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RELAXATION OF FAST COLLECTIVE MOTIONIN HEATED NUCLEI�V.A. PlujkoInstitute for Nu
lear Resear
h, Kiev, Ukraine(Re
eived July 3, 1998)The damping of the 
olle
tive vibrations in hot nu
lei is studied withinthe semi
lassi
al Vlasov�Landau kineti
 theory. The extension of themethod of independent sour
es of dissipation is used to allow for irreversibleenergy transfer by 
haos weighted wall formula. The expressions for the in-trinsi
 width of the giant multipole resonan
es are obtained. The interplaybetween the one-body and the two-body 
hannels whi
h 
ontribute to theformation of the intrinsi
 width in nu
lei is dis
ussed.PACS numbers: 21.60.-n, 21.60.Ev, 24.30.Cz1. Introdu
tionThe relaxation me
hanisms of 
olle
tive motion and their dependen
e onthe temperature in many-body systems have been extensively investigatedin re
ent years [1�5℄. In the present paper we 
onsider the damping of thenu
lear multipole vibrations within the semi
lassi
al Vlasov�Landau kineti
theory. Semi
lassi
al methods seem to be quite instru
tive for an inves-tigation of the averaged properties of the multiparti
le systems. In many
ases, they allow us to obtain the analyti
al results and represent them in atransparent way.In what follows we 
on
entrate on the investigation of the 
ontributionsof di�erent relaxation me
hanisms to the intrinsi
 width of the giant multi-pole resonan
e (GMR). We determine the intrinsi
 width as formed by twomain sour
es:1. The relaxation due to the 
oupling of both parti
le and hole to more
ompli
ated states lying at the same ex
itation energy. This is the� Presented at the International Conferen
e �Nu
lear Physi
s Close to the Barrier�,Warszawa, Poland, June 30�July 4, 1998.(1383)



1384 V.A. Plujkoso-
alled two-body 
ollisional damping. We take into a

ount the two-body (
ollisional) damping exa
tly, in
orporating into the 
ollision in-tegral the memory e�e
ts asso
iated with the mean-�eld vibrations[6�8℄;2. The fragmentation width 
aused by the intera
tion of parti
les withthe time-dependent self-
onsistent mean �eld. As it was shown inRefs [9, 10℄, in the 
lassi
al limit for the random phase approxima-tion, the fragmentation width 
oin
ides with the width obtained fromthe one-body (�wall� [11, 12℄) relaxation me
hanism. We will imitatethe fragmentation width by the one-body relaxation. This relaxationis taken into 
onsideration approximately by adding to the Vlasov�Landau equation some sour
e terms. The extension of the method [13℄of independent sour
es of dissipation is used to allow for irreversibleenergy transfer by 
haos weighted wall formula [14℄. We also do notuse the normalization of the width to a magnitude 
orresponding tothe in�nite-matter value.In Se
t. 2 the intrinsi
 width of the giant multipole resonan
es in 
oldand hot nu
lei is 
al
ulated.The numeri
al results and general dis
ussion of the mass number andtemperature dependen
es of the di�erent relaxation me
hanisms are pre-sented in Se
t. 3.2. Damping of the giant resonan
esWe will 
onsider a nu
leus as the nu
lear Fermi-liquid drop. We adoptthe sharp surfa
e for protons Rp(t) and neutrons Rn(t) and des
ribe the edgeof the nu
leus in terms of the e�e
tive surfa
e R = (Rp+Rn)=2. The GMRof multipolarity � is regarded (see [6,15℄) as os
illations of the 
orresponding(isos
alar or isove
tor) density vibration inside the nu
leus, asso
iated withthe vibrations of the lo
al displa
ement of the nu
leons ÆR(�)� (t) � ÆR�;p(t)�ÆR�;n(t) � R0�(�)� (t)Y�0(r̂) of the same multipolarity �; the signs (+) and(-) stand for isos
alar and isove
tor GMR respe
tively. Here R0 is radiusin equilibrium and ÆR�;� is the lo
al displa
ement of the parti
le of the� = (p; n) type from its equilibrium position.The density vibrations of any kind (isos
alar or isove
tor) is de�nedby the variation of the distribution fun
tions. In ma
ros
opi
 approa
hes[7, 15, 16℄ the isos
alar and isove
tor modes 
orrespond to the in-phase andout-of-phase motions of neutrons and protons respe
tively. That means thatboth modes 
an be des
ribed in terms of the distortions of the distributionfun
tion in the form Æf (�) = (Æfp � Æfn)=2, where the subs
ripts p or n
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tive Motion in Heated Nu
lei 1385label protons or neutrons and the plus or minus sign denotes the isos
alaror isove
tor modes, respe
tively.We use in the nu
lear interior the linearized Vlasov�Landau equationfor the dynami
al 
omponent of the one-parti
le phase spa
e distributionfun
tion Æf(r;p; t), 
ompleted with a sour
e term J(ffg) for relaxationpro
esses. Negle
ting a di�eren
e in the 
hemi
al potentials for protons andneutrons and assuming f0;p = f0;n = f0, where f0 � f0(r;p) is the equi-librium distribution fun
tion, we write down the linearized two-
omponentVlasov�Landau equation in the form (symmetri
 nu
lear matter approxima-tion)��tÆf (�) + ~pm�rrÆf (�) �rrÆV (�)rpf0 = J (�)(fÆf (�)g); r < R0; (1)where ÆV (�) � ÆV (�)(r;p; t) is the Wigner transform of the variation ofthe self-
onsistent potential with respe
t to the equilibrium value V0. Thismean �eld variation 
an be expressed in terms of the intera
tion amplitudeF (�)(p;p 0) asÆV (�) = 2NF Z dp 0(2�~)3 F (�)(p;p 0) Æf (�)(r;p 0; t); (2)where NF = pF m�=(�2 ~3); pF is the Fermi momentum, m� is the e�e
tivemass of nu
leon. The quantities F (�)(p;p 0) are de�ned by the intera
tionamplitudes F�;�(p;p 0) between neutrons and protons (�; �) = (n; p):F (+)(p;p 0) = (Fp;p(p;p 0) + Fn;n(p;p 0) + Fp;n(p;p 0) + Fn;p(p;p 0))=2;F (�)(p;p 0) = (Fp;p(p;p 0) + Fn;n(p;p 0)� Fp;n(p;p 0)� Fn;p(p;p 0))=2;The amplitudes F�;�(p;p 0) is usually parameterized in terms of the Landau
onstants F�;�;0 and F�;�;1 as F�;�(p;p 0) = F�;�;0+F�;�;1(p̂
 � p̂0); p̂ = p=p:This leads to the relationF (�)(p;p 0) = F (�)0 + F (�)1 (p̂ � p̂0): (3)To simplify the presentation, we will omit in the following the supers
ript(�) and in
lude them only when it is ne
essary to avoid 
onfusion.The right-hand side of Eq. (1) represents the 
hange of the distributionfun
tion due to relaxation. We take into a

ount the 
ollisional dampingexa
tly. The one-body relaxation is taken into 
onsideration approximatelyby adding to the Vlasov-Landau equation some sour
e terms. Namely, weassume J(fÆfg) = J
(fÆfg) + Js(fÆfg); (4)



1386 V.A. Plujkowhere J
(fÆfg) is the 
ollision integral for the two-body 
ollisions, Js(fÆfg)determines the 
hange in the distribution fun
tion resulting from one-bodyrelaxation. The term Js(fÆfg) is 
onsidered within the relaxation time ap-proximation of the formJs(fÆfg) = �Æf0(r;p; t)�s;0 � Æf2(r;p; t)�s;2 : (5)Here, Æf`(r;p; t) is dynami
al 
omponent of the distribution fun
tion at theFermi-surfa
e distortion with multipolarity ` : Æf(r;p; t) =P`�0 Æf`(r;p; t)�P`�0 Æ ~f`(r; p; t)Y`0(p̂); and �s;0; �s;1 is the relaxation time 
orrespondingto the equilibration of the system due to the one-body dissipation.The �rst 
omponent of the one-body sour
e term Js(fÆfg) in Eq. (5)leads to non-
onservation of energy. It determines an irreversible part of theenergy transferred from parti
les to the nu
lear surfa
e [14℄.The distribution fun
tions in the nu
lear interior are 
onstru
ted as alinear angular superposition of the 
orresponding solutions (Æf~k(~r; ~p; t)) ofthe Vlasov�Landau equation in nu
lear matter:Æf�;k(~r; ~p; t) = Re Z d
kY�0(k̂)Æf~k(~r; ~p; t);where Æf~k(~r; ~p; t) = ��f eq��eq exp fi(~k~r � !t)gX̀�0 �`(!; k)Y`0(p̂ � k̂): (6)Substituting these expressions into the Vlasov�Landau equation, inte-grated with respe
t to the energy �1, we obtain an equation for �` and thevelo
ity S = !=(vF k). In order to obtain 
losed forms, we will follow thenu
lear �uid dynami
 approa
h of Refs. [17�21℄ and take into a

ount inEq. (1) the dynami
 Fermi-surfa
e distortions up to multipolarity ` = 2. Asa result we have the system�0 � (1 + F1=3)�1=p3 = �i=(vFk��0)�0 ;�1 � (1 + F0)�0=p3� �2=p15 = �i=(vFk��1)�1 ; (7)�2 � 2(1 + F1=3)�1=p15 = �i=(vFk��2)�2 :The e�e
tive relaxation times ��` are di�erent for isos
alar and isove
tormodes:�� (�)0 = � (�)s;0 ; �� (�)1 = � (�)1 ; 1=�� (+)1 = 0 ; 1=�� (�)2 = 1=� (�)2 + 1=� (�)s;2 : (8)
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tive Motion in Heated Nu
lei 1387Here � (�)` are the partial 
olle
tive relaxation times due to interparti
le 
ol-lisions within the distorted layers of the Fermi surfa
e with multipolarity`. These times appear in the multipole expansions of the total numbersN (�)(p̂) of the 
ollisions in dire
tion p̂ � p̂1:N (�)(p̂) � 1Z0 d�1J (�)
 (p̂; �1) = exp f�i!tg X`�`(�)0 X̀m=�` �(�)lm� (�)` Y`m(p̂); (9)where `(�)0 = 1, `(+)0 = 2 ,1� (�)` � 1Z0 d�1 Z d
pJ (�)
 (p̂; �1)Y`0(p̂)= 1Z0 d�1 Z d
pÆf (�)Y`0(p̂): (10)With the 
ollision integrals with memory e�e
ts [6�8℄ for intera
tionbetween di�erent kinds of parti
les and following the pro
edure [22℄ in inte-grating the 
ollision integral over energy, we obtain the following expressionsfor relaxation times at ~!; T � EF :1=� (+)` = R(!; T )D( �W +Wpn)�(+)` E ;1=� (�)` = R(!; T ) hD �W�(+)` E+ DWpn�(�)` Ei ; (11)where �W = (Wnn + Wpp)=2; W�;� is the probability of s
attering of theparti
les (�; �) = (n; p) near the Fermi surfa
e. The fun
tions �(+)` �1+P`(p̂2p̂1)�P`(p̂3p̂1)�P`(p̂4p̂1) , �(�)` � 1�P`(p̂2p̂1)�P`(p̂3p̂1)+P`(p̂4p̂1);de�ne the angular 
onstraints for nu
leon s
attering (P` is a Legendre poly-nomial; ~p1, ~p2 and ~p3, ~p4 are the momenta of parti
les before and after
ollisions respe
tively). The symbol h: : :i denotes the averaging over anglesof the relative momentum of the 
olliding parti
les. The fun
tion R(!; T )has the following formR(!; T ) = �m�~2 �3 148�4 f(2�T )2 + C!(~!)2g; (12)where we will take C! = 1 [13℄. We have the following relations in the 
aseof isotropi
 
ollision probabilities1=� (�)1 = (4=3)RhWpni = (5Wpn=3( �W +Wpn))=� (+)2 � 1:1=� (+)2 ;� (�)2 = � (+)2 : (13)



1388 V.A. PlujkoWe �nd the following dispersion equation for 
al
ulation the velo
ity Sfrom Eq. (7)�S + ivFk�0��S + ivFk�1 �� 415� (1 + F1=3)��S + ivFk�2��� S2f = 0;(14)where Sf is the velo
ity of the �rst sound: S2f = (1 + F0)(1 + F1=3)=3:The 
omplex frequen
y of the 
olle
tive vibrations of the � type is de-termined by the velo
ity S = S� and the wave number k�: !� = vFk�S�.The values k�;n of the wave number k� 
an be found from the ma
ros
opi
boundary 
onditions a
ting at the nu
lear surfa
e [6, 15℄. Here we studythe damping properties of giant resonan
es rather than their full des
riptionand parameterize damping width as a fun
tion of the resonan
e energy. Forunderdamped 
olle
tive motion the quantity k�;n 
an be 
onsidered as a realnumber. Then a

ording to the 
orresponden
e prin
iple the energies E�;nand widths ��;n of the resonan
es are given byE�;n = ~
�;n = ~vFk�;nS(r)� ;��;n = �2~ Im f!�;ng = 2~vFk�;nS(i)� ; (15)where 
 � Re!, S(r) � ReS, S(i) � � ImS.We 
onsider the 
ase of the slightly damped motion when 
onditionj SiS0 j� a is ful�lled, where a = minf1; x; 1=x; 1=(1=y+1=z)g and x � 
�2,y � 
�0, z � 
�1. As a �rst approximation, we obtain from Eq. (14)2S(i)S(r) = �S20 � �S2f(S(r))2 x1 + x2 �1� xy��1� 1yz�+ 1y + 1z ; (16)�S(r)�2 = �S20 + � �S2f � �S20� 11 + x2 �1� xy� ; (17)where �S2f = S2f=(1�1=(yz)), �S20 = S20=(1�1=(yz)) and S20 = S2f+(4=15)(1+F1=3) . The quantity S0 is the velo
ity of the zero sound in the absen
e ofthe relaxation pro
esses and with the deformation of the Fermi sphere withmultipolarities ` � 2 only.We �nd the following expressions for the intrinsi
 width and frequen
y
 = E=~ of a GMR using Eqs. (15)�(17):� = ~
(a� 1) x1 + a(x2 + x=y)=(1 � x=y) �1� 1yz�+ ~
y + ~
z ;(18)
2 = !20 + �!2f � !20� 11 + x2 �1� xy� ; (19)
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tive Motion in Heated Nu
lei 1389where a = (E0=Ef )2 and E0 = ~!0 = ~vFk �S(r) , Ef = ~!f = ~vFk �S(f).Note that the total 
hange rate in the distribution fun
tion was takenas a sum of the 
hange rates in various damping 
hannels (independentdissipation rates approximation) but in the general 
ase the expression for� 
an not be represented as a sum of the widths asso
iated with the di�erentindependent sour
es of the damping. This is a pe
uliarity of the 
ollisionalVlasov�Landau equation where the Fermi-surfa
e distortion e�e
t in�uen
esboth the self-
onsistent mean �eld and the memory e�e
t at the relaxationpro
esses. 3. The numeri
al results and dis
ussionThe values of the GMR energy and the relaxation times are requiredfor 
al
ulations of the intrinsi
 width � . As the GMR energy E we usethe phenomenologi
al A-dependen
e of E obtained from a �t to the experi-mental data [23�26℄. We negle
t the variation of the wave number k in the�rst and zero sound regimes ( [20, 21℄) and adopt for energy Ef the values
orresponding to the energy in hydrodynami
 approa
h. We use also theapproximation E0 ' E due to 
onsideration of the underdamped motion.The estimation from [13℄ is used for the 
ollisional relaxation time � (+)2 andfor one-body relaxation time � (�)s;0 (�1 = 1:543; � (�)s;2 = 0).

Fig. 1. The intrinsi
 GDR widths and the 
orresponding one- and the two-body
ontributions at T = 0 as fun
tions of mass number. The dot-dash line with shortand long dashes 
orrespond to the two- and one-body 
ontributions respe
tively.



1390 V.A. PlujkoIn Fig. 1 we show the intrinsi
 giant dipole resonan
e (GDR) widths andthe one- and two-body 
ontributions to them at zero temperature (T = 0)as the fun
tions of the mass number. The experimental data were takenfrom [23℄. The 
ontribution of 
ollisional damping (dot-dash line with longdash) to the GDR widths does not ex
eed � 30% of the experimental values.In Fig. 2 we show the intrinsi
 width of the giant dipole resonan
e (GDR)in the nu
leus 112Sn as a fun
tion of the temperature T . The experimentaldata were taken from [1℄. Considering the experimental data we assumedthat the energy E of the GDR is independent of temperature and equals 15.6MeV. Note that we 
an use the expression (18) for intrinsi
 width when the
ondition �=E � 1 is ful�lled, i.e., in fa
t, at the temperature of no morethan � 5 MeV. We observe a systemati
 large deviation of the evaluatedwidth with respe
t to the experimental data in the range from 2 to 5 MeV.This deviation may be 
onne
ted with dependen
e of the GDR width onangular momentum and thermodynami
 �u
tuations of the nu
lear shapeand orientation angles [3℄.

Fig. 2. The intrinsi
 width of the GDR in the nu
leus Sn as fun
tion of temperature.The experimental data were taken from Ref. [1℄. The notations are the same as inFig. 1.This work was supported in part by the IAEA under Contra
t No.10308/RO.
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