesis and m = 5 for the strongone [18℄. The weak thermal hypothesis is usually motivated by the observa-tion that sin
e the 
urvature is proportional to x3 the 
urvature 
orre
tionsto the stress-energy tensor are expe
ted to be of that order. On the otherhand, in the strong version of this ansatz one assumes that the 
urvature
orre
tions are proportional to x6; i.e. (
urvature2 ): In pra
ti
e, it is help-ful to invert the order of operations, and to analyse the 
onsequen
es ofthe regularity 
onditions and thermal hypotheses imposed on the tangential
omponent in the S
hwarzs
hild geometry before solving the 
onservationequation.The stress-energy tensor under the 
onformal transformation, ~g�� =exp(�2!)g�� ; transforms ashT �� iren = exp (�4!) ~T �� + a(s)A�� + b(s)B�� + 
(s)C�� ; (5)whereA�� = 8R����!;�� � 43�;�� + 2g�� �2!;��;� + �2 + 232��� 8�;(�!;�)�8!;�!;��; (6)B�� = 8R����!;�� + 8R����!;�!;� � 8!;��!;�;� � 8�;(�!;�) � 8�!;�!;�+4g�� �!;��!;�� + �;�!;� + 12�2� ; (7)C�� = g��(22�+ 3�2 + 6!;��;�)� 12�!;�!;� � 12�;(�!;�) � 2�:�� (8)and � = !;�!;�: The numeri
al 
oe�
ients as predi
ted by ��fun
tion renor-malization are given bya = (2945�2)�1 �12h(0) + 18h�12�+ 72h(1)� ; (9)b = (2945�2)�1 ��4h(0) � 11h�12�� 124h(1)� ; (10)



974 J. Matyjasekand 
 = �(2945�2)�1120h(1); (11)where h(s) denotes the number of heli
ity states for �elds of spin s; whilethe dimensional renormalization gives
(1) = 0: (12)Sin
e the transformational rule for a general geometries is mu
h more 
om-pli
ated we restri
ted ourselves to the Ri

i-�at metri
s. The stress tensorin the opti
al spa
e naturally splits into two parts:h ~T �� iren = T �� + 9
8M4x6Æ�0 Æ0� ; (13)where T �� is a 
onserved tra
eless tensor and the se
ond term in the righthand side of (13) is 
onstru
ted from the tra
e anomaly.Now, we assume N = 10 and restri
t ourselves to the s
alar �eld.Hen
e, taking ! = 1=2 ln(jgttj) and making use of the regularity 
onditionjhT �� irenj <1; one obtainsa9 = � 8Xn=1(10 � n)an; (14)and a10 = 8Xn=1(9� n)an: (15)Moreover, a

epting the strong thermal hypothesis one 
on
ludes that the
oe�
ients ai for i � 5 should vanish.Further, solving the 
onservation equation for h ~T rr iren in the opti
alspa
e, transforming the resulting tensor ba
k to the physi
al spa
e and em-ploying the Christiensen�Fulling 
onditions, i.e. the 
onditions whi
h guar-antee the regularity of the stress-energy tensor in the lo
al frames on theevent horizon one has hT �� iren = hT �� iP +��� ; (16)wherehT �� iP = T �1� x6(4� 3x)2(1� x)2 diag[�3; 1; 1; 1℄�� + 24x6diag[3; 1; 0; 0℄��� ;(17)



hT�� iren of the Quantized Conformal Fields... 975is the stress tensor evaluated within the framework of the Page approxima-tion [14℄, and the 
onserved and tra
eless tensor ��� is given by�tt = �3T �a62 x6 + 1366(9a6 � 64a8)x7 � 1161(3a6 � a8)x8� ; (18)�rr = �T �a62 x6 � 1122(13a6 � 16a8)x7 � 961(3a6 � a8)x8� ; (19)and ��� = ��� = T �a6x6 � 161(a6 + 20a8)x7 � 2161(3a6 � a8)x8� : (20)Further determination of the model requires two pie
es of numeri
al data.Taking, for example, a horizon value of the tangential 
omponent of thestress tensor (the radial 
omponent and hen
e hT tt (1)iren may be easily ob-tained from the tra
e anomaly) one getsa6 = 13(61� � 732 � a8); (21)where � = 1=T hT �� (1)iren: Finally, the remaining 
onstant a4 may be �xedby some sort of the best �t argument. Here however we pro
eed di�erently:we perform the least-quare �t to the available numeri
al data. There aretwo published sour
es of information: the numeri
al estimates 
arried outby Candelas and Howard [19, 20℄, and more re
ently by Anderson, His
o
k,and Samuel [21, 22℄. Although the latter authors presented their results onlygraphi
ally some of their results 
on
erning the tangential 
omponent mayby found in Ref. [18℄. In the region [2M; 5M ℄ we adopted the Anderson,His
o
k, and Samuel data as presented in Ref. [18℄, whereas for r > 5M wea

ept the results of numeri
al 
al
ulations 
arried out by Howard [20℄. Wedis
arded 3 points be
ause the numeri
ally determined tra
e ex
eeded theexa
t one by more than 1%: Performing the linear least-square analysis weobtained a6 = �74:230; (22)and a7 = �329:135: (23)It should be noted that the logarithmi
 term appearing in the solution ofthe 
onservation equation i.e. h ~T rr iren survives if the regularity 
ondition ofhT �� iren is imposed. However, sin
e the 
oe�
ient in front of the logarithmi
term involves a1 and a2 su
h a term by the thermal hypotheses vanish.



976 J. MatyjasekWe 
omplete the dis
ussion of the s
alar N = 10 
ase by 
omparing ob-tained approximation (16)�(20) to the model developed earlier. Introdu
inga new set of parameters �4 and A8 in pla
e of a6 and a8a6 = 1712A8 � 2�; (24)a8 = 46996 A8 � 6� (25)one obtains pre
isely the results of Ref. [1℄. Indeed, inserting (24), (25) into(17)�(20) after simple rearrangements one has8�2�tt = M2r6 � �240 + 176 �4�� M3r7 �43327 �4 + �120 + 4405A8�+M4r8 � 11540A8 + 38518 �4� ; (26)8�2�rr = M2r6 � �720 + 1718�4�� M3r7 �12127 �4 + �360 + A8405�+M4r8 �356 �4 + A8180� ; (27)and 8�2��� = �M2r6 �179 �4 + �360�+ M3r7 �27727 �4 + �180 + A8162��M4r8 �24518 �4 + 7540A8� ; (28)where �4 by (2) is given by �4 = � 1960A8: (29)For 
ompleteness we write out the general expression for the �eld �u
tuation.h�2iren = T 2H12 (1 + x+ x2 + x3 + �4x4 � �4x5): (30)whi
h is ne
essary ingredient of the Hadamard regularization.Now let us 
onsider the 
onsequen
es of the assumption that the 
ur-vature 
orre
tions to the stress-energy tensor are of order x3: From theanalyses 
arried out by Jensen and Ottewill [23℄ we know that analyti
al



hT�� iren of the Quantized Conformal Fields... 977approximation of the stress-energy tensor of the ve
tor �eld satis�es theenergy 
ondition in its weak form.Let } be the order of the polynomials that des
ribe resulting stress-energy tensor. Taking N = 10 and repeating the 
al
ulations for �elds ofarbitrary spin one obtains } = 8 involving 5 unknown parameters. On theother hand N = 8 yields } = 6 polynomials with 3 undetermined 
onstants.To simplify our dis
ussion, in the further analyses we take N = 8: Sin
ein the opti
al spa
e the tra
e anomaly of the 
onformally 
oupled masslessve
tor �eld does not vanish one has to take into a

ount an analog of theZannias term. After some algebra one �nds for s
alar, spinor, and ve
tor�elds hT tt iren=�3pT �1+2x+3x2+4x3�x4�973 � 176�9p � 64�3p +32
3p +11a49 +17a518 + a63 �+x5��7309 + 1232�27p + 448�9p � 224
9p � 74a427 � 95a554 � 7a69 �+x6��12259 +1448�27p +520�9p � 224
9p � 119a427 � 70a527 � 7a69 �� ; (31)hT rr iren = pT �1 + 2x+ 3x2+x3�4603 � 704�9p � 256�3p + 128
3p + 56a49 + 34a59 + 4a63 �+x4�5753 � 880�9p � 320�3p + 160
3p + 61a49 + 85a518 + 5a63 �+x5�5783 � 880�9p � 320�3p + 160
3p + 58a49 + 73a518 + 5a63 �+x6�175 � 248�3p � 88�p + 32
p + 17a43 + 10a53 + a6�� ; (32)and hT �� iren = pT �1 + 2x+ 3x2+x3��2123 + 352�9p + 128�3p � 64
3p � 28a49 � 17a59 � 2a63 �+x4��4333 + 704�9p + 256�3p � 128
3p � 47a49 � 34a59 � 4a63 �+x5��218 + 352�3p + 128�p � 64
p � 22a43 � 14a53 � 2a6�



978 J. Matyjasek+x6��8753 + 1312�9p +464�3p � 160
3p � 85a49 � 50a59 � 5a63 �� ; (33)where � = a(64M4T )�1; � = b(64M4T )�1; and 
 = 
(64M4T )�1: Surpris-ingly, the time 
omponent, hT �� iren is of the form (4) with m = 3: It 
ould beshown that similar approximate stress-energy tensor may be obtained fromthe formulae derived by Visser [18℄.Inspe
tion of (31)�(33) shows that for N � 8 the result is des
ribed bypolynomials of order 6, be
ause of the geometri
al terms that 
ontributeto hT �� iren: Indeed, for example making use of the additional 
onstraints(obtained from equations a7 = 0 and a8 = 0)a5 = �66 + 35�p + 39�p � 39
2p � 2a4 (34)a6 = 45� 47�2p � 51�2p + 51
4p + a4 (35)one obtains a simple stress-energy tensor that depends on undeterminedparameter a4 [16�25℄. The free parameter may be �xed from the knownvalue of one 
omponent of the stress-energy tensor, say, hT �� iren on the eventhorizon. Taking, for example, in the ve
tor 
ase,hT �� iren = � 1240�2M4 (36)results in the approximation that 
oin
ides with the analyti
 part of theJensen and Ottewill evaluation of the stress-energy tensor [23, 25℄. The in-teresting property ofN = 6model is that the di�eren
e hT tt iren�hT rr iren doesnot depend on the parameter a4 and 
onsequently the entropy of quantized�elds 
ould be 
onstru
ted [16℄.To this end, we report the results of our N = 11 
al
ulations whi
hgeneralize Eqs. (16)�(20). The stress tensor of the s
alar �eld is des
ribedby } = 9 polynomials with 3 free parameters and has a general form (16)with 1T ��� = 117 (5844 � 487� � 17a9 � 27a10) x6+ 117 (252� � 3024 + 17a9 + 22a10) x7+ 317 [56� + 3 (a10 � 224)℄ x8 + 417 (21� � 252� a10)x9; (37)



hT�� iren of the Quantized Conformal Fields... 9791T�rr = 134 (487� � 5844 + 17a9 + 27a10) x6+ 134 (3588 � 299� � 17a9 � 23a10) x7+ 134 (1908 � 159� � 7a10) x8 + 334 (252� 21� + a10)x9; (38)and � 13T �tt = 134 (5844 � 487� � 17a9 � 27a10) x6+ 1102 (709� � 8508 + 51a9 + 65a10)x7+ 1102 (513� � 6156 + 29a10) x8 + 13102 (21� � 252 � a10) x9: (39)Although generalization of the method to N > 11 is obvious it seems thatsu
h models are of little use.Final determination of the model is a
hieved by performing the leastsquare �t of the hT �� iren to the numeri
al data dis
ussed earlier. Performingthe linear least-square �t we �nda9 = 123:347 ; (40)a10 = �1:071 ; (41)and � = 10:245: (42)Note that one of the parameters is the horizon value of the tangential 
ompo-nent of the stress-energy tensor. The maximal deviation of obtained hT �� irendoes not ex
eed 0:3%: It is belived that the Anderson�His
o
k�Samuel datais a

urate to three signi�
ant digit near the event horizon.The �t may be 
onsidered as a good one and therefore 
onstru
tedhT �� iren may be used as a sour
e term of the semi-
lassi
al Einstein �eldequations. Su
h 
al
ulations in the bla
k hole external region with the stress-energy tensor presented in [1℄ have been 
arried out in Ref. [26℄. It shouldbe noted however that maximal deviation of the stress-energy tensor of thequantized 
onformally 
oupled massless s
alar �eld 
onstru
ted by meansof the Hadamard regularization is 2:5% for hT �� iren and 7:3% for hT tt iren:In spite of that one expe
ts that outside the event horizon there are nosubstantial di�eren
es between the results of the �rst order ba
k-rea
tion
al
ulations obtained with ��� given by (37)�(39) and these obtained with



980 J. Matyjasekthe improved stress-energy tensor of Ref. [1℄. On the other hand however,there are importand di�eren
es in the region inside the event horizon. Sin
ethe linearized semi-
lassi
al Einstein �eld equations have been solved insidethe event horizon with the sour
e term given by the Page approximation [27℄it would be interesting to reexamine the problem with the aid of (16) with(37)�(39). We intend to return to this group of problems in a separatepubli
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