DEPOPULATION OF THE $K^{\pi} = 9^{-}$ ISOMER IN ¹⁸⁰Ta via COULOMB EXCITATION*

M. LOEWE^a, J. BESSERER^a, J. DE BOER^a, H.J. MAIER^a M. WÜRKNER^a, J. SREBRNY^b, T. CZOSNYKA^c, J. IWANICKI^c P.J. NAPIORKOWSKI^c, P. VON NEUMANN-COSEL^d, A. RICHTER^d C. SCHLEGEL^e, H.J. WOLLERSHEIM^e, P. ALEXA^f, A.I. LEVON^g S.A. KARAMIAN^h AND G. SLETTENⁱ

^aSektion Physik, Ludwig-Maximilians-Universität München, Garching, Germany
^bHeavy Ion Laboratory, University of Warsaw, Poland
^cNuclear Physics Division, University of Warsaw, Poland
^dTechnische Universität Darmstadt, Germany
^eGesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany
^fInstitute of Chem. Technology, Prague, Czech Republic
^gInstitute for Nuclear Research, Kiev, Ukraine
^hFLNR, JINR, Dubna, Russia
ⁱNiels Bohr Institute, University of Copenhagen, Denmark

(Received August 7, 1998)

The depopulation of $^{180\text{m}}$ Ta by Coulomb excitation was investigated. The recoiling tantalum ions from bombardments with 36 S and with 64 Ni were collected in catcher foils surrounding the beam. The out-of-beam identification of the 8h decay of $^{180\text{gs}}$ Ta in these foils leads to the existence of a mediating state at about 1.3 MeV excited from $^{180\text{m}}$ Ta by an E3 transition of the order of several Weisskopf units.

PACS numbers: 21.10.-k, 21.10.Ky, 21.60.Ev, 23.20.Js

1. The nucleus ¹⁸⁰Ta

Only 0.012% of natural Tantalum consists of ¹⁸⁰Ta, while 99.988% is ¹⁸¹Ta. The extremely rare isotope ¹⁸⁰Ta survives in nature in an $I^{\pi} = 9^{-1}$ isomer (¹⁸⁰mTa) at $E^* = 75.3$ keV. This isomer has a half-life of $T_{1/2} > 1.2 \times 10^{15} y$. The $I^{\pi} = 1^+$ ground-state (¹⁸⁰gsTa) is unstable and decays with $T_{1/2} = 8.15$ h either by electron capture to ¹⁸⁰Hf or by β^- to

^{*} Presented at the International Conference "Nuclear Physics Close to the Barrier", Warszawa, Poland, June 30–July 4, 1998.

¹⁸⁰W. The direct decay of the $K^{\pi} = 9^{-}$ isomer to the $K^{\pi} = 1^{+}$ groundstate is highly *K*-forbidden. The characteristics of the ground-state decay of ^{180gs}Ta are the Hf $K_{\alpha,\beta}$ X-rays (72 X-rays per 100 decays), the $2^{+} \rightarrow 0^{+}$ E2 transition in ¹⁸⁰Hf (5 gammas per 100 decays) and the $2^{+} \rightarrow 0^{+}$ E2 transition in ¹⁸⁰W (0.7 gammas per 100 decays). The observation of these transitions would indicate the depopulation of the 9^{-} isomer to the groundstate (see Fig. 1).

Fig. 1. Depopulation of the $K^{\pi} = 9^{-}$ isomer via an intermediate state $|z\rangle$ to the $K^{\pi} = 1^{+}$ ground-state.

2. Astrophysical aspects

The synthesis and the survival of ${}^{180\,\mathrm{m}}\mathrm{Ta}$ during the nucleosynthesis is still unclear. ${}^{180\,\mathrm{m}}\mathrm{Ta}$ is shielded by ${}^{180}\mathrm{Hf}$ from the r-process path (see Fig. 2). In an s-process scenario a large number of Planck-distributed photons can be expected. These photons can excite intermediate states $|z\rangle$ in ${}^{180}\mathrm{Ta}$, which may partly decay to the unstable ground-state. Calculations show that intermediate states below 1 MeV would destroy ${}^{180\,\mathrm{m}}\mathrm{Ta}$ while it is being synthesized. Intermediate states in ${}^{180}\mathrm{Ta}$ below 1 MeV therefore exclude a s-process synthesis of ${}^{180\,\mathrm{m}}\mathrm{Ta}$.

Fig. 2. s- and r-process paths in the region of ^{180m}Ta

3. Activation experiments

During the last few years many different types of experiments were performed to find intermediate states coupling the isomer and the ground-state in ¹⁸⁰Ta. Coulomb excitation (virtual photons) [1] and photo-excitation (real photons) [2] activation experiments turned out to be most successful in finding these states.

In our activation experiments we bombarded enriched ^{180m}Ta targets with ³⁶S (65–125 MeV) and ⁶⁴Ni (130 and 150 MeV). All particle energies were well below the Coulomb barrier. Four PIN-diodes and a current integrator were used for a continuous monitoring of the beam geometry and current. The scattered Ta-recoils were caught in thin, a few μ m thick, plastic foils. In an off-beam measurement these foils were put between the end-caps of two planar Ge-detectors to obtain a high γ -detection efficiency. To reduce background radiation, the two Ge-detectors were mounted in a high-purity lead chamber with an inner compartment made of electrolyte copper. With this setup the characteristic γ -rays and X-rays of the ^{180gs}Ta ground-state decay could be observed for all beam energies (see Fig. 3).

Fig. 3. Catcher-foil spectrum showing the ground-state decay of ^{180gs}Ta

4. Experimental results and conclusions

From a comparison of the experimental excitation function with Coulomb excitation calculations we can estimate the energy of the intermediate state. The calculations were done using the computer programs GOSIA [3] and COULEX [4]. To get information about the multipolarity of the excitation we cut the catcher-foils in different slices to measure the angular distribution of the 180gs Ta-recoils. The best fit to the experimental data is obtained assuming an E3-excitation to an intermediate state at about 1.3 MeV. For the B(E3)-value we obtained several W.u. Assuming an E3-excitation, the energy of this intermediate state is probably too high to exclude a s-process production of 180m Ta.

This work was jointly funded by the following agencies: Tandem-Accelerator Laboratory, LMU and TUM, Munich; DFG, grant Bo 1109; Volkswagen-Stiftung, grant I/70 407; WTZ grant UKR-036-96.

REFERENCES

- [1] C. Schlegel et al., Phys. Rev. C50, 2198 (1994).
- [2] C.B. Collins et al., Phys. Rev. C42, 1813 (1990).
- [3] T. Czosnyka et al., Bull. Am. Phys. Soc. 28, 745 (1983).
- [4] J. de Boer *et al.*, Reprint, California Institute of Technology, (1965).