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Langevin equations are used to model many processes of physical inter-
est, including low-energy nuclear collisions. We develop a general method
for computing probabilities of very rare events (e.g. small fusion cross-
sections) for processes described by Langevin dynamics. As we demon-
strate with numerical examples, our method can converge to the desired
answer at a rate which is orders of magnitude faster than that achieved by
using direct simulations of the process in question.

PACS numbers: 25.70.-z, 25.70.Jj, 24.60.Ky

Introduction

Langevin methods offer a powerful tool for the numerical study of low-
energy nuclear processes, such as fission and heavy-ion fusion. The evolution
of nuclei during such events is typically described using a few collective de-
grees of freedom, evolving under both conservative and non-conservative
forces. The latter, arising from the coupling of the collective variables to
the intrinsic nucleonic degrees of freedom, can be modeled by a noisy and
a dissipative term in a Langevin description of the collective motion. Once
such a (stochastic) equation of motion has been written down, it is straight-
forward to numerically simulate the process in question, using a random
number generator to supply the noise. By repeating the simulation — with
different sequences of random numbers — one obtains independent “real-
izations” of the process in question, reflecting the statistical distribution of
events occurring during an experiment.
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The “direct simulation” method outlined above becomes impractical when
studying rare outcomes. For instance, if we are interested in computing the
very small cross-section for the fusion of two heavy nuclei, then the vast ma-
jority of realizations will end with the nuclei flying apart, and the number
of simulations required to obtain a statistically significant number of fusion
events may well be prohibitively large.

The basic idea which we shall present is essentially a dynamical variant
of importance sampling, which amounts to gaining information about one
probability distribution (a “target” distribution, T'), by choosing randomly
from another (a “sampling” distribution, S) defined on the same space, and
then biasing — assigning weights to — the points sampled. The weights are
assigned in such a way that the biased average of a quantity, over N points
drawn independently from S, and the unbiased average of that quantity over
N points drawn from 7', converge to the same value in the limit of infinitely
many samples, N — oo. If the biased average converges faster with N than
the unbiased one, then importance sampling becomes a practical tool for
increasing the efficiency of the numerical estimation of the desired average.

In our case, we are interested in Langevin trajectories describing (for
instance) the collision of two heavy nuclei, with a very small probability
for fusion. Our target ensemble, T', is then the statistical distribution of all
such trajectories with, say, a given initial center-of-mass energy and impact
parameter. The probability of fusion which we wish to compute is defined
with respect to this ensemble of trajectories. Our sampling ensemble, S, is
the distribution of trajectories evolving — from the same initial conditions
— under a modified Langevin equation, which is far more likely to result
in fusion. The scheme which we propose then involves running a number
of simulations with the modified equation of motion (thus obtaining fusion
events with good statistics), and then biasing each trajectory, so as to com-
pute the desired probability for fusion.

1. Theory

1.1. Importance sampling

Importance sampling is based on a very simple idea, embodied by Eq. (3)
below. Suppose we have some space ((-space) on which are defined two nor-
malized probability distributions, ps(¢) and pr(¢), corresponding to “sam-
pling” and “target” ensembles, S and T'. Supposing furthermore that pg(¢) >0
whenever pr(¢) > 0, let us introduce a biasing function

w(() = ; (1)
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defined at all points ¢ for which pg(¢) > 0. Now let (O)s and (O)r denote
the averages of some observable O(() over the two distributions:

N
©) = [dp(©) 0@ = m (NS OCH . i=ST. (@)
n=1

N—oo

From Egs (1) and (2) above we can equally well express the desired average
as:

N
(O)r = (wO)s = lim (1/N) Y w((z) O, (3)
—00 ne1
where Cls ,C2S ,-++ is a sequence of points sampled independently from S.

Thus, provided we can compute w(¢) and O(() for any (, Eq. (3) gives
us a prescription for determining the average of O over the target ensem-
ble T', using points drawn from the sampling ensemble S. This prescription
becomes a practical tool if a sampling distribution can be chosen for which
the rate of convergence with the number of samples (N) is faster when using
Eq. (3), than when sampling directly from T'.

1.2. Statistical distributions of Langevin trajectories

The original and modified Langevin equations can be represented by the
generic equation
dr 4
= olw) + (1), 4
where v = vy in one case, and v = vy + Aw in the other. As before, given
some initial conditions x(0) = z°, let z(#) denote the trajectory evolving
from those initial conditions, for a particular realization of the noise term.
We are interested in the probability density p[z(t)] for obtaining a particular
trajectory z(t). The ratio between these two probability densities is given
by:

wlz(t)] = ZE% —exp—AAlz(t)], AA=Apr—Ag, (5

where Ap and Ag are Langevin actions[l] for v = vy and v = vy + Av,
respectively. And

AA[z(#)] = %/dt(‘fi—f v — %m) Av. (6)
0

Here, dz/dt, vg and Av are evaluated along the trajectory z(t), D is diffusion
coefficient.
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1.3. Computing probabilities of rare events

We now have an expression which allows us, in principle, to compute
the probability for fusion — defined with respect to the original equation of
motion — by running independent simulations with the modified equation
of motion

N
P = Jim > 6l 0] exp -l ) (7

Here, 2 (t) is the trajectory generated during the n’th simulation, using the

modified Langevin equation; AA is computed for each trajectory; and © is
equal to one or zero, depending on whether or not fusion occurred.

1.4. Efficiency analysis

Having derived an estimator for Py, based on the idea of importance
sampling, we now consider the question of efficiency. In particular, we estab-
lish a specific measure of “how much we gain” by using importance sampling,
with a given choice of Av(z).

The validity of Eq. (7) does not depend on the form of Av(z). Therefore,
for any additional drift term Av, there will be some threshold value N}, such

that Pf(u]:) provides a “good” estimate of Py, for N > N},. That is, N},
is the number of trajectories which we need to simulate (using the modified
Langevin equation), in order to determine Pp to some desired accuracy,
using the method outlined above. Of course, N3, can depend strongly on
the form of Av(z). We can thus compare the efficiency of estimating P, for
different drift terms Av(z). In particular — since the special case Av = 0 is
equivalent to computing P, using the original Langevin equation — let us

define the efficiency gain, ES,, associated with a given Av(z), as follows:

Av = 7 (8)
NAU

The numerator is just the number of trajectories needed to accurately es-
timate Ppg by running simulations with the original Langevin equation
(Av = 0); the denominator is the number needed using modified equa-
tion, for a given Awv(z). Thus, Egv is the factor by which we reduce the
computational effort, by making use of importance sampling — again, for a
given Av(z).

For a given additional drift term Aw, let us define

Fl(®)] = wz()]Olz(t)] = © exp ~AA. (9)
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We get the following result for the efficiency gain of our importance
sampling method, for a particular choice of Av(z):

_ NS( _ Pfus(l_Pfus) ) Pfus _ <f>S (10)

NR, 0% Av oiaw (s — (N
where we have written 0;7 Ap to explicitly specify that this is the variance of
f for trajectories simulated with the additional drift term Aw (i.e. sampled
from S).
We will use this result in Section 3 below, to compute the efficiency gain
of the importance sampling method for particular examples.

2. Practical matters

In this section, we discuss a number of practical issues related to the
actual implementation of the importance sampling method derived above.
We can rewrite Eq. (6) as:

Lof
AA = 5D /dt (26 + Av)Aw. (11)
0

This expression for AA lends itself to a convenient implementation of the
method, as follows. When simulating a given trajectory x(¢) evolving under
modified equation, we simultaneously integrate the following equation of
motion for a new variable y(t), satisfying the initial condition y(0) = 0:

dy Av, .

pri 2D(2§ + Av), (12)
for the same realization of the noise term £(¢). (Note that this equation is
coupled to the equation of motion for z, since Av in general depends on x.)
Eq. (11) then implies that AA = y(7). Thus, at the end of the simulation,
we use z(7) to determine whether or not fusion has occurred, and if so, then
we take AA = y(7) when assigning the bias e=®4 to this event.

Often (see for instance Section 3 below), the evolution of our system is
such that, once a trajectory z(t) enters the region R which defines fusion,
its chance for subsequently escaping that region is negligible: R effectively
possesses an absorbing boundary. If this is true for both the original and
modified evolution, it becomes convenient to define Av to be zero everywhere
within R. Then, if a trajectory z(¢) (evolving under the modified Langevin
equation) crosses into R at some time 7/ < 7, we can stop the simulation
at that point in time, and take ©® = 1, AA = y(7'). This saves time, by
eliminating the need to continue with the simulation.
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We have, to this point, assumed that the stochastic noise f(t) is inde-
pendent of z. More generally, we might have a diffusion coefficient which
depends on the instantaneous configuration of the system: D = D(z). When
implementing the method using the additional variable y(t), the only dif-
ference is that in Eq. (12) D is evaluated along xz(¢) rather than being a
constant.

Let us now drop the assumption that the system evolves in one dimen-
sion. The variables z, vg, Av, and £ now become vectors, and D becomes
a symmetric matrix whose elements reflect the correlations between the dif-
ferent components of the stochastic force:

(Ei(t)Ej(t+ 9)) = Dijo(s). (13)
Eq. (12) generalizes to the following evolution equation for y:

& _ 1(2£+ Av)'D7'Aw. (14)
dt 2
Eq. (14) implicitly assumes that D is invertible, i.e. det(D) # 0. If this is
not the case, then — first — we must make sure that the projection of Av
onto the subspace spanned by the null eigenvectors of D is zero. Assuming
this condition is satisfied, we can view Eq. (14) as pertaining only to the
subspace spanned by the non-zero eigenvectors of D.

3. Numerical results

In this section we describe numerical experiments which we have carried
out to test our method, using a simplified model of heavy ion collisions [2].
This model was previously studied by Aguiar et alin 1990[3], using Langevin
simulations. For our example, we considered the collision of two '9°Zr nuclei.
In this mass-symmetric case — for this simple model — the shape of the
system is defined by two equal spheres connected by a cylinder. There
are two macroscopic (“collective”) variables parametrizing the shape: (1)
the relative distance p between the sphere centers, which is the distance s
divided by the sum of radii of the two spheres: p = s/2R; and (2) the
window opening «, which is the square of the ratio of the cylinder radius to
the radius of the sphere: o = (r¢;1/R)?. The collective coordinates p and «
are represented by the variables v = y/a and o = p? — 1. The evolution of
the colliding nuclei is then represented by a Langevin trajectory in (o, v)-
space. Fig. 1 depicts 30 such trajectories, all starting from a configuration
of two touching spheres (o = 0,v = 0), with a center-of-mass energy equal
to 0.8 MeV above the interaction barrier. This energy is about 2.5 MeV
below the “extra push” energy, so most of the trajectories (28 of them) lead
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Fig. 1. Trajectories representing evolution of the system in (o, v)-parameter space.
Two trajectories of 30 lead to fusion when the energy is about 2.5 MeV below the
“extra push”. See details in text.

to reseparation of the system (fission), and only two trajectories lead to a
compound nucleus (fusion).

From Fig. 1 we have the following picture of the physical process oc-
curing, in the context of this simplified model: first the window open-
ing between the two nuclei grows rapidly; then around a saddle point, at
(o,v) ~ (0.0,0.6), the combination of deterministic and stochastic forces
determines the ultimate fate of the nuclei, either fusion or reseparation; and
finally the system evolves toward its destiny, with o decreasing in the case
of fusion, or increasing with reseparation. This suggests that, if we are to
add an additional force to increase the likelihood of fusion, then it would
be best to localize such a force in the vicinity of the saddle point. We have
chosen an additional force along the negative o direction, whose strength is
a Gaussian function of (o,r), with a peak at (0.0, 0.6).

In Figs 2 and 3 we show excitation functions — fusion probability plotted
against center-of-mass energy above the barrier — as computed by both
direct simulation and importance sampling. Each point was obtained using
1000 trajectories, and the result is displayed with error bars, as estimated
from the numerical data. The solid line represents an analytical formula
which closely approximates the fusion probability over the region shown. We
see that, for approximately the same computational effort, our importance
sampling method gives significantly better results than direct simulation.
For the point corresponding to 0.5 MeV above the barrier, the error bar in
Fig. 2 is about 5.5 times bigger than that in Fig. 3. The efficiency gain of the
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importance sampling approach is therefore about 30 (~ 5.52, see Eq. (10)
in this case: we would need to launch about 30 x 103 trajectories evolving
under the original Langevin equation to get the same degree of accuracy
obtained in Fig. 3 with 10? trajectories.
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Fig. 2. Excitation function computed using direct simulation, with 1000 trajectories
for each point. (The solid line is an analytical estimate extracted from a much larger
number of simulations.)
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Fig.3. Same as Fig. 2 but computed using importance sampling instead of direct
simulation.
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The gain in efficiency becomes more dramatic when we go to very small
probabilities. To show this we considered the reaction "9Pd+!'0Pd, for
which the extra push energy is 25.5 MeV. Launching 250000 trajectories
with an initial center-of-mass energy of 1 MeV above the barrier, we ob-
tained a probability of fusion P = (6.970 £ 0.268) x 103, This was
computed using our importance sampling method; about 88% of the trajec-
tories evolving under the modified Langevin equation went to fusion. Using
Eq. (10), our result gives an efficiency gain of E'gﬂ = 3.5 x 10°! We cannot
compare our estimate of Py, directly to an estimate obtained from sim-
ulating with the original Langevin equation, since we would need to run
~ 10'2 trajectories to have a decent chance of observing even a single fusion
event. Importance sampling is indispensible in this case: calculating Py
using direct simulations is not practical.

4. Conclusions

In this paper we have developed a method for computing the probabili-
ties of rare events — exemplified by the fusion of two nuclei — for processes
described by Langevin dynamics. The method, based on the idea of im-
portance sampling, is straightforward to implement, quite general, and can
lead to a very large increase in computational efficiency. For these reasons
we believe it represents a very practical tool for using numerical simulations
to compute small probabilities. Indeed, with our method, we were easily
able to estimate a fusion probability, within a schematic model of nuclear
collisions (see the end of Section 3), that would have been essentially im-
possible to estimate from direct simulations of the process in question. We
see every reason to expect similar results when combining the method with
more realistic semiclassical models of nuclear dynamics.

This work was performed as a part of the research program supported
by the Polish State Committee for Scientific Research KBN Grant No. 2-
P03B-143-10.
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