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A NEW METHOD OF CALCULATING VERY SMALLCROSS SECTIONS�O. Mazonka, J. BªokiInstitute for Nulear Studies, �wierk, Polandand C. Jarzy«skiTheoretial Division, Los Alamos National Laboratory, USA(Reeived July 4, 1998)Langevin equations are used to model many proesses of physial inter-est, inluding low-energy nulear ollisions. We develop a general methodfor omputing probabilities of very rare events (e.g. small fusion ross-setions) for proesses desribed by Langevin dynamis. As we demon-strate with numerial examples, our method an onverge to the desiredanswer at a rate whih is orders of magnitude faster than that ahieved byusing diret simulations of the proess in question.PACS numbers: 25.70.-z, 25.70.Jj, 24.60.KyIntrodutionLangevin methods o�er a powerful tool for the numerial study of low-energy nulear proesses, suh as �ssion and heavy-ion fusion. The evolutionof nulei during suh events is typially desribed using a few olletive de-grees of freedom, evolving under both onservative and non-onservativefores. The latter, arising from the oupling of the olletive variables tothe intrinsi nuleoni degrees of freedom, an be modeled by a noisy anda dissipative term in a Langevin desription of the olletive motion. Onesuh a (stohasti) equation of motion has been written down, it is straight-forward to numerially simulate the proess in question, using a randomnumber generator to supply the noise. By repeating the simulation � withdi�erent sequenes of random numbers � one obtains independent �real-izations� of the proess in question, re�eting the statistial distribution ofevents ourring during an experiment.� Presented at the International Conferene �Nulear Physis Close to the Barrier�,Warszawa, Poland, June 30�July 4, 1998.(1577)



1578 O. Mazonka, J. Bªoki, C. Jarzy«skiThe �diret simulation� method outlined above beomes impratial whenstudying rare outomes. For instane, if we are interested in omputing thevery small ross-setion for the fusion of two heavy nulei, then the vast ma-jority of realizations will end with the nulei �ying apart, and the numberof simulations required to obtain a statistially signi�ant number of fusionevents may well be prohibitively large.The basi idea whih we shall present is essentially a dynamial variantof importane sampling, whih amounts to gaining information about oneprobability distribution (a �target� distribution, T ), by hoosing randomlyfrom another (a �sampling� distribution, S) de�ned on the same spae, andthen biasing � assigning weights to � the points sampled. The weights areassigned in suh a way that the biased average of a quantity, over N pointsdrawn independently from S, and the unbiased average of that quantity overN points drawn from T , onverge to the same value in the limit of in�nitelymany samples, N !1. If the biased average onverges faster with N thanthe unbiased one, then importane sampling beomes a pratial tool forinreasing the e�ieny of the numerial estimation of the desired average.In our ase, we are interested in Langevin trajetories desribing (forinstane) the ollision of two heavy nulei, with a very small probabilityfor fusion. Our target ensemble, T , is then the statistial distribution of allsuh trajetories with, say, a given initial enter-of-mass energy and impatparameter. The probability of fusion whih we wish to ompute is de�nedwith respet to this ensemble of trajetories. Our sampling ensemble, S, isthe distribution of trajetories evolving � from the same initial onditions� under a modi�ed Langevin equation, whih is far more likely to resultin fusion. The sheme whih we propose then involves running a numberof simulations with the modi�ed equation of motion (thus obtaining fusionevents with good statistis), and then biasing eah trajetory, so as to om-pute the desired probability for fusion.1. Theory1.1. Importane samplingImportane sampling is based on a very simple idea, embodied by Eq. (3)below. Suppose we have some spae (�-spae) on whih are de�ned two nor-malized probability distributions, pS(�) and pT (�), orresponding to �sam-pling� and �target� ensembles, S and T . Supposing furthermore that pS(�)>0whenever pT (�) > 0, let us introdue a biasing funtionw(�) = pT (�)pS(�) ; (1)



A New Method of Calulating Very Small Cross Setions 1579de�ned at all points � for whih pS(�) > 0. Now let hOiS and hOiT denotethe averages of some observable O(�) over the two distributions:hOii � Z d� pi(�)O(�) = limN!1(1=N) NXn=1O(�Tn ) ; i = S; T : (2)From Eqs (1) and (2) above we an equally well express the desired averageas: hOiT = hwOiS = limN!1(1=N) NXn=1w(�Sn )O(�S) ; (3)where �S1 ; �S2 ; � � � is a sequene of points sampled independently from S.Thus, provided we an ompute w(�) and O(�) for any �, Eq. (3) givesus a presription for determining the average of O over the target ensem-ble T , using points drawn from the sampling ensemble S. This presriptionbeomes a pratial tool if a sampling distribution an be hosen for whihthe rate of onvergene with the number of samples (N) is faster when usingEq. (3), than when sampling diretly from T .1.2. Statistial distributions of Langevin trajetoriesThe original and modi�ed Langevin equations an be represented by thegeneri equation dxdt = v(x) + �(t) ; (4)where v = v0 in one ase, and v = v0 +�v in the other. As before, givensome initial onditions x(0) = x0, let x(t) denote the trajetory evolvingfrom those initial onditions, for a partiular realization of the noise term.We are interested in the probability density p[x(t)℄ for obtaining a partiulartrajetory x(t). The ratio between these two probability densities is givenby: w[x(t)℄ � pT [x(t)℄pS [x(t)℄ = exp��A[x(t)℄ ; �A � AT �AS ; (5)where AT and AS are Langevin ations[1℄ for v = v0 and v = v0 + �v,respetively. And�A[x(t)℄ = 1D �Z0 dt dxdt � v0 � 12�v!�v : (6)Here, dx=dt, v0 and�v are evaluated along the trajetory x(t), D is di�usionoe�ient.



1580 O. Mazonka, J. Bªoki, C. Jarzy«ski1.3. Computing probabilities of rare eventsWe now have an expression whih allows us, in priniple, to omputethe probability for fusion � de�ned with respet to the original equation ofmotion � by running independent simulations with the modi�ed equationof motion Pfus = limN!1 1N NXn=1�[xSn(t)℄ exp��A[xSn(t)℄ : (7)Here, xSn(t) is the trajetory generated during the n'th simulation, using themodi�ed Langevin equation; �A is omputed for eah trajetory; and � isequal to one or zero, depending on whether or not fusion ourred.1.4. E�ieny analysisHaving derived an estimator for Pfus based on the idea of importanesampling, we now onsider the question of e�ieny. In partiular, we estab-lish a spei� measure of �how muh we gain� by using importane sampling,with a given hoie of �v(x).The validity of Eq. (7) does not depend on the form of �v(x). Therefore,for any additional drift term�v, there will be some threshold valueN��v suhthat P (N)fus provides a �good� estimate of Pfus for N � N��v. That is, N��vis the number of trajetories whih we need to simulate (using the modi�edLangevin equation), in order to determine Pfus to some desired auray,using the method outlined above. Of ourse, N��v an depend strongly onthe form of�v(x). We an thus ompare the e�ieny of estimating Pfus, fordi�erent drift terms �v(x). In partiular � sine the speial ase �v = 0 isequivalent to omputing Pfus using the original Langevin equation � let usde�ne the e�ieny gain, EG�v, assoiated with a given �v(x), as follows:EG�v � N�0N��v : (8)The numerator is just the number of trajetories needed to aurately es-timate Pfus by running simulations with the original Langevin equation(�v = 0); the denominator is the number needed using modi�ed equa-tion, for a given �v(x). Thus, EG�v is the fator by whih we redue theomputational e�ort, by making use of importane sampling � again, for agiven �v(x).For a given additional drift term �v, let us de�nef [x(t)℄ � w[x(t)℄�[x(t)℄ = � exp��A : (9)



A New Method of Calulating Very Small Cross Setions 1581We get the following result for the e�ieny gain of our importanesampling method, for a partiular hoie of �v(x):EG�v = N�0N��v = Pfus(1� Pfus)�2f;�v �= Pfus�2f;�v = hfiShf2iS � hfi2S ; (10)where we have written �2f;�v to expliitly speify that this is the variane off for trajetories simulated with the additional drift term �v (i.e. sampledfrom S).We will use this result in Setion 3 below, to ompute the e�ieny gainof the importane sampling method for partiular examples.2. Pratial mattersIn this setion, we disuss a number of pratial issues related to theatual implementation of the importane sampling method derived above.We an rewrite Eq. (6) as:�A = 12D �Z0 dt (2�̂ +�v)�v : (11)This expression for �A lends itself to a onvenient implementation of themethod, as follows. When simulating a given trajetory x(t) evolving undermodi�ed equation, we simultaneously integrate the following equation ofmotion for a new variable y(t), satisfying the initial ondition y(0) = 0:dydt = �v2D (2�̂ +�v) ; (12)for the same realization of the noise term �̂(t). (Note that this equation isoupled to the equation of motion for x, sine �v in general depends on x.)Eq. (11) then implies that �A = y(�): Thus, at the end of the simulation,we use x(�) to determine whether or not fusion has ourred, and if so, thenwe take �A = y(�) when assigning the bias e��A to this event.Often (see for instane Setion 3 below), the evolution of our system issuh that, one a trajetory x(t) enters the region R whih de�nes fusion,its hane for subsequently esaping that region is negligible: R e�etivelypossesses an absorbing boundary. If this is true for both the original andmodi�ed evolution, it beomes onvenient to de�ne �v to be zero everywherewithin R. Then, if a trajetory x(t) (evolving under the modi�ed Langevinequation) rosses into R at some time � 0 < � , we an stop the simulationat that point in time, and take � = 1, �A = y(� 0). This saves time, byeliminating the need to ontinue with the simulation.



1582 O. Mazonka, J. Bªoki, C. Jarzy«skiWe have, to this point, assumed that the stohasti noise �̂(t) is inde-pendent of x. More generally, we might have a di�usion oe�ient whihdepends on the instantaneous on�guration of the system: D = D(x). Whenimplementing the method using the additional variable y(t), the only dif-ferene is that in Eq. (12) D is evaluated along x(t) rather than being aonstant.Let us now drop the assumption that the system evolves in one dimen-sion. The variables x, v0, �v, and �̂ now beome vetors, and D beomesa symmetri matrix whose elements re�et the orrelations between the dif-ferent omponents of the stohasti fore:h�̂i(t)�̂j(t+ s)i = DijÆ(s) : (13)Eq. (12) generalizes to the following evolution equation for y:dydt = 12(2�̂ +�v)TD�1�v : (14)Eq. (14) impliitly assumes that D is invertible, i.e. det(D) 6= 0. If this isnot the ase, then � �rst � we must make sure that the projetion of �vonto the subspae spanned by the null eigenvetors of D is zero. Assumingthis ondition is satis�ed, we an view Eq. (14) as pertaining only to thesubspae spanned by the non-zero eigenvetors of D.3. Numerial resultsIn this setion we desribe numerial experiments whih we have arriedout to test our method, using a simpli�ed model of heavy ion ollisions [2℄.This model was previously studied by Aguiar et al in 1990[3℄, using Langevinsimulations. For our example, we onsidered the ollision of two 100Zr nulei.In this mass-symmetri ase � for this simple model � the shape of thesystem is de�ned by two equal spheres onneted by a ylinder. Thereare two marosopi (�olletive�) variables parametrizing the shape: (1)the relative distane � between the sphere enters, whih is the distane sdivided by the sum of radii of the two spheres: � = s=2R; and (2) thewindow opening �, whih is the square of the ratio of the ylinder radius tothe radius of the sphere: � = (ryl=R)2. The olletive oordinates � and �are represented by the variables � = p� and � = �2 � 1. The evolution ofthe olliding nulei is then represented by a Langevin trajetory in (�; �)-spae. Fig. 1 depits 30 suh trajetories, all starting from a on�gurationof two touhing spheres (� = 0; � = 0), with a enter-of-mass energy equalto 0.8 MeV above the interation barrier. This energy is about 2.5 MeVbelow the �extra push� energy, so most of the trajetories (28 of them) lead
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Fig. 1. Trajetories representing evolution of the system in (�; �)-parameter spae.Two trajetories of 30 lead to fusion when the energy is about 2.5 MeV below the�extra push�. See details in text.to reseparation of the system (�ssion), and only two trajetories lead to aompound nuleus (fusion).From Fig. 1 we have the following piture of the physial proess o-uring, in the ontext of this simpli�ed model: �rst the window open-ing between the two nulei grows rapidly; then around a saddle point, at(�; �) � (0:0; 0:6), the ombination of deterministi and stohasti foresdetermines the ultimate fate of the nulei, either fusion or reseparation; and�nally the system evolves toward its destiny, with � dereasing in the aseof fusion, or inreasing with reseparation. This suggests that, if we are toadd an additional fore to inrease the likelihood of fusion, then it wouldbe best to loalize suh a fore in the viinity of the saddle point. We havehosen an additional fore along the negative � diretion, whose strength isa Gaussian funtion of (�; �), with a peak at (0:0; 0:6).In Figs 2 and 3 we show exitation funtions � fusion probability plottedagainst enter-of-mass energy above the barrier � as omputed by bothdiret simulation and importane sampling. Eah point was obtained using1000 trajetories, and the result is displayed with error bars, as estimatedfrom the numerial data. The solid line represents an analytial formulawhih losely approximates the fusion probability over the region shown. Wesee that, for approximately the same omputational e�ort, our importanesampling method gives signi�antly better results than diret simulation.For the point orresponding to 0.5 MeV above the barrier, the error bar inFig. 2 is about 5.5 times bigger than that in Fig. 3. The e�ieny gain of the



1584 O. Mazonka, J. Bªoki, C. Jarzy«skiimportane sampling approah is therefore about 30 (� 5:52, see Eq. (10)in this ase: we would need to launh about 30 � 103 trajetories evolvingunder the original Langevin equation to get the same degree of aurayobtained in Fig. 3 with 103 trajetories.

0.2 0.4 0.6 0.8
Ecm - Vb (MeV)

0.0

0.01

0.02

0.03

Pfus

Fig. 2. Exitation funtion omputed using diret simulation, with 1000 trajetoriesfor eah point. (The solid line is an analytial estimate extrated from a muh largernumber of simulations.)
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Fig. 3. Same as Fig. 2 but omputed using importane sampling instead of diretsimulation.



A New Method of Calulating Very Small Cross Setions 1585The gain in e�ieny beomes more dramati when we go to very smallprobabilities. To show this we onsidered the reation 110Pd+110Pd, forwhih the extra push energy is 25.5 MeV. Launhing 250000 trajetorieswith an initial enter-of-mass energy of 1 MeV above the barrier, we ob-tained a probability of fusion Pfus = (6:970 � 0:268) � 10�13. This wasomputed using our importane sampling method; about 88% of the traje-tories evolving under the modi�ed Langevin equation went to fusion. UsingEq. (10), our result gives an e�ieny gain of EG�v = 3:5 � 109! We annotompare our estimate of Pfus diretly to an estimate obtained from sim-ulating with the original Langevin equation, sine we would need to run� 1012 trajetories to have a deent hane of observing even a single fusionevent. Importane sampling is indispensible in this ase: alulating Pfususing diret simulations is not pratial.4. ConlusionsIn this paper we have developed a method for omputing the probabili-ties of rare events � exempli�ed by the fusion of two nulei � for proessesdesribed by Langevin dynamis. The method, based on the idea of im-portane sampling, is straightforward to implement, quite general, and anlead to a very large inrease in omputational e�ieny. For these reasonswe believe it represents a very pratial tool for using numerial simulationsto ompute small probabilities. Indeed, with our method, we were easilyable to estimate a fusion probability, within a shemati model of nulearollisions (see the end of Setion 3), that would have been essentially im-possible to estimate from diret simulations of the proess in question. Wesee every reason to expet similar results when ombining the method withmore realisti semilassial models of nulear dynamis.This work was performed as a part of the researh program supportedby the Polish State Committee for Sienti� Researh KBN Grant No. 2-P03B-143-10. REFERENCES[1℄ 1 F.W. Wiegel, Introdution to Path-Integral Methods in Physis and PolymerSiene, World Sienti�, Philadelphia 1986. Original referenes are: S. Chan-drasekhar, Rev. Mod. Phys. 15, 1 (1943); L. Onsager, S. Mahlup, Phys. Rev.91, 1505 (1953) and Phys. Rev. 91, 1512 (1953).[2℄ 2 W. J.�Swi¡teki, Phys. Sr. 24, 113 (1981).[3℄ 3 C.E. Aguiar, V.C. Barbosa, R. Donangelo, Nul. Phys. A514, 205 (1990).


