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A NEW METHOD OF CALCULATING VERY SMALLCROSS SECTIONS�O. Mazonka, J. Bªo
kiInstitute for Nu
lear Studies, �wierk, Polandand C. Jarzy«skiTheoreti
al Division, Los Alamos National Laboratory, USA(Re
eived July 4, 1998)Langevin equations are used to model many pro
esses of physi
al inter-est, in
luding low-energy nu
lear 
ollisions. We develop a general methodfor 
omputing probabilities of very rare events (e.g. small fusion 
ross-se
tions) for pro
esses des
ribed by Langevin dynami
s. As we demon-strate with numeri
al examples, our method 
an 
onverge to the desiredanswer at a rate whi
h is orders of magnitude faster than that a
hieved byusing dire
t simulations of the pro
ess in question.PACS numbers: 25.70.-z, 25.70.Jj, 24.60.KyIntrodu
tionLangevin methods o�er a powerful tool for the numeri
al study of low-energy nu
lear pro
esses, su
h as �ssion and heavy-ion fusion. The evolutionof nu
lei during su
h events is typi
ally des
ribed using a few 
olle
tive de-grees of freedom, evolving under both 
onservative and non-
onservativefor
es. The latter, arising from the 
oupling of the 
olle
tive variables tothe intrinsi
 nu
leoni
 degrees of freedom, 
an be modeled by a noisy anda dissipative term in a Langevin des
ription of the 
olle
tive motion. On
esu
h a (sto
hasti
) equation of motion has been written down, it is straight-forward to numeri
ally simulate the pro
ess in question, using a randomnumber generator to supply the noise. By repeating the simulation � withdi�erent sequen
es of random numbers � one obtains independent �real-izations� of the pro
ess in question, re�e
ting the statisti
al distribution ofevents o

urring during an experiment.� Presented at the International Conferen
e �Nu
lear Physi
s Close to the Barrier�,Warszawa, Poland, June 30�July 4, 1998.(1577)



1578 O. Mazonka, J. Bªo
ki, C. Jarzy«skiThe �dire
t simulation� method outlined above be
omes impra
ti
al whenstudying rare out
omes. For instan
e, if we are interested in 
omputing thevery small 
ross-se
tion for the fusion of two heavy nu
lei, then the vast ma-jority of realizations will end with the nu
lei �ying apart, and the numberof simulations required to obtain a statisti
ally signi�
ant number of fusionevents may well be prohibitively large.The basi
 idea whi
h we shall present is essentially a dynami
al variantof importan
e sampling, whi
h amounts to gaining information about oneprobability distribution (a �target� distribution, T ), by 
hoosing randomlyfrom another (a �sampling� distribution, S) de�ned on the same spa
e, andthen biasing � assigning weights to � the points sampled. The weights areassigned in su
h a way that the biased average of a quantity, over N pointsdrawn independently from S, and the unbiased average of that quantity overN points drawn from T , 
onverge to the same value in the limit of in�nitelymany samples, N !1. If the biased average 
onverges faster with N thanthe unbiased one, then importan
e sampling be
omes a pra
ti
al tool forin
reasing the e�
ien
y of the numeri
al estimation of the desired average.In our 
ase, we are interested in Langevin traje
tories des
ribing (forinstan
e) the 
ollision of two heavy nu
lei, with a very small probabilityfor fusion. Our target ensemble, T , is then the statisti
al distribution of allsu
h traje
tories with, say, a given initial 
enter-of-mass energy and impa
tparameter. The probability of fusion whi
h we wish to 
ompute is de�nedwith respe
t to this ensemble of traje
tories. Our sampling ensemble, S, isthe distribution of traje
tories evolving � from the same initial 
onditions� under a modi�ed Langevin equation, whi
h is far more likely to resultin fusion. The s
heme whi
h we propose then involves running a numberof simulations with the modi�ed equation of motion (thus obtaining fusionevents with good statisti
s), and then biasing ea
h traje
tory, so as to 
om-pute the desired probability for fusion.1. Theory1.1. Importan
e samplingImportan
e sampling is based on a very simple idea, embodied by Eq. (3)below. Suppose we have some spa
e (�-spa
e) on whi
h are de�ned two nor-malized probability distributions, pS(�) and pT (�), 
orresponding to �sam-pling� and �target� ensembles, S and T . Supposing furthermore that pS(�)>0whenever pT (�) > 0, let us introdu
e a biasing fun
tionw(�) = pT (�)pS(�) ; (1)
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tions 1579de�ned at all points � for whi
h pS(�) > 0. Now let hOiS and hOiT denotethe averages of some observable O(�) over the two distributions:hOii � Z d� pi(�)O(�) = limN!1(1=N) NXn=1O(�Tn ) ; i = S; T : (2)From Eqs (1) and (2) above we 
an equally well express the desired averageas: hOiT = hwOiS = limN!1(1=N) NXn=1w(�Sn )O(�S) ; (3)where �S1 ; �S2 ; � � � is a sequen
e of points sampled independently from S.Thus, provided we 
an 
ompute w(�) and O(�) for any �, Eq. (3) givesus a pres
ription for determining the average of O over the target ensem-ble T , using points drawn from the sampling ensemble S. This pres
riptionbe
omes a pra
ti
al tool if a sampling distribution 
an be 
hosen for whi
hthe rate of 
onvergen
e with the number of samples (N) is faster when usingEq. (3), than when sampling dire
tly from T .1.2. Statisti
al distributions of Langevin traje
toriesThe original and modi�ed Langevin equations 
an be represented by thegeneri
 equation dxdt = v(x) + �(t) ; (4)where v = v0 in one 
ase, and v = v0 +�v in the other. As before, givensome initial 
onditions x(0) = x0, let x(t) denote the traje
tory evolvingfrom those initial 
onditions, for a parti
ular realization of the noise term.We are interested in the probability density p[x(t)℄ for obtaining a parti
ulartraje
tory x(t). The ratio between these two probability densities is givenby: w[x(t)℄ � pT [x(t)℄pS [x(t)℄ = exp��A[x(t)℄ ; �A � AT �AS ; (5)where AT and AS are Langevin a
tions[1℄ for v = v0 and v = v0 + �v,respe
tively. And�A[x(t)℄ = 1D �Z0 dt dxdt � v0 � 12�v!�v : (6)Here, dx=dt, v0 and�v are evaluated along the traje
tory x(t), D is di�usion
oe�
ient.
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ki, C. Jarzy«ski1.3. Computing probabilities of rare eventsWe now have an expression whi
h allows us, in prin
iple, to 
omputethe probability for fusion � de�ned with respe
t to the original equation ofmotion � by running independent simulations with the modi�ed equationof motion Pfus = limN!1 1N NXn=1�[xSn(t)℄ exp��A[xSn(t)℄ : (7)Here, xSn(t) is the traje
tory generated during the n'th simulation, using themodi�ed Langevin equation; �A is 
omputed for ea
h traje
tory; and � isequal to one or zero, depending on whether or not fusion o

urred.1.4. E�
ien
y analysisHaving derived an estimator for Pfus based on the idea of importan
esampling, we now 
onsider the question of e�
ien
y. In parti
ular, we estab-lish a spe
i�
 measure of �how mu
h we gain� by using importan
e sampling,with a given 
hoi
e of �v(x).The validity of Eq. (7) does not depend on the form of �v(x). Therefore,for any additional drift term�v, there will be some threshold valueN��v su
hthat P (N)fus provides a �good� estimate of Pfus for N � N��v. That is, N��vis the number of traje
tories whi
h we need to simulate (using the modi�edLangevin equation), in order to determine Pfus to some desired a

ura
y,using the method outlined above. Of 
ourse, N��v 
an depend strongly onthe form of�v(x). We 
an thus 
ompare the e�
ien
y of estimating Pfus, fordi�erent drift terms �v(x). In parti
ular � sin
e the spe
ial 
ase �v = 0 isequivalent to 
omputing Pfus using the original Langevin equation � let usde�ne the e�
ien
y gain, EG�v, asso
iated with a given �v(x), as follows:EG�v � N�0N��v : (8)The numerator is just the number of traje
tories needed to a

urately es-timate Pfus by running simulations with the original Langevin equation(�v = 0); the denominator is the number needed using modi�ed equa-tion, for a given �v(x). Thus, EG�v is the fa
tor by whi
h we redu
e the
omputational e�ort, by making use of importan
e sampling � again, for agiven �v(x).For a given additional drift term �v, let us de�nef [x(t)℄ � w[x(t)℄�[x(t)℄ = � exp��A : (9)
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tions 1581We get the following result for the e�
ien
y gain of our importan
esampling method, for a parti
ular 
hoi
e of �v(x):EG�v = N�0N��v = Pfus(1� Pfus)�2f;�v �= Pfus�2f;�v = hfiShf2iS � hfi2S ; (10)where we have written �2f;�v to expli
itly spe
ify that this is the varian
e off for traje
tories simulated with the additional drift term �v (i.e. sampledfrom S).We will use this result in Se
tion 3 below, to 
ompute the e�
ien
y gainof the importan
e sampling method for parti
ular examples.2. Pra
ti
al mattersIn this se
tion, we dis
uss a number of pra
ti
al issues related to thea
tual implementation of the importan
e sampling method derived above.We 
an rewrite Eq. (6) as:�A = 12D �Z0 dt (2�̂ +�v)�v : (11)This expression for �A lends itself to a 
onvenient implementation of themethod, as follows. When simulating a given traje
tory x(t) evolving undermodi�ed equation, we simultaneously integrate the following equation ofmotion for a new variable y(t), satisfying the initial 
ondition y(0) = 0:dydt = �v2D (2�̂ +�v) ; (12)for the same realization of the noise term �̂(t). (Note that this equation is
oupled to the equation of motion for x, sin
e �v in general depends on x.)Eq. (11) then implies that �A = y(�): Thus, at the end of the simulation,we use x(�) to determine whether or not fusion has o

urred, and if so, thenwe take �A = y(�) when assigning the bias e��A to this event.Often (see for instan
e Se
tion 3 below), the evolution of our system issu
h that, on
e a traje
tory x(t) enters the region R whi
h de�nes fusion,its 
han
e for subsequently es
aping that region is negligible: R e�e
tivelypossesses an absorbing boundary. If this is true for both the original andmodi�ed evolution, it be
omes 
onvenient to de�ne �v to be zero everywherewithin R. Then, if a traje
tory x(t) (evolving under the modi�ed Langevinequation) 
rosses into R at some time � 0 < � , we 
an stop the simulationat that point in time, and take � = 1, �A = y(� 0). This saves time, byeliminating the need to 
ontinue with the simulation.
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ki, C. Jarzy«skiWe have, to this point, assumed that the sto
hasti
 noise �̂(t) is inde-pendent of x. More generally, we might have a di�usion 
oe�
ient whi
hdepends on the instantaneous 
on�guration of the system: D = D(x). Whenimplementing the method using the additional variable y(t), the only dif-feren
e is that in Eq. (12) D is evaluated along x(t) rather than being a
onstant.Let us now drop the assumption that the system evolves in one dimen-sion. The variables x, v0, �v, and �̂ now be
ome ve
tors, and D be
omesa symmetri
 matrix whose elements re�e
t the 
orrelations between the dif-ferent 
omponents of the sto
hasti
 for
e:h�̂i(t)�̂j(t+ s)i = DijÆ(s) : (13)Eq. (12) generalizes to the following evolution equation for y:dydt = 12(2�̂ +�v)TD�1�v : (14)Eq. (14) impli
itly assumes that D is invertible, i.e. det(D) 6= 0. If this isnot the 
ase, then � �rst � we must make sure that the proje
tion of �vonto the subspa
e spanned by the null eigenve
tors of D is zero. Assumingthis 
ondition is satis�ed, we 
an view Eq. (14) as pertaining only to thesubspa
e spanned by the non-zero eigenve
tors of D.3. Numeri
al resultsIn this se
tion we des
ribe numeri
al experiments whi
h we have 
arriedout to test our method, using a simpli�ed model of heavy ion 
ollisions [2℄.This model was previously studied by Aguiar et al in 1990[3℄, using Langevinsimulations. For our example, we 
onsidered the 
ollision of two 100Zr nu
lei.In this mass-symmetri
 
ase � for this simple model � the shape of thesystem is de�ned by two equal spheres 
onne
ted by a 
ylinder. Thereare two ma
ros
opi
 (�
olle
tive�) variables parametrizing the shape: (1)the relative distan
e � between the sphere 
enters, whi
h is the distan
e sdivided by the sum of radii of the two spheres: � = s=2R; and (2) thewindow opening �, whi
h is the square of the ratio of the 
ylinder radius tothe radius of the sphere: � = (r
yl=R)2. The 
olle
tive 
oordinates � and �are represented by the variables � = p� and � = �2 � 1. The evolution ofthe 
olliding nu
lei is then represented by a Langevin traje
tory in (�; �)-spa
e. Fig. 1 depi
ts 30 su
h traje
tories, all starting from a 
on�gurationof two tou
hing spheres (� = 0; � = 0), with a 
enter-of-mass energy equalto 0.8 MeV above the intera
tion barrier. This energy is about 2.5 MeVbelow the �extra push� energy, so most of the traje
tories (28 of them) lead
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Fig. 1. Traje
tories representing evolution of the system in (�; �)-parameter spa
e.Two traje
tories of 30 lead to fusion when the energy is about 2.5 MeV below the�extra push�. See details in text.to reseparation of the system (�ssion), and only two traje
tories lead to a
ompound nu
leus (fusion).From Fig. 1 we have the following pi
ture of the physi
al pro
ess o
-
uring, in the 
ontext of this simpli�ed model: �rst the window open-ing between the two nu
lei grows rapidly; then around a saddle point, at(�; �) � (0:0; 0:6), the 
ombination of deterministi
 and sto
hasti
 for
esdetermines the ultimate fate of the nu
lei, either fusion or reseparation; and�nally the system evolves toward its destiny, with � de
reasing in the 
aseof fusion, or in
reasing with reseparation. This suggests that, if we are toadd an additional for
e to in
rease the likelihood of fusion, then it wouldbe best to lo
alize su
h a for
e in the vi
inity of the saddle point. We have
hosen an additional for
e along the negative � dire
tion, whose strength isa Gaussian fun
tion of (�; �), with a peak at (0:0; 0:6).In Figs 2 and 3 we show ex
itation fun
tions � fusion probability plottedagainst 
enter-of-mass energy above the barrier � as 
omputed by bothdire
t simulation and importan
e sampling. Ea
h point was obtained using1000 traje
tories, and the result is displayed with error bars, as estimatedfrom the numeri
al data. The solid line represents an analyti
al formulawhi
h 
losely approximates the fusion probability over the region shown. Wesee that, for approximately the same 
omputational e�ort, our importan
esampling method gives signi�
antly better results than dire
t simulation.For the point 
orresponding to 0.5 MeV above the barrier, the error bar inFig. 2 is about 5.5 times bigger than that in Fig. 3. The e�
ien
y gain of the
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ki, C. Jarzy«skiimportan
e sampling approa
h is therefore about 30 (� 5:52, see Eq. (10)in this 
ase: we would need to laun
h about 30 � 103 traje
tories evolvingunder the original Langevin equation to get the same degree of a

ura
yobtained in Fig. 3 with 103 traje
tories.
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Fig. 2. Ex
itation fun
tion 
omputed using dire
t simulation, with 1000 traje
toriesfor ea
h point. (The solid line is an analyti
al estimate extra
ted from a mu
h largernumber of simulations.)
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Fig. 3. Same as Fig. 2 but 
omputed using importan
e sampling instead of dire
tsimulation.
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tions 1585The gain in e�
ien
y be
omes more dramati
 when we go to very smallprobabilities. To show this we 
onsidered the rea
tion 110Pd+110Pd, forwhi
h the extra push energy is 25.5 MeV. Laun
hing 250000 traje
torieswith an initial 
enter-of-mass energy of 1 MeV above the barrier, we ob-tained a probability of fusion Pfus = (6:970 � 0:268) � 10�13. This was
omputed using our importan
e sampling method; about 88% of the traje
-tories evolving under the modi�ed Langevin equation went to fusion. UsingEq. (10), our result gives an e�
ien
y gain of EG�v = 3:5 � 109! We 
annot
ompare our estimate of Pfus dire
tly to an estimate obtained from sim-ulating with the original Langevin equation, sin
e we would need to run� 1012 traje
tories to have a de
ent 
han
e of observing even a single fusionevent. Importan
e sampling is indispensible in this 
ase: 
al
ulating Pfususing dire
t simulations is not pra
ti
al.4. Con
lusionsIn this paper we have developed a method for 
omputing the probabili-ties of rare events � exempli�ed by the fusion of two nu
lei � for pro
essesdes
ribed by Langevin dynami
s. The method, based on the idea of im-portan
e sampling, is straightforward to implement, quite general, and 
anlead to a very large in
rease in 
omputational e�
ien
y. For these reasonswe believe it represents a very pra
ti
al tool for using numeri
al simulationsto 
ompute small probabilities. Indeed, with our method, we were easilyable to estimate a fusion probability, within a s
hemati
 model of nu
lear
ollisions (see the end of Se
tion 3), that would have been essentially im-possible to estimate from dire
t simulations of the pro
ess in question. Wesee every reason to expe
t similar results when 
ombining the method withmore realisti
 semi
lassi
al models of nu
lear dynami
s.This work was performed as a part of the resear
h program supportedby the Polish State Committee for S
ienti�
 Resear
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