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It is shown that the coupling of the elastic scattering channel to an
elastic-transfer channel leads to a non-dispersive polarization potential with
a periodic, [-dependent, energy dependence. Evidence of this is found in
the elastic scattering data of >C+2*Mg at low energies. The finding can
indicate a significant '2C+'2C clustering effect in the ground state of 24Mg.

PACS numbers: 24.10.Ht, 24.50.+g, 25.45.De, 25.45.Hi

The dispersive optical potential usually referred to as the Feshbach po-
tential [1], obeys a dispersion relation. In the heavy ion context this relation
has gained the notoriety of being called the Threshold Anomaly (TA). As
eloquently explained by Satchler |2], the dispersion relation of the Feshbach
potential comes out as a consequence of the polarization nature in the sense
that the potential has the general structure:

VFeshbach 7, 7' Z VOZ E H T e Vio(rl) . (1)

The intermediate channel Green function, (E — H; +i¢) !, has the fol-
lowing simple structure:
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where P stands for the principal part and H; is taken for simplicity to be
Hermitian. Clearly, one can write:

1 §(Z—-H;) P —n8(Z — H)
PE_Hi_P/dZﬂ_ /dZ . (3

From equations (1) and (3) one finds the dispersion relation:

(E — H; +ie)™" = —ind(E — H;) + P—+~

Im Vreshbach (Z, T, TI) (4)
Z —F '

In actual use in data analysis one relies on local potentials. The intrin-
sically non-local dispersive Feshbach potential is therefore transformed into
a local-equivalent one. This brings in more subtle energy dependence. How-
ever, in practical application, it was found [3| that the resulting potential at
a given value of, the now one spatial variable r, still satisfies Eq. (4).

Now we raise the following question: do all channel couplings result in a
dispersive Feshbach potential? The answer is no, at least in cases involving
elastic transfer. Here we mean a process which involves the elastic scattering
of the following objects:

' P
Re Vieshbach (7'77' ,E) = ; /dZ

(@+b)+b—s (a+b)+b, (5)
(@+b)+b—sb+(ath). (6)

The two corresponding amplitudes add coherently. Since the projectile—
target system, in the second process, becomes the target—projectile system
(no change in internal structure) the second process in Eq. (6), the elastic
transfer process, is important at large angles. The Feshbach potential that
takes into account the coupling of the elastic channel to the elastic transfer
channel is found to be [4,5]

VPgelslslg;:Chtransfer — (_ 1)1};1(,,,) ’ (7)

where [ is the orbital angular momentum and F'(r) is an approximate transfer
form-factor of the second process in Eq. (6). There is no energy dependence
in (7). Clearly, (7) does not satisfy any energy dispersion relation. Of
course some weak energy dependence may be found in V}?;:fl%;chtramfer when

higher-order processes are taken into account, e.g. :
(a+b)+b— (a+b)*+b— b+ (a+b). (8)

In the following we ignore these processes for simplicity. The above
discussion may become very important in situations where elastic transfer
is significant.
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1. The non-dispersive potential in the elastic scattering of
120+24Mg

In a recent experiment [6,7] the complete angular distributions of the
elastic scattering of 2C+2*Mg were measured at fifteen energies near the
Coulomb barrier, namely between Ecy = 10.67 and 16.00 MeV. The data
were analysed in the optical model framework (Pot IT) and the best-fit po-
tentials were: shallow, energy dependent, real potentials (Vo ~ 37 MeV,
rg=1.29 fm, a=0.4 fm) with no continuous ambiguity and very weak, en-
ergy dependent, imaginary potentials (Wy/Vy ~ 0.01, Wy=0.5-1.5 MeV,
r;=1.77 fm, a; ~ 0.4-0.8 fm).

We present in figure 1(a) some of the lowest energy angular distributions,
situated at energies under and at the Coulomb barrier (Vcp=12.67 MeV
using the Christensen-Winther radius) together with the optical model fits.
The angular distributions present clear oscillatory pattern even at the lowest
energies.

In figure 1(b) the low energy elastic scattering angular distributions of
12C+28Gi system are presented. These unpublished data [8] were also mea-
sured at the Pelletron Laboratory of the Sao Paulo University, and will be
published in the near future together with an optical model analysis. The op-
tical model used to reproduce the data is much more absorptive (3 to 5 times
more), than the Pot. IT used for the 2C+2*Mg system. The Christensen—
Winther Coulomb barrier for the 2C+28Si system is Vop=14.36 MeV. We
indicate in the figure caption the ratio Ecy/Vep to allow a quantitative
comparison between angular distributions of figure 1(a) and 1(b).

It is clear that the angular distributions at same energy with respect
to the Coulomb barrier are different for the 2 systems considered. While
the oscillations are clear for the '2C+24Mg system, even at energies under
the Coulomb barrier, they are smooth and non-oscillating for the 12C+28Si
system at the same energies. Even at energies 12% above the Coulomb
barrier, where the very back angle region of the 12C+28Si begins to show
one oscillation, the 2C+28Mg system shows much more oscillations in the
intermediate angle region.

Both optical potentials are dependent on the radial position and on the
energy. From the point of view of radial dependences, their differences can
be pinned down in the notch test. The notch test, based on summing a
localized perturbation to the optical potential at variable radial positions
and observing the quality of the fit (defined through the x?) as a function
of the position of the perturbation, gave very different results for the two
systems. For the 12C+28Si system the notch test presents a localized peak
at Ri+Ro=7.3 fm, which means that the elastic data are sensitive to the
optical potential only in a radially restricted region at the nuclear surface
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Fig.1. (a) — The 2C+2*Mg elastic scattering angular distributions, measured
at the indicated energies, are represented by the dots. The solid lines are optical
model calculations with our best fit optical potentials (Pot. II). The Ecym/Ves
values at these energies are respectively, 0.842, 0.894, 0.947, 0.973, 1.00 and 1.026,
with Vap=12.67 MeV. (b) — The 2C+28Si elastic scattering angular distributions,
measured at the indicated energies, are represented by the dots. The Ecym/Ven
values at these energies are respectively, 0.926, 1.023, 1.120 with Vcg—=14.36 MeV.

around 7.3 fm. For the '2C+2*Mg system the notch test indicates that the
elastic data are sensitive to the optical potential on the surface and in the
nuclear interior, from 3 to 8 fm, result compatible with the very transparent
optical potentials used to fit the data [7].

The differences between both potentials become even more interesting,
when they are compared from the point of view of their energy dependences,
through the dispersion relation (Eq. (7)).

While the optical potentials of the "2C-+28Si system satisfy the dispersion
relation at the R=7.3 fm, the optical potentials of the 2C+24Mg system do
not satisfy the dispersion relation at any radius (see Fig. 2). Nevertheless
the volume integrals of the optical potentials of the 12C-+2*Mg system satisfy
the dispersion relation as it was shown previously [7].
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Fig.2. The imaginary and the real depths of the best fit optical potentials of the
120 4-24Mg system, as a function of the laboratory energies (squares) for R=7.1 fm.
We also used data at higher energies (E;4,=37.9 and 40.0 MeV [10,11]) to fix the
imaginary part of the potential. The dispersion relation calculations are indicated
by dots and the disagreement with the real optical potential is evident.

We can calculate the differences between the real part of the optical po-
tential and the real part of the dispersive potential, also called Feshbach
potential in the introductory discussion. The real part of the Feshbach
potential is calculated from the imaginary optical potential through the dis-
persion relation. The plot of these differences as a function of the energy is
presented in figure 3.

In the case of the '2C+28Si system, at least at these very low energies,
the difference called ReVion—dispersive 15 zero, while for the 120424Mg sys-
tem it presents a clearly oscillatory pattern, as a function of energy, with
a decreasing amplitude, when the radius increases. If we assume that the
non-dispersive part of the potential is responsible for the coupling of the
elastic channel to the elastic transfer channel, then from the point of view
of Eq. (4) and (7), we can write:

Re%pt.mod_ReVFeshbach = ReVnonfdiSpersive = (_1)1F(7') :COS(T('Z(T, E))F(T)
(9)
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Fig.3. The differences between the real part of the optical potential and the real
part of the dispersive potential (calculated by the dispersion relation) as a function
of the laboratory energy, at three radial positions, R=5.5 fm, 6.5 fm and 7.1 fm.
The solid lines are explained in the text.

The sine function was neglected in Eq. (9) due to the fact that all [ values
are integer. As a matter of fact, in a qualitative interpretation, the non-
dispersive part of the potential should have an oscillatory character (cosmwl)
and decrease in amplitude with increasing r (F(r)), as it appears in Fig. 3.
We also show in Fig. 3 (a) very qualitative fit to ReVion_dispersive, DY
a cosine function. We assumed that the argument of the cosine function,
which is 7l, where [ is the orbital angular momentum, should vary with £
and linearly with . The argument for the cosine function in the three fits
was consistently :
7l = const X VE x 1. (10)

The amplitude of the cosine function, which is the exchange form-factor, has
the values 2.5,1.0 and 0.5 respectively for R=>5.5, 6.5, 7.1 fm, indicating a
strong decrease as a function of the radius.
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Thus the 2C+2*Mg system exhibits the contribution of a non-dispersive,
exchange potential. This fact explains the presence of the oscillatory angu-
lar distribution for the '2C+24Mg system since the direct elastic amplitude
can interfere with the elastic transfer amplitude, producing oscillatory pat-
tern. We can also explain in a qualitative way, why the 2C+24Mg system
exhibits the contribution of a non-dispersive, exchange potential, while the
1204-28Gi system does not. Recent cluster model calculations in the algebraic
framework [9] indicate that the 2*Mg ground state contains an appreciable
contribution of a two '>C cluster configuration. At the same time the 28Si
cannot be represented by a combination of a '2C and a '60 in its ground
state, but only in higher excited states.

The first three authors are partially supported by CNPq and FAPESP
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