
Vol. 30 (1999) ACTA PHYSICA POLONICA B No 5
SYMMETRY-BREAKING IN THE LIPKIN MODEL�Petr AlexaInstitute of Chemial TehnologyTehniká 5, 166 28 Prague 6, Czeh Republi(Reeived August 4, 1998)Generalized version of the standard Lipkin model is presented. Parity-breaking is studied in both standard and generalized Lipkin models. Thegeneralized Lipkin model Hamiltonian is derived from an otupole-otupoleHamiltonian. It is shown that only the generalized Lipkin model givesasymptoti zero energy splitting between the �rst positive and the �rstnegative parity states for both even and odd numbers of partiles as oneexpets in the ase of otupole deformation.PACS numbers: 24.10.�i, 24.10.Cn1. IntrodutionSimple models, espeially if they an be exatly solved, serve as mean-ingful tools for the testing of various many-body approximations. An out-standing example is the Lipkin model (LM) presented by Lipkin, Meshkovand Glik in 1965 [1℄. They onsidered a system of N fermions oupyinga symmetri two-level spae and interating via a monopole-monopole in-teration. The two levels eah having an N -fold degeneray are separatedby an energy E. Individual states are labeled by two quantum numbers, �,whih has the value +1 in the upper level and �1 in the lower level, anda quantum number m speifying the partiular degenerate state within thelevel. 2. Lipkin model HamiltonianThe model Hamiltonian an be written as [1℄Ĥ = 12EXm� �aym�am� + 12V Xmm0� aym�aym0�am0��am�� (1)+12W Xmm0� aym�aym0��am0�am�� ;� Presented at the International Conferene �Nulear Physis Close to the Barrier�,Warszawa, Poland, June 30�July 4, 1998.(1685)



1686 P. Alexawhere aym� and am� are respetively reation and annihilation operatorsating on a partile in the m, � state. V and W stand for the strengths ofthe interations. Eq. (2) an be rewritten in terms of quasi-spin operatorsas [1℄̂H = EK̂0 + 12V �K̂+K̂+ + K̂�K̂��+ 12W �K̂+K̂� + K̂�K̂+� ; (2)where K̂0 = 12 NXm=1�aym+am+ � aym�am�� ;K̂+ = NXm=1 aym+am� ; K̂� = �K̂+�y (3)are generators of quasi-spin algebra satisfying angular ommutation rules:hK̂+; K̂�i = 2K̂0 ; hK̂0; K̂�i = �K̂� : (4)In (2) we negleted exhange terms in the last interation whih ause onlyan energy shift of the model Hamiltonian. The Hamiltonian (2) ommuteswith the total quasi-spin operator squared:K̂2 = 12 �K̂+K̂� + K̂�K̂+�+ K̂20 : (5)The interation term of the Hamiltonian (2) proportional to V satters a pairof partiles in one level into the other, keeping the same quantum numberm. The term proportional to W satters one partile up while another issattered down. 3. Standard Lipkin modelThe exat solution of the Hamiltonian (2) an be obtained by diago-nalization in the quasi-spin basis ontaining N + 1 basis states labeled byquantum numbers K = N=2 and K0 = (N+ � N�)=2, where N+ and N�are numbers of partiles in the upper and lower level, respetively.The interation term proportional toW does not mix on�gurations andis diagonal in the quasi-spin basis. Sine the main purpose of Lipkin et al. [1℄was to test the treatment of ground-state orrelations in the RPA, they setW = 0. Although they pointed out that another possible hoie for theinteration parameters, namely V = W , might be useful for the study ofthe instability of the HF state against olletive osillations where the RPA



Symmetry-Breaking in the Lipkin Model 1687breaks down, the Hamiltonian with W = 0 beame known as the standardLM (SLM) Hamiltonian and is used in testing of various approximations.Reently, the SLM has been used to test the transition to the parity-breaking solution [2℄ in the HF treatment (the quantum number �� is in-terpreted as parity). The parity-breaking HF solution is searhed for usingtrial wave funtion hosen asj�0i = NYm=1�ym�ji ; (6)where 0BB��m��m+�ym��ym+1CCA = 0B�D��� D��+ 0 0D�+� D�++ 0 00 0 D�� D�+0 0 D+� D++1CA0BB�am�am+aym�aym+1CCA : (7)Sine the matrix D̂ is unitary, we an hooseD�� = os� ; D�+ = sin� exp (�i�) : (8)Then the mean value of the SLM Hamiltonian in the state j�i an be writtenas [3℄Eg:s: = h�0jĤ(W = 0)j�0i = �EN2 hos 2�+ �2 (sin 2�)2 os 2�i ; (9)where � = �V (N � 1)=E. Eg:s: is minimal for � = 0 and for1. � � 1: � = 0 (no parity-breaking solution),2. � > 1: parity-breaking solution, � an be determined from � os 2� =1. Sine now parity is not a good number for the ground-state wavefuntion, we have to projet it onto good parity states (variation beforeprojetion � VBP). For omparison of the exat and the VBP resultson the energy splitting between the �rst positive and the �rst negativeparity states (ES), see Fig. 1.In the degenerate SLM (E = 0), the asymptoti behaviour (the intera-tion strength �V large enough) of the SLM (E 6= 0) an be studied. In thisase, VBP gives zero ES's (the HF treatment). On the ontrary, the exatsolution gives zero ES's only for odd numbers N of partiles (the numbersof positive and negative parity states are the same for odd N). In Fig. 2,minimum exat ES's for even numbers N of partiles are depited. Theyare non-zero for all N values, but asymptotially approahing zero for high
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Fig. 1. Energy splitting between the �rst positive and the �rst negative paritystates as a funtion of the interation strength �V for di�erent number of partilesN (N = 2 � dashed lines, N = 10 � solid lines) for exat and VBP solutions ofSLM and GLM. Energy splitting and �V in E = 1 units.
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Fig. 2. Minimum exat energy splitting (in E = 1 units) between the �rst positiveand the �rst negative parity states as a funtion of the number of partilesN (even)for the SLM.N (for �xed interation strength V ). The non-zero value of ES results fromthe di�erent numbers of positive and negative parity states (1 + N=2 pos-itive and N=2 negative parity states). Sine ES's are proportional to theinteration strength V , one an always hoose �V large enough to get anyenergy splitting (larger than a minimum positive value for N �xed).



Symmetry-Breaking in the Lipkin Model 16894. Generalized Lipkin modelA simple otupole-otupole Hamiltonian an be written as (the samenotation as for the LM is used, exhange terms are negleted):ĤOO = 12V "Xm hj+mjr3Y30jj�mi(aym+am� + aym�am+)#2 : (10)ĤOO simpli�es under the assumption that all the hj+mjr3Y30jj�mi matrixelements are of the same magnitude, i.e. we assume hj+mjr3Y30jj�mi = 1.Then ĤOO � 12V �K̂+ + K̂��2 (11)and the generalized LM (GLM) Hamiltonian an be written asĤGLM = EK̂0 + 12V �K̂+K̂+ + K̂+K̂� + K̂�K̂+ + K̂�K̂�� : (12)The GLM Hamiltonian orresponds to a speial ase (V = W ) of the LMHamiltonian (2).The HF treatment of the GLM Hamiltonian using the trial wave fun-tions (6) givesEg:s: = h�0jĤ(W = V )j�0i= �EN2 �os 2�+ � �(sin 2�)2 os2 �+ 1N � 1�� ; (13)where � = �V (N � 1)=E. Eg:s: is minimal for � = 0 and for1. � � 1=2: � = 0 (no parity-breaking solution),2. � > 1=2: parity-breaking solution, � an be determined from 2� os 2�= 1. Similarly as in the ase of the SLM, we have to projet the parity-breaking solution onto good parity states (variation before projetion� VBP). For omparison of the exat and the VBP results on ES's,see again Fig. 1.In the degenerate GLM (E = 0), the asymptoti behaviour (the inter-ation strength �V large enough) of the GLM (E 6= 0) an be studied.The GLM gives zero both exat and VBP ES's for all numbers of partilesoupying the model spae.



1690 P. Alexa5. ConlusionThe GLM Hamiltonian has been derived from a simple otupole-otupoleHamiltonian (otupole-otupole interation in a symmetri two-level sys-tem). Parity-breaking HF solutions have been studied in both SLM andGLM. In the SLM, VBP gives asymptoti (for in�nitely strong interationstrength) zero ES's and the exat solution gives nonzero ES's for even num-bers of partiles. On the other hand, in the GLM, both VBP and exatasymptoti ES's are zero. A model pretending to desribe otupole defor-mation phenomena should give zero ES's for in�nitely strong interation.This is not ful�led in the SLM for even numbers of partiles. In this asethe GLM is more onvenient than the SLM for the desription of otupolephenomena and testing of various many-body approximations leading tootupole-deformed (parity-breaking) solutions.The author thanks Dr. D. Nosek from the Charles University, Prague,for the possibility of using his SLM ode.REFERENCES[1℄ H.J. Lipkin, N. Meshkov, A.J. Glik, Nul.Phys. 62, 188 (1965).[2℄ L.M. Robledo, Phys.Rev. C46, 238 (1992).[3℄ P. Ring, P. Shuk, The Nulear Many-Body Problem, Springer Verlag, NewYork 1980.


