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1. Introduction

In the recent years the theoretical endeavours that attempt to achieve
a deeper understanding of Nature have to present a series of successes in
developing frameworks that aim to describe the fundamental theory at the
Planck scale. However, the essence of all theoretical efforts in Elementary
Particle Physics is to understand the present day free parameters of the
Standard Model (SM) in terms of a few fundamental ones, i.e. to achieve re-
duction of couplings. 1t is sad to recall that all recent celebrated theoretical
successes did not offer anything in the understanding of the free parameters
of the SM, and in the best case they just manage to accomodate in a rather
poor way earlier ideas for Physics Beyond the SM, such as Grand Unified
Theories (GUTs) and supersymmetry. In our recent studies [1-8], we have
developed a complementary strategy in searching for a more fundamental
theory possibly at the Planck scale, whose basic ingredients are GUTs and
supersymmetry, but its consequences certainly go beyond the known ones.
Our method consists of hunting for renormalization group invariant (RGI)
relations holding below the Planck scale, which in turn are preserved down to
the GUT scale. This programme, called Gauge—Yukawa unification scheme,
applied in the dimensionless couplings of supersymmetric GUTs, such as
gauge and Yukawa couplings, had already noticable successes by predicting
correctly, among others, the top quark mass in the finite and in the minimal
N = 1 supersymmetric SU(5) GUTs. An impressive aspect of the RGI re-
lations is that one can guarantee their validity to all-orders in perturbation
theory by studying the uniqueness of the resulting relations at one-loop, as
was proven in the early days of the programme of reduction of couplings [9].
Even more remarkable is the fact that it is possible to find RGI relations
among couplings that guarantee finiteness to all-orders in perturbation the-
ory [10,11].

Although supersymmetry seems to be an essential feature for a successful
realization of the above programme, its breaking has to be understood too,
since it has the ambition to supply the SM with predictions for several of
its free parameters. Indeed, the search for RGI relations has been extended
to the soft supersymmetry breaking sector (SSB) of these theories [5,12],
which involves parameters of dimension one and two. More recently a very
interesting progress has been made [13-18] concerning the renormalization
properties of the SSB parameters based conceptually and technically on
the work of Ref. [19]. In Ref. [19] the powerful supergraph method [20] for
studying supersymmetric theories has been applied to the softly broken ones
by using the “spurion” external space-time independent superfields [21]. In
the latter method a softly broken supersymmetric gauge theory is considered
as a supersymmetric one in which the various parameters such as couplings
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and masses have been promoted to external superfields that acquire “vacuum
expectation values”. Based on this method the relations among the soft term
renormalization and that of an unbroken supersymmetric theory have been
derived. In particular the S-functions of the parameters of the softly broken
theory are expressed in terms of partial differential operators involving the
dimensionless parameters of the unbroken theory. The key point in the
strategy of Refs. [16-18] in solving the set of coupled differential equations
so as to be able to express all parameters in a RGI way, was to transform
the partial differential operators involved to total derivative operators. This
is indeed possible to be done on the RGI surface which is defined by the
solution of the reduction equations.

On the phenomenological side there exist some serious developments too.
Previously an appealing “universal” set of soft scalar masses was asummed
in the SSB sector of supersymmetric theories, given that apart from econ-
omy and simplicity (1) they are part of the constraints that preserve finite-
ness up to two-loops [22, 23|, (2) they are RGI up to two-loops in more
general supersymmetric gauge theories, subject to the condition known as
P =1/3 Q [12] and (3) they appear in the attractive dilaton dominated
supersymmetry breaking superstring scenarios [24|. However, further stud-
ies have exhibited a number of problems all due to the restrictive nature of
the “universality” assumption for the soft scalar masses. For instance (a) in
finite unified theories the universality predicts that the lightest supersym-
metric particle is a charged particle, namely the superpartner of the 7 lepton
7 (b) the MSSM with universal soft scalar masses is inconsistent with the
attractive radiative electroweak symmetry breaking [25] and (c) which is the
worst of all, the universal soft scalar masses lead to charge and/or colour
breaking minima deeper than the standard vacuum [26]. Therefore, there
have been attempts to relax this constraint without loosing its attractive
features. First an interesting observation was made that in N = 1 Gauge-
Yukawa unified theories there exists a RGI sum rule for the soft scalar masses
at lower orders; at one-loop for the non-finite case [6] and at two-loops for
the finite case [7]. The sum rule manages to overcome the above unpleasant
phenomenological consequences. Moreover it was proven [18] that the sum
rule for the soft scalar massses is RGI to all-orders for both the general as
well as for the finite case. Finally the exact g-function for the soft scalar
masses in the Novikov-Shifman-Vainstein-Zakharov (NSVZ) scheme [27] for
the softly broken supersymmetric QCD has been obtained. Armed with the
above tools and results we are in a position to study the spectrum of the
full finite and minimal supersymmetric SU(5) models in terms of few free
parameters with emphasis on the predictions for the masses of the lightest
Higgs and LSP and on the constraints imposed by having a large tan j.
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2. Reduction of couplings and finiteness in
N =1 SUSY gauge theories

A RGI relation among couplings, ¢(g1,---,9n) = 0, has to satisfy
the partial differential equation (PDE) pd®/dy = Zf\;l Bi 09/0g; = 0,
where ; is the f-function of g;. There exist (N — 1) independent @’s, and
finding the complete set of these solutions is equivalent to solve the so-called
reduction equations (REs), 8, (dgi/dg) = B; , i =1,---, N, where g and f3,
are the primary coupling and its S-function. Using all the (N —1) @’s to im-
pose RGI relations, one can in principle express all the couplings in terms of
a single coupling g. The complete reduction, which formally preserves per-
turbative renormalizability, can be achieved by demanding a power series
solution, whose uniqueness can be investigated at the one-loop level. The
completely reduced theory contains only one independent coupling with the
corresponding S-function. This possibility of coupling unification is attrac-
tive, but it can be too restrictive and hence unrealistic. In practice one may
use fewer @’s as RGI constraints.

It is clear by examining specific examples, that the various couplings in
supersymmetric theories have easily the same asymptotic behaviour. There-
fore searching for a power series solution to the REs is justified. This is not
the case in non-supersymmetric theories.

Let us then consider a chiral, anomaly free, N = 1 globally supersym-
metric gauge theory based on a group G with gauge coupling constant g.
The superpotential of the theory is given by

1 .. 1 ..
W = 5mﬁﬂ¢i¢j+gcmq§iq§jq§k, (1)

where m* and C%* are gauge invariant tensors and the matter field @; trans-
forms according to the irreducible representation R; of the gauge group G

The one-loop S-function of the gauge coupling g is given by

Zz ) —3Co(G)

where I(R;) is the Dynkin index of R; and C3(G) is the quadratic Casimir of
the adjoint representation of the gauge group G . The S-functions of C¥¥,

by virtue of the non renormalization theorem, are related to the anomalous
dimension matrix 7 of the matter fields @; as

/8551) = 3 (2)

dt 167r

d 1
C”’“ CP N ——— L (ke + (ke g) . (3)

zyk
Be 2o (1672) Tp
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At one-loop level the fyg are given by

. 1 , .

A = 5 Cing O — 2% Co(Ry)3] . (4)
where Cy(R;) is the quadratic Casimir of the representation R;, and
Czyk Cz*]k

As one can see from Eqs. (2) and (4) all the one-loop S-functions of the
theory vanish if ﬁél) and 'yf M vanish, i.e.
1 ) .
Z@ =305(Q), 5 CingC771 = 2676°Cyo(R;) . (5)

A very interesting result is that the conditions (5) are necessary and
sufficient for finiteness at the two-loop level.

The one- and two-loop finiteness conditions (5) restrict considerably the
possible choices of the irreps. R; for a given group G as well as the Yukawa
couplings in the superpotential (1). Note in particular that the finiteness
conditions cannot be applied to the supersymmetric standard model (SSM),
since the presence of a U(1) gauge group is incompatible with the condition
(5), due to Co[U(1)] = 0. This naturally leads to the expectation that
finiteness should be attained at the grand unified level only, the SSM being
just the corresponding, low-energy, effective theory.

A natural question to ask is what happens at higher loop orders. There
exists a very interesting theorem [10] which guarantees the vanishing of the
B-functions to all orders in perturbation theory, if we demand reduction of
couplings, and that all the one-loop anomalous dimensions of the matter
field in the completely and uniquely reduced theory vanish identically.

3. Soft Supersymmetry Breaking
— sum rule of soft scalar masses

The above described method of reducing the dimensionless couplings has
been extended [5] to the Soft Supersymmetry Breaking (SSB) dimensionful
parameters of N = 1 supersymmetric theories. In addition it was found [6]
that RGI SSB scalar masses in Gauge-Yukawa unified models satisfy a uni-
versal sum rule. Here we will describe first how the use of the available
two-loop RG functions and the requirement of finiteness of the SSB param-
eters up to this order leads to the soft scalar-mass sum rule |7].

Consider the superpotential given by (1) along with the Lagrangian for
SSB terms

~Lsp = ¢ h7Fdididr+ 5 b Gig; + 5 (m)] ¢ + 5 MAN+ Hee,

(6)
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where the ¢; are the scalar parts of the chiral superfields @; , A are the
gauginos and M their unified mass. Since we would like to consider only
finite theories here, we assume that the gauge group is a simple group and
the one-loop B function of the gauge coupling g vanishes. We also assume
that the reduction equations admit power series solutions of the form

C* =g piig™ (7)
n=0

According to the finiteness theorem of Ref. [10], the theory is then finite to
all orders in perturbation theory, if, among others, the one-loop anomalous

(1)

dimensions fyg vanish. The one- and two-loop finiteness for h“* can be

achieved by

Wb = —MCUF 4= —MpF g+ O(g) . (8)

Now, to obtain the two-loop sum rule for soft scalar masses, we assume
that the lowest order coefficients péf)l)f and also (m?)} satisfy the diagonality

relations
pipq(o)pgg)q o 53 for all p and ¢ and (m2)§ = m?éé- , 9)

respectively. Then we find the following soft scalar-mass sum rule

2

2 2 2 9 1 4
(mi +m} +mi )/ MM = 14 2= AD + 0(g") (10)

for i, j, k with p%])“ # 0, where AW ig the two-loop correction

AW = 23 [(m}/MMT) — (1/3)] T(Ry), (11)
l

which vanishes for the universal choice in accordance with the previous find-
ings of Ref. [23].

If we know higher-loop S-functions explicitly, we can follow the same
procedure and find higher-loop RGI relations among SSB terms. However,
the S-functions of the soft scalar masses are explicitly known only up to two
loops. In order to obtain higher-loop results, we need something else instead
of knowledge of explicit S-functions, e.g. some relations among S-functions.

The recent progress made using the spurion technique [20, 21| leads to
the following all-loop relations among SSB S-functions, [13-17]



Exact Finite and Gauge- Yukawa Unified Theories... 2019

By = 20 <%> , (12)
}lek — ’)’ilhljk +’lethk+’)’kth]l
O a0~ b 13)
) 0 .
s = [aex2] o
0 0
— (M 2 v hlmn 1
@ < g 892 aClmn> ’ ( 5)
8 8 ~ 0
A =9 % 2M2 2 Ilmn 1
where (71)ij = O'Yija Cimn = (Clmn)*a and
Cyijk _ (m2)ilcljk+(m2)jlcilk+(m2)klcijl ) (17)
It was also found [17] that the relation
Wik = —M(CF) = YLl (18)

dlng

among couplings is all-loop RGI. Furthermore, using the all-loop gauge -
function of Novikov et al. [27] given by

xsvz 90 [ T(R)(A —n/2) - 3C(G) (19)
9 1672 —¢?C(G)/8n? ’
it was found the all-loop RGI sum rule [18],
1 dInC%% 1d*InC*
2 2 2 — M2 -
mi+my+mi = M\ T 26 /) ding T2 ding)?
m?T(R)  dlnC¥*
. 2
+ZC —8m2/g? dlng (20)

In addition the exact-f3 function for m? in the NSVZ scheme has been ob-
tained [18] for the first time and is given by

NSVZ __ 2 1 d L&
o = [t { 20(G)/<87r2)d1n9+5d<ln9>2}

m;T d NSVZ
+ZC —87r2/ggdlng ] i ’ (21)
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Surprisingly enough, the all-loop result (20) coincides with the superstring
result for the finite case in a certain class of orbifold models [7] if
dln C* /dIng = 1.

4. Gauge—Yukawa—unified theories

In this section we will look at concrete SU(5) models, where the reduction
of couplings in the dimensionless and dimensionful sector has been achieved.

4.1. Finite unified models

A predictive Gauge-Yukawa unified SU(5) model which is finite to all
orders, in addition to the requirements mentioned already, should also have
the following properties:
1. One-loop anomalous dimensions are diagonal, i.e., 'yi(l)j o 5{ , accord-
ing to the assumption (9).

2. Three fermion generations, 5; (i = 1,2,3), obviously should not couple
to 24. This can be achieved for instance by imposing B — L conserva-
tion.

3. The two Higgs doublets of the MSSM should mostly be made out of
a pair of Higgs quintet and anti-quintet, which couple to the third
generation.

In the following we discuss two versions of the all-order finite model.
A: The model of Ref. [1].
B: A slight variation of the model A, whose differences from A will become

clear in the following.
The superpotential which describes the two models takes the form [1,7]

1 _
wo=>] 50 10;10; H; + 9%10;5, H; | + g% 102103 H, (22)
i=1
4 g)\
+g§i3 10,53 H4 + ggQ 10359 H, + Zg{f H,24H, + ? (24)3 ,

a=1

where H, and H, (a = 1,...,4) stand for the Higgs quintets and anti-
quintets.
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The non-degenerate and isolated solutions to 72(1) = 0 for the models
{A, B} are:

ar={3 5} wr={3. 2 b @r=wr={3 5] e
(92)*=(95)*= {g g} 9. (955)° = {0, %} 9%, (953)* = (952)* = {0, g} 7,

2= 2 =of?={0.5 | (a0, (] = 01,0} 7
23

According to the theorem of Ref. [10] these models are finite to all orders.
After the reduction of couplings the symmetry of W is enhanced [1,7].

The main difference of the models A and B is that three pairs of Higgs
quintets and anti-quintets couple to the 24 for B so that it is not necessary
to mix them with Hy and Hy in order to achieve the triplet-doublet splitting
after the symmetry breaking of SU(5).

In the dimensionful sector, the sum rule gives us the following boundary
conditions at the GUT scale [7]:

my, +2mig = mi, + mg+mig=M> for A, (24)
MQ
m?qu +2m%0 = M? , m%ld —Qm%O = — 3
4M?
m% +3miy = —5 for B, (25)

where we use as free parameters mg = msg, and mi1g = mio, for the model
A, and mqg for B, in addition to M.

4.2. The minimal supersymmetric SU(5) model

Next let us consider the minimal supersymmetric SU(5) model. The field
content is minimal. Neglecting the CKM mixing, one starts with six Yukawa
and two Higgs couplings. We then require GYU to occur among the Yukawa
couplings of the third generation and the gauge coupling. We also require the
theory to be completely asymptotically free. In the one-loop approximation,
the GYU yields g2, = 300, _; k™ h™ " g% (h and [ are related to the
Higgs couplings), where h is allowed to vary from 0 to 15/7, while f may
vary from 0 to a maximum which depends on h and vanishes at h = 15/7.
As a result, it was obtained [2]: 0.97¢* < g7 < 1.37¢*, 0.57¢*> < gf =
g2 $0.97¢?. Tt was found [4,8] that consistency with proton decay requires
g7, gf to be very close to the left hand side values in the inequalities.
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In this model, the reduction of parameters implies that at the GUT scale
the SSB terms are proportional to the gaugino mass, which thus character-
izes the scale of supersymmetry breaking [5].

5. Predictions of low energy parameters

Since the gauge symmetry is spontaneously broken below Mgy, the
finiteness and gauge-Yukawa unification conditions do not restrict the renor-
malization property at low energies, and all it remains are boundary condi-
tions on the gauge and Yukawa couplings (23), the h = —MC relation (8)
and the soft scalar-mass sum rule (10) at Mqgur, as applied in the various
models. So we examine the evolution of these parameters according to their
renormalization group equations at two-loop for dimensionless parameters
and at one-loop for dimensionful ones with the relevant boundary conditions.
Below Mgyt their evolution is assumed to be governed by the MSSM. We
further assume a unique supersymmetry breaking scale My so that below
M the SM is the correct effective theory.

The predictions for the top quark mass M; are ~ 183 and ~ 174 GeV
in models A and B respectively, and ~ 181 GeV for the minimal SU(5)
model. Comparing these predictions with the most recent experimental
value My = (173.8 £ 5.2) GeV, and recalling that the theoretical values for
M, may suffer from a correction of less than ~ 4% [8], we see that they
are consistent with the experimental data. In addition the value of tan g
is obtained as tanf = 54 and 48 for models A and B respectively, and
tan f = 48 for the minimal SU(5) model.

In the SSB sector, besides the constraints imposed by reduction of cou-
plings and finiteness, we also look for solutions which are compatible with
radiative electroweak symmetry breaking. As it has been mentioned, in the
minimal SU(5) model the SSB sector contains only one independent param-
eter, the gaugino mass M, which characterizes the scale of supersymmetry
breaking. The lightest supersymmetric particle is found to be a neutralino
of ~ 220 GeV for M (Mguyr) ~ 0.5 TeV. In Fig. 1 we present the dependence
of the lightest Higgs mass my, on the gaugino mass M.

Concerning the SSB sector of the finite theories A and B, besides the
gaugino mass we have two and one more free parameters respectively, as
previously mentioned. Thus, we look for the parameter space in which the
lighter 7 mass squared m% is larger than the lightest neutralino mass squared
mi (which is the LSP). In the case where all the soft scalar masses are
universal at the unfication scale, there is no region of My = M below O(few)
TeV in which mg > mi is satisfied. But once the universality condition is
relaxed this problem can be solved naturally (provided the sum rule). More
specifically, using the sum rule (10) and imposing the conditions a) successful
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Fig.1. The M dependence of my, for the minimal SU(5) model
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Fig.2. my, as function of mqg for M = 0.8 (dashed) 1.0 (solid) TeV for the finite
model B.

radiative electroweak symmetry breaking b) mz» > 0 and c) mz > m,»,
we find a comfortable parameter space for both models (although model B
requires large M ~ 1 TeV).

In Fig. 2 we present the m1g dependence of my, for for M = 0.8 (dashed)
1.0 (solid) TeV for the finite Model B, which shows that the value of my, is
rather stable. Similar results hold also for Model A.
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In Tables I, II, and III we present representative examples of the values
obtained for the sparticle spectra in each of the models. The value of the
lightest Higgs physical mass M}, has already the one-loop radiative correc-
tions included, evaluated at the appropriate scale [28,29].

TABLE 1
A representative example of the predictions for the s-spectrum for the finite model
A with M = 1.0 TeV, mg = 0.8 TeV and myo = 0.6 TeV.

My =My, (TeV) | 0.45 m;, (TeV) 1.76
My, (TeV) 0.84 || mz =msz (TeV) | 0.63
My, (TV) 1.49 msz, (TeV) 0.85
My, (TeV) 1.49 mp, (TeV) 0.88
m, (TeV) 0.84 my (TeV) 0.64
my+ (TeV) 1.49 mp+ (TeV) 0.65
m;, (TeV) 1.57 mp (TeV) 0.65
mg, (TeV) 1.77 my, (TeV) 0.122
mg, (TeV) 1.54

TABLE II
A representative example of the predictions of the s-spectrum for the finite model
B with M =1 TeV and mq1g9 = 0.65 TeV.

My =My, (TeV) | 0.45 m;, (TeV) 1.70
My, (TeV) 0.84 || mz =mz (TeV) || 047
My, (TeV) 1.30 ms, (TeV) 0.67
My, (TeV) 1.31 ma, (TeV) 0.88
m, & (TeV) 0.84 my (TeV) 0.73
my+ (TeV) 1.31 mp+ (TeV) 0.73
m;, (TeV) 1.51 mp (TeV) 0.73
mg, (TeV) 1.73 my, (TeV) 0.118
mj, (TeV) 1.56

Finally, we calculate BR(b — sv) [30], whose experimental value is 1 x
107* < BR(b — sv) < 4x10~*. The SM predicts BR(b — s7) = 3.1 x 1074,
This imposes a further restriction in our parameter space, namely M ~ 1
TeV if 4 < 0 for all three models. This restriction is less strong in the case
that 4 > 0. For example, the minimal model with M = 1 TeV leads to
BR(b — s7) = 3.8 x 10~* for pn < 0.
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TABLE III
A representative example of the predictions of the s-spectrum for the minimal
SU(5) model with M = 1.0 TeV.

My =My, (TeV) | 0.45 m;, (TeV) 1.88
My, (TeV) 0.84 || mz =ms (TeV) | 0.92
My, (TeV) 1.73 ms, (TeV) 1.10
My, (TeV) 1.73 my, (TeV) 1.43
m, & (TeV) 0.84 my (TeV) 0.70
mys (TV) | 173 | mge (TeV) 0.70
m;, (TeV) 1.69 mp (TeV) 0.70
mg, (TeV) 1.89 my, (TeV) 0.120
my, (TeV) 1.70

6. Conclusions

The programme of searching for exact RGI relations among dimension-
less couplings in supersymmetric GUTs, started few years ago, has now
supplemented with the derivation of similar relations involving dimensionful
parameters in the SSB sector of these theories. In the earlier attempts it
was possible to derive RGI relations among gauge and Yukawa couplings of
supersymmetric GUTs, which could lead even to all-loop finiteness under
certain conditions. These theoretically attractive theories have been shown
not only to be realistic but also to lead to a successful prediction of the top
quark mass. The new theoretical developments include the existence of a
RGI sum rule for the soft scalar masses in the SSB sector of N = 1 super-
symmetric gauge theories exhibiting gauge-Yukawa unification. The all-loop
sum rule substitutes now the universal soft scalar masses and overcomes its
phenomenological problems. Of particular theoretical interest is the fact
that the finite unified theories, which could be made all-loop finite in the
supersymmetric sector can now be made completely finite. In addition it is
interesting to note that the sum rule coincides with that of a certain class of
string models in which the massive string modes are organized into N = 4
supermultiplets. Last but not least in Ref. [18], the exact S-function for the
soft scalar masses in the NSVZ scheme was obtained for the first time. On
the other hand the above theories have a remarkable predictive power lead-
ing to testable predictions of their spectrum in terms of very few parameters.
In addition to the prediction of the top quark mass, which holds unchanged
the characteristic features that will judge the viability of these models in
the future are 1) the lightest Higgs mass is found to be around 120 GeV and
the s-spectrum starts beyond several hundreds of GeV. Therefore the next
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important test of Gauge-Yukawa and Finite Unified theories will be given
with the measurement of the Higgs mass, for which these models show an
appreciable stability, which is alarmingly close to the IR quasi fixed point
prediction of the MSSM for large tan § [31].

It is a pleasure to thank the Organizing Committee for the very warm
hospitality offered to one of us (G.Z.). Supported by the mexican projects
CONACYT 3275-PE and PAPIIT-125298, by the EU project ERBFM-
RXCT960090, and by the Greek project PENED95/1170;1981.
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