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Noise-free stochastic resonance is investigated numerically in a system
of two coupled chaotic Rossler oscillators. Periodic signal is applied either
additively or multiplicatively to the coupling term. When the coupling
constant is varied the oscillators lose synchronization via attractor bubbling
or on—off intermittency. Properly chosen signals are analyzed which reflect
the sequence of synchronized (laminar) phases and non-synchronized bursts
in the time evolution of the oscillators. Maximum of the signal-to-noise
ratio as a function of the coupling constant is observed. Dependence of the
signal-to-noise ratio on the frequency of the periodic signal and parameter
mismatch between the oscillators is investigated. Possible applications of
stochastic resonance in the recovery of signals in secure communication
systems based on chaotic synchronization are briefly discussed.

PACS numbers: 05.45.4+b, 05.40.+j

1. Introduction

Stochastic Resonance (SR; for recent review see [1]) occurs in certain,
mainly nonlinear, systems driven by a combination of periodic and stochastic
signal. In such systems the input noise intensity may be chosen so that a
periodic component of the output signal is maximized against the output
noise. The Power Spectrum Density (PSD) S (f) of the output signal in
systems with SR consists of peaks at the multiples of the input periodic signal
frequency fs, superimposed on a broad noise background Sy (f). A good
measure of SR is the signal-to-noise ratio (SNR) in dB at frequency fs which
is defined as SNR= 101og [Sp (fs) /S~ (fs)], where Sp (fs) = S (fs)—Sn (fs)
is the first peak height. As a function of the input noise power SNR has
a maximum in systems with SR. This phenomenon has been observed in
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various systems, e.g. in bistable [2] and monostable systems [3], in dynamical
[4] and non-dynamical [5,6] threshold-crossing systems, in spatially extended
systems [7], spiking neurons [4, 8].

A similar phenomenon is noise-free SR [9]. In this case, the changes in the
internal chaotic dynamics of the system are used to increase the periodicity
of the output signal and the external noise is not necessary. SNR shows a
maximum as a function of the system control parameter. Noise-free SR was
observed in chaotic maps with crises and intermittency [9-11], in numerical
experiments with chaotic oscillators [12, 13], in chaotic neurons [14] and
in a physical experiment with spin-wave chaos [15]. In a previous paper,
preliminary results on noise-free SR in a system of coupled chaotic oscillators
at the edge of synchronization were reported [16]. This is a special case
of SR in on-off intermittency and attractor bubbling [11]. In the present
paper these results are extended and detailed, and the applicability of SR
for signal detection in secure communication based on synchronization of
chaotic oscillators [17] is briefly discussed.

2. Model and methods of analysis

The system under study is a set of two chaotic Rossler oscillators which
are mutually coupled via the y variable (coupling strength k). A small
periodic signal s(t) is either added to the coupling term in one of the os-
cillators (additive periodic forcing with amplitude §) or it modulates the
coupling strength of both oscillators (multiplicative periodic forcing with
amplitude ). The equations of motion are

T = —(y1 +21), Zo = — (Y2 + 22) »

1 = z1+ayr +k[1+es(t)] (y2 —v1) »

Yo = @2 +asys + k[l +es(t)][y1 —y2 +ds(2)],

21 = b+Zl(I1—C), 22:b+22(I2—C). (1)

The parameters are b = 0.2, ¢ = 10, and usually a; = ag = 0.2, but small
deviations between a1 and a9 are allowed to model mismatch of parameters
in an experimental system. The cases § # 0,e = 0 and § = 0,e # 0 are
discussed separately.

Fore =6 =0, a1 =as and k > k. =~ 0.12 it was observed that the two
oscillators show synchronized chaotic behaviour [18] (for review of chaotic
synchronization see [19]), i.e. if &1 = [z1,y1, 21] and x2 = [z2, Y2, 29] are the
state vectors of the oscillators 1 and 2, respectively, then, after all transients
die out, @1 (t) = @2 (t). This equality defines a three-dimensional manifold
in a six dimensional phase space to which the motion of the system (1) is
constrained. If k < k. the oscillators lose synchronization. For k just below
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k. the periods of synchronized behaviour are interrupted by chaotic bursts
during which x1 # @2, so if the distance between trajectories d = ||x1 — @2||
is measured, this results in a sequence of laminar phases, during which
d =~ 0, and bursts. This is an example of on—off intermittency [20, 21].
If a small perturbation is added in the direction transverse to the synchro-
nization manifold, or if there is a small mismatch between the parameters of
the coupled system, chaotic bursts occur even for k > k.. This phenomenon
is called attractor bubbling [22] and it is caused by the transverse instability
of periodic orbits embedded within the synchronized attractor [23,24]. The
bursts occur more frequently for increasing k. —k and for stronger transverse
perturbation or mismatch [20,22].

Let us start with the case e = 0, 6 # 0. In Eq. (1) the transverse
perturbation is ds (¢). If k > k. and § < 1 the oscillators are almost per-
fectly synchronized and the variable Ay (t) = y1 (t) — ya (t) + ds (¢) fulfils
the equality Ay (t) ~ ds(t). Thus, if the transmitted signal from the oscil-
lator 1 (transmitter) is y; (t) + ds (¢), its periodic component ds (t) may be
recovered almost without distortion as equal to Ay (¢) at the location of the
oscillator 2 (receiver). This is the idea of chaotic masking technique used
for secure communication [17].

In this paper the case when k is close to k. is investigated. Then the
quality of recovering ds (t) as Ay (t) decreases, as chaotic bursts are super-
imposed on the information signal. As the perturbation ds (¢) is periodic,
the sequence of laminar phases and bursts has a periodic component. The
bursts and laminar phases can be distinguished by passing Ay (¢) through
a threshold device. It was shown that signals from systems with on—off in-
termittency and attractor bubbling, passed through a threshold, show SR,
i.e. SNR measured from such signals shows maximum as a function of the
control parameter (coupling strength k) [11,16], like in the case of SR in
other threshold devices [4,5]. This idea is applied to the signal Ay (¢). Thus
we try to use SR to improve the quality of recovery of the transmitted sig-
nal if the transmitter and receiver are not perfectly synchronized, instead of
increasing k in order to synchronize them and thus to recover ds (t) without
distortion.

The following signals were considered. First, for s(t) = 1 + cos 2w fst
we define Y (t) = © (|Ay (t)| — 9), where © (-) is the Heaviside unit step
function, and 1 is a threshold. Typically 20 < # is set, so a typical condi-
tion for SR is fulfilled. The signal Y(!) (#) is a sequence of 0 and 1 which
distinguishes only laminar phases from bursts; this is in agreement with
the character of 0 < s(t) < 2. Second, for s(t) = cos2wfst we define
Y@ (1) = sign[Ay (£)] © (|Ay (t)| — 9), § < 9. The signal Y@ (¢) is a se-
quence of —1, 0 and 1 which distinguishes not only laminar phases from
bursts, but also takes into account the agreement between the sign of s ()
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and Ay (t) (if only bursts and laminar phases were distinguished, the funda-
mental peak would appear at f;/2 in PSD of Y(?) (¢) in this case). Below it
is shown that SR is observed as k is varied close to k. if the PSD is evaluated
from Y1) (¢), for a wide range of frequencies f.

The case = 0, # 0 has no direct analogy in secure communication. It
is included in order to model SR with multiplicative periodic forcing. The
periodic signal is s (t) = 1 + cos 2w fst, the measured quantity is Ay (¢) =
y1 (t) — y2 (t) and the signal analyzed is Y(!) (¢) defined as above.

Eq. (1) for different k£ and fs was solved using a fourth-and-fifth order
Runge—Kutta method with permanent error control. The time series Ay,
and Y12 () were sampled; the sampling time varied with f, and with
the integration step. FFT with a square window was calculated from 4096
sampled points of the time series and typically 100 transforms were averaged
to obtain PSD for a single time series. Further, SNR was calculated and
normalized to a standard bandwidth Af = 1/8Hz [2]. To obtain final results,
SNR was then averaged typically over time series with 20 randomly chosen
initial conditions and initial phases of s (¢) in Eq. (1).

3. Results and discussion

First the case of § # 0, ¢ = 0 is discussed. For the periodic signal
s(t) = 1+ cos2mfst we set § = 0.03, and for s (t) = cos2nfst 6 = 0.04,
and in both cases ¥ = 0.1. Examples of the time series Ay (¢) are shown in
Fig. 1(a)—(c) for three different frequencies fs and for k below, but close to
k¢, and an example of the measured PSD is shown in Fig. 1(d). For f; = 1Hz
(Fig. 1(a)) periodic oscillations are much faster than the chaotic ones and
the former are simply superimposed on the latter. The sequence of bursts
and laminar phases has no periodic component, as the bursts are initiated at
random times by the averaged influence of ds (t). However, a periodic com-
ponent of Y (V) (¢) exists: every time when the chaotic component of Ay (t)
slowly approaches the threshold a sequence of threshold-crossing events oc-
curs which is caused by the fast periodic component of the signal. Thus
high SNR in PSD of Y1) (#) is expected. For f, = 1/1024Hz (Fig. 1(c))
the chaotic oscillations are much faster than the periodic ones. It can be
seen that chaotic bursts occur mostly when s (¢) is at a maximum. Thus
the sequence of bursts has a strong periodic component and again high SNR
in PSD of Y1) (¢) is expected. For f, = 1/16Hz (Fig. 1(b)) the frequency
of periodic oscillations is comparable with the characteristic time scale of
chaotic oscillations, and none of the above mechanisms works. Thus rather
small SNR in PSD of Y (! (#) is expected. The above suggestions are in gen-
eral confirmed by a direct evaluation of SNR (Fig. 2(a)-(b)). In both cases
when SNR is evaluated from Y1) (¢) and Y@ (¢) SNR has a maximum as a,



Stochastic Resonance 2493

0.1 (a) _ (b)

B
0.0
0 t(s) 125 0 t(s) 200
0
) (d)
2
w
-50
100+t
0 t(s) 12800 © f(Hz) 4

Fig.1. The case of additive periodic signal s (t) = 1 + cos2nfst, 6 = 0.03. (a)—
(c) Time series Ay (t) (bold) and periodic signal ds(¢) (thin) for fs = 1Hz (a),
fs = 1/16Hz (b) and f, = 1/1024Hz (c), and for k such that SNR from Y1) (¢) is
close to maximum; (d) PSD of the signal Y'(!) (¢) for f, = 1Hz and k = 0.105.

function of k, and the location of the maximum is shifted towards greater k
for lower fs; this is typical of many dynamical systems showing SR [2]. SR
is most visible (SNR values are highest) both for very high and very low f,
and for fs; comparable with the characteristic time scale of chaotic oscilla-
tions of Ay (t) SR is weak. Moreover, SR is much stronger for very high f
than for very low fs. Such dependence of SNR on f; has not been observed
in other systems with SR: e.g. in dynamical bistable systems SNR increases
with decreasing fs [2], while in non-dynamical threshold-crossing systems
SNR is independent of fs [5]. However, some analogies can be found. In
the limit f; — 0 the bursts are not single spikes, as in typical threshold
devices, but they have a certain distribution of lengths. Thus e.g. the sig-
nal Y1) (¢) resembles the one obtained from an asymmetric bistable system
(with two-state encoding 0, 1) rather than from a threshold-crossing system.
This explains the increase of SNR for low frequencies. In the opposite limit
fs —> oo the intervals Y1) (£) = 1 are often much shorter, like in thresh-
old devices, as they appear when the fast periodic component crosses 9. It
was shown by Jung [25] that in threshold devices SNR increases with fs if
the period 1/fs is substantially lower than the correlation time of the input
noise. Clearly, this is the case in Fig. 1(a), where the chaotic component of
the signal is smooth in the time scale of 1/fs. In Ref. [16] it was suggested
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Fig.2. (a),(c)—(d) The case of additive periodic signal s (t) = 14cos 27 fst, d = 0.03,
(b) The case of additive periodic signal s (t) = cos2n fst, 6 = 0.04. (a) SNR vs.
k for f; = 16Hz (squares), fs = 1/16Hz (circles), fs = 1/256Hz (diamonds),
fs = 1/1024Hz (triangles); (b) SNR ws. k for f; = 16Hz (squares), f; = 1Hz
(circles), fs = 1/16Hz (diamonds), f; = 1/256Hz (triangles); (c) SNR wvs. k for
fs = 1/16Hz and the signal Y(") () (empty circles) and Ay (¢) (filled circles). (d)
Effect of the parameter mismatch on SNR ws. k, f; = 1Hz, empty symbols for
ay = ay, filled symbols for ay = a; + 10~%, circles for the signal Y1) (t), squares
for the signal Ay ().

that the increase of SNR for both f; — 0 and f; — oo distinguishes
noise-free (chaotic) SR from SR in systems with input noise. The above
analysis reveals that this is not necessarily true. In the limit of low f; SR
is a dynamical phenomenon. The influence of periodic signal modifies the
system dynamics, and introduces periodicity in the time sequence of laminar
phases and bursts. Thus the increase of SR with decreasing periodic signal
frequency is expected both here and in other chaotic systems with SR. In
the limit of high fs, however, the effect is non-dynamical: Ay (¢) is a direct
sum of the fast periodic and slow chaotic component. This is caused by the
definition of Ay (¢) which contains both input periodic signal and system
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variables. In other chaotic systems such a separation of time scales need not
be possible (in particular, when only dynamical variables are measured at
the output) and SNR will decrease to zero with increasing fs. Thus the in-
crease of SNR in the limit of high frequencies of the periodic signal is rather
a particular property of the system and signals under study.

In the case of 4 # 0, ¢ = 0 SR is obtained only if SNR is evaluated
from the PSD of Y(1:?) (¢), but not directly from Ay (t). In the latter case
SNR increases monotonically with & (Fig. 2(c)). Thus the source of SR here
is passing the signal through a threshold. Moreover, SNR calculated from
Ay (t) usually exceeds the one obtained from Y1) (¢) for a whole range of
k, independently of fs. This is typical in SR. An exception is the case of
periodic signal frequencies comparable with the characteristic time of chaotic
oscillations of the system (1). As shown in Fig. 2(c) SNR from Y (¢)
surpasses that from Ay (¢) for k£ in a narrow interval below k.. It may be an
interesting example of the increase of SNR by SR [6]. However, this is only a
result of a numerical experiment, so further study is necessary to explain the
origin of this result. Besides, there are two limitations for the application of
SR for enhanced recovering of signals in secure communication, at least in the
system (1). First, the increase of SNR by SR occurs in the frequency range
where SNR from both Y2 () and Ay (t) is low. Second, the maximum
value of SNR obtained from the signal passed through a threshold is for all
investigated frequencies much lower than that obtained directly from the
PSD of Ay (¢) in the limit & — oo.

The effect of parameter mismatch on SNR evaluated from Ay (¢) and
Y (2 () may be different. This is shown in Fig. 2(d) for a; = 0.2, ag =
a1+107% in Eq. (1). In the former case small parameter mismatch decreases
SNR, while in the latter case SNR is increased and the maximum of SNR is
shifted towards larger k. This is true for a whole range of f, investigated, if
the mismatch is small in comparison with 9. However, in the system under
study this rise of SNR is not big and in the limit of large ¥ SNR from Ay (¢) is
still much higher. Thus, although the rise of SNR with parameter mismatch
between the transmitter and receiver may be useful from the point of view
of signal detection in secure communication, there may be no real gain of
this effect in practical applications.

For completeness the results for the system (1) with § = 0 and ¢ # 0
are now presented. The parameters ¢ = 0.01 and ¥ = 0.1 were assumed. In
the case of multiplicative periodic signal it was shown [11] that SR may be
observed not only when the signal Y (1) (¢), but also Ay (t) is analyzed. In the
system (1) SR in the latter case was not observed; probably the amplitude
e was too small. It is also known that the rising part of the curves SNR wvs.
k may be very steep if the periodic signal is applied multiplicatively [11]. In
the present case the rise was so fast that this part of the curves was difficult
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Fig. 3. The case of multiplicative periodic signal s (t) = 14+cos 27 fst, e = 0.01. SNR
vs. k for fs = 1/16Hz (squares), fs = 1/32Hz (circles), fs = 1/64Hz (diamonds),
fs = 1/1024Hz (triangles).

to observe. In order to obtain distinct maximum the system with a small
parameter mismatch a; = 0.2, as = a1 + 1078 was investigated. Even such
a small mismatch resulted in smooth curves with maxima (Fig. 3). Such a
strong influence of the perturbations perpendicular to the synchronization
manifold on system dynamics is typical in systems with on—off intermittency;
simply, attractor bubbling for non-zero perturbations occurs. In Fig. 3 it
can be seen that SNR increases for decreasing fs and in the adiabatic limit
fs — 0 it becomes frequency-independent. This is in agreement with the
results obtained in a system with on—off intermittency and discrete time
[11,16]. Such behaviour of SNR is also typical in dynamical systems: again,
in the limit of low frequencies of the periodic signal the sequence of 0 and 1
in Y () resembles that from an asymmetric bistable system.

4. Summary and conclusions

In this paper noise-free SR was studied in a system of two mutually cou-
pled chaotic Rdssler oscillators at the edge of their chaotic synchronization.
Periodic signal was applied either additively or multiplicatively to the cou-
pling term, and the measured signal was the difference between the coupled
variables of the oscillators, with periodic signal added in the case of additive
periodic forcing. This signal at k = k. showed a sequence of laminar phases
and bursts characteristic of on—off intermittency and attractor bubbling. Af-
ter passing this signal through a threshold SNR was measured from the PSD
as a function of k, and curves with maxima vere obtained which indicates
the occurrence of SR. In the case of additive periodic signal SR was most
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visible for high frequencies of the periodic signal (which was interpreted as
a non-dynamical effect) and low frequencies (which is typical of dynami-
cal asymmetric bistable systems showing SR). In the case of multiplicative
periodic signal SNR increased with decreasing frequency.

For additive periodic signal the question if it is possible to use SR as a
signal detection tool in secure communication was briefly discussed. There
are two differences between the system (1) and typical systems used for se-
cure communication [17]. First, here coupled oscillators are used instead of
systems based on the complete replacement technique [17,19]. The possi-
bility to change the degree of synchronization by means of varying k offers
greater flexibility and enables the occurrence of noise-free SR. Second, in
this paper the case of mutual coupling of chaotic oscillators was considered.
In secure communication, a more natural choice is to have one-way (from
transmitter to receiver only) coupling. However, from the point of view of
the chaotic synchronization problem a mutually coupled system (1) is equiv-
alent to analogous system with one-way coupling and the coupling constant
k/2 [19], thus the results of the present paper should be valid in the latter
case, too. If the frequency of the periodic signal was comparable with the
characteristic time scale of the chaotic oscillations in the measured signal,
SNR obtained after passing the signal through a threshold exceeded that
from the full measured signal in a narrow interval of k below the synchro-
nization threshold. Also small parameter mismatch could lead to increase of
SNR. However, these effects were weak and did not lead to improvement of
SNR in comparison with that evaluated from Ay (¢) in the limit k¥ — oo.
In general, the increase of SNR due to SR should not be expected.

Of course these results are not decisive and the problem of applicability
of SR in secure communication requires more careful study. In particular,
a broader range of signal amplitudes and thresholds, and other methods of
communication (e.g. periodic modulation of the transmitter parameters [17])
should be investigated. At the present stage it may be concluded that SR
occurs in coupled oscillators at the edge of synchronization and that it may
be used to improve SNR in chaotic masking if the range of possible changes
of k is constrained. In this case, particularly high SNR is obtained for high
frequencies of periodic signal (but still lower than that obtained directly
from Ay (¢)), but one should remember that masking high-frequency signals
is usually not effective as the PSD of chaotic systems at high frequencies
decreases.
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