Vol. 30 (1999) ACTA PHYSICA POLONICA B No 5

SYMMETRY-BREAKING IN THE LIPKIN MODEL*
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Generalized version of the standard Lipkin model is presented. Parity-
breaking is studied in both standard and generalized Lipkin models. The
generalized Lipkin model Hamiltonian is derived from an octupole-octupole
Hamiltonian. It is shown that only the generalized Lipkin model gives
asymptotic zero energy splitting between the first positive and the first
negative parity states for both even and odd numbers of particles as one
expects in the case of octupole deformation.

PACS numbers: 24.10.-, 24.10.Cn

1. Introduction

Simple models, especially if they can be exactly solved, serve as mean-
ingful tools for the testing of various many-body approximations. An out-
standing example is the Lipkin model (LM) presented by Lipkin, Meshkov
and Glick in 1965 [1]. They considered a system of N fermions occupying
a symmetric two-level space and interacting via a monopole-monopole in-
teraction. The two levels each having an N-fold degeneracy are separated
by an energy E. Individual states are labeled by two quantum numbers, o,
which has the value +1 in the upper level and —1 in the lower level, and
a quantum number m specifying the particular degenerate state within the
level.

2. Lipkin model Hamiltonian
The model Hamiltonian can be written as [1]
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where a};w and a,,, are respectively creation and annihilation operators
acting on a particle in the m, o state. V and W stand for the strengths of
the interactions. Eq. (2) can be rewritten in terms of quasi-spin operators
as [1]
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are generators of quasi-spin algebra satisfying angular commutation rules:
|:IA(+7K—] = 2Ky, [Ko,fﬁ} =K, . (4)

In (2) we neglected exchange terms in the last interaction which cause only
an energy shift of the model Hamiltonian. The Hamiltonian (2) commutes
with the total quasi-spin operator squared:

. 1/ . L .
k=2 (Rek_+ K K.)+ K3, (5)

The interaction term of the Hamiltonian (2) proportional to V scatters a pair
of particles in one level into the other, keeping the same quantum number
m. The term proportional to W scatters one particle up while another is
scattered down.

3. Standard Lipkin model

The exact solution of the Hamiltonian (2) can be obtained by diago-
nalization in the quasi-spin basis containing N + 1 basis states labeled by
quantum numbers K = N/2 and Ky = (N4 — N_)/2, where Ny and N_
are numbers of particles in the upper and lower level, respectively.

The interaction term proportional to W does not mix configurations and
is diagonal in the quasi-spin basis. Since the main purpose of Lipkin et al. [1]
was to test the treatment of ground-state correlations in the RPA, they set
W = 0. Although they pointed out that another possible choice for the
interaction parameters, namely V' = W, might be useful for the study of
the instability of the HF state against collective oscillations where the RPA
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breaks down, the Hamiltonian with W = 0 became known as the standard
LM (SLM) Hamiltonian and is used in testing of various approximations.

Recently, the SLM has been used to test the transition to the parity-
breaking solution [2] in the HF treatment (the quantum number —o is in-
terpreted as parity). The parity-breaking HF solution is searched for using
trial wave function chosen as

N
20) = [ ath-). (6)
m=1
where
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Since the matrix D is unitary, we can choose
D__ =cosa, D_, =sinaexp (—i¢). (8)

Then the mean value of the SLM Hamiltonian in the state |®) can be written
as [3]

) EN
Bys. = (B0 H(W = 0)|do) = - [cos 200 + %(Sin 20)? cos 2¢] )

where x = —V(N —1)/E. Egs. is minimal for ¢ = 0 and for
1. x < 1: @ =0 (no parity-breaking solution),

2. x > 1: parity-breaking solution, « can be determined from x cos 2a =
1. Since now parity is not a good number for the ground-state wave
function, we have to project it onto good parity states (variation before
projection — VBP). For comparison of the exact and the VBP results
on the energy splitting between the first positive and the first negative
parity states (ES), see Fig. 1.

In the degenerate SLM (E = 0), the asymptotic behaviour (the interac-
tion strength —V large enough) of the SLM (FE # 0) can be studied. In this
case, VBP gives zero ES’s (the HF treatment). On the contrary, the exact
solution gives zero ES’s only for odd numbers N of particles (the numbers
of positive and negative parity states are the same for odd N). In Fig. 2,
minimum exact ES’s for even numbers N of particles are depicted. They
are non-zero for all N values, but asymptotically approaching zero for high
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Fig.1. Energy splitting between the first positive and the first negative parity
states as a function of the interaction strength —V for different number of particles
N (N = 2 — dashed lines, N = 10 - solid lines) for exact and VBP solutions of
SLM and GLM. Energy splitting and —V in E = 1 units.
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Fig. 2. Minimum exact energy splitting (in £ = 1 units) between the first positive
and the first negative parity states as a function of the number of particles N (even)
for the SLM.

N (for fixed interaction strength V'). The non-zero value of ES results from
the different numbers of positive and negative parity states (1 + N/2 pos-
itive and N/2 negative parity states). Since ES’s are proportional to the
interaction strength V', one can always choose —V large enough to get any
energy splitting (larger than a minimum positive value for N fixed).
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4. Generalized Lipkin model

A simple octupole-octupole Hamiltonian can be written as (the same
notation as for the LM is used, exchange terms are neglected):

2
Z<j+m|r3yso|j_m><a;+am-+a1n_am+)] . (10)
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Hoo simplifies under the assumption that all the (j m|r3Yag|j_m) matrix
elements are of the same magnitude, i.e. we assume (j,m|r3Yzo|j_m) = 1.
Then

N 1 N N 2
Hoo ~ 5V (K+ + K,) (11)
and the generalized LM (GLM) Hamiltonian can be written as
N N 1 PN L~ oA PN PN
Hou = BRo+ 5V (Ky K+ KoK+ KKy +KK) . (12)

The GLM Hamiltonian corresponds to a special case (V = W) of the LM
Hamiltonian (2).

The HF treatment of the GLM Hamiltonian using the trial wave func-
tions (6) gives

Eg.s. = <¢0|IA{(W = V)|¢0>

_ EN o o2 1
= - {cos 200+ x [(sta) cos” ¢ + m]} , (13)

where x = —V(N — 1)/E. Eg. is minimal for ¢ = 0 and for
1. x <1/2: @ =0 (no parity-breaking solution),

2. x > 1/2: parity-breaking solution, « can be determined from 2y cos 2«
= 1. Similarly as in the case of the SLM, we have to project the parity-
breaking solution onto good parity states (variation before projection
— VBP). For comparison of the exact and the VBP results on ES’s,
see again Fig. 1.

In the degenerate GLM (E = 0), the asymptotic behaviour (the inter-
action strength —V large enough) of the GLM (E # 0) can be studied.
The GLM gives zero both exact and VBP ES’s for all numbers of particles
occupying the model space.
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5. Conclusion

The GLM Hamiltonian has been derived from a simple octupole-octupole
Hamiltonian (octupole-octupole interaction in a symmetric two-level sys-
tem). Parity-breaking HF solutions have been studied in both SLM and
GLM. In the SLM, VBP gives asymptotic (for infinitely strong interaction
strength) zero ES’s and the exact solution gives nonzero ES’s for even num-
bers of particles. On the other hand, in the GLM, both VBP and exact
asymptotic ES’s are zero. A model pretending to describe octupole defor-
mation phenomena should give zero ES’s for infinitely strong interaction.
This is not fulfiled in the SLM for even numbers of particles. In this case
the GLM is more convenient than the SLM for the description of octupole
phenomena and testing of various many-body approximations leading to
octupole-deformed (parity-breaking) solutions.

The author thanks Dr. D. Nosek from the Charles University, Prague,
for the possibility of using his SLM code.
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