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hT �� iren OF THE QUANTIZED CONFORMAL FIELDSIN THE SCHWARZSCHILD SPACETIME:ISRAEL�HARTLE�HAWKING STATEJerzy MatyjasekInstitute of Physis, Maria Curie Skªodowska Universitypl. Marii Curie Skªodowskiej 1, 20-031 Lublin, Polande-mail: matyjase�tytan.ums.lublin.plor jurek�iris.ums.lublin.pl(Reeived Deember 23, 1998)The renormalized expetation value of the stress energy tensor of theonformally invariant massless �elds in the Israel�Hartle�Hawking state inthe Shwarzshild spaetime is onstruted. It is ahieved through solvingthe onservation equation in onformal spae and utilizing the regularityonditions in a physial metri. Spei�ally, the relation of the results ofthe present approah to the stress tensor onstruted within the frameworkof the Hadamard renormalization is analysed. Finally, the semi-analytimodels reonstruting the numerial estimates of the tangential omponentof the stress-energy tensor with the maximal deviation not exeeding 0:7%are onstruted.PACS numbers: 04.62.+v, 04.70.DyIn a reent publiation [1℄ we have onstruted the approximate meanvalue of the regularized stress-energy tensor of the massless and onfor-mally invariant quantized salar �eld in the Israel�Hartle�Hawking state inthe Shwarzshild spaetime. We employed the Hadamard regularizationwhih has proven to be a powerful tool in suh alulations [2�8℄. In theHadamard regularization one must solve the onstraint equations for threeunknown funtions of radial oordinate and insert them into the general ex-pression for hT �� i [4℄. Unfortunately, sine the onstraint equation involvesthree unknown funtions, one of whih being losely related to the vauum�utuation of the quantized �eld h�2i; the problem, beside the boundaryonditions, must be supplemented by some additional informations regard-ing the nature of the sought funtions [9, 10℄.(971)



972 J. MatyjasekIn Ref. [1℄ we have assumed that unknown funtions (and h�2i) have asimple form k0Xm=�k(1� x)mWm(x); k; k0 � 0; (1)where x = 2M=r; and Wm(x) for eah value of m; is a polynomial in x;and showed that it is relatively easy to onstrut solutions, whih lead tothe stress-energy tensor and the vauum �utuation whih re�ets prinipalfeatures of the exat h�2iren; and hT �� iren with a reasonable auray. Result-ing two-parameter stress-energy tensor may be further determined from theknown horizon value of the one of the omponents of hT �� iren; say hT rr iren;and making use of the equationhT rr (2M)iren = �6 ddr h�2iren + 1615�2T 4H ; (2)where � is the surfae gravity and TH stands for the blak hole temperature.The remaining free parameter has been �xed by some sort of a best �targument.In this note we shall show how the results of Ref. [1℄ may be obtainedand generalized in a more systemati and simpler way, without reourseto h�2iren: Moreover, a great advantage of the adopted method is that itould be, ontrary to the Hadamard regularization, easily extended to on-formally invariant massless spinor and vetor �elds. Our present approah isbased on the method adopted earlier in the di�erent ontext and uses salingproperties of the one-loop renormalized e�etive ation under the onformaltransformations, or more preisely their onsequenes for appropriate trans-formations of the renormalized stress-energy tensors [11�15℄. The notationis essentially that of Refs. [16, 17℄, to whih the reader is referred for details.In this method, employing the Christensen�Fulling asymptoti analyses [9℄,one assumes that the tangential omponent of the stress-energy tensor inthe optial ompanion to the Shwarzshild spae has a simple polynomialform h ~T �� iren = Tp(s) NXn=0 anxn; (3)with a0 = 1; where T = �2T 4H=90 and p(s) is a numerial oe�ient de-pending on the spin of the �eld. Here p(0) = 1; p(1=2) = 7=4; and p(1) = 2:We distinguish quantities evaluated in the onformal spae by a tilde. Sub-sequently, solving the onservation equation in the onformal spae for theradial omponent of the stress tensor and utilizing regularity onditions onthe event horizon in the physial spae one redues the number of unknownoe�ients ai: Their number may be substantially redued aepting one



hT�� iren of the Quantized Conformal Fields... 973of the two thermal hypotheses, whih state that the stress tensor in theIsrael�Hartle�Hawking vauum should have the formhT �� iren = p(s)T "1 + mXn=1(n+ 1)xn# (Æ�� � 4Æ�0 Æ0�) +O(xm+1); (4)with m = 2 for the weak thermal hypothesis and m = 5 for the strongone [18℄. The weak thermal hypothesis is usually motivated by the observa-tion that sine the urvature is proportional to x3 the urvature orretionsto the stress-energy tensor are expeted to be of that order. On the otherhand, in the strong version of this ansatz one assumes that the urvatureorretions are proportional to x6; i.e. (urvature2 ): In pratie, it is help-ful to invert the order of operations, and to analyse the onsequenes ofthe regularity onditions and thermal hypotheses imposed on the tangentialomponent in the Shwarzshild geometry before solving the onservationequation.The stress-energy tensor under the onformal transformation, ~g�� =exp(�2!)g�� ; transforms ashT �� iren = exp (�4!) ~T �� + a(s)A�� + b(s)B�� + (s)C�� ; (5)whereA�� = 8R����!;�� � 43�;�� + 2g�� �2!;��;� + �2 + 232��� 8�;(�!;�)�8!;�!;��; (6)B�� = 8R����!;�� + 8R����!;�!;� � 8!;��!;�;� � 8�;(�!;�) � 8�!;�!;�+4g�� �!;��!;�� + �;�!;� + 12�2� ; (7)C�� = g��(22�+ 3�2 + 6!;��;�)� 12�!;�!;� � 12�;(�!;�) � 2�:�� (8)and � = !;�!;�: The numerial oe�ients as predited by ��funtion renor-malization are given bya = (2945�2)�1 �12h(0) + 18h�12�+ 72h(1)� ; (9)b = (2945�2)�1 ��4h(0) � 11h�12�� 124h(1)� ; (10)



974 J. Matyjasekand  = �(2945�2)�1120h(1); (11)where h(s) denotes the number of heliity states for �elds of spin s; whilethe dimensional renormalization gives(1) = 0: (12)Sine the transformational rule for a general geometries is muh more om-pliated we restrited ourselves to the Rii-�at metris. The stress tensorin the optial spae naturally splits into two parts:h ~T �� iren = T �� + 98M4x6Æ�0 Æ0� ; (13)where T �� is a onserved traeless tensor and the seond term in the righthand side of (13) is onstruted from the trae anomaly.Now, we assume N = 10 and restrit ourselves to the salar �eld.Hene, taking ! = 1=2 ln(jgttj) and making use of the regularity onditionjhT �� irenj <1; one obtainsa9 = � 8Xn=1(10 � n)an; (14)and a10 = 8Xn=1(9� n)an: (15)Moreover, aepting the strong thermal hypothesis one onludes that theoe�ients ai for i � 5 should vanish.Further, solving the onservation equation for h ~T rr iren in the optialspae, transforming the resulting tensor bak to the physial spae and em-ploying the Christiensen�Fulling onditions, i.e. the onditions whih guar-antee the regularity of the stress-energy tensor in the loal frames on theevent horizon one has hT �� iren = hT �� iP +��� ; (16)wherehT �� iP = T �1� x6(4� 3x)2(1� x)2 diag[�3; 1; 1; 1℄�� + 24x6diag[3; 1; 0; 0℄��� ;(17)



hT�� iren of the Quantized Conformal Fields... 975is the stress tensor evaluated within the framework of the Page approxima-tion [14℄, and the onserved and traeless tensor ��� is given by�tt = �3T �a62 x6 + 1366(9a6 � 64a8)x7 � 1161(3a6 � a8)x8� ; (18)�rr = �T �a62 x6 � 1122(13a6 � 16a8)x7 � 961(3a6 � a8)x8� ; (19)and ��� = ��� = T �a6x6 � 161(a6 + 20a8)x7 � 2161(3a6 � a8)x8� : (20)Further determination of the model requires two piees of numerial data.Taking, for example, a horizon value of the tangential omponent of thestress tensor (the radial omponent and hene hT tt (1)iren may be easily ob-tained from the trae anomaly) one getsa6 = 13(61� � 732 � a8); (21)where � = 1=T hT �� (1)iren: Finally, the remaining onstant a4 may be �xedby some sort of the best �t argument. Here however we proeed di�erently:we perform the least-quare �t to the available numerial data. There aretwo published soures of information: the numerial estimates arried outby Candelas and Howard [19, 20℄, and more reently by Anderson, Hisok,and Samuel [21, 22℄. Although the latter authors presented their results onlygraphially some of their results onerning the tangential omponent mayby found in Ref. [18℄. In the region [2M; 5M ℄ we adopted the Anderson,Hisok, and Samuel data as presented in Ref. [18℄, whereas for r > 5M weaept the results of numerial alulations arried out by Howard [20℄. Wedisarded 3 points beause the numerially determined trae exeeded theexat one by more than 1%: Performing the linear least-square analysis weobtained a6 = �74:230; (22)and a7 = �329:135: (23)It should be noted that the logarithmi term appearing in the solution ofthe onservation equation i.e. h ~T rr iren survives if the regularity ondition ofhT �� iren is imposed. However, sine the oe�ient in front of the logarithmiterm involves a1 and a2 suh a term by the thermal hypotheses vanish.



976 J. MatyjasekWe omplete the disussion of the salar N = 10 ase by omparing ob-tained approximation (16)�(20) to the model developed earlier. Introduinga new set of parameters �4 and A8 in plae of a6 and a8a6 = 1712A8 � 2�; (24)a8 = 46996 A8 � 6� (25)one obtains preisely the results of Ref. [1℄. Indeed, inserting (24), (25) into(17)�(20) after simple rearrangements one has8�2�tt = M2r6 � �240 + 176 �4�� M3r7 �43327 �4 + �120 + 4405A8�+M4r8 � 11540A8 + 38518 �4� ; (26)8�2�rr = M2r6 � �720 + 1718�4�� M3r7 �12127 �4 + �360 + A8405�+M4r8 �356 �4 + A8180� ; (27)and 8�2��� = �M2r6 �179 �4 + �360�+ M3r7 �27727 �4 + �180 + A8162��M4r8 �24518 �4 + 7540A8� ; (28)where �4 by (2) is given by �4 = � 1960A8: (29)For ompleteness we write out the general expression for the �eld �utuation.h�2iren = T 2H12 (1 + x+ x2 + x3 + �4x4 � �4x5): (30)whih is neessary ingredient of the Hadamard regularization.Now let us onsider the onsequenes of the assumption that the ur-vature orretions to the stress-energy tensor are of order x3: From theanalyses arried out by Jensen and Ottewill [23℄ we know that analytial



hT�� iren of the Quantized Conformal Fields... 977approximation of the stress-energy tensor of the vetor �eld satis�es theenergy ondition in its weak form.Let } be the order of the polynomials that desribe resulting stress-energy tensor. Taking N = 10 and repeating the alulations for �elds ofarbitrary spin one obtains } = 8 involving 5 unknown parameters. On theother hand N = 8 yields } = 6 polynomials with 3 undetermined onstants.To simplify our disussion, in the further analyses we take N = 8: Sinein the optial spae the trae anomaly of the onformally oupled masslessvetor �eld does not vanish one has to take into aount an analog of theZannias term. After some algebra one �nds for salar, spinor, and vetor�elds hT tt iren=�3pT �1+2x+3x2+4x3�x4�973 � 176�9p � 64�3p +323p +11a49 +17a518 + a63 �+x5��7309 + 1232�27p + 448�9p � 2249p � 74a427 � 95a554 � 7a69 �+x6��12259 +1448�27p +520�9p � 2249p � 119a427 � 70a527 � 7a69 �� ; (31)hT rr iren = pT �1 + 2x+ 3x2+x3�4603 � 704�9p � 256�3p + 1283p + 56a49 + 34a59 + 4a63 �+x4�5753 � 880�9p � 320�3p + 1603p + 61a49 + 85a518 + 5a63 �+x5�5783 � 880�9p � 320�3p + 1603p + 58a49 + 73a518 + 5a63 �+x6�175 � 248�3p � 88�p + 32p + 17a43 + 10a53 + a6�� ; (32)and hT �� iren = pT �1 + 2x+ 3x2+x3��2123 + 352�9p + 128�3p � 643p � 28a49 � 17a59 � 2a63 �+x4��4333 + 704�9p + 256�3p � 1283p � 47a49 � 34a59 � 4a63 �+x5��218 + 352�3p + 128�p � 64p � 22a43 � 14a53 � 2a6�



978 J. Matyjasek+x6��8753 + 1312�9p +464�3p � 1603p � 85a49 � 50a59 � 5a63 �� ; (33)where � = a(64M4T )�1; � = b(64M4T )�1; and  = (64M4T )�1: Surpris-ingly, the time omponent, hT �� iren is of the form (4) with m = 3: It ould beshown that similar approximate stress-energy tensor may be obtained fromthe formulae derived by Visser [18℄.Inspetion of (31)�(33) shows that for N � 8 the result is desribed bypolynomials of order 6, beause of the geometrial terms that ontributeto hT �� iren: Indeed, for example making use of the additional onstraints(obtained from equations a7 = 0 and a8 = 0)a5 = �66 + 35�p + 39�p � 392p � 2a4 (34)a6 = 45� 47�2p � 51�2p + 514p + a4 (35)one obtains a simple stress-energy tensor that depends on undeterminedparameter a4 [16�25℄. The free parameter may be �xed from the knownvalue of one omponent of the stress-energy tensor, say, hT �� iren on the eventhorizon. Taking, for example, in the vetor ase,hT �� iren = � 1240�2M4 (36)results in the approximation that oinides with the analyti part of theJensen and Ottewill evaluation of the stress-energy tensor [23, 25℄. The in-teresting property ofN = 6model is that the di�erene hT tt iren�hT rr iren doesnot depend on the parameter a4 and onsequently the entropy of quantized�elds ould be onstruted [16℄.To this end, we report the results of our N = 11 alulations whihgeneralize Eqs. (16)�(20). The stress tensor of the salar �eld is desribedby } = 9 polynomials with 3 free parameters and has a general form (16)with 1T ��� = 117 (5844 � 487� � 17a9 � 27a10) x6+ 117 (252� � 3024 + 17a9 + 22a10) x7+ 317 [56� + 3 (a10 � 224)℄ x8 + 417 (21� � 252� a10)x9; (37)



hT�� iren of the Quantized Conformal Fields... 9791T�rr = 134 (487� � 5844 + 17a9 + 27a10) x6+ 134 (3588 � 299� � 17a9 � 23a10) x7+ 134 (1908 � 159� � 7a10) x8 + 334 (252� 21� + a10)x9; (38)and � 13T �tt = 134 (5844 � 487� � 17a9 � 27a10) x6+ 1102 (709� � 8508 + 51a9 + 65a10)x7+ 1102 (513� � 6156 + 29a10) x8 + 13102 (21� � 252 � a10) x9: (39)Although generalization of the method to N > 11 is obvious it seems thatsuh models are of little use.Final determination of the model is ahieved by performing the leastsquare �t of the hT �� iren to the numerial data disussed earlier. Performingthe linear least-square �t we �nda9 = 123:347 ; (40)a10 = �1:071 ; (41)and � = 10:245: (42)Note that one of the parameters is the horizon value of the tangential ompo-nent of the stress-energy tensor. The maximal deviation of obtained hT �� irendoes not exeed 0:3%: It is belived that the Anderson�Hisok�Samuel datais aurate to three signi�ant digit near the event horizon.The �t may be onsidered as a good one and therefore onstrutedhT �� iren may be used as a soure term of the semi-lassial Einstein �eldequations. Suh alulations in the blak hole external region with the stress-energy tensor presented in [1℄ have been arried out in Ref. [26℄. It shouldbe noted however that maximal deviation of the stress-energy tensor of thequantized onformally oupled massless salar �eld onstruted by meansof the Hadamard regularization is 2:5% for hT �� iren and 7:3% for hT tt iren:In spite of that one expets that outside the event horizon there are nosubstantial di�erenes between the results of the �rst order bak-reationalulations obtained with ��� given by (37)�(39) and these obtained with
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