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The damping of the collective vibrations in hot nuclei is studied within
the semiclassical Vlasov—Landau kinetic theory. The extension of the
method of independent sources of dissipation is used to allow for irreversible
energy transfer by chaos weighted wall formula. The expressions for the in-
trinsic width of the giant multipole resonances are obtained. The interplay
between the one-body and the two-body channels which contribute to the
formation of the intrinsic width in nuclei is discussed.
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1. Introduction

The relaxation mechanisms of collective motion and their dependence on
the temperature in many-body systems have been extensively investigated
in recent years [1-5]. In the present paper we consider the damping of the
nuclear multipole vibrations within the semiclassical Vlasov—Landau kinetic
theory. Semiclassical methods seem to be quite instructive for an inves-
tigation of the averaged properties of the multiparticle systems. In many
cases, they allow us to obtain the analytical results and represent them in a
transparent way.

In what follows we concentrate on the investigation of the contributions
of different relaxation mechanisms to the intrinsic width of the giant multi-
pole resonance (GMR). We determine the intrinsic width as formed by two
main sources:

1. The relaxation due to the coupling of both particle and hole to more
complicated states lying at the same excitation energy. This is the
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so-called two-body collisional damping. We take into account the two-
body (collisional) damping exactly, incorporating into the collision in-
tegral the memory effects associated with the mean-field vibrations
[6-8];

2. The fragmentation width caused by the interaction of particles with
the time-dependent self-consistent mean field. As it was shown in
Refs 9, 10], in the classical limit for the random phase approxima-
tion, the fragmentation width coincides with the width obtained from
the one-body (“wall” [11,12]) relaxation mechanism. We will imitate
the fragmentation width by the one-body relaxation. This relaxation
is taken into consideration approximately by adding to the Vlasov—
Landau equation some source terms. The extension of the method [13]
of independent sources of dissipation is used to allow for irreversible
energy transfer by chaos weighted wall formula [14]. We also do not
use the normalization of the width to a magnitude corresponding to
the infinite-matter value.

In Sect. 2 the intrinsic width of the giant multipole resonances in cold
and hot nuclei is calculated.

The numerical results and general discussion of the mass number and
temperature dependences of the different relaxation mechanisms are pre-
sented in Sect. 3.

2. Damping of the giant resonances

We will consider a nucleus as the nuclear Fermi-liquid drop. We adopt
the sharp surface for protons R, (t) and neutrons R,,(t) and describe the edge
of the nucleus in terms of the effective surface R = (R, + R;)/2. The GMR
of multipolarity X is regarded (see [6,15]) as oscillations of the corresponding
(isoscalar or isovector) density vibration inside the nucleus, associated with

the vibrations of the local displacement of the nucleons 5Rg\i) (t) = 0Ry p(t) £

IR\, (t) = Roﬁg\i)(t)Y)\o(f') of the same multipolarity A; the signs (+) and
(-) stand for isoscalar and isovector GMR respectively. Here Ry is radius
in equilibrium and 0R), is the local displacement of the particle of the
a = (p,n) type from its equilibrium position.

The density vibrations of any kind (isoscalar or isovector) is defined
by the variation of the distribution functions. In macroscopic approaches
[7,15,16] the isoscalar and isovector modes correspond to the in-phase and
out-of-phase motions of neutrons and protons respectively. That means that
both modes can be described in terms of the distortions of the distribution
function in the form §f) = (5f, &£ 6,)/2, where the subscripts p or n
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label protons or neutrons and the plus or minus sign denotes the isoscalar
or isovector modes, respectively.

We use in the nuclear interior the linearized Vlasov—Landau equation
for the dynamical component of the one-particle phase space distribution
function 0f(r,p,t), completed with a source term J({f}) for relaxation
processes. Neglecting a difference in the chemical potentials for protons and
neutrons and assuming fo, = fon = fo, where fo = fo(r,p) is the equi-
librium distribution function, we write down the linearized two-component
Vlasov-Landau equation in the form (symmetric nuclear matter approxima-
tion)

5 B}
S 0f ) 4 %vraf(ﬂ —V,0VEV, fo = JEE5FEN), r< Ry, (1)

where 6V(E) = V&) (r,p,t) is the Wigner transform of the variation of
the self-consistent potential with respect to the equilibrium value V{. This
mean field variation can be expressed in terms of the interaction amplitude
FE (p,p1) as

2 dp!
VE = Np / (27h)? FE (p,p1) of D (r,prit), (2)

where Np = ppm* /(72 h3), pr is the Fermi momentum, m* is the effective
mass of nucleon. The quantities F&) (p,p!) are defined by the interaction
amplitudes F, g(p,p’) between neutrons and protons (o, ) = (n,p):

FH(p,p1) = (Fpp(p,p1) + Fun(D,21) + Fypu(p, 1) + Fup(D,01))/2,

Fp,p!) = (Fpp(p.p!) + Fan(p,p!) = Fpu(p,p!) — Fup(p,p1))/2,
The amplitudes Fy, g(p, p’) is usually parameterized in terms of the Landau

constants Fy g and F, g1 as F, g(p,p/) = Fa,ﬂ70+Fa75,1(ﬁc-1§’), p=p/p.
This leads to the relation
+ +) . 2
FOppn) =7 + 76 -p). (3)
To simplify the presentation, we will omit in the following the superscript
(£) and include them only when it is necessary to avoid confusion.

The right-hand side of Eq. (1) represents the change of the distribution
function due to relaxation. We take into account the collisional damping
exactly. The one-body relaxation is taken into consideration approximately
by adding to the Vlasov-Landau equation some source terms. Namely, we

J{or}y) = J({or}) + Js({01), (4)
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where J.({0f}) is the collision integral for the two-body collisions, Js({df})
determines the change in the distribution function resulting from one-body
relaxation. The term J({0f}) is considered within the relaxation time ap-
proximation of the form

Js({5f}) _ _(5f0(7‘,p,t) _ 5f2(’l",p,t)‘ (5)

Ts,0 Ts,2

Here, § fo(r,p,t) is dynamical component of the distribution function at the
Fermi-surface distortion with multipolarity £: 0 f(r,p,t) = > 5o 0 fe(r,p, 1)

=> 0 8fe(r,p,t)Yio(p), and Ts,0, Ts,1 1S the relaxation time corresponding
to the equilibration of the system due to the one-body dissipation.

The first component of the one-body source term Js({df}) in Eq. (5)
leads to non-conservation of energy. It determines an irreversible part of the
energy transferred from particles to the nuclear surface [14].

The distribution functions in the nuclear interior are constructed as a
linear angular superposition of the corresponding solutions (df;(7,p,t)) of
the Vlasov—-Landau equation in nuclear matter:

5. 7.1) = Re / A2 Y0 (k)3f(7, . 1),

where

afe

Oecd

O (P, t) = = exp {i(k7 — wh)} Y e, k)Yao (- ). (6)

>0

Substituting these expressions into the Vlasov—Landau equation, inte-
grated with respect to the energy €, we obtain an equation for ay and the
velocity S = w/(vpk). In order to obtain closed forms, we will follow the
nuclear fluid dynamic approach of Refs. [17-21] and take into account in
Eq. (1) the dynamic Fermi-surface distortions up to multipolarity £ = 2. As
a result we have the system

ag — (14 F1/3)ar /V3 = —i/(vrkTy)ag,
a1 — (14 Fo)ag/V3 — ag/V15 = —i/(vpkT)ay, (7)
ay — 21+ F1/3)ar V15 = —i)(vpkTy)as.

The effective relaxation times 7, are different for isoscalar and isovector
modes:

7 =S AW =7 s =087 = AP 117 ®)
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(+)

Here 7,7 are the partial collective relaxation times due to interparticle col-
lisions within the distorted layers of the Fermi surface with multipolarity
£. These times appear in the multipole expansions of the total numbers
NE)(p) of the collisions in direction p = p:

ol

NE)(f) = / der JE) (pye1) = exp {—iwt} 3 Z Y Vin(B). ()
0

0> (F) m=—" Te

where E(() ) = 1, E(()+) =2,
—%E/%/MJ wu%//m/Mﬁ Yio(p).  (10)
l

With the collision integrals with memory effects [6-8| for interaction
between different kinds of particles and following the procedure [22] in inte-
grating the collision integral over energy, we obtain the following expressions
for relaxation times at hw,T < EFp:

") = R, T) (7 + W) 2.

) =R, 7) [(WeD) + (Wal V)], (11)
where W = (Wpy, + Wp,)/2; W, s is the probability of scattering of the
particles (a, ) = (n,p) near the Fermi surface. The functions @EH =
L+ Py(opn) = Po(pspn) — Pe(papr) , B, = 1= Py(popn) = Pa(pspr) + Pe(pain),
define the angular constraints for nucleon scattering (P is a Legendre poly-
nomial; Py, po and p3, P4 are the momenta of particles before and after
collisions respectively). The symbol (...) denotes the averaging over angles

of the relative momentum of the colliding particles. The function R(w,T')
has the following form

*

3
R(w,T) = (%) @{(%TV + L (hw)), (12)

where we will take C,, =1 [13]. We have the following relations in the case
of isotropic collision probabilities

1/ = (4/3)R(Wpn) = (5Wipn/3W + W) /57 ~ 1.1/77),

7'2(_) = 72(+). (13)



1388 V.A. PLuJKO

We find the following dispersion equation for calculation the velocity S
from Eq. (7)

i i 4 i 9
(5+ =) (54 - (55) 0+ [ (5+ =) ) - 83 =0,
(14)

where Sy is the velocity of the first sound: SJ% = (1+ Fo)(1 +F1/3)/3.
The complex frequency of the collective vibrations of the A type is de-
termined by the velocity S = S) and the wave number ky: wy = vpk)S).
The values k), of the wave number k) can be found from the macroscopic
boundary conditions acting at the nuclear surface [6,15]. Here we study
the damping properties of giant resonances rather than their full description
and parameterize damping width as a function of the resonance energy. For
underdamped collective motion the quantity k) , can be considered as a real
number. Then according to the correspondence principle the energies &),

and widths Iy ,, of the resonances are given by

Exn = M, = hUFk)\,nSy)a

)

Ty, = —20Tm {wy,} = 2hwiky S0, (15)

where 2 = Rew, S = Re §, SO = —Im S.

We consider the case of the slightly damped motion when condition
| S;So |« ais fulfilled, where @ = min{1,z,1/z,1/(1/y+1/z)} and z = 279,
y = 219, z = 271. As a first approximation, we obtain from Eq. (14)

s S§-S7 = x 1y 1 1
2~ = 1-2) (1——)+-+-= 1
s (SM)2 1+ ( y) < y2> yte 09

2 _ _ _ 1 z
(5) = S5 +(57-59) 1 <1 - ;) : (17)
where S’J% = S}/(l—l/(yz)), 52 =2952/(1-1/(yz)) and Sg = SJQC+(4/15)(1+
F1/3) . The quantity Sy is the velocity of the zero sound in the absence of
the relaxation processes and with the deformation of the Fermi sphere with
multipolarities £ < 2 only.
We find the following expressions for the intrinsic width and frequency
2 =& /h of a GMR using Egs. (15)-(17):

T 1 h{2 k{2
I = e = ) 2y 0 —afy) <1‘ y_) Tyt

1 T
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where a = (E'O/E'f)2 and Ey = hwy = hopkS") | E; =hwy = FopkS(Y).

Note that the total change rate in the distribution function was taken
as a sum of the change rates in various damping channels (independent
dissipation rates approximation) but in the general case the expression for
I" can not be represented as a sum of the widths associated with the different
independent sources of the damping. This is a peculiarity of the collisional
Vlasov—Landau equation where the Fermi-surface distortion effect influences
both the self-consistent mean field and the memory effect at the relaxation
processes.

3. The numerical results and discussion

The values of the GMR energy and the relaxation times are required
for calculations of the intrinsic width I'. As the GMR energy £ we use
the phenomenological A-dependence of £ obtained from a fit to the experi-
mental data [23-26]. We neglect the variation of the wave number k in the
first and zero sound regimes ( [20,21]) and adopt for energy Ey the values
corresponding to the energy in hydrodynamic approach. We use also the
approximation Fy ~ £ due to consideration of the underdamped motion.

The estimation from [13] is used for the collisional relaxation time 7'2(+) and

for one-body relaxation time TS(’B) (51 = 1.543; S(;) =0).
8
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Fig.1. The intrinsic GDR widths and the corresponding one- and the two-body
contributions at T' = 0 as functions of mass number. The dot-dash line with short
and long dashes correspond to the two- and one-body contributions respectively.
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In Fig. 1 we show the intrinsic giant dipole resonance (GDR) widths and
the one- and two-body contributions to them at zero temperature (T = 0)
as the functions of the mass number. The experimental data were taken
from [23]. The contribution of collisional damping (dot-dash line with long
dash) to the GDR widths does not exceed ~ 30% of the experimental values.

In Fig. 2 we show the intrinsic width of the giant dipole resonance (GDR)
in the nucleus 2Sn as a function of the temperature 7. The experimental
data were taken from [1]. Considering the experimental data we assumed
that the energy & of the GDR is independent of temperature and equals 15.6
MeV. Note that we can use the expression (18) for intrinsic width when the
condition I'/€ < 1 is fulfilled, i.e., in fact, at the temperature of no more
than ~ 5 MeV. We observe a systematic large deviation of the evaluated
width with respect to the experimental data in the range from 2 to 5 MeV.
This deviation may be connected with dependence of the GDR width on
angular momentum and thermodynamic fluctuations of the nuclear shape
and orientation angles [3].

Fig. 2. The intrinsic width of the GDR in the nucleus Sn as function of temperature.
The experimental data were taken from Ref. [1]. The notations are the same as in
Fig. 1.
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