Vol. 30 (1999) ACTA PHYSICA POLONICA B No 5

BOUNDS ON THE EXISTENCE OF NEUTRON RICH
NUCLEI IN NEUTRON STAR INTERIORS*

F. DOUCHIN® AND P. HAENSEL®P

2Centre de Recherche Astronomique de Lyon
Ecole Normale Supérieure de Lyon

46, allée d’Ttalie, 69364 Lyon, France

PN. Copernicus Astronomical Center
Polish Academy of Sciences

Bartycka 18, 00-716 Warszawa, Poland
(Received July 4, 1998)

We address the question concerning the maximum density, p{\nfax, at
which nuclei (and more generally — nuclear structures) can exist in neu-
tron star interiors. An absolute upper bound to pﬁlfax is obtained using the
bulk approximation, in which surface and Coulomb effects are neglected.
A very good approximation to p{‘nfax is given by the threshold for the insta-
bility of a uniform npe plasma with respect to density modulations; this
threshold is calculated using the Extended Thomas—Fermi approximation
for the Skyrme energy functionals. For recent SLy Skyrme forces, which
are particularly suitable for the description of very neutron rich nucleon
systems, one gets pﬁfax = 0.08 fm~3; at this density protons constitute only
4% of nucleons.

PACS numbers: 97.60.Jd, 21.65.+f, 95.30.Cq

1. Introduction

Neutron drip instability limits the neutron excess of neutron-rich nuclei
which can be formed in laboratory to § = (N —Z)/A < 6n—grip ~ 0.3. How-
ever, this limitation is no longer valid for nuclei in the interiors of neutron
stars, where the density varies from a few g cm ™ near the stellar surface
to more than 10" g cm™3 near the star center. Above 10 g cm™3, atomic
structures are crushed, and electrons form an essentially uniform Fermi gas.
Standard scenario of neutron star formation in gravitational collapse of a
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massive stellar core (or of a mass accreting white dwarf) predicts nuclear
composition corresponding to the state of complete thermodynamic equilib-
rium (minimum of the free energy per nucleon). Neutron excess parameter
of nuclei, immersed in electron gas, increases with increasing density (i.e.,
increasing depth below stellar surface). Beta decay of neutron rich nuclei,
which would be uns in vacuum, is blocked via Pauli exclusion principle
due to the presence of dense, degenerate electron gas. Up to the density
4 —6 x 10" g cm™3, neutron star matter consists of nuclei immersed in
dense electron gas. At higher densities, neutrons start to populate contin-
uum states, forming a degenerate neutron gas. The presence of an outer
degenerate neutron gas influences the properties of nuclei by: (a) blocking
(due to Pauli exclusion principle) neutron emission from nuclei, (b) exerting
pressure on nuclei (i.e. compressing them ), and (¢) modifying (lowering)
nuclear surface energy.

Further increase of density is accompanied by an increase of the fraction
of volume occupied by nuclei and a simultaneous decrease of proton fraction
in neutron star matter (and in nuclei). In classical terms, nucleon component
of neutron star matter consists there of two coexisting nucleon fluids: denser
one in the interior of nuclei, and the less dense outer neutron gas (at highest
densities the less dense nucleon fluid can contain some admixture of protons,
see Section 2). At some density p/rXaX the two-fluid phase becomes unstable
with respect to transition into a uniform, electrically neutral npe plasma,
composed mostly of neutrons, with a few percent admixture of electrons
and protons. The density p/n\{ax is the maximum density, at which nuclei
can exist in the neutron star interiors; it turns out to be significantly lower
than normal nuclear saturation density py = 0.16 fm—3, typically ~ %po
(see Section 3). Before ,U’rgax is reached, the interplay between Coulomb and
surface effects can lead to the appearance of unusual shapes of ‘nuclei’ (rods,
plates, tubes, bubbles, ...). However, both the theoretical value of pﬁfax and
the actual shape of ‘nuclei’ (the more appropriate term would be ‘nuclear
structures’) at highest densities, depend on the assumed effective nuclear
hamiltonian, used in many-body calculations [5,6,8,9,11]. For some effective
N-N interactions, neutron star matter contained spherical nuclei down to
PN, (SKM force in [9], all relativistic mean field models in [5]). For other
models of effective N-N forces, spherical nuclei were replaced by a sequence
of cylindrical ones (rods), flat (plates), cylindrical holes in nuclear matter
filled by neutron gas (tubes), and finally spherical holes in nuclear matter
filled by neutron gas (bubbles), before disappearance of nuclear structures
at Pmax [67 8,9, 11]

Let us stress that up to about pg the elementary constituents of neutron
star matter are still the same as those of terrestrial matter: n, p, e (see,
e.g., [13]). However, under extremal conditions prevailing in neutron star
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interior, the structures these constituents form can be dramatically different
from those familiar from terrestrial ones.

The quantity ,U’n‘{ax has an important astrophysical meaning: it deter-
mines the bottom boundary of the neutron star crust, an outer envelope,
in which nuclei form a periodic crystal lattice due to longer range Coulomb
interactions. In the case of unusual nuclei, one deals rather with two dimen-
sional (rods, tubes) or even one dimensional (plates) liquid crystals [6-9].
The solid crust plays an important role in the evolution and dynamics of
neutron stars (see, e.g. [13]).

In view of the fact, that the bottom layers of neutron star crust involve
nucleon matter with an extremely large neutron excess (0 ~ 0.9), an appro-
priate choice of effective nuclear hamiltonian is of crucial importance. Re-
cently, a new set of the Skyrme-type effective N-N interactions SLy (Skyrme
Lyon) has been derived, based on an approach which is particularly appro-
priate, as far as the applications to a neutron rich matter are concerned [3,4].
Relevant additional experimental items concerning nuclei with large neutron
excess, isovector effective masses, constraints of spin stability, and require-
ment of consistency with the realistic UV14+VIII equation of state (EOS) of
dense neutron matter of Wiringa et al. [14] for pg < p < 1.5 fm™3, were in-
cluded into a fitting procedure for the SLy forces parameters. In the present
paper we calculate pr’}lfax using the SLy models of effective N-N interaction,
and compare our results with those obtained using older Skyrme-type forces,
Sk1’ and SkM*, used frequently in astrophysical applications. The parame-
ters of the SLy forces, used in the present calculations, together with those
of the SkM* and Sk1’ models, are given in Table I. The SLy4 is a basic SLy
force; the SLy7 model has been obtained following the most ambitious fit-
ting procedure, in which spin-gradient terms and center of mass correction
term were both included in the Skyrme energy functional [4].

At the densities of interest, matter in the interior of a neutron star which
is more than one year old, is strongly degenerate, and thermal contributions
to thermodynamic quantities can be safely neglected. In what follows, we
will consider the properties of neutron star matter in the T' = 0 approxi-
mation; dense matter will be assumed to be in its ground state (it is then
called ‘cold catalyzed matter’).

In Section 2, we present the calculation of plY,  in the bulk approxima-
tion. Threshold for the instability of homogeneous npe matter with respect
to density modulations (i.e., formation of ‘nuclear structures’) is calculated
in Section 3. Properties of very neutron rich nuclei in the bottom layers of
neutron star crust, and dependence on the effective N-N interaction model,
are discussed in Section 4. Concluding remarks are presented in Section 5.
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TABLE 1
Parameter values of the Skyrme forces

Force SLy4 SLy7 SkM* Sk1’

to (MeV fm?)  -2488.91 -2482.41 -2645.0 -1057.3
t; (MeV fm®)  486.82  457.97  410.0  235.9

ty (MeV fm®)  -546.39  -419.85 -135.0 -100.00
tz (MeV fm®T37)  13777.0  13677.0 15595.0 14463.5
1 1 1

o 3 3 6 1
o 0.834 0.846 0.09  0.2885
T -0.344  -0.511 0 0
Lo -1.000  -1.000  -1.000 0
T3 1.354 1.391 0 0.2257

Wo (MeV fm?) 123.0 126.0 130.0  120.0

2. Bound for the existence of nuclei: the bulk approximation

Above neutron drip density, pn—_drip, neutron star crust is a two-phase
nucleon system, the denser nucleon phase (fluid) ‘i’ residing inside nuclei and
the less dense ‘0’ one forming a gas outside nuclei. Both nucleon fluids are
permeated by an essentially homogeneous electron gas, which ensures overall
charge neutrality. The shape of nuclei, i.e. that of the ‘i-o’ interface, results
from the balance of the surface and Coulomb terms in the total energy of
the system.

The bulk approximation consists in neglecting the Coulomb and surface
effects. At given mean nucleon density p, nucleons are present in general
in both of the coexisting ‘i’ and ‘o’ fluids, characterized by the constant
densities pni, Ppi, Pno, and above proton drip density, pp—drip, also ppo. The
equilibrium between the ‘i’ and ‘o’ fluids, ensured by the (strong) N-N in-
teraction, implies the equality of the chemical potentials of nucleons, and
the equality of nucleon pressures,

Hni = Hno, Hpi = Hpo Pyi = Py, , (1)

where the label N indicates the nucleon contribution to the matter pressure,
and the condition on the proton chemical potentials applies only above the
proton-drip density, pp—arip- At a given p, Eqgs. (1) enables determination
of pni, Ppi, Pno, and for p > pp_grip, also ppo.

Let us denote the volume fraction occupied by the ‘i’ fluid by u. At a
given mean nucleon density p = up; + (1 — u)p,, the total energy density is
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given by
E =uEyNi+ (1 —u)Eno + E , (2)

where F, is the electron energy density, F.(p.). Beta equilibrium within
the npe matter implies relation between the chemical potentials of neutrons,
protons and electrons,

Hn = fp + e (3)

while requirement of the overall charge neutrality leads to

pe = uppi + (1 — u)ppo - (4)

Egs. (1), (3), (4) determine completely the equilibrium of a two-fluid npe
matter at a given nucleon density p.

The two-fluid phase is stable at a given p if its energy per nucleon is
lower than that in the uniform (one-fluid) phase (i.e., that of a uniform
npe matter). This stability condition breaks down at a density po.y1. Cal-
culations show that approaching ps.,1 from the lower density (two-fluid)
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Fig.1. Composition and the two-fluid—one-fluid phase transition in the bulk ap-
proximation, for the SLy4 force. Two-fluid phase to the left, one-fluid phase to the
right of the dotted line representing the bottom boundary of the crust in the bulk
approximation.
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TABLE 11
Neutron drip and proton drip densities, and proton fraction and nucleon density
at the 2-fluid<»1-fluid transition, calculated in the bulk approximation.

Force Pn—drip Pp—drip P21 T2e1
(fm—?) (fm~*) (fm—%) (%)
SkM* 7.55x10°* 0.0781 0.0866 3.13

Sk1’  8.09x10~* 0.1066 0.1088 3.71
SLy4 7.34x107* 0.0853 0.0905 3.84

SLy7 7.21x10"% 0.0836 0.0889 3.80

side corresponds to u — 1, i.e. to the 1’ (denser) fluid filling the whole
volume [10].

Therefore the 2 +» 1 transition is a continuous one, with no density jump
(our results for the SLy4 force are shown in Fig. 1). Actually, Coulomb and
surface effects would increase the energy per nucleon in the two-fluid phase,
as compared to the plain bulk approximation. Therefore, the real transition
into a uniform npe matter occurs at density lower than po.,1, so that pocyq
is thus a robust upper bound to p7x-

Numerical values of po.y1 for four Skyrme forces are shown in Table II,
where we show also the proton-drip densities, and the proton fractions at
the 2 «<» 1 transition point, x9.,1 (bulk instability of two-fluid phase with
Skyrme forces SkM and Sk1’ was studied in [10]). As far as the value of
P21 is concerned, both SLy models yield values close to 0.09 fm™3, inter-
mediate between those corresponding to the Sk1’ and SkM* forces, which
yield 0.11 fm— and 0.087 fm—3, respectively. Proton drip takes place in a
narrow interval of densities close to pacs1. At the 2 <> 1 transition point,
protons constitute less than 4% of nucleons.

3. Instability of a uniform npe matter and existence
of nuclear structures

An instability of a spatially uniform state of the npe matter with respect
to density modulations signals the appearance of nuclear structures in the
true ground state of the npe system. Let us consider first a npe matter at
nucleon density p > pg, which is sufficiently high to exclude any possibility of
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existence of nuclear structures. By decreasing p, we will eventually find the
threshold density, below which uniform npe matter is unstable with respect
to density modulations. This threshold density turns out a lower bound
(and a rather good approximation) to g2, [8,10].

The ground state of uniform npe matter of a given nucleon density p
corresponds to the minimum of the energy density E(py, pp,pe) = Fo, cal-
culated at a fixed nucleon density p = p, + p, = p, under the condition of
charge neutrality p, = p, (all densities being assumed constant in space).
Minimisation implies the beta equilibrium relation between the chemical
potentials of matter constituents, p, = u, + pe. This relation ensures van-
ishing of the first variation of £ implied by small perturbations §p;(r) (where
j = n,p,e). However, this does not guarantee the stability of the spatially
homogeneous state of the npe matter, which requires that the second varia-
tion of E (quadratic in dp;) be positive.

The energy per unit volume, F, of a slightly nonuniform npe matter, can
be decomposed into nucleon, electron, and Coulomb components,

E=FEx+E.+ Ecoy - (5)

The nucleon contribution to F can be expressed in terms of the energy
density

é‘N(pna Pp, Vpna VPP) )

obtained from the Skyrme models of the effective nucleon hamiltonian, so
that for a perturbed, slightly spatially inhomogeneous state we get the en-
ergy functional

By = [ Arxlon(r).pn(r). Vou(r), Vpy(r)] (6)

The expression for £x has been calculated using the semi-classical Extended
Thomas-Fermi (ETF) treatment of the kinetic and the spin-orbit energy
densities [2]. Assuming that the spatial gradients are small, one keeps only
the quadratic gradient terms in the ETF expressions. This approximation
will be justified by the fact that characteristic wavelengths of perturbations
turn out to be much larger than the internucleon distance (see below). With
such approximations, the change of the energy (per unit volume) implied by
the density perturbations can be expressed, keeping only second order terms,
as [1,10],

BB, = % / (;T‘J)F ()0pi(a)3p;(a)” , (7)

where Fourier representation

doi(r) = [ (;—qgépj<q)eiq’° | (®)

)
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has been used. The hermitian Fj;(q) matrix determines the stability of the
uniform state of equilibrium of the npe matter with respect to the spatially
periodic perturbations of the densities of wavevector q. Due to the isotropy
of the homogeneous equilibrium state of the npe matter, F;; depends only
on |g| = ¢. In the case of Skyrme forces, the matrix elements Fj; can
be calculated analytically, as explicit functions of the equilibrium densities
and ¢, and are composed of compression (local), curvature (gradient), and
Coulomb components [1,10].

The condition for the Fj; matrix to be positive definite turns out to
be equivalent to the requirement that the determinant of the F;; matrix
be positive [9]. At each density p, one has thus to check the condition
det[Fj;(q)] > 0. Let us start with some p > pg, at which det[Fj;(q)] > 0
for any g. By decreasing p, we find eventually a wavenumber ) at which
stability condition is violated for the first time; this happens at some density
p(Q). For p < p(Q) homogeneous state is no longer the true ground state
of the npe matter since it is unstable with respect to small periodic density
modulations.

In contrast to the bulk approximation, in which constant densities were
assumed by construction, the general energy functional used in this section
allows for a consistent treatment of spatially inhomogeneous states of the
npe matter. The instability at p(Q) signals a phase transition with a loss
of translational symmetry of the mpe matter. In principle, this could be
a second order phase transition. However, the combination of Coulomb
and surface effects turns out to be sufficiently strong to destabilize the npe
state with an infinitesimal density modulation, leading to a first-order phase
transition into a state with finite amplitude density modulations. The real
equilibrium phase transition (at constant pressure) will thus take place at a
npe matter density p, slightly higher than p(Q). Homogeneous npe matter
of density p; coexists with a spatially inhomogeneous phase exhibiting some
nuclear structures, of a density py slightly lower than p;. Therefore, p(Q) is
actually a lower bound on pi, but in view of the closeness of p; and po, it
can be used as a rather good approximation of pﬁ{ax = p2.

Our numerical results for four Skyrme forces are shown in Table III
( [12], the case of Sk1’ force was studied previously, using slightly different
approximations, in [10]). Column “a” was obtained using standard TF ap-
proximation to nucleon kinetic energy densities, and neglecting spin-orbit
contribution to £y. Adding quadratic gradient terms in the ETF expansion
of the nucleon energy densities [2] (columns “b”) increased only slightly the
values of p(Q) (by less than 1%) as compared to the TF values. Notice
that both “a” and “b” were obtained neglecting the spin-orbit term in Ey.
Finally, adding the spin-orbit term, calculated using the ETF approxima-
tion [2] (column “c”), further increased p(@Q) by about 1% with respect to the
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TABLE III
Threshold for the instability of the homogeneous npe matter with respect to density
modulations.

Force p(Q) Q z(Q)
(fm—?) (fm~1) (%)
a b c a b c C

SkM* | 0.0738 0.0744 0.0754 | 0.277 0.284 0.299 | 2.79
Sk1’ | 0.0992 0.0993 0.1005 | 0.314 0.319  0.367 | 3.52
SLy4 | 0.0781 0.0787 0.0794 | 0.262 0.271  0.281 | 3.57
SLy7 | 0.0773 0.780 0.0786 | 0.270  0.280  0.292 | 3.55

a: TF approximation without spin-orbit term.
b: ETF without spin-orbit term.
c: ETF including spin-orbit term.

“b” ones (from 0.8% for SLy7 to 1.5% for Sk1'). In the case of the critical
wavenumber (@, corresponding effects are significantly higher.

For the ETF approximation to be correct, the value of the characteristic
wavelength of critical density perturbations, 27/@Q, must be significantly
larger than the mean internucleon distance. Despite a small proton fraction,
2w /Q ~ 17 — 22 fm is typically four times higher than the distance between
protons 7, = (4mp/3)~1/3; for neutrons this ratio is typically about eight.

4. Nuclei in the bottom layers of the crust

The actual structure of the bottom layer of neutron star crust should
be calculated including Coulomb and surface effects. One usually considers
a limited set of five possible nuclear shapes: spheres of i-phase embedded
in o-gas, rods of i-phase in o-gas, equidistant plates of i-phase with o-gas
between them, tubes in the i-matter filled with o-gas, and spherical bubbles
of the o-gas in i-matter. For a given nuclear shape, the ground state of the
matter is calculated using the Wigner—Seitz approximation, in which the real
system is replaced by a set of non-interacting, electrically neutral cells, each
cell containing one nucleus. Wigner—Seitz cells are spherical, cylindrical
or plate-like, depending on the symmetry of nuclear structure. The total
volume of cells is equal to the volume of the real system.
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By comparing the enthalpies per nucleon (E+ P)/p at given P, one finds
the actual shape of nuclei at this pressure P. Depending on the assumed
effective N-N interaction, unusual nuclear shapes (starting with rods) may
appear as early as at p ~ 5 — 6 x 1072 fm ™3 (the case of FPS force of
[9, 6, 11]), or do not appear at all, spherical nuclei being present down to po
(SkM force case of [9, 5]). Elementary considerations within the liquid drop
model indicate, that at lower densities spherical shape is the only possible
one. A possibility (or rather a necessity) of appearance of unusual nuclear
shapes at highest densities results from the fact, that the fraction occupied
by i-phase (i.e., nuclear matter), u, increases with increasing p, and above
some limiting density the sum of the surface and Coulomb energies can be
reduced by changing nuclear shape from spherical to an unusual one. The
main point is whether unusual shape will appear before the transition into
a homogeneous npe matter.

In general, the structure of the bottom layers of the neutron star crust
may be expected to be rather sensitive to the behavior of the nuclear surface
tension, o, in the relevant density interval %po <p < %po. Our results
obtained within the ETF approximation for the Skyrme energy functional,
shown in Fig. 2 [15], visualize strong dependence of o at large neutron excess
on the Skyrme force used [notice that all these forces lead to very similar
values of o(d = 0), consistent with experimental value extracted from the
liquid droplet model]. At §; = 0.8 (which corresponds to the proton fraction
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Fig.2. Surface tension of the i-o phase interface versus neutron excess parameter
0; = 1 — 2x; in the denser (i) phase far from the interface. Typical values of &; (z;)
range from 0.6 (0.2) at p = 0.05 fm 3 to 0.8 (0.1) at p = 0.08 fm 3.
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x; = 0.1), characteristic of p ~ 0.08 fm~3, nuclear surface tension for SkM*
model is only half of that obtained for the Sk1’ one, which in turn is 30%
higher than our values for the SLy forces. We should remind, however, that
even at p ~ % po we have to deal with nuclei which are very far from the most
neutron rich nuclei available in terrestrial nuclear physics, and therefore we
should rely on the extrapolation of nuclear models to very high neutron
excess. This may be visualized by our preliminary results obtained within
the compressible liquid drop model for SLy4 force, shown in Table TV.

TABLE 1V
Examples of spherical nuclei in the bottom layers of neutron star crust with SLy4
force. Curvature corrections to surface energy are neglected. Acep is the number
of nucleons in Wigner—Seitz cell, u is the fraction of volume occupied by protons,
Z and A are numbers of protons and nucleons in nuclei, R,,, R, are corresponding
(equivalent) radii.

p Po/pi u R, R,—-R, Z A Acell
(fn =) (fm)  (fm)
0.0160 0.0932 0.0154 5.56 0.83 28.2 133.2 751.3
0.0425 0.2819 0.0551 6.20 0.86 25.1 1549 769.3
0.0501 0.3441 0.0748 6.42 0.85 24.3 162.5 744.8
0.0628 0.4584 0.1269 6.98 0.80 23.6 1869 705.6

5. Conclusion

Neutron star interiors are expected to contain extremely neutron rich
nuclei (or more generally “nuclear structures”, including those with unusual
shapes), with neutron excess far beyond the laboratory neutron-drip limit.
However, no stable nuclear structure can exist above a specific limiting den-
sity, which turns out to be significantly smaller than the saturation density
of symmetric nuclear matter. For Skyrme forces SLy, which are particularly
suitable for applications in neutron star matter calculations, this ultimate
density is about 0.08 fm 3, the proton fraction at the limiting density being
about 4%.

The procedure of construction of SLy forces make them suitable also for
the calculation of equation of state of neutron star matter at supranuclear
densities, up to 8pg [3]. Therefore these effective N-N interactions can be
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used for a unified description of the whole neutron star, including its liquid
interior. A low value of pﬁ{ax implies a small mass of neutron star crust.
Consider a neutron star model of a “canonical mass” 1.4 M (measured
masses of binary radio pulsars are quite close to this canonical value). For
SLy7 force, the mass of the crust constitutes then only 1.3% of stellar mass,
while contribution of the crust to the total moment of inertia of neutron star
is about 2.8% [12].

In spite of its small mass, the outer mantle of neutron star, containing
neutron rich nuclei — neutron star crust — is of paramount importance
for star evolution and dynamics. It insulates thermally neutron star sur-
face from its liquid interior, and therefore plays an essential role in neutron
star cooling. It can accumulate mechanical stresses, leading to instabilities
crucial for the glitches in pulsar timing. Finally, neutron star crust can sup-
port, in contrast to the liquid interior, nonaxial deformations (“mountains”)
which, combined with rapid rotation, could make neutron star a source of
continuous gravitational radiation. This gives a strong astrophysical moti-
vation for theoretical studies of neutron rich nuclei in neutron star interiors.
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