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RELAXATION OF FAST COLLECTIVE MOTIONIN HEATED NUCLEI�V.A. PlujkoInstitute for Nulear Researh, Kiev, Ukraine(Reeived July 3, 1998)The damping of the olletive vibrations in hot nulei is studied withinthe semilassial Vlasov�Landau kineti theory. The extension of themethod of independent soures of dissipation is used to allow for irreversibleenergy transfer by haos weighted wall formula. The expressions for the in-trinsi width of the giant multipole resonanes are obtained. The interplaybetween the one-body and the two-body hannels whih ontribute to theformation of the intrinsi width in nulei is disussed.PACS numbers: 21.60.-n, 21.60.Ev, 24.30.Cz1. IntrodutionThe relaxation mehanisms of olletive motion and their dependene onthe temperature in many-body systems have been extensively investigatedin reent years [1�5℄. In the present paper we onsider the damping of thenulear multipole vibrations within the semilassial Vlasov�Landau kinetitheory. Semilassial methods seem to be quite instrutive for an inves-tigation of the averaged properties of the multipartile systems. In manyases, they allow us to obtain the analytial results and represent them in atransparent way.In what follows we onentrate on the investigation of the ontributionsof di�erent relaxation mehanisms to the intrinsi width of the giant multi-pole resonane (GMR). We determine the intrinsi width as formed by twomain soures:1. The relaxation due to the oupling of both partile and hole to moreompliated states lying at the same exitation energy. This is the� Presented at the International Conferene �Nulear Physis Close to the Barrier�,Warszawa, Poland, June 30�July 4, 1998.(1383)



1384 V.A. Plujkoso-alled two-body ollisional damping. We take into aount the two-body (ollisional) damping exatly, inorporating into the ollision in-tegral the memory e�ets assoiated with the mean-�eld vibrations[6�8℄;2. The fragmentation width aused by the interation of partiles withthe time-dependent self-onsistent mean �eld. As it was shown inRefs [9, 10℄, in the lassial limit for the random phase approxima-tion, the fragmentation width oinides with the width obtained fromthe one-body (�wall� [11, 12℄) relaxation mehanism. We will imitatethe fragmentation width by the one-body relaxation. This relaxationis taken into onsideration approximately by adding to the Vlasov�Landau equation some soure terms. The extension of the method [13℄of independent soures of dissipation is used to allow for irreversibleenergy transfer by haos weighted wall formula [14℄. We also do notuse the normalization of the width to a magnitude orresponding tothe in�nite-matter value.In Set. 2 the intrinsi width of the giant multipole resonanes in oldand hot nulei is alulated.The numerial results and general disussion of the mass number andtemperature dependenes of the di�erent relaxation mehanisms are pre-sented in Set. 3.2. Damping of the giant resonanesWe will onsider a nuleus as the nulear Fermi-liquid drop. We adoptthe sharp surfae for protons Rp(t) and neutrons Rn(t) and desribe the edgeof the nuleus in terms of the e�etive surfae R = (Rp+Rn)=2. The GMRof multipolarity � is regarded (see [6,15℄) as osillations of the orresponding(isosalar or isovetor) density vibration inside the nuleus, assoiated withthe vibrations of the loal displaement of the nuleons ÆR(�)� (t) � ÆR�;p(t)�ÆR�;n(t) � R0�(�)� (t)Y�0(r̂) of the same multipolarity �; the signs (+) and(-) stand for isosalar and isovetor GMR respetively. Here R0 is radiusin equilibrium and ÆR�;� is the loal displaement of the partile of the� = (p; n) type from its equilibrium position.The density vibrations of any kind (isosalar or isovetor) is de�nedby the variation of the distribution funtions. In marosopi approahes[7, 15, 16℄ the isosalar and isovetor modes orrespond to the in-phase andout-of-phase motions of neutrons and protons respetively. That means thatboth modes an be desribed in terms of the distortions of the distributionfuntion in the form Æf (�) = (Æfp � Æfn)=2, where the subsripts p or n



Relaxation of Fast Colletive Motion in Heated Nulei 1385label protons or neutrons and the plus or minus sign denotes the isosalaror isovetor modes, respetively.We use in the nulear interior the linearized Vlasov�Landau equationfor the dynamial omponent of the one-partile phase spae distributionfuntion Æf(r;p; t), ompleted with a soure term J(ffg) for relaxationproesses. Negleting a di�erene in the hemial potentials for protons andneutrons and assuming f0;p = f0;n = f0, where f0 � f0(r;p) is the equi-librium distribution funtion, we write down the linearized two-omponentVlasov�Landau equation in the form (symmetri nulear matter approxima-tion)��tÆf (�) + ~pm�rrÆf (�) �rrÆV (�)rpf0 = J (�)(fÆf (�)g); r < R0; (1)where ÆV (�) � ÆV (�)(r;p; t) is the Wigner transform of the variation ofthe self-onsistent potential with respet to the equilibrium value V0. Thismean �eld variation an be expressed in terms of the interation amplitudeF (�)(p;p 0) asÆV (�) = 2NF Z dp 0(2�~)3 F (�)(p;p 0) Æf (�)(r;p 0; t); (2)where NF = pF m�=(�2 ~3); pF is the Fermi momentum, m� is the e�etivemass of nuleon. The quantities F (�)(p;p 0) are de�ned by the interationamplitudes F�;�(p;p 0) between neutrons and protons (�; �) = (n; p):F (+)(p;p 0) = (Fp;p(p;p 0) + Fn;n(p;p 0) + Fp;n(p;p 0) + Fn;p(p;p 0))=2;F (�)(p;p 0) = (Fp;p(p;p 0) + Fn;n(p;p 0)� Fp;n(p;p 0)� Fn;p(p;p 0))=2;The amplitudes F�;�(p;p 0) is usually parameterized in terms of the Landauonstants F�;�;0 and F�;�;1 as F�;�(p;p 0) = F�;�;0+F�;�;1(p̂ � p̂0); p̂ = p=p:This leads to the relationF (�)(p;p 0) = F (�)0 + F (�)1 (p̂ � p̂0): (3)To simplify the presentation, we will omit in the following the supersript(�) and inlude them only when it is neessary to avoid onfusion.The right-hand side of Eq. (1) represents the hange of the distributionfuntion due to relaxation. We take into aount the ollisional dampingexatly. The one-body relaxation is taken into onsideration approximatelyby adding to the Vlasov-Landau equation some soure terms. Namely, weassume J(fÆfg) = J(fÆfg) + Js(fÆfg); (4)



1386 V.A. Plujkowhere J(fÆfg) is the ollision integral for the two-body ollisions, Js(fÆfg)determines the hange in the distribution funtion resulting from one-bodyrelaxation. The term Js(fÆfg) is onsidered within the relaxation time ap-proximation of the formJs(fÆfg) = �Æf0(r;p; t)�s;0 � Æf2(r;p; t)�s;2 : (5)Here, Æf`(r;p; t) is dynamial omponent of the distribution funtion at theFermi-surfae distortion with multipolarity ` : Æf(r;p; t) =P`�0 Æf`(r;p; t)�P`�0 Æ ~f`(r; p; t)Y`0(p̂); and �s;0; �s;1 is the relaxation time orrespondingto the equilibration of the system due to the one-body dissipation.The �rst omponent of the one-body soure term Js(fÆfg) in Eq. (5)leads to non-onservation of energy. It determines an irreversible part of theenergy transferred from partiles to the nulear surfae [14℄.The distribution funtions in the nulear interior are onstruted as alinear angular superposition of the orresponding solutions (Æf~k(~r; ~p; t)) ofthe Vlasov�Landau equation in nulear matter:Æf�;k(~r; ~p; t) = Re Z d
kY�0(k̂)Æf~k(~r; ~p; t);where Æf~k(~r; ~p; t) = ��f eq��eq exp fi(~k~r � !t)gX̀�0 �`(!; k)Y`0(p̂ � k̂): (6)Substituting these expressions into the Vlasov�Landau equation, inte-grated with respet to the energy �1, we obtain an equation for �` and theveloity S = !=(vF k). In order to obtain losed forms, we will follow thenulear �uid dynami approah of Refs. [17�21℄ and take into aount inEq. (1) the dynami Fermi-surfae distortions up to multipolarity ` = 2. Asa result we have the system�0 � (1 + F1=3)�1=p3 = �i=(vFk��0)�0 ;�1 � (1 + F0)�0=p3� �2=p15 = �i=(vFk��1)�1 ; (7)�2 � 2(1 + F1=3)�1=p15 = �i=(vFk��2)�2 :The e�etive relaxation times ��` are di�erent for isosalar and isovetormodes:�� (�)0 = � (�)s;0 ; �� (�)1 = � (�)1 ; 1=�� (+)1 = 0 ; 1=�� (�)2 = 1=� (�)2 + 1=� (�)s;2 : (8)



Relaxation of Fast Colletive Motion in Heated Nulei 1387Here � (�)` are the partial olletive relaxation times due to interpartile ol-lisions within the distorted layers of the Fermi surfae with multipolarity`. These times appear in the multipole expansions of the total numbersN (�)(p̂) of the ollisions in diretion p̂ � p̂1:N (�)(p̂) � 1Z0 d�1J (�) (p̂; �1) = exp f�i!tg X`�`(�)0 X̀m=�` �(�)lm� (�)` Y`m(p̂); (9)where `(�)0 = 1, `(+)0 = 2 ,1� (�)` � 1Z0 d�1 Z d
pJ (�) (p̂; �1)Y`0(p̂)= 1Z0 d�1 Z d
pÆf (�)Y`0(p̂): (10)With the ollision integrals with memory e�ets [6�8℄ for interationbetween di�erent kinds of partiles and following the proedure [22℄ in inte-grating the ollision integral over energy, we obtain the following expressionsfor relaxation times at ~!; T � EF :1=� (+)` = R(!; T )D( �W +Wpn)�(+)` E ;1=� (�)` = R(!; T ) hD �W�(+)` E+ DWpn�(�)` Ei ; (11)where �W = (Wnn + Wpp)=2; W�;� is the probability of sattering of thepartiles (�; �) = (n; p) near the Fermi surfae. The funtions �(+)` �1+P`(p̂2p̂1)�P`(p̂3p̂1)�P`(p̂4p̂1) , �(�)` � 1�P`(p̂2p̂1)�P`(p̂3p̂1)+P`(p̂4p̂1);de�ne the angular onstraints for nuleon sattering (P` is a Legendre poly-nomial; ~p1, ~p2 and ~p3, ~p4 are the momenta of partiles before and afterollisions respetively). The symbol h: : :i denotes the averaging over anglesof the relative momentum of the olliding partiles. The funtion R(!; T )has the following formR(!; T ) = �m�~2 �3 148�4 f(2�T )2 + C!(~!)2g; (12)where we will take C! = 1 [13℄. We have the following relations in the aseof isotropi ollision probabilities1=� (�)1 = (4=3)RhWpni = (5Wpn=3( �W +Wpn))=� (+)2 � 1:1=� (+)2 ;� (�)2 = � (+)2 : (13)



1388 V.A. PlujkoWe �nd the following dispersion equation for alulation the veloity Sfrom Eq. (7)�S + ivFk�0��S + ivFk�1 �� 415� (1 + F1=3)��S + ivFk�2��� S2f = 0;(14)where Sf is the veloity of the �rst sound: S2f = (1 + F0)(1 + F1=3)=3:The omplex frequeny of the olletive vibrations of the � type is de-termined by the veloity S = S� and the wave number k�: !� = vFk�S�.The values k�;n of the wave number k� an be found from the marosopiboundary onditions ating at the nulear surfae [6, 15℄. Here we studythe damping properties of giant resonanes rather than their full desriptionand parameterize damping width as a funtion of the resonane energy. Forunderdamped olletive motion the quantity k�;n an be onsidered as a realnumber. Then aording to the orrespondene priniple the energies E�;nand widths ��;n of the resonanes are given byE�;n = ~
�;n = ~vFk�;nS(r)� ;��;n = �2~ Im f!�;ng = 2~vFk�;nS(i)� ; (15)where 
 � Re!, S(r) � ReS, S(i) � � ImS.We onsider the ase of the slightly damped motion when onditionj SiS0 j� a is ful�lled, where a = minf1; x; 1=x; 1=(1=y+1=z)g and x � 
�2,y � 
�0, z � 
�1. As a �rst approximation, we obtain from Eq. (14)2S(i)S(r) = �S20 � �S2f(S(r))2 x1 + x2 �1� xy��1� 1yz�+ 1y + 1z ; (16)�S(r)�2 = �S20 + � �S2f � �S20� 11 + x2 �1� xy� ; (17)where �S2f = S2f=(1�1=(yz)), �S20 = S20=(1�1=(yz)) and S20 = S2f+(4=15)(1+F1=3) . The quantity S0 is the veloity of the zero sound in the absene ofthe relaxation proesses and with the deformation of the Fermi sphere withmultipolarities ` � 2 only.We �nd the following expressions for the intrinsi width and frequeny
 = E=~ of a GMR using Eqs. (15)�(17):� = ~
(a� 1) x1 + a(x2 + x=y)=(1 � x=y) �1� 1yz�+ ~
y + ~
z ;(18)
2 = !20 + �!2f � !20� 11 + x2 �1� xy� ; (19)



Relaxation of Fast Colletive Motion in Heated Nulei 1389where a = (E0=Ef )2 and E0 = ~!0 = ~vFk �S(r) , Ef = ~!f = ~vFk �S(f).Note that the total hange rate in the distribution funtion was takenas a sum of the hange rates in various damping hannels (independentdissipation rates approximation) but in the general ase the expression for� an not be represented as a sum of the widths assoiated with the di�erentindependent soures of the damping. This is a peuliarity of the ollisionalVlasov�Landau equation where the Fermi-surfae distortion e�et in�uenesboth the self-onsistent mean �eld and the memory e�et at the relaxationproesses. 3. The numerial results and disussionThe values of the GMR energy and the relaxation times are requiredfor alulations of the intrinsi width � . As the GMR energy E we usethe phenomenologial A-dependene of E obtained from a �t to the experi-mental data [23�26℄. We neglet the variation of the wave number k in the�rst and zero sound regimes ( [20, 21℄) and adopt for energy Ef the valuesorresponding to the energy in hydrodynami approah. We use also theapproximation E0 ' E due to onsideration of the underdamped motion.The estimation from [13℄ is used for the ollisional relaxation time � (+)2 andfor one-body relaxation time � (�)s;0 (�1 = 1:543; � (�)s;2 = 0).

Fig. 1. The intrinsi GDR widths and the orresponding one- and the two-bodyontributions at T = 0 as funtions of mass number. The dot-dash line with shortand long dashes orrespond to the two- and one-body ontributions respetively.



1390 V.A. PlujkoIn Fig. 1 we show the intrinsi giant dipole resonane (GDR) widths andthe one- and two-body ontributions to them at zero temperature (T = 0)as the funtions of the mass number. The experimental data were takenfrom [23℄. The ontribution of ollisional damping (dot-dash line with longdash) to the GDR widths does not exeed � 30% of the experimental values.In Fig. 2 we show the intrinsi width of the giant dipole resonane (GDR)in the nuleus 112Sn as a funtion of the temperature T . The experimentaldata were taken from [1℄. Considering the experimental data we assumedthat the energy E of the GDR is independent of temperature and equals 15.6MeV. Note that we an use the expression (18) for intrinsi width when theondition �=E � 1 is ful�lled, i.e., in fat, at the temperature of no morethan � 5 MeV. We observe a systemati large deviation of the evaluatedwidth with respet to the experimental data in the range from 2 to 5 MeV.This deviation may be onneted with dependene of the GDR width onangular momentum and thermodynami �utuations of the nulear shapeand orientation angles [3℄.

Fig. 2. The intrinsi width of the GDR in the nuleus Sn as funtion of temperature.The experimental data were taken from Ref. [1℄. The notations are the same as inFig. 1.This work was supported in part by the IAEA under Contrat No.10308/RO.
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