
Vol. 30 (1999) ACTA PHYSICA POLONICA B No 8
KINETICS OF THE DYNAMICAL INFORMATIONSHANNON ENTROPY FOR COMPLEX SYSTEMS�R.M. Yulmetyev and D.G. YulmetyevaDepartment of Physis, Kazan State Pedagogial UniversityMezhlauk Street 1, 420021 Kazan, Russia(Reeived Otober 12, 1998)Kineti behaviour of dynamial information Shannon entropy is dis-ussed for omplex systems: physial systems with non-Markovian prop-erty and memory in orrelation approximation, and biologial and physio-logial systems with sequenes of the Markovian and non-Markovian ran-dom noises. For the stohasti proesses, a desription of the informationentropy in terms of normalized time orrelation funtions is given. Thein�uene and important role of two mutually dependent hannels of theentropy hange, orrelation (reation or generation of orrelations) andanti-orrelation (deay or annihilation of orrelation) is disussed. Themethod developed here is also used in analysis of the density �utuationsin liquid esium obtained from slow neutron sattering data, fratal kinetisof the long-range �utuation in the short-time human memory and haotidynamis of R�R intervals of human ECG.PACS numbers: 05.40.+j, 02.50.Ey1. IntrodutionIn this work we are onerned with the dynamial properties of Shannonentropy. This researh has been strongly in�uened by the book by BorisKadomzev, Dynamis and Information, Mosow, 1997.Complexity, nonlinearity and nonstationarity of physial, hemial, bi-ologial and physiologial systems have been reently of profound interest.Complex systems are governed by numerous interating variables and posea high dimensional problem with drifting parameters of the in�uene andpresene of many type of noises, internal and external perturbations. Suhomplexity may be due to stable saling assoiated with �fratal� dynam-is and peuliarities related to internal and external e�ets. The fratal� Presented at the XI Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 1�5, 1998.(2511)



2512 R.M. Yulmetyev, D.G. Yulmetyevamehanism of many systems has reently reeived muh attention. Self-similarity in temporal dynamis as well as in the spatial struture has beenreported for many physial, hemial, physiologial and biologial systemsand in proesses like ion hannel kinetis, auditory nerve �rings, lung in-�ation, musular, ardiovasular and pulmonary systems, human ognition,walking, blood pressure and heart rate [1�15℄.In this paper we are demonstrating a new onept in investigating thedynamis of the temporal evolution of omplex system. The basi idea isthat information (Shannon) entropy of random proesses is holds both qual-itative and quantitative data on the objet under investigation. The paperis strutured as follows. Setion 2 ontains a standard de�nition of an in-�nite hain of oupled nonlinear non-Markovian kineti equations for thetime-orrelation funtions of �utuations of the physial system. The basiequation and the de�nition of the information (Shannon) entropy for thefratal dynamis of orrelation proesses are presented in Setion 3. Setion4 gives some useful formulas for the orrelation life time, anti-orrelationdeay time and for the parameters of orrelation partition. In Setion 5 wederive the pseudo-kineti equations and the related memory funtions forthe time-dependent information entropy. We would like to stress that weintrodue the orrelation (reation of orrelation) and anti-orrelation (de-ay or annihilation of orrelation) hannels for the temporal hanges of theinformation entropy. In Setion 6 we onsider the e�et of saling of thedynamial information entropy in liquid esium. Setion 7 inorporates theresults of our analysis of fratal dynamis of the long-range orrelations inthe short-time human memory. Setion 8 ontains the analysis of haoti dy-namis of R�R intervals of human ECG. Setion 9 ontains some onlusionsof the results obtained.2. The basi non-Markov equations for the time orrelationfuntions for the physial systemAt �rst let us onsider the time evolution of a dynamial variable A(t),its statistial average1 over a distribution h: : :i ! Aav = hA(t)i, and �utu-ations ÆA(t) A(t); Aav = hA(t)i; ÆA(t) = A(t)� hA(t)i: (1)The variable A(t) and �utuations ÆA(t) obey the Liouville equation ofmotion ddtfÆA(t)g = iL̂ÆA(t) ; (2)1 We onsiously omit the important peuliarity onneted with stationarity and er-godiity, whih lies beyond the sope of the present paper and will be disussedseparately elsewhere.



Kinetis of the Dynamial Information Shannon Entropy for: : : 2513where we introdue the Liouville operator L̂. Here we suppose that the vari-able A(t), �utuations ÆA(t), operator L̂ form a many-dimensional problem.Suessively applying the operator L̂ to the dynamial variable ÆA(t) weobtain an in�nite set of dynamial funtionsBn(0) = (L̂)nÆA(0) : (3)Applying the Gram�Shmidt orthogonalization proedure [16, 17℄ to theset Bn(0), we an obtain the following in�nite set of dynamial variables WnhW �n(0);Wm(0)i = Æn;mhj Wn(0) j2i ;where Æn;m is the Kroneker symbol.Now we may easily infer the reursive formulae in whih the funtionsWn = Wn(t) are onneted to the preeding ones with smaller indies:W0 = ÆA(0);W1 = �L̂� !(0)0 �W0 : : : ;Wn = �L̂� !(n�1)0 ��
2n�1Wn�2; n > 1 : (4)Here we introdue the following notation!(n)0 = hW �nL̂Wnihj Wn j2i ; 
2n = hj Wn j2ihj Wn�1 j2i ; (5)where 
n are the general relaxation frequenies, and the frequenies !(n)0desribe the eigenspetrum of the Liouville operator L̂.The set of orthogonal funtions (4) an be onneted with the set of pro-jetors whih projet an arbitrary dynamial variable Y on vetors belongingto the set �n = WnihW �nhjWnj2i ; Pn = 1��n;�n�m = Æn;m�n ;PnPm = Æn;mPn;�nPn = Pn�n = 0 : (6)Note that both sets (3) and (4) are in�nite. If we exeute the operationsin the spae of dynamial variables, then the formal expression (6) must beunderstood as following:�nY = Wn hW �nY ihj Wn j2i ; Y �n = W �n hYWnihj Wn j2i : (7)



2514 R.M. Yulmetyev, D.G. YulmetyevaFor the time orrelation funtions (TCF)Mn(t) = hW �n exp(iL̂(n)22 t)Wnihj Wn j2i ; (8)applying suessively projetion operators Pn and �n to equation of mo-tion (1) on the left and solving these system of equations, we obtain anin�nite hierarhy of onneted equations with indies n � 0dMn(t)dt = i!(n)0 Mn(t)�
2n+1 tZ0 d�Mn+1(�)Mn(t� �) : (9)The funtion M0(t) M0(t) = a(t) = hÆA�(0)ÆA(t)ihj ÆA(0) j2i (10)is usually onsidered [17�19℄ as the funtion haraterizing the statistialmemory of the system. We adopt the following notation for the diagonalmatrix elements of the Liouvillian (n � 1)L̂(0)22 = L̂; L̂(n)22 = Pn�1Pn�2 : : : P0L̂P0 : : : Pn�2Pn�1 : (11)TCF a(t) in Eq. (10) and set of memory funtions Mn(t) (Eq. (8)) isof profound importane for our further onsiderations. It is onvenient torewrite the set of equations (9) as an in�nite hain of oupled nonlinearnon-Markovian kineti equations for TCF a(t)da(t)dt = �
21 tZ0 d�M1(�)a(t� �) + i!(0)0 a(t) ;dM1(t)dt = �
22 tZ0 d�M2(�)M1(t� �) + i!(1)0 M1(t) ;dM2(t)dt = �
23 tZ0 dtM3(�)M2(t� �) + i!(2)0 M2(t) : (12)



Kinetis of the Dynamial Information Shannon Entropy for: : : 25153. Time-dependent information entropy and entropy memoryfuntion for the orrelations of �utuations in omplex systemsFor the initial TCF a(t) and memory funtions of the n�th order Mn(t)in (11), (14) it is onvenient to introdue mirosopi relaxation (orrelation)times as [20℄ � = <~a(0) ; ~a(s) = 1Z0 dt e�sta(t) ; (13)�m1 = < ~M1(0) ; ~M1(s) = 1Z0 dt e�stM1(t); (14)�mn = < ~Mn(0) ; ~Mn(s) = 1Z0 dt e�stMn(t) : (15)In has been demonstrated in [20℄ that relaxation (orrelation) and mem-ory times an also be de�ned as�l� =8<: 1Z0 dt tkW�(t)9=;1=k ; � = ;m ; (16)where k is integer and W�(t) is the time-dependent probability density on-neted with the TCF a(t) and M1(t). W�(t) is normalized:1Z0 dtW�(t) = 1 : (17)The following hoie orresponds to the most general aseW�(t) = j F�(t) j28<: 1Z0 dt j F�(t) j29=;�1 ;F(t) = a(t) ;Fm(t) = M1(t) : (18)The situation with n = 1 and W�(t) = jF�(t)j�R10 dtjF�(t)j	�1 ouldbe onsidered as a speial ase. The de�nition (16) with n = 1 andW�(t) = F�(t)8<: 1Z0 dtF�(t)9=;�1 (19)



2516 R.M. Yulmetyev, D.G. Yulmetyevawas used by Egelsta� (Phys. Rev. A31, 3802 (1985); Z. Phys. Chem. 156,311 (1988)) for the analysis of the slow neutron sattering data in ondensedmatter. However this de�nition is insu�ient sine the time integrals ontainregions with negative time values. Moreover, in the general ase, the TCFa(t) and memory funtions Mn(t) themselves are omplex funtions. Letus note that the ase with n = 2 in equations (16) and (18) has a strikinganalogy with the de�nition of the oherene time in optis [21, 22℄.Now we an state thatPn(t) =jMn(t) j2 ; n � 0 (20)is the probability of the orrelation of �utuations (or memory) for the nthlevel of relaxation (see [17, 23℄ for details). That is to say that we have twofollowing probabilities of orrelation reation and memory reationP(t) =j a(t) j2; Pm(t) =jM1(t) j2 : (21)Beause of the fat that the total probability is bound to be normalizedto unity (� = ;m) Xi P i�(t) = 1; i = ; a ; (22)we an introdue the other probabilitiesPa(t) = 1� P(t) = 1� j a(t) j2;Pam(t) = 1� Pm(t) = 1� jM1(t) j2 :(23)Pa(t) represents the probability of deay or annihilation of orrelations,and Pam(t) in (23) would onstitute the probability of annihilation of mem-ory.Two probabilities P� and Pa�(t)(� = ;m) make feasible the presenta-tion of the two statistial hannels of �utuations: reation of orrelations(the �rst hannel), and annihilation (deay) of orrelations (the seond han-nel). To assess quantitatively the di�erenes between suh two states (re-ation and annihilation of orrelations), we an alulate the informationentropy of orrelation at time tS(t) = S(t) + Sa(t) ;Sm(t) = Sm(t) + Sam(t) ; (24)where S��(t) are the partial information (Shannon) entropy for � = ; a;� = ;m S(t) = �ja(t)j2 ln ja(t)j2 ;Sa(t) = �f1� jaj2g lnf1� jaj2g ;Sm(t) = �jM1(t)j2 ln jM1(t)j2 ;Sam(t) = �f1� jM1j2g lnf1� jM1j2g : (25)



Kinetis of the Dynamial Information Shannon Entropy for: : : 2517Introduing two di�erent hannels (reation and annihilation of orre-lations) will allow us to understand the hidden role of the existene of theorrelations in the ompliated behaviour of systems onsidered.4. Correlation life-times, annihilation of orrelation timesand nondimensional parameter of orrelation partitionNow we an introdue a series of dimensional and nondimensional pa-rameters for the desription of subtle details of the omplex proesses. At�rst let us onsider a simple example of the exponential relaxation for thenormalized TCF a(t) = a(0) exp(�t=�R) ; a(0) = 1 : (26)In addition to the de�nitions (15), (16) let us introdue life-times ofreation of orrelations (�) and of annihilation of orrelations (�a):� = 1Z0 dtS(t) = � 1Z0 dtja(t)j2 ln ja(t)j2 ;�a = 1Z0 dtSa(t) = � 1Z0 dtf1� ja(t)j2g lnf1� ja(t)j2g : (27)We an also use the total orrelation life-time and the memory life-time�s = 1Z0 S(t) = 1Z0 fSa(t) + S(t)g ; (28)�m = 1Z0 dtSm(t) = 1Z0 dtfSm(t) + Sam(t)g : (29)We propose a new nondimensional parameter of orrelation (reation andannihilation) partition � = �a� : (30)Using the integral [24℄ 1Z0 dxx lnx1� x = 1� �26



2518 R.M. Yulmetyev, D.G. Yulmetyevafor the exponential relaxation funtion (26) we have� = 12�R ; �a = ��212 � 12� �R ;�s = �212�R ; � = �26 � 1 �= 0; 645: (31)Note that the partition parameter � points to the relative splitting of no-tions of the reation of orrelations and annihilation of orrelations. The fatthat life-times � and �a show expliitly the importane of use of smoothedtime dependent entropies S(t) and Sa(t) for an arbitrary value t is par-tiularly onvenient. On the other hand, the fat TCF a(t) itself in generalase assumes either omplex or negative values may pose a problem for thealulation of orrelation times. By de�nition, the entropies S�(t); � = ; aan have only positive values, whih learly demonstrates their essentiallystatistial harater.5. Pseudokineti equations for the time dependent hannelsof orrelation entropiesThe entropies de�ned in the previous setion are subjet to the followingboundary onditionslimt!0S(t) = 0 ; limt!1S(t) = 0 ;limt!0Sa(t) = 0 ; limt!1Sa(t) = 0 ;limt!0S(t) = 0 ; limt!1S(t) = 0 : (32)Along with the exat kineti equation (14 a) for TCF, the pseudokinetiequation an be obtained from the relationship (14), (24), (25). For example,in the ase of the reation of orrelations hannel we havedS(t)dt = �
21 tZ0 dtM (1) (t; �)S(�) ; (33)where M (1) (t; �) are the relevant �rst order memory funtionM (1) (t; �) = ln j a(�) j21 + ln j a(t) j2 � a�(t)a�(�)M1(t� �) + a(t)a(�)M�1 (t� �)� ; (34)



Kinetis of the Dynamial Information Shannon Entropy for: : : 2519and for the annihilation of orrelations hannel we getdSa(t)dt = �
21 tZ0 d�M (1)a (t; �)Sa(�) +Na(t) ; (35)M (1)a (t; �) = a�(t)a�(�)M1(t� �) + a(t)a(�)M�1 (t� �)f1 + ln[1� ja(t)j2℄g ln[1� ja(�)j2℄ ; (36)Na(t) = �
21 tZ0 d� 11 + ln[1� ja(t)j2℄�� a�(t)a�(�)M1(t� �) + a(t)a(�)M�1 (t� �)� ; (37)where M (1)a (t; �) is the relevant �rst order memory funtion and Na(t) isthe non-homogeneous part.For the total time dependent orrelation entropy we get the followingpseudokineti equation:dS(t)dt = �
21 tZ0 d�M (1) (t; �)S(�) +N(t) ; (38)M (1) (t; �) = a�(t)a�(�)M1(t� �) + a(t)a(�)M�1 (t� �)fln[1� j a(t) j2℄� ln j a(t) j2g��ln[1� j a(�) j2℄� ln j a(�) j2	�1 ; (39)N(t) = �
21 tZ0 d� [ a�(t)a�(�)M1(t� �) + a(t)a(�)M�1 (t� �)℄fln[1� j a(t) j2℄� ln j a(t) j2g� ln[1� j a(�) j2℄fln[1� a(�) j2℄� ln j a(�) j2g ; (40)where M (1) (t; �) is the �rst order memory funtion and N(t) is the non-homogeneous part for the total orrelation entropy.The pseudokineti equations (33), (34), and (37) are very useful for theareful analysis of memory and non-Markovian e�ets in the time evolutionof information entropies of orrelations of the physial systems.



2520 R.M. Yulmetyev, D.G. Yulmetyeva6. The e�et of dynamial saling on the dynamial informationentropy in liquid esiumThe Shannon entropy is de�ned asS = � nXi=1 Pi(t) lnPi(t); (41)where i numbers states of the system and the probability distribution Pi(t)is normalized nXi=1 Pi(t) = 1: (42)In formaulas (41), (42) no expliit dependene on the number n of dis-rete states is present. However, a similar dependene is still available. Forthe entropy S(t) we haven = 1 ; for P = 0 ; we have S = 0 ; (43)n 6= 1 ; for Pi = 1n ; we have S = lnn : (44)The entropy inreases from 0 to lnn as a system passes from full order(n = 1) to full disorder (n 6= 1). So, inreasing the number of levels enhanesthe information ontent of Shannon entropy. Therefore, onsidering theproesses of orrelations and memory by (20)�(24), one an �ndP(t) + Pa(t) = 1 ;Pm(t) + Pam(t) = 1 ;P1(t) + P2(t) + P3(t) + P4(t) = 1 ;P1 = P(t)Pm(t) ;P2(t) = P(t)Pam(t) ;P3(t) = Pa(t)Pm(t) ;P4 = Pa(t)Pam(t) : (45)In line Eq. (41) we are dealing here with 4th hannels entropyS = �P(t)Pm(t) lnP(t)Pm(t)�P(t)Pam(t) lnP(t)Pam(t)�Pa(t)Pm(t) lnPa(t)Pm(t)�Pa(t)Pam(t) lnPa(t)Pam(t) : (46)



Kinetis of the Dynamial Information Shannon Entropy for: : : 2521

Fig. 1. Evolution in time of the dynamial information entropy S(t)=�x lnx�(1�x)ln(1� x), where x =j a(t) j2; a(t) is the time orrelation funtion.The formulas (45), (46) are very onvenient for taking into aount non-Markovian e�ets and statistial memory in dynamial entropy. Figure 1shows the TCF x =j a(t) j2-dependene of the entropy with maximum S =ln2 at the value j a(t) j= 1=p2.Fig. 2 gives the temporal dependene S(t) alulated with formula (46)for the some values of saling parameter � = 1; 0; 1; 5; 2; 0797; 2; 9005 and�<1. Using the saling parameter and Zwanzig�Mori memory funtion for-malism Sharma et al., Phys. Rev. E54, 3652 (1996); 55, 564 (1997) alu-lated the dynamial struture fator S(q; !) of liquid esium near its melt-ing point (see Fig. 2). Subsituting M3(q; t) = M2(q; �t) R.K. Sharma withoauthors have shown that this approah predits the olletive density ex-itation peak in S(q; !) for wave vetor q < 1:2Å�1 at a frequeny that is inagreement with experimental results. From these urves it is obvious that(1) non-Markovian e�ets in kinetis of initial TCF give rise to inreasingof the informativity of Shannon entropy (41);(2) the dynamial saling hange signi�antly entropy itself and its pa-rameters;(3) the harater of dynamis of the entropy is extremely sensitive to theolletive exitations in the experimental systemsin aordane with Eqs. (43), (44).



2522 R.M. Yulmetyev, D.G. Yulmetyeva

Fig. 2. Time dependene of the dynamial information entropy S(z); z = 2
t;M3(t) = M2(�t): (a) two-hannel evolution without memory; (b) four-hannelevolution with � � 1; () four-hannel evolution with sale parameter �:1 � � = 0; 9; 2 � � = 0; 8; 3 � � = 0; 7; 4 � � = 0; 6; 5 � � = 0; 5;6 � � = 0; 4; 7 � � = 0; 3; 8 � � = 0; 2; 9 � � = 0; 1; 10 � � = 0; 01:7. Fratal dynamis of the long-range orrelationsin short-time human memoryIt should be pointed out that results presented in Setions 2�5 havea wide area of pratial implementation for omplex systems in physis,hemistry, biology and living systems. All results obtained hold for thephysial systems, and this allows to use exat kineti equations (14) togetherwith (26)�(31). In the ase of omplex systems of the nonphysial nature,the exat kineti equations (14) do not exist. However, results (26)�(31) stillstand and they are very useful in desribing random dynamis of omplexsystem.Some results of the researh on the temporal orrelations of the short-time human memory are presented here. An experiment has been performedon the free reolletion in the 2 group of 84 volunteers: 56 students of the se-nior ourses of the Physis Department of the University and 18 shoolboys.With the purposes of dereasing the in�uene of the semanti ontent of var-



Kinetis of the Dynamial Information Shannon Entropy for: : : 2523ious objets, lists involving only three-digit or two-digit numbers have beenused. Eah list inluded thirty or �fteen numbers. Eah of these lists wasread out aloud to the subjets, the subjets reorded a number, and so thatoperation was repeated down to the end of the list. After that, the subjetswere supposed to note all the numbers they remembered. That proedurewas arried out repeatedly. Next list was o�ered after the �rst one and soon. Only up to 100 measurements were available. The delay time betweentwo suessive experiments was 5 min or 3 min. The ratio of the number ofthe properly reonstruted objets to the number of all objets was used asthe numerial value of the experiment. Thus, we have the series of values,eah determined by the ratio of the atual number of proper responses tothe number of all possible proper responses.

(a) (b)

() (d)Fig. 3. Example of time and frequeny behaviour of TCF and dynamial infor-mation entropy for the short-time human memory for subjet L.K., hni = 9; 71;Æ=18; 091%; �=9; 193 min; �a = 3; 0177 min; � = 0; 32826): (a) TCF; (b) infor-mation entropy; () power spetrum of TCF and (d) power frequeny spetrum ofdynamial entropy in units 9 min2.



2524 R.M. Yulmetyev, D.G. YulmetyevaWe analyzed the following data obtained from the subjets: time orrela-tion funtion (TCF), probability of reation of the orrelations, probabilityof annihilation of the orrelations, time dependent hannels of entropies ofreation and annihilation of the orrelations and the total entropy, the or-relation life-time and annihilation of the orrelation time, the total time oforrelations, and the parameter of orrelation partition.In �gures 3, 4 the time dependene of TCF and entropy, and the or-responding power spetra are presented. The following onlusions an bemade from these examples:

(a) (b)

() (d)Fig. 4. Example of time and frequeny behaviour of TCF and entropy for the short-time human memory for subjet R.L., hni=8; 44; Æ=18; 38%; �=11; 53min; �a =3; 532min; � = 0; 30632: a) TCF; b) information entropy; ) power spetrum ofTCF and d) power spetrum of entropy in units 9 min2.



Kinetis of the Dynamial Information Shannon Entropy for: : : 25251) all frequeny spetra are haraterized by the availability of some dis-tintive frequeny peaks;2) dynamial entropy is a nonlinear transformation of a signal. Its fre-queny spetrum is di�erent from the TCF spetrum � the high fre-queny peaks are suppressed and shifted into the domain of the lowfrequenies, and vie versa, entropy ampli�es the low frequeny peaks.Beause of this joint treatment of TCF and entropy, we were able toinvestigate all the areas of frequeny spetra more arefully;3) the most talented students show notieable peaks in the low frequenyarea between 0:1!0 and 0:01!0, where !0 = 0:0349s�1. This is onsis-tent with the osillation period T = 30�300 min. Probably, these lowfrequeny peaks are assoiated with the superslow eletri potentialsof the ortex.8. The haoti dynamis of R�R intervals in human ECGHere we onsider appliation the method of the information entropyto the analysis of the temporal hanges in haoti parameters of humanECG. Figure 5 shows a shemati representation of human ECG. Figures6�8 present data obtained from individual patients. In Figs. 6, 7 the dy-
Fig. 5. De�nition of the harateristi points and of intervals of the human ECG(sketh).namial funtions and power spetra of TCF and entropy for healthy woman(patient C3) and patient with sinus arrythmia (D3) by the short-time ECG-data (200 and 400 heart beats, respetively) are shown. Comparing stati(mean value of the heart beat, absolute and relative dispersion) and kinetiparameters (orrelation life-time �, annihilation of orrelation time �a, pa-rameter � of orrelation partition), one an see the following:



2526 R.M. Yulmetyev, D.G. Yulmetyeva
(a) (b)

() (d)Fig. 6. Examples of time behaviour and power spetra of TCF and dynamialinformation entropy for the short-time dynamis of R�R intervals human ECG:(a) (healthy Akhm., 27 y, 1 time unit = hlRRi = 995; 51ms; Æ = 5; 208%; � =10; 61226t:u:; �a = 2; 51t:u:; � = 0; 23652): (a) TCF; (b) dynamial informationentropy; () power spetrum of TCF and (d) power spetrum of dynamial entropyin normalized form !P (!); s2 Hz.1) the stati �utuations of patient D3 are stronger than in patient C3;2) the kineti parameters of patient C3 are approximately 10 times higherthan in D3;3) the low frequeny peak (approx.,0:06�0:2 s�1) of healthy man disap-pear at sinus arrythmia.Fig. 8 gives the data obtained by the long-time ECG spetra (approxi-mately, 4000 heart beats) for a patient with syndrome of sinus knot weakness(Golub, 43 y). The speial peuliarities have engaged our attention at theomparison studies of di�erent patients:1) Di�erene in phase density is very signi�ant;2) stati �utuations (value of relative dispersion Æ ) ontain no informa-tion value;
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(a) (b)

() (d)Fig. 7. Examples of time behaviour and frequeny spetrum of TCF and dynamialinformation entropy for the short-time dynamis of R�R intervals of human ECG:(patient Nekh., aute stage of mioardial infartion, 47 y, 1 time unit=hlRRi =11; 92; 76ms; Æ = 20; 917%; � = 3; 87533t:u:; �a = 0; 92; 868t:u:; � = 0; 23964):(a) TCF; (b) dynamial information entropy; () power frequeny spetrum ofTCF and (d) power frequeny spetrum of dynamial entropy in normalized form!P (!); s2 Hz.3) orrelation times � and �a of a healthy man is muh longer than inother patients;4) parameter of orrelation partition � of a healthy man is muh largerthan in other patients;5) appreiable di�erene of low-frequeny spetra of orrelation and en-tropy exist for the healthy man;6) TCF anf entropy power spetra di�er onsiderably, espeially in themiddle to low frequenies.
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(a) (b)

() (d)

(e)Fig. 8. Example of time evolution and frequeny spetrum of the long-time dy-namis of R�R intervals in human ECG for a patient with syndrome of sinus knotweaknees (G., 43 y; hlR��R = 1204ims; � = 57; 04s; �a = 16; 74; � = 0; 29352; Æ =9; 492%): (a) time behaviour of TFC; (b) time evolution of the dynamial entropy;() two-dimensional image of R�R intervals return map with i = 1; (d) powerspetrum of time orrelations, !2P (!); s2(Hz)2; (e) power spetrum of dynamialinformation entropy, !2P (!); s2(Hz)2.



Kinetis of the Dynamial Information Shannon Entropy for: : : 2529The above presented data demonstrate a high diagnosti value of thedynamial information entropy in ardiovasular researh as a whole.9. DisussionIn the present paper we have onsidered a new onept of stohasti dy-namis based on suessive use of the information entropy for the orrelationof �utuations of variables used to desribe a given system. It is a spei�feature of our method that it extrats the information entropy of the timedependent state by the probability and the time orrelation funtion of therandom �utuations of a omplex system. That is espeially true in regardto two time dependent hannels of the information entropy: the reationof orrelations and the annihilation of orrelations. The appliation of thetime dependent information entropy permits us to use a set of time depen-dent stohasti funtions (TCF, probabilities of reation and annihilation oforrelations, total orrelation entropy and its two hannels) and orrelationparameters (orrelation life-time, annihilation of orrelation time, the totalorrelation time, the parameter of orrelation partition). This set gives usthe detailed information of the harateristis of stohasti dynamis of theomplex system.Our preliminary investigation of the short-time human memory leads usto the onlusion that the �utuations in the values of numbers of reolletiondisplay fratal dynamis and long-range stable orrelations in the youngsubjets.Our �ndings indiate that the parameter of short-time human memoryexhibits long-range time orrelations. Flutuations in the memory parameterare statistially orrelated with variations in the numerous values of param-eters earlier, and this in�uene deays in a sale-invariant, fratal manner.This behaviour appears to be intrinsi to the human memory.From neurophysiologial ontrol viewpoint, this behaviour is of inter-est beause it signi�es the presene of long-term dependene. The meha-nism(s) responsible for these parameters of memory orrelations are largelyunknown. The unexpeted observations of long-range orrelations in short-time memory raises important questions onerning neuron networks dynam-is and the origins of �utuations in parameters of memory. Many naturalphenomena are haraterized by short-term orrelations with a harateris-ti time sale and an autoorrelation funtion that deays exponentially. Inontrast, long-range orrelations have only been observed under vary spei�onditions, for example when a system is near its ritial point. In that asethere exists no well-de�ned orrelation length and autoorrelation funtiondeays aording to a power law. The present value is statistially orrelatednot only with its most reent value, but also with its long-term history in



2530 R.M. Yulmetyev, D.G. Yulmetyevaa sale-invariant fratal manner. The establishment of long-range orrela-tions in short-time memory therefore raises the possibility of exsitene of ayet unidenti�ed mehanism underlying neural ontrol of short-time memory.Hopefully, future studies will help to determine the origin of this fratal sal-ing and �nd out whether (and to what extent) a stohasti or deterministimehanism lies behind this property of neural ontrol.Our treatment of the haoti dynamis of R�R intervals in human ECGshows both the extremely omplex harater of suh dynamis and big in-formation ontent of the dynamial information entropy. Our investigationhad a preliminary harater. However, it shows that there are big number ofstati, dynamial and frequeny parameters of the human heart dynamis.It an be predited with on�dene that the dynamial entropy will let usestablish fundamentally new diagnosti tehniques of assessment of the stateof the human ardiovasular system.The dynamial information entropy for realisti omplex system allowsan adequate desription of the temporal behaviour with the many-sale or-relations of �utuations. Moreover, using the results of experimental inves-tigation of di�erent objet, it is possible to alulate their stati, orrelationand information funtions and parameters.This work was partially supported by Competitive Centre of Fundamen-tal Researh at Sant-Peterburg University, (Grant -0-14.0-12), RHSF (Grant-06-08048). REFERENCES[1℄ C.M. Viswanathan, C.K. Peng, H.E. Stanley, A.L. Goldberger, Phys. Rev.E55, 845 (1997).[2℄ P.Ch. Ivanov, M.G. Rosenblum, C.K. Peng, J. Mietus, S. Havlin, H.E. Gold-berger, Nature 383, 327 (1996).[3℄ C. Webber, T.P. Zbilut: Reurrent Struturing of Dynamial and Spatial Sys-tems, in Complexity in the Living : A Modelisti Approah, InterdisiplinarySiene Reviews, ed. by A. Colosimo, and A. Lesk, Oxford University Press,New York 1997.[4℄ C.K. Peng, S. Havlin, H.E. Stanley, A.L. Goldberger, Chaos 5, 82 (1995).[5℄ J.M. Hausdor�, S.K. Peng, Phys. Rev. E54, 2154 (1996).[6℄ J.M. Hausdor�, P.L. Purdon, C.K. Peng, Z. Ladin, J.Y. Wei, A.L. Goldberger,J. Appl. Physiol. 80 (5), 1448 (1996).[7℄ J.M. Hausdor�, S.L. Mithell, R. Firton, C.K. Peng, M.E. Cudkowiz,J.Y. Wei, A.L. Goldberger, J. Appl. Physiol. 82 (1), 262 (1997).[8℄ M. Palu�s, Physia D93, 64 (1996).
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