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A model for noise-free stochastic resonance in chaotic nonlinear ferro-
magnetic resonance in coincidence regime is investigated numerically. In
the model, interactions between the uniform mode and two pairs of para-
metric spin waves are taken into account. For certain values of the model
parameters Pomeau—Maneville intermittency and on-off intermittency are
observed. The case of slow periodic modulation of the rf field amplitude is
considered and the signal analyzed reflects the sequence of laminar phases
and bursts. Maximum of the signal-to-noise ratio is observed as the con-
stant part of the rf field amplitude is varied in the neighbourhood of the
intermittency threshold. The role of the thermal excitations of spin waves
in the occurence of stochastic resonance is clarified. The results are in agree-
ment with the recent experimental observations of stochastic resonance in
spin-wave chaos.

PACS numbers: 05.45.4+b, 76.50.+g, 75.30.Ds, 05.40.+j

1. Introduction

Stochastic resonance (SR; for review see [1]) occurs in certain, mainly
nonlinear systems driven by a combination of periodic and stochastic sig-
nal. An unexpected feature of SR is that when the input noise intensity
is increased the degree of periodicity of the output signal goes through
a maximum. The power spectrum density (PSD) of the output signal
S (f) in systems with SR consists of peaks at integer multiples of the peri-
odic signal frequency fs superimposed on a broad noise background Sx (f).
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A good measure of the periodicity of the output signal is the signal-to-
noise ratio (SNR) in dB defined as SNR=101log[Sp (fs) /Sx (fs)], where
Sp (fs) = S (fs) — Sx (fs) is the first peak height. In system with SR, SNR
has a maximum for non-zero input noise power. SR was observed in various
systems, e.g. in bistable [2] and monostable [3] systems, in dynamical [4] and
non-dynamical [5,6] threshold-crossing systems, in sensory neurons [4,7] and
spatially extended systems [8].

In this paper we deal with noise-free SR [9]. By varying a control pa-
rameter of a chaotic system with periodic input, and thus by changing its
internal dynamics, it is possible to maximize the periodic response of the
system without external noise, 7.e. to maximize SNR. Noise-free SR was
observed in numerical simulations of chaotic oscillators [10-12], networks of
chaotic neurons [13], and maps with various kinds of intermittency [9,14,15].
Recently, noise-free SR was observed in a physical experiment with inter-
mittency in spin-wave chaotic dynamics in a ferromagnetic sphere [16]. This
experiment was performed in perpendicular ferromagnetic resonance in co-
incidence regime, i.e. the uniform mode with frequency wg was driven by
the rf field with frequency w = wg. As the rf field amplitude is increased
beyond a certain threshold, in such a system the first-order Suhl instability
occurs which consists in the decay of the uniform mode into pairs of para-
metric spin waves (SW) with opposite wave vectors and frequencies w/2. As
a result of nonlinear interactions between SW and the uniform mode chaos
in the time dependence of absorption in the sample may appear [18-21] (for
review of various nonlinear effects due to SW interactions see e.g. [22]). In
Ref. [16] the experimental conditions were chosen so that the time series of
absorption showed Pomeau—Maneville intermittency (PMI) of type-III [23],
i.e. the time dependence of absorption was a sequence of periodic (laminar)
phases and chaotic bursts. When either the rf field amplitude or the dc field
were varied the mean duration of laminar phases and bursts also changed.
To observe SR, a weak and slow periodic component was added to the rf
field amplitude The sequence of laminar phases and bursts was converted
into a two-state signal and SNR was measured from the PSD of this signal.
SNR showed a maximum vs. both the rf field amplitude and the dc field for
fs in the range between 1 kHz and 10 kHz.

In Ref. [16] the occurence of SR in a system with intermittency was
explained with the help of a model map. It was shown both analytically
and numerically that in systems with intermittency the laminar and chaotic
phases can play a role of the two states of an asymmetric bistable system
which enables the appearance of SR when periodic signal is added. How-
ever, a direct numerical simulation based on the equations of motion for SW
amplitudes was not performed, as accurate simulations of chaotic absorption
require the inclusion of many interacting SW in the model, thus making the
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simulations extremely time-consuming [18,21]. On the other hand in SW
chaos low-dimensional models with only few interacting SW pairs can lead
to qualitative agreement with experiment (see e.g. [24-27]). For coincidence
regime such a model was considered in Ref. [27]. In the present paper simula-
tions of SR in two kinds of intermittency in SW chaos in coincidence regime
are performed on the basis of a simple model: PMI and on-off intermittency
(00TI) [28,29] (OOI was also observed in coincidence regime [27,30]). In the
model only two SW pairs interact with the uniform mode. With the rf field
amplitude periodically modulated, SNR obtained from the sequence of lam-
inar phases and bursts shows a maximum as a function of the constant part
of the rf field amplitude. The estimated frequency range of the modulation
for which SR may be observed is in agreement with the above-mentioned
experiment. The role of thermal excitations of SW in the occurence of SR
is discussed, too.

2. Model and methods of analysis

The model for chaos and SR in coincidence regime analyzed in this paper
is a modification of that in Ref. [27]. The transverse rf field with frequency w
is assumed in the form A7 (t) cos wt, where hr (t) is a periodically modulated
amplitude of the rf field, with the modulation frequency 27 fy <« w. This
field excites the uniform mode with frequency wg = w. In the first-order Suhl
instability process, this mode decays into pairs of SW with opposite wave
vectors £k and frequencies wy =~ w/2. Small detunings from the resonant
frequencies Awy = wy—w, Awy = wi—w/2 are allowed; they are necessary for
the occurence of chaos in the model, and may be attributed to finite sample
dimensions or finite resonance linewidths [27]. The equations of motion for
the complex uniform mode and SW amplitudes (cg, ¢+, respectively) may
be then obtained from the Hamiltonian H written in terms of creation and
annihilation operators

H = hrp (t) coswt (Tpc + c.c.) + Z wrCicr + Z Vokcocrc—k +cc. (1)
k k

Replacing the operators with classical SW amplitudes yields the equations
of motion in the form

dco oM ol . oM
= — ) — = — — . 2
ot No,kCok + Zac,g . ) ot No,kCok — ¢ (2)

)

Here, I is the coupling coefficient between the rf field and the uniform mode,
Vo1 are coupling coefficients between the uniform mode and parametric SW
pairs, 7o x is a phenomenological damping and the star denotes the complex
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conjugate. It may be shown that the amplitudes of SW belonging to one
pair differ only by a constant phase factor g [22], i.e. c_, = ciexp (iqx). If
the rf field amplitude is small only the uniform mode is excited and all SW
amplitudes decay to zero. The threshold for the excitation of SW pair with

wave vector k is hglrit = 2|0o||9%| / [To| |Vo k|, where dor = nox + iAwo k.
In fact, as the rf field amplitude is increased, first the SW pair with the

lowest threshold (denoted as 1 and called the critical pair) is excited at the

first-order instability threshold hr iy = h(T{ )Crit, and for higher h other pairs
may but need not be excited; also periodic and chaotic states of the mode
amplitudes may appear.

In the following a simplified model will be considered, with only two SW
pairs interacting with the uniform mode. Such low-dimensional models are
widely used in modelling SW chaos [24-27| though there is no good theoreti-
cal justification for such a simplification. Eq. (2) may be rewritten in dimen-
sionless variables with separated fast time dependence,
ao(t) = [Vo,1| co(t) exp(ieot) /mi, ap(t) = |Vo,1] ex(t) exp(iar /2) exp(iwt/2) /i
SW pair 2 has a higher instability threshold and is called a weak pair. After
introducing the rescaled time ¢’ = n;t the final form of the equations is

ao = |0o/m101/mle () = (mo/m +ilwo/m)ao — iaf
—i Vool / Vo) a3 + ém
a1 = — (1+iAwi/m) a1 —iajag + &,
a2 = —(m2/m +ilwa/m) a2 —i(|[Voa!|/ Vo) a3ao + &in - (3)

In Eq. (3) the dot denotes the time derivative with respect to ¢’ and ¢ (¢) =
hr (t) /hr,crit - In addition, the thermal excitation level of SW & < 1 is
phenomenologically introduced. Absorption in the sample is proportional to
ng = |ag.

For the two sets of parameters listed in Table I and constant rf field
amplitude e two kinds of intermittency were observed in Eq. (3). First,
OOI was observed when ¢ was decreased below ¢, = 3.02 [27]. In the time
series of ng = |ag| a sequence of laminar phases, during which the weak
pair amplitude decreases almost to zero, and chaotic bursts, during which
the level of excitation of the weak SW pair is comparable with that of the
critical pair, occured; such behaviour is typical of OOI. Second, PMI with
periodic laminar phases and chaotic bursts was observed above ¢, = 7.96.
In order to observe SR the rf field amplitude was assumed as € (t) = ¢ +
Acos 2w fgt. With small A, varying € in the neighbourhood of ¢, influences
the mean duration of laminar phases. Moreover, with small f it is clear
that the sequence of laminar phases and bursts should have a strong periodic
component, which suggests the possibility of the occurence of SR when ¢ is
varied. It should be pointed out that intermittency in Eq. (3) is not atypical



Stochastic Resonance in Spin-Wave Chaos: a Simulation 2503

and occurs in a broad neighbourhood of the parameters from Table I in the
parameter space.

TABLE 1

Numerical parameters for Eq. (3).

no/m  Awo/mi  Awi/mi ma/m  Aws/mi Vool /[Voal A e
001 1.25 -1.5 3.0 0.8 2.62 0.754 0.1 3.02
PMI 1.67 —1.67 3.33 1.0 —4.67 1.048 0.2 7.96

Eq. (3) was solved numerically using the fourth-and-fifth order Runge-
Kutta method with continuous error control. Two examples of the time series
of ng for the case of OOI and PMI in the presence of periodic component
of the rf field amplitude are shown in Fig. 1(a), (b). For further analysis
only the sequence of laminar phases and bursts is important. To distinguish
between them the signal Y (t) = @ (ns (t) — 9) was analyzed, where O (-) is
the Heaviside unit step function and the threshold ¢ was assumed 0.1 for
OOI and 3.7 for PMI. Such distinction between the phases is not perfect,
in particular in the case of PMI in which ny may cross the threshold many
times during a chaotic burst (¢f. Fig. 1(b)). However, more sophisticated
methods in which the height of the local maxima in the signal ns (t) was
analzyed yield results qualitatively similar to the ones presented below for
Y (t). A second factor which influences the quantitative results is the choice
of 9. Besides, one should pay attention to the difference between the method
used here to distinguish between the phases, and the experimental methods
which can only be based on the measurement of absorption, i.e. ng. In the
present case, no was chosen for further analysis simply because the difference
between the phases was most visible.

8- 12
3 (@) 3 (b)
& G
E- 2
4 - 6
0- 0
0 t(a.u.) 6400 0 t(a.u.) 6400

Fig. 1. Time series of ns (t) = |as ()| for the case of (a) OOI, (b) PML
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From Y () PSD and SNR were evaluated as functions of ¢. Typically
100 series of 4096 points sampled with the time step At = 1.0 or 4.0 (in
renormalized time units) were averaged to obtain PSD, and then the result
was further averaged over five different initial conditions in Eq. (3) and
initial phases of the periodic signal. PSD was obtained from FFT of Y ()
with square window. From PSD, SNR was evaluated and normalized to a
standard bandwidth [2] Af’ = 1/4096 Hz in rescaled time units (i.e. c.a.
Af ~1/4096 MHz= 0.24 kHz in real time units).

3. Results

The results of numerical modelling of SR in spin-wave chaos were ob-
tained for a range of fs and &,. Typical values of SW damping 7o are
on the order of 108s~!, thus the investigated frequencies fs ranged from
1/512MHz =~ 1.95kHz to 1/32MHz = 31.25kHz in real time units; this is
the same frequency range as in the experiment of Ref. [16] (henceforth, all
frequencies are given in real time units). The order of magnitude of &y, is
10719 in liquid helium temperature and 10~? in room temperature [31]; for
comparison, the cases with &, = 0 (zero temperature) and &, = 1074 (un-
physically large thermal excitations) were also considered. The amplitude A
was assumed as 0.1 in the case of OOI and 0.2 in the case of PMI, thus A was
small enough to remain inside the intermittency regime when e was varied
near e.

SNR obtained from PSD of Y (¢) in the case of OOI and &y, = 1010
is shown in Fig. 2(a) ws € for different f5. For f; < 1/32MHz the curves
with maxima were observed indicating the occurence of noise-free SR. For
decreasing frequencies SNR increases and saturates in the adiabatic limit
fs — 0. Such behaviour is typical of SR in e.g. bistable systems [2|; as
mentioned in Sec. 1, intermittent systems from the point of view of the
theory of SR are equivalent to asymmetric bistable systems [16]. The role
of thermal excitations is shown in Fig. 2(b) for fs = 1/128MHz. In the
limit &y, = 0 the rising part of the curve SNR ws € (looking in the direction
of decreasing ¢) is very steep. In fact, it is difficult to observe non-zero
SNR in this range of the rf field amplitude. The addition of even small
thermal background noise &, smoothes out the curve in which a distinct
maximum occurs. This situation is typical of systems with OOI in which
addition of noise leads to qualitative changes in the dynamics and occurence
of attractor bubbling below the OOI threshold [29]. For ¢ = 10~* bursts
and significant values of SNR are observed for € much above €. = 3.02, out
of the intermittency regime, and the location of the maximum shifts also
out of the intermittency regime.
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Fig.2. SNR ws ¢ for the case of OOI, (a) effect of periodic signal frequency,
fs = 1/32MHz (triangles), fs = 1/128MHz (circles), fs = 1/512MHz (diamonds),
in all cases &, = 1.0 - 10719, (b) effect of thermal SW excitations, &y, = 0 (trian-
gles), &n = 10710 (circles), & = 1079 (diamonds), &, = 10™* (squares), in all
cases f; = 1/128MHz.

It is interesting to note that in the case of OOI SR may be observed also
when PSD of ng (¢) is analyzed (Fig. 3). The time series of ng resembles
the sequence of 0 and 1 in Y (), thus leading to similar behaviour of SNR.
SNR obtained after passing ng through a threshold exceeds that evaluated
directly from mo; the mechanism of this phenomenon is probably similar to
the one described in threshold devices by Loerincz et al. [6].

SNR obtained from PSD of Y () in the case of PMI and &, = 1010
is shown as a function of ¢ in Fig. 4(a). The results are similar to the
ones in the case of OOI. Fig. 4(a) shows that it is possible to model noise-
free SR in PMI in SW chaos using a simple model Eq. (3). The role of
thermal excitations of SW seems to be less visible in the case of PMI than
in OOI (Fig. 4(b)), at least for the parameters A, ¢ used in this paper. In
particular, there is no significant difference between the SNR ws ¢ curves
for &, = 0 and &;, = 107 and 107°. However, large &, causes evident
changes in SNR. In the case of PMI, SR was not obtained when PSD of
ng (t) was analyzed: SNR decreases monotonously with increasing e. This
is caused by the fact that periodic oscillations of the rf field amplitude lead
to a periodic modulation (with frequency fs) of the amplitude of periodic
oscillations of no below the intermittency threshold, for e < e, = 7.96. Thus
a periodic response of mo may be stronger below the intermittency threshold
than the periodicity of chaotic bursts which can be seen in Fig. 1(b) above
the intermittency threshold. The signal Y (¢) simply ignores the periodic
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Fig.3. SNR vs € evaluated from Y (t) (squares) and ns (t) (circles) for the case of
00I, f, = 1/128MHz, &, = 101,
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Fig.4. SNR vs ¢ for the case of PMI, (a) effect of periodic signal frequency, fs =
1/32MHz (triangles), fs = 1/128MHz (circles), f; = 1/512MHz (diamonds), in all
cases & = 1.0 - 10710 (b) effect of thermal SW excitations, &, = 0 (triangles),
&n o= 10719 (circles), &, = 1079 (diamonds), &, = 10~* (squares), in all cases

fs = 1/128MHz.
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modulation of ny with frequency fs during laminar phases, and thus also for
€ < .. This resembles the situation in bistable two-well systems in which
SNR diverges in the limit of zero noise when the intrawell motion is included
in the analysis [2].

4. Discussion and conclusions

In this paper, noise-free SR in chaotic nonlinear ferromagnetic resonance
in coincidence regime was modelled numerically on the basis of a simple
model of two SW pairs interacting with the uniform mode, Eq. (1). Two
kinds of intermittent signals were analyzed: OOI and PMI. SNR was eval-
uated from a signal reflecting the sequence of laminar phases and bursts.
When the rf field amplitude was slowly modulated with a weak periodic
signal and the constant part of this amplitude was changed near the inter-
mittency threshold, SNR showed a maximum, indicating the occurence of
SR.

A quantitative comparison of the simulation results in the case of PMI
with experimental results of Ref. [16] is not possible, however, because such
details as the amplitude of periodic modulation and the range of investigated
rf field amplitudes were not given. From other studies it is known that PMI
in coincidence regime was observed for the rf field power c.a. 10 dB above the
Suhl threshold, so for € between c.a. 3.2 and 10, depending on the definition
of the logarithmic scale used in Ref. [21]. In Eq. (3) PMI may be observed
in this range of € depending on other parameters; for our analysis, a typical
case was chosen. The range of frequencies of periodic modulation of the rf
field amplitude for which SR was observed is in agreement with that in the
experiment of Ref. [16]. Experimentally, SR was also observed when the
dc field was changed with constant €. In Eq. (3) it would be equivalent to
changing Awy j which can also lead to the occurence of SR and OOI, but
this case has not been analyzed here. Another quantity measured in Ref. [16]
and not investigated here was the probability distribution of the lengths of
chaotic bursts.

In our simulations, the effect of thermal excitations of SW on SNR was
analyzed. It seems that this influence is stronger in the case of OOI in which
it is difficult to obtain SNR ws € curves with smooth minima without thermal
noise, and the “tail” of these curves is observed out of the intermittency range
due to the occurence of attractor bubbling. It would be interesting to check
this experimentally, the more that OOI in SW chaos was observed [30].

To summarize, we managed to simulate noise-free SR using a simple
model in the chaotic system in which this phenomenon was observed exper-
imentally. The occurence of SR in the model could be expected as it showed
intermittent dynamics, i.e. the system posesses a clearly defined time scale
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(mean duration of laminar phases) which can be periodically modulated by
appropriately varying the control parameter, the rf field amplitude. A more
important outcome of this work is that the simulation results agree with the
experimental ones at least qualitatively. This demonstartes the usefulness
of a simple model of chaos in coincidence regime also in the case of SR, like
in many other situations in SW chaos.
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