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STOCHASTIC RESONANCE IN A SYSTEMOF COUPLED CHAOTIC OSCILLATORS�A. KrawiekiInstitute of Physis, Warsaw University of TehnologyKoszykowa 75, 00-662 Warsaw, Poland(Reeived Otober 5, 1998)Noise-free stohasti resonane is investigated numerially in a systemof two oupled haoti Rössler osillators. Periodi signal is applied eitheradditively or multipliatively to the oupling term. When the ouplingonstant is varied the osillators lose synhronization via attrator bubblingor on�o� intermitteny. Properly hosen signals are analyzed whih re�etthe sequene of synhronized (laminar) phases and non-synhronized burstsin the time evolution of the osillators. Maximum of the signal-to-noiseratio as a funtion of the oupling onstant is observed. Dependene of thesignal-to-noise ratio on the frequeny of the periodi signal and parametermismath between the osillators is investigated. Possible appliations ofstohasti resonane in the reovery of signals in seure ommuniationsystems based on haoti synhronization are brie�y disussed.PACS numbers: 05.45.+b, 05.40.+j1. IntrodutionStohasti Resonane (SR; for reent review see [1℄) ours in ertain,mainly nonlinear, systems driven by a ombination of periodi and stohastisignal. In suh systems the input noise intensity may be hosen so that aperiodi omponent of the output signal is maximized against the outputnoise. The Power Spetrum Density (PSD) S (f) of the output signal insystems with SR onsists of peaks at the multiples of the input periodi signalfrequeny fs, superimposed on a broad noise bakground SN (f). A goodmeasure of SR is the signal-to-noise ratio (SNR) in dB at frequeny fs whihis de�ned as SNR= 10 log [SP (fs) =SN (fs)℄, where SP (fs) = S (fs)�SN (fs)is the �rst peak height. As a funtion of the input noise power SNR hasa maximum in systems with SR. This phenomenon has been observed in� Presented at the XI Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 1�5, 1998.(2489)



2490 A. Krawiekivarious systems, e.g. in bistable [2℄ and monostable systems [3℄, in dynamial[4℄ and non-dynamial [5,6℄ threshold-rossing systems, in spatially extendedsystems [7℄, spiking neurons [4, 8℄.A similar phenomenon is noise-free SR [9℄. In this ase, the hanges in theinternal haoti dynamis of the system are used to inrease the periodiityof the output signal and the external noise is not neessary. SNR shows amaximum as a funtion of the system ontrol parameter. Noise-free SR wasobserved in haoti maps with rises and intermitteny [9�11℄, in numerialexperiments with haoti osillators [12, 13℄, in haoti neurons [14℄ andin a physial experiment with spin-wave haos [15℄. In a previous paper,preliminary results on noise-free SR in a system of oupled haoti osillatorsat the edge of synhronization were reported [16℄. This is a speial aseof SR in on�o� intermitteny and attrator bubbling [11℄. In the presentpaper these results are extended and detailed, and the appliability of SRfor signal detetion in seure ommuniation based on synhronization ofhaoti osillators [17℄ is brie�y disussed.2. Model and methods of analysisThe system under study is a set of two haoti Rössler osillators whihare mutually oupled via the y variable (oupling strength k). A smallperiodi signal s (t) is either added to the oupling term in one of the os-illators (additive periodi foring with amplitude Æ) or it modulates theoupling strength of both osillators (multipliative periodi foring withamplitude "). The equations of motion are_x1 = � (y1 + z1) ; _x2 = � (y2 + z2) ;_y1 = x1 + a1y1 + k [1 + "s (t)℄ (y2 � y1) ;_y2 = x2 + a2y2 + k [1 + "s (t)℄ [y1 � y2 + Æs (t)℄ ;_z1 = b+ z1 (x1 � ) ; _z2 = b+ z2 (x2 � ) : (1)The parameters are b = 0:2,  = 10, and usually a1 = a2 = 0:2, but smalldeviations between a1 and a2 are allowed to model mismath of parametersin an experimental system. The ases Æ 6= 0; " = 0 and Æ = 0; " 6= 0 aredisussed separately.For " = Æ = 0, a1 = a2 and k > k � 0:12 it was observed that the twoosillators show synhronized haoti behaviour [18℄ (for review of haotisynhronization see [19℄), i.e. if x1 = [x1; y1; z1℄ and x2 = [x2; y2; z2℄ are thestate vetors of the osillators 1 and 2, respetively, then, after all transientsdie out, x1 (t) = x2 (t). This equality de�nes a three-dimensional manifoldin a six dimensional phase spae to whih the motion of the system (1) isonstrained. If k < k the osillators lose synhronization. For k just below



Stohasti Resonane 2491k the periods of synhronized behaviour are interrupted by haoti burstsduring whih x1 6= x2, so if the distane between trajetories d = jjx1 � x2jjis measured, this results in a sequene of laminar phases, during whihd � 0, and bursts. This is an example of on�o� intermitteny [20, 21℄.If a small perturbation is added in the diretion transverse to the synhro-nization manifold, or if there is a small mismath between the parameters ofthe oupled system, haoti bursts our even for k > k. This phenomenonis alled attrator bubbling [22℄ and it is aused by the transverse instabilityof periodi orbits embedded within the synhronized attrator [23, 24℄. Thebursts our more frequently for inreasing k�k and for stronger transverseperturbation or mismath [20, 22℄.Let us start with the ase " = 0, Æ 6= 0. In Eq. (1) the transverseperturbation is Æs (t). If k � k and Æ � 1 the osillators are almost per-fetly synhronized and the variable �y (t) = y1 (t) � y2 (t) + Æs (t) ful�lsthe equality �y (t) � Æs (t). Thus, if the transmitted signal from the osil-lator 1 (transmitter) is y1 (t) + Æs (t), its periodi omponent Æs (t) may bereovered almost without distortion as equal to �y (t) at the loation of theosillator 2 (reeiver). This is the idea of haoti masking tehnique usedfor seure ommuniation [17℄.In this paper the ase when k is lose to k is investigated. Then thequality of reovering Æs (t) as �y (t) dereases, as haoti bursts are super-imposed on the information signal. As the perturbation Æs (t) is periodi,the sequene of laminar phases and bursts has a periodi omponent. Thebursts and laminar phases an be distinguished by passing �y (t) througha threshold devie. It was shown that signals from systems with on�o� in-termitteny and attrator bubbling, passed through a threshold, show SR,i.e. SNR measured from suh signals shows maximum as a funtion of theontrol parameter (oupling strength k) [11, 16℄, like in the ase of SR inother threshold devies [4,5℄. This idea is applied to the signal �y (t). Thuswe try to use SR to improve the quality of reovery of the transmitted sig-nal if the transmitter and reeiver are not perfetly synhronized, instead ofinreasing k in order to synhronize them and thus to reover Æs (t) withoutdistortion.The following signals were onsidered. First, for s (t) = 1 + os 2�fstwe de�ne Y (1) (t) = � (j�y (t)j � #), where �(�) is the Heaviside unit stepfuntion, and # is a threshold. Typially 2Æ < # is set, so a typial ondi-tion for SR is ful�lled. The signal Y (1) (t) is a sequene of 0 and 1 whihdistinguishes only laminar phases from bursts; this is in agreement withthe harater of 0 � s (t) � 2. Seond, for s (t) = os 2�fst we de�neY (2) (t) = sign [�y (t)℄ � (j�y (t)j � #), Æ < #. The signal Y (2) (t) is a se-quene of �1, 0 and 1 whih distinguishes not only laminar phases frombursts, but also takes into aount the agreement between the sign of s (t)



2492 A. Krawiekiand �y (t) (if only bursts and laminar phases were distinguished, the funda-mental peak would appear at fs=2 in PSD of Y (2) (t) in this ase). Below itis shown that SR is observed as k is varied lose to k if the PSD is evaluatedfrom Y (1;2) (t), for a wide range of frequenies fs.The ase Æ = 0; " 6= 0 has no diret analogy in seure ommuniation. Itis inluded in order to model SR with multipliative periodi foring. Theperiodi signal is s (t) = 1 + os 2�fst, the measured quantity is �y (t) =y1 (t)� y2 (t) and the signal analyzed is Y (1) (t) de�ned as above.Eq. (1) for di�erent k and fs was solved using a fourth-and-�fth orderRunge�Kutta method with permanent error ontrol. The time series �y,and Y (1;2) (t) were sampled; the sampling time varied with fs and withthe integration step. FFT with a square window was alulated from 4096sampled points of the time series and typially 100 transforms were averagedto obtain PSD for a single time series. Further, SNR was alulated andnormalized to a standard bandwidth �f = 1=8Hz [2℄. To obtain �nal results,SNR was then averaged typially over time series with 20 randomly hoseninitial onditions and initial phases of s (t) in Eq. (1).3. Results and disussionFirst the ase of Æ 6= 0, " = 0 is disussed. For the periodi signals (t) = 1 + os 2�fst we set Æ = 0:03, and for s (t) = os 2�fst Æ = 0:04,and in both ases # = 0:1. Examples of the time series �y (t) are shown inFig. 1(a)�() for three di�erent frequenies fs and for k below, but lose tok, and an example of the measured PSD is shown in Fig. 1(d). For fs = 1Hz(Fig. 1(a)) periodi osillations are muh faster than the haoti ones andthe former are simply superimposed on the latter. The sequene of burstsand laminar phases has no periodi omponent, as the bursts are initiated atrandom times by the averaged in�uene of Æs (t). However, a periodi om-ponent of Y (1) (t) exists: every time when the haoti omponent of �y (t)slowly approahes the threshold a sequene of threshold-rossing events o-urs whih is aused by the fast periodi omponent of the signal. Thushigh SNR in PSD of Y (1) (t) is expeted. For fs = 1=1024Hz (Fig. 1())the haoti osillations are muh faster than the periodi ones. It an beseen that haoti bursts our mostly when s (t) is at a maximum. Thusthe sequene of bursts has a strong periodi omponent and again high SNRin PSD of Y (1) (t) is expeted. For fs = 1=16Hz (Fig. 1(b)) the frequenyof periodi osillations is omparable with the harateristi time sale ofhaoti osillations, and none of the above mehanisms works. Thus rathersmall SNR in PSD of Y (1) (t) is expeted. The above suggestions are in gen-eral on�rmed by a diret evaluation of SNR (Fig. 2(a)�(b)). In both aseswhen SNR is evaluated from Y (1) (t) and Y (2) (t) SNR has a maximum as a
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Fig. 1. The ase of additive periodi signal s (t) = 1 + os 2�fst, Æ = 0:03. (a)�() Time series �y (t) (bold) and periodi signal Æs (t) (thin) for fs = 1Hz (a),fs = 1=16Hz (b) and fs = 1=1024Hz (), and for k suh that SNR from Y (1) (t) islose to maximum; (d) PSD of the signal Y (1) (t) for fs = 1Hz and k = 0:105.funtion of k, and the loation of the maximum is shifted towards greater kfor lower fs; this is typial of many dynamial systems showing SR [2℄. SRis most visible (SNR values are highest) both for very high and very low fs,and for fs omparable with the harateristi time sale of haoti osilla-tions of �y (t) SR is weak. Moreover, SR is muh stronger for very high fsthan for very low fs. Suh dependene of SNR on fs has not been observedin other systems with SR: e.g. in dynamial bistable systems SNR inreaseswith dereasing fs [2℄, while in non-dynamial threshold-rossing systemsSNR is independent of fs [5℄. However, some analogies an be found. Inthe limit fs �! 0 the bursts are not single spikes, as in typial thresholddevies, but they have a ertain distribution of lengths. Thus e.g. the sig-nal Y (1) (t) resembles the one obtained from an asymmetri bistable system(with two-state enoding 0, 1) rather than from a threshold-rossing system.This explains the inrease of SNR for low frequenies. In the opposite limitfs �! 1 the intervals Y (1) (t) = 1 are often muh shorter, like in thresh-old devies, as they appear when the fast periodi omponent rosses #. Itwas shown by Jung [25℄ that in threshold devies SNR inreases with fs ifthe period 1=fs is substantially lower than the orrelation time of the inputnoise. Clearly, this is the ase in Fig. 1(a), where the haoti omponent ofthe signal is smooth in the time sale of 1=fs. In Ref. [16℄ it was suggested
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Fig. 2. (a),()�(d) The ase of additive periodi signal s (t) = 1+os2�fst, Æ = 0:03,(b) The ase of additive periodi signal s (t) = os 2�fst, Æ = 0:04. (a) SNR vs.k for fs = 16Hz (squares), fs = 1=16Hz (irles), fs = 1=256Hz (diamonds),fs = 1=1024Hz (triangles); (b) SNR vs. k for fs = 16Hz (squares), fs = 1Hz(irles), fs = 1=16Hz (diamonds), fs = 1=256Hz (triangles); () SNR vs. k forfs = 1=16Hz and the signal Y (1) (t) (empty irles) and �y (t) (�lled irles). (d)E�et of the parameter mismath on SNR vs. k, fs = 1Hz, empty symbols fora2 = a1, �lled symbols for a2 = a1 + 10�4, irles for the signal Y (1) (t), squaresfor the signal �y (t).that the inrease of SNR for both fs �! 0 and fs �! 1 distinguishesnoise-free (haoti) SR from SR in systems with input noise. The aboveanalysis reveals that this is not neessarily true. In the limit of low fs SRis a dynamial phenomenon. The in�uene of periodi signal modi�es thesystem dynamis, and introdues periodiity in the time sequene of laminarphases and bursts. Thus the inrease of SR with dereasing periodi signalfrequeny is expeted both here and in other haoti systems with SR. Inthe limit of high fs, however, the e�et is non-dynamial: �y (t) is a diretsum of the fast periodi and slow haoti omponent. This is aused by thede�nition of �y (t) whih ontains both input periodi signal and system



Stohasti Resonane 2495variables. In other haoti systems suh a separation of time sales need notbe possible (in partiular, when only dynamial variables are measured atthe output) and SNR will derease to zero with inreasing fs. Thus the in-rease of SNR in the limit of high frequenies of the periodi signal is rathera partiular property of the system and signals under study.In the ase of Æ 6= 0, " = 0 SR is obtained only if SNR is evaluatedfrom the PSD of Y (1;2) (t), but not diretly from �y (t). In the latter aseSNR inreases monotonially with k (Fig. 2()). Thus the soure of SR hereis passing the signal through a threshold. Moreover, SNR alulated from�y (t) usually exeeds the one obtained from Y (1;2) (t) for a whole range ofk, independently of fs. This is typial in SR. An exeption is the ase ofperiodi signal frequenies omparable with the harateristi time of haotiosillations of the system (1). As shown in Fig. 2() SNR from Y (1) (t)surpasses that from �y (t) for k in a narrow interval below k. It may be aninteresting example of the inrease of SNR by SR [6℄. However, this is only aresult of a numerial experiment, so further study is neessary to explain theorigin of this result. Besides, there are two limitations for the appliation ofSR for enhaned reovering of signals in seure ommuniation, at least in thesystem (1). First, the inrease of SNR by SR ours in the frequeny rangewhere SNR from both Y (1;2) (t) and �y (t) is low. Seond, the maximumvalue of SNR obtained from the signal passed through a threshold is for allinvestigated frequenies muh lower than that obtained diretly from thePSD of �y (t) in the limit k �!1.The e�et of parameter mismath on SNR evaluated from �y (t) andY (1;2) (t) may be di�erent. This is shown in Fig. 2(d) for a1 = 0:2, a2 =a1+10�4 in Eq. (1). In the former ase small parameter mismath dereasesSNR, while in the latter ase SNR is inreased and the maximum of SNR isshifted towards larger k. This is true for a whole range of fs investigated, ifthe mismath is small in omparison with #. However, in the system understudy this rise of SNR is not big and in the limit of large k SNR from�y (t) isstill muh higher. Thus, although the rise of SNR with parameter mismathbetween the transmitter and reeiver may be useful from the point of viewof signal detetion in seure ommuniation, there may be no real gain ofthis e�et in pratial appliations.For ompleteness the results for the system (1) with Æ = 0 and " 6= 0are now presented. The parameters " = 0:01 and # = 0:1 were assumed. Inthe ase of multipliative periodi signal it was shown [11℄ that SR may beobserved not only when the signal Y (1) (t), but also�y (t) is analyzed. In thesystem (1) SR in the latter ase was not observed; probably the amplitude" was too small. It is also known that the rising part of the urves SNR vs.k may be very steep if the periodi signal is applied multipliatively [11℄. Inthe present ase the rise was so fast that this part of the urves was di�ult



2496 A. Krawieki

Fig. 3. The ase of multipliative periodi signal s (t) = 1+os2�fst, " = 0:01. SNRvs. k for fs = 1=16Hz (squares), fs = 1=32Hz (irles), fs = 1=64Hz (diamonds),fs = 1=1024Hz (triangles).to observe. In order to obtain distint maximum the system with a smallparameter mismath a1 = 0:2, a2 = a1 + 10�8 was investigated. Even suha small mismath resulted in smooth urves with maxima (Fig. 3). Suh astrong in�uene of the perturbations perpendiular to the synhronizationmanifold on system dynamis is typial in systems with on�o� intermitteny;simply, attrator bubbling for non-zero perturbations ours. In Fig. 3 itan be seen that SNR inreases for dereasing fs and in the adiabati limitfs �! 0 it beomes frequeny-independent. This is in agreement with theresults obtained in a system with on�o� intermitteny and disrete time[11,16℄. Suh behaviour of SNR is also typial in dynamial systems: again,in the limit of low frequenies of the periodi signal the sequene of 0 and 1in Y (1) (t) resembles that from an asymmetri bistable system.4. Summary and onlusionsIn this paper noise-free SR was studied in a system of two mutually ou-pled haoti Rössler osillators at the edge of their haoti synhronization.Periodi signal was applied either additively or multipliatively to the ou-pling term, and the measured signal was the di�erene between the oupledvariables of the osillators, with periodi signal added in the ase of additiveperiodi foring. This signal at k � k showed a sequene of laminar phasesand bursts harateristi of on�o� intermitteny and attrator bubbling. Af-ter passing this signal through a threshold SNR was measured from the PSDas a funtion of k, and urves with maxima vere obtained whih indiatesthe ourrene of SR. In the ase of additive periodi signal SR was most



Stohasti Resonane 2497visible for high frequenies of the periodi signal (whih was interpreted asa non-dynamial e�et) and low frequenies (whih is typial of dynami-al asymmetri bistable systems showing SR). In the ase of multipliativeperiodi signal SNR inreased with dereasing frequeny.For additive periodi signal the question if it is possible to use SR as asignal detetion tool in seure ommuniation was brie�y disussed. Thereare two di�erenes between the system (1) and typial systems used for se-ure ommuniation [17℄. First, here oupled osillators are used instead ofsystems based on the omplete replaement tehnique [17, 19℄. The possi-bility to hange the degree of synhronization by means of varying k o�ersgreater �exibility and enables the ourrene of noise-free SR. Seond, inthis paper the ase of mutual oupling of haoti osillators was onsidered.In seure ommuniation, a more natural hoie is to have one-way (fromtransmitter to reeiver only) oupling. However, from the point of view ofthe haoti synhronization problem a mutually oupled system (1) is equiv-alent to analogous system with one-way oupling and the oupling onstantk=2 [19℄, thus the results of the present paper should be valid in the latterase, too. If the frequeny of the periodi signal was omparable with theharateristi time sale of the haoti osillations in the measured signal,SNR obtained after passing the signal through a threshold exeeded thatfrom the full measured signal in a narrow interval of k below the synhro-nization threshold. Also small parameter mismath ould lead to inrease ofSNR. However, these e�ets were weak and did not lead to improvement ofSNR in omparison with that evaluated from �y (t) in the limit k �! 1.In general, the inrease of SNR due to SR should not be expeted.Of ourse these results are not deisive and the problem of appliabilityof SR in seure ommuniation requires more areful study. In partiular,a broader range of signal amplitudes and thresholds, and other methods ofommuniation (e.g. periodi modulation of the transmitter parameters [17℄)should be investigated. At the present stage it may be onluded that SRours in oupled osillators at the edge of synhronization and that it maybe used to improve SNR in haoti masking if the range of possible hangesof k is onstrained. In this ase, partiularly high SNR is obtained for highfrequenies of periodi signal (but still lower than that obtained diretlyfrom �y (t)), but one should remember that masking high-frequeny signalsis usually not e�etive as the PSD of haoti systems at high frequeniesdereases.
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