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Kinetic behaviour of dynamical information Shannon entropy is dis-
cussed for complex systems: physical systems with non-Markovian prop-
erty and memory in correlation approximation, and biological and physio-
logical systems with sequences of the Markovian and non-Markovian ran-
dom noises. For the stochastic processes, a description of the information
entropy in terms of normalized time correlation functions is given. The
influence and important role of two mutually dependent channels of the
entropy change, correlation (creation or generation of correlations) and
anti-correlation (decay or annihilation of correlation) is discussed. The
method developed here is also used in analysis of the density fluctuations
in liquid cesium obtained from slow neutron scattering data, fractal kinetics
of the long-range fluctuation in the short-time human memory and chaotic
dynamics of R-R intervals of human ECG.

PACS numbers: 05.40.4j, 02.50.Ey

1. Introduction

In this work we are concerned with the dynamical properties of Shannon
entropy. This research has been strongly influenced by the book by Boris
Kadomzev, Dynamics and Information, Moscow, 1997.

Complexity, nonlinearity and nonstationarity of physical, chemical, bi-
ological and physiological systems have been recently of profound interest.
Complex systems are governed by numerous interacting variables and pose
a high dimensional problem with drifting parameters of the influence and
presence of many type of noises, internal and external perturbations. Such
complexity may be due to stable scaling associated with “fractal” dynam-
ics and peculiarities related to internal and external effects. The fractal
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mechanism of many systems has recently received much attention. Self-
similarity in temporal dynamics as well as in the spatial structure has been
reported for many physical, chemical, physiological and biological systems
and in processes like ion channel kinetics, auditory nerve firings, lung in-
flation, muscular, cardiovascular and pulmonary systems, human cognition,
walking, blood pressure and heart rate [1-15].

In this paper we are demonstrating a new concept in investigating the
dynamics of the temporal evolution of complex system. The basic idea is
that information (Shannon) entropy of random processes is holds both qual-
itative and quantitative data on the object under investigation. The paper
is structured as follows. Section 2 contains a standard definition of an in-
finite chain of coupled nonlinear non-Markovian kinetic equations for the
time-correlation functions of fluctuations of the physical system. The basic
equation and the definition of the information (Shannon) entropy for the
fractal dynamics of correlation processes are presented in Section 3. Section
4 gives some useful formulas for the correlation life time, anti-correlation
decay time and for the parameters of correlation partition. In Section 5 we
derive the pseudo-kinetic equations and the related memory functions for
the time-dependent information entropy. We would like to stress that we
introduce the correlation (creation of correlation) and anti-correlation (de-
cay or annihilation of correlation) channels for the temporal changes of the
information entropy. In Section 6 we consider the effect of scaling of the
dynamical information entropy in liquid cesium. Section 7 incorporates the
results of our analysis of fractal dynamics of the long-range correlations in
the short-time human memory. Section 8 contains the analysis of chaotic dy-
namics of R-R intervals of human ECG. Section 9 contains some conclusions
of the results obtained.

2. The basic non-Markov equations for the time correlation
functions for the physical system

At first let us consider the time evolution of a dynamical variable A(t),
its statistical average! over a distribution (...) — Aa, = (A(t)), and fluctu-
ations 0 A(t)

A(t), Aay = (A(1)), 5A(2) = A(t) — (A(?))- (1)

The variable A(t) and fluctuations §A(¢) obey the Liouville equation of
motion

d "
ZHOA(D)} =iLoA(t), 2)

! 'We consciously omit the important peculiarity connected with stationarity and er-
godicity, which lies beyond the scope of the present paper and will be discussed
separately elsewhere.
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where we introduce the Liouville operator L. Here we suppose that the vari-
able A(t), fluctuations § A(t), operator L form a many-dimensional problem.

Successively applying the operator L to the dynamical variable dA(t) we
obtain an infinite set of dynamical functions

By (0) = (L)"3A(0). (3)

Applying the Gram—Schmidt orthogonalization procedure [16, 17] to the
set By, (0), we can obtain the following infinite set of dynamical variables W,

<W;(O)a Wm(0)> = 5n,m<| Wn(o) |2> ’
where 0y, ,, is the Kronecker symbol.

Now we may easily infer the recursive formulae in which the functions
W, = W, (t) are connected to the preceding ones with smaller indices:

Wy

SA(0), W, = (fi _wg))) Wo...

W, = (ﬁ - w(()n_l)) — 2 Wy g,n>1. (4)
Here we introduce the following notation

(n) _ <W;£Wn> _ <| Wn |2>
“W W) T W ©)

where (2, are the general relaxation frequencies, and the frequencies w(()n)
describe the eigenspectrum of the Liouville operator L.

The set of orthogonal functions (4) can be connected with the set of pro-
jectors which project an arbitrary dynamical variable Y on vectors belonging
to the set

Wy (W
I, = W Py =1~ Iy, Il = 6yl
Pan = 5n,mPnaHnPn = Pan =0. (6)

Note that both sets (3) and (4) are infinite. If we execute the operations
in the space of dynamical variables, then the formal expression (6) must be
understood as following:

(WyY) :
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For the time correlation functions (TCF)

W exp(i LS )W,
B ©

M, (1) =

applying successively projection operators P, and I, to equation of mo-
tion (1) on the left and solving these system of equations, we obtain an
infinite hierarchy of connected equations with indices n > 0

t
%Z(t) = il Mo (1) = 922, / d7 My 41 (7) My (t = 7). (©)
0

The function My (%)

(0A*(0)3A(#))

Mo(t) = a(h) = =540y )

(10)

is usually considered [17-19] as the function characterizing the statistical
memory of the system. We adopt the following notation for the diagonal
matrix elements of the Liouvillian (n > 1)

B9 =L, i =P, Pyy... Py LPy... PysPy_y. (11)

TCF a(t) in Eq. (10) and set of memory functions M, (t) (Eq. (8)) is
of profound importance for our further considerations. It is convenient to
rewrite the set of equations (9) as an infinite chain of coupled nonlinear
non-Markovian kinetic equations for TCF a(t)

t

dc(zi(tt) _ _Q%/dTMl(T)a(t_T)Hw(()o)a(t),
0
u t
. d;(t) SoY / dr My (1) My (t — 7) + i My (2)
0
dM: /
th(t) = —Qg/dtMs(T)Mg(t—T) +iw(()2)M2(t)- (12)
0
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3. Time-dependent information entropy and entropy memory
function for the correlations of fluctuations in complex systems

For the initial TCF a(t) and memory functions of the n—th order M, (t)
in (11), (14) it is convenient to introduce microscopic relaxation (correlation)
times as [20]

r = Ra(0), a(s) = / dte="a(t), (13)
0

= RNL(0), Bi(s) = / dte=' M, (1), (14)
0

= RNL(0),  Ny(s) = / dte= M, (£). (15)
0

In has been demonstrated in [20] that relaxation (correlation) and mem-
ory times can also be defined as

" 1k
o= /dttkWa(t) Ca=cm, (16)
0

where k is integer and W, (¢) is the time-dependent probability density con-
nected with the TCF a(t) and M (t). W,(t) is normalized:

o0

/dtWa(t) =1. (17)
0

The following choice corresponds to the most general case

o -1
Walt) = | Fal) P4 [at| i) P

0
Ei(t) = alt).
Fult) = Mi(t). (18)

The situation with n = 1 and Wo(t) = |Fo(t)[ { [~ dt|Foé(t)|}71 could
be considered as a special case. The definition (16) with n = 1 and

00 -1

Wa(t) = Falt) / A0 (19)
0
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was used by Egelstaff (Phys. Rev. A31, 3802 (1985); Z. Phys. Chem. 156,
311 (1988)) for the analysis of the slow neutron scattering data in condensed
matter. However this definition is insufficient since the time integrals contain
regions with negative time values. Moreover, in the general case, the TCF
a(t) and memory functions M, () themselves are complex functions. Let
us note that the case with n = 2 in equations (16) and (18) has a striking
analogy with the definition of the coherence time in optics [21, 22].
Now we can state that

Py(t) = Ma(t) |?, n20 (20)

is the probability of the correlation of fluctuations (or memory) for the nth
level of relaxation (see [17, 23| for details). That is to say that we have two
following probabilities of correlation creation and memory creation

Puclt) =| a(t) [2, Pa(t) =| My (2) |* . (21)

Because of the fact that the total probability is bound to be normalized
to unity (o = ¢, m)

Y Pi(t)=1i=c,a, (22)
7

we can introduce the other probabilities

Poe(t) =1 = Pee(t) = 1= | a(t) |*; Pam(t) = 1 — Pop(t) = 1— | My (2) | .
(23)

P,.(t) represents the probability of decay or annihilation of correlations,
and Py, (t) in (23) would constitute the probability of annihilation of mem-
ory.

Two probabilities P., and P, (t)(a = ¢, m) make feasible the presenta-
tion of the two statistical channels of fluctuations: creation of correlations
(the first channel), and annihilation (decay) of correlations (the second chan-
nel). To assess quantitatively the differences between such two states (cre-
ation and annihilation of correlations), we can calculate the information
entropy of correlation at time ¢

Se(t) = See(t) + Sac(t) ,

Sm(t) = Sem(t) + Sam(t), (24)
where Sgq(t) are the partial information (Shannon) entropy for f = ¢, a;
a=c,m
~la(®)* nla(t)|?,
= —{1—laf’}In{1 —|a[*},
= —|Mi(8)* n |My (1)
am(t) = —{1 =M "} In{1 — |M;*}. (25)

o
~
I
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Introducing two different channels (creation and annihilation of corre-
lations) will allow us to understand the hidden role of the existence of the
correlations in the complicated behaviour of systems considered.

4. Correlation life-times, annihilation of correlation times
and nondimensional parameter of correlation partition

Now we can introduce a series of dimensional and nondimensional pa-
rameters for the description of subtle details of the complex processes. At
first let us consider a simple example of the exponential relaxation for the
normalized TCF

a(t) = a(0) exp(—t/Tr), a(0)=1. (26)

In addition to the definitions (15), (16) let us introduce life-times of
creation of correlations (7¢.) and of annihilation of correlations (7q.):

ree = [ dtSee(t) = — [ dtfa()]? mlat)]?.
[0

o = / 1S (t) = - / dt{1 — la(®’} Infl — la(@®)P}.  @27)
0 0

We can also use the total correlation life-time and the memory life-time

o

= / Su(t) = / (Suc(t) + Sec(®)} | (28)
0 0

o

T = / dtSp,(t) = / dt{Sem (t) + Sam(t)}. (29)

0 0

We propose a new nondimensional parameter of correlation (creation and
annihilation) partition

¢ =T (30)

Using the integral [24]
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for the exponential relaxation function (26) we have

1 2 1
Tece = 3™Rs Tac= |75 5] ™R>

2 12 2
772 7T2
Ts — E’TR, §—€—1:0,645 (31)

Note that the partition parameter £ points to the relative splitting of no-
tions of the creation of correlations and annihilation of correlations. The fact
that life-times 7. and 7,. show explicitly the importance of use of smoothed
time dependent entropies Sc.(t) and S,.(t) for an arbitrary value ¢ is par-
ticularly convenient. On the other hand, the fact TCF a(t) itself in general
case assumes either complex or negative values may pose a problem for the
calculation of correlation times. By definition, the entropies Syc(t), @ = ¢, a
can have only positive values, which clearly demonstrates their essentially
statistical character.

5. Pseudokinetic equations for the time dependent channels
of correlation entropies

The entropies defined in the previous section are subject to the following
boundary conditions

lim S..(t) = 0, hm See(t) =

t—0

lim S,.(t) = 0, hm Sac(t) =

t—0

lim S (t) = 0, tlggosc( ) =0. (32)

Along with the exact kinetic equation (14 a) for TCF, the pseudokinetic
equation can be obtained from the relationship (14), (24), (25). For example,
in the case of the creation of correlations channel we have

t

- / AEMD (1, 7)Suc() (33)
0

dSec(t)
dt

where M )(t, 7) are the relevant first order memory function

n | a(r) |? a* a
M (t,7) = 5 1+1|n |(a)(t|) B {a((?) My(t—r1)+ %M{(t — T)} . (34)
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and for the annihilation of correlations channel we get

dSac(t)

t
«ll) — g / dr MO (£, 7)Suc(7) + Naco(t) (35)
0

a*(t) o M (t— T
MYt 1) = ()" T M) (36)
ac \" {1 + ]n[l — |a(t)|2]}1n[1 - |a(T)|2] ’

t

1
Noce(t) = _Qf/d71+ln[1 — la(t)|?]
0
a*(t) . ) pres — T
X {a*(T) Mi(t —7)+ a(r) M )} ’ 0

where M) (t,7) is the relevant first order memory function and Ny.(t) is
the non-homogeneous part.

For the total time dependent correlation entropy we get the following
pseudokinetic equation:

t
dsjt(t) = _Q%/dTMc(l)(ta T)Se(T) + Ne(t) (38)
0
) o — s G
Mgy — T M=)
c {In[1= T a(t) |2 — In] a(t) |2
X {ln[l— | a(7) | ] —In | a(r) |2} 1 (39)

Q

(
¢ [w Mi(t—71)+ alt) y M (t —1)]
P 0 (1) a(r)
Ne(t) = 91/d {In[1— [ a(t) 2] —In | a(t) 2}
Inf1— | a(r) |7
Tl —a(r) P~ [ a(r) P}’

(40)

where Mc(l)(t,T) is the first order memory function and N.(¢) is the non-
homogeneous part for the total correlation entropy.

The pseudokinetic equations (33), (34), and (37) are very useful for the
careful analysis of memory and non-Markovian effects in the time evolution
of information entropies of correlations of the physical systems.
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6. The effect of dynamical scaling on the dynamical information
entropy in liquid cesium

The Shannon entropy is defined as

Z P;(t)In Py(t (41)
where 4 numbers states of the system and the probability distribution P;(t)
is normalized
n
S P =1 (42)
i=1

In formaulas (41), (42) no explicit dependence on the number n of dis-
crete states is present. However, a similar dependence is still available. For
the entropy S(t) we have

n =1, for P=0, wehave S=0, (43)
1
n # 1, for Pb=—, wehave S=Inn. (44)
n
The entropy increases from 0 to Innm as a system passes from full order
(n = 1) to full disorder (n # 1). So, increasing the number of levels enhances

the information content of Shannon entropy. Therefore, considering the
processes of correlations and memory by (20)—(24), one can find

Pam(t) - (46)
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S(t)

a5

Fig. 1. Evolution in time of the dynamical information entropy S(t) = —z In 2—(1—x)
In(1 — z), where x =| a(t) |?,a(t) is the time correlation function.

The formulas (45), (46) are very convenient for taking into account non-
Markovian effects and statistical memory in dynamical entropy. Figure 1
shows the TCF z =| a(t) |*>-dependence of the entropy with maximum S =
In2 at the value | a(t) |= 1/v/2.

Fig. 2 gives the temporal dependence S(#) calculated with formula (46)
for the some values of scaling parameter o = 1,0;1,5;2,0797;2,9005 and
a < 1. Using the scaling parameter and Zwanzig—-Mori memory function for-
malism Sharma et al., Phys. Rev. E54, 3652 (1996); 55, 564 (1997) calcu-
lated the dynamical structure factor S(q,w) of liquid cesium near its melt-
ing point (see Fig. 2). Subsituting Ms5(q,t) = Ms(q, at) R.K. Sharma with
coauthors have shown that this approach predicts the collective density ex-
citation peak in S(q,w) for wave vector ¢ < 1.2 A 'ata frequency that is in
agreement with experimental results. From these curves it is obvious that

(1) non-Markovian effects in kinetics of initial TCF give rise to increasing
of the informativity of Shannon entropy (41);

(2) the dynamical scaling change significantly entropy itself and its pa-
rameters;

(3) the character of dynamics of the entropy is extremely sensitive to the
collective excitations in the experimental systems

in accordance with Eqs. (43), (44).
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Fig.2. Time dependence of the dynamical information entropy S(z),z = 2£2t,
M3(t) = Ma(at): (a) two-channel evolution without memory; (b) four-channel
evolution with a > 1; (c) four-channel evolution with scale parameter o:
1—a=09%2—0a=083 —a=074—a=206;5—a=0,>5;
6 —a=0,47—a=0,3;8—a=0,2,9—a=0,1; 10 — a = 0,01.

7. Fractal dynamics of the long-range correlations
in short-time human memory

It should be pointed out that results presented in Sections 2-5 have
a wide area of practical implementation for complex systems in physics,
chemistry, biology and living systems. All results obtained hold for the
physical systems, and this allows to use exact kinetic equations (14) together
with (26)—(31). In the case of complex systems of the nonphysical nature,
the exact kinetic equations (14) do not exist. However, results (26)—(31) still
stand and they are very useful in describing random dynamics of complex
system.

Some results of the research on the temporal correlations of the short-
time human memory are presented here. An experiment has been performed
on the free recollection in the 2 group of 84 volunteers: 56 students of the se-
nior courses of the Physics Department of the University and 18 schoolboys.
With the purposes of decreasing the influence of the semantic content of var-
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ious objects, lists involving only three-digit or two-digit numbers have been
used. Each list included thirty or fifteen numbers. Each of these lists was
read out aloud to the subjects, the subjects recorded a number, and so that
operation was repeated down to the end of the list. After that, the subjects
were supposed to note all the numbers they remembered. That procedure
was carried out repeatedly. Next list was offered after the first one and so
on. Only up to 100 measurements were available. The delay time between
two successive experiments was 5 min or 3 min. The ratio of the number of
the properly reconstructed objects to the number of all objects was used as
the numerical value of the experiment. Thus, we have the series of values,
each determined by the ratio of the actual number of proper responses to
the number of all possible proper responses.

1 3min

JANAVA R

N B B
T
~
g
3

%

P(®) ] P(@)

(c) (d)

Fig.3. Example of time and frequency behaviour of TCF and dynamical infor-
mation entropy for the short-time human memory for subject L.K., (n) =9,71;
6=18,091%; 7.=9,193 min; 7,. = 3,0177 min; £ = 0,32826): (a) TCF; (b) infor-
mation entropy; (¢) power spectrum of TCF and (d) power frequency spectrum of
dynamical entropy in units 9 min2.
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We analyzed the following data obtained from the subjects: time correla-
tion function (TCF), probability of creation of the correlations, probability
of annihilation of the correlations, time dependent channels of entropies of
creation and annihilation of the correlations and the total entropy, the cor-
relation life-time and annihilation of the correlation time, the total time of
correlations, and the parameter of correlation partition.

In figures 3, 4 the time dependence of TCF and entropy, and the cor-
responding power spectra are presented. The following conclusions can be
made from these examples:

al

L3min
st

L L L
o~
g
g

=

% P(e) P(o)

(c) (d)

Fig. 4. Example of time and frequency behaviour of TCF and entropy for the short-
time human memory for subject R.L., (n)=8,44; §=18,38%, 7..= 11, 53 min; 7,. =
3,532min; £ = 0,30632: a) TCF; b) information entropy; ¢) power spectrum of

TCF and d) power spectrum of entropy in units 9 minZ.
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1) all frequency spectra are characterized by the availability of some dis-
tinctive frequency peaks;

2) dynamical entropy is a nonlinear transformation of a signal. Its fre-
quency spectrum is different from the TCF spectrum — the high fre-
quency peaks are suppressed and shifted into the domain of the low
frequencies, and vice versa, entropy amplifies the low frequency peaks.
Because of this joint treatment of TCF and entropy, we were able to
investigate all the areas of frequency spectra more carefully;

3) the most talented students show noticeable peaks in the low frequency
area between 0.1wy and 0.01wg, where wy = 0.0349s~!. This is consis-
tent with the oscillation period T' = 30300 min. Probably, these low
frequency peaks are associated with the superslow electric potentials
of the cortex.

8. The chaotic dynamics of R—R intervals in human ECG

Here we consider application the method of the information entropy
to the analysis of the temporal changes in chaotic parameters of human
ECG. Figure 5 shows a schematic representation of human ECG. Figures
68 present data obtained from individual patients. In Figs. 6, 7 the dy-

Fig.5. Definition of the characteristic points and of intervals of the human ECG
(sketch).

namical functions and power spectra of TCF and entropy for healthy woman
(patient C3) and patient with sinus arrythmia (D3) by the short-time ECG-
data (200 and 400 heart beats, respectively) are shown. Comparing static
(mean value of the heart beat, absolute and relative dispersion) and kinetic
parameters (correlation life-time 7, annihilation of correlation time 4., pa-
rameter £ of correlation partition), one can see the following:
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Fig.6. Examples of time behaviour and power spectra of TCF and dynamical
information entropy for the short-time dynamics of R-R intervals human ECG:
(a) (healthy Akhm., 27 y, 1 time unit = {(Ilgg) = 995,51ms;d = 5,208%; 7cc =
10,61226t.u.; 7o, = 2,51t.u.; & = 0,23652): (a) TCF; (b) dynamical information
entropy; (c) power spectrum of TCF and (d) power spectrum of dynamical entropy
in normalized form wP(w),s? Hz.

1) the static fluctuations of patient D3 are stronger than in patient C3;

2) the kinetic parameters of patient C3 are approximately 10 times higher
than in D3;

3) the low frequency peak (approx.,0.06-0.2s 1) of healthy man disap-
pear at sinus arrythmia.

Fig. 8 gives the data obtained by the long-time ECG spectra (approxi-
mately, 4000 heart beats) for a patient with syndrome of sinus knot weakness
(Golub, 43 y). The special peculiarities have engaged our attention at the
comparison studies of different patients:

1) Difference in phase density is very significant;
2) static fluctuations (value of relative dispersion § ) contain no informa-
tion value;
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Fig. 7. Examples of time behaviour and frequency spectrum of TCF and dynamical
information entropy for the short-time dynamics of R-R intervals of human ECG:
(patient Nekh., acute stage of miocardial infarction, 47 y, 1 time unit=(lggr) =
11,92,76ms;0 = 20,917%; 7. = 3,87533t.u.; 7, = 0,92,868t.u.;& = 0,23964):
(a) TCF; (b) dynamical information entropy; (c) power frequency spectrum of
TCF and (d) power frequency spectrum of dynamical entropy in normalized form
wP(w),s*> Hz.

3) correlation times 7. and 7,4, of a healthy man is much longer than in
other patients;

4) parameter of correlation partition ¢ of a healthy man is much larger
than in other patients;

5) appreciable difference of low-frequency spectra of correlation and en-
tropy exist for the healthy man;

6) TCF anf entropy power spectra differ considerably, especially in the
middle to low frequencies.
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Fig.8. Example of time evolution and frequency spectrum of the long-time dy-
namics of R-R intervals in human ECG for a patient with syndrome of sinus knot
weaknees (G., 43 y; (l——r = 1204)ms; 7., = 57,04s; 7, = 16,74; £ = 0,29352; 6 =
9,492%): (a) time behaviour of TFC; (b) time evolution of the dynamical entropy;
(c) two-dimensional image of R-R intervals return map with ¢ = 1; (d) power
spectrum of time correlations, w?P(w), s?(Hz)?; (e) power spectrum of dynamical
information entropy, w?P(w), s?(Hz)?2.
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The above presented data demonstrate a high diagnostic value of the
dynamical information entropy in cardiovascular research as a whole.

9. Discussion

In the present paper we have considered a new concept of stochastic dy-
namics based on successive use of the information entropy for the correlation
of fluctuations of variables used to describe a given system. It is a specific
feature of our method that it extracts the information entropy of the time
dependent state by the probability and the time correlation function of the
random fluctuations of a complex system. That is especially true in regard
to two time dependent channels of the information entropy: the creation
of correlations and the annihilation of correlations. The application of the
time dependent information entropy permits us to use a set of time depen-
dent stochastic functions (TCF, probabilities of creation and annihilation of
correlations, total correlation entropy and its two channels) and correlation
parameters (correlation life-time, annihilation of correlation time, the total
correlation time, the parameter of correlation partition). This set gives us
the detailed information of the characteristics of stochastic dynamics of the
complex system.

Our preliminary investigation of the short-time human memory leads us
to the conclusion that the fluctuations in the values of numbers of recollection
display fractal dynamics and long-range stable correlations in the young
subjects.

Our findings indicate that the parameter of short-time human memory
exhibits long-range time correlations. Fluctuations in the memory parameter
are statistically correlated with variations in the numerous values of param-
eters earlier, and this influence decays in a scale-invariant, fractal manner.
This behaviour appears to be intrinsic to the human memory.

From neurophysiological control viewpoint, this behaviour is of inter-
est because it signifies the presence of long-term dependence. The mecha-
nism(s) responsible for these parameters of memory correlations are largely
unknown. The unexpected observations of long-range correlations in short-
time memory raises important questions concerning neuron networks dynam-
ics and the origins of fluctuations in parameters of memory. Many natural
phenomena are characterized by short-term correlations with a characteris-
tic time scale and an autocorrelation function that decays exponentially. In
contrast, long-range correlations have only been observed under vary specific
conditions, for example when a system is near its critical point. In that case
there exists no well-defined correlation length and autocorrelation function
decays according to a power law. The present value is statistically correlated
not only with its most recent value, but also with its long-term history in
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a scale-invariant fractal manner. The establishment of long-range correla-
tions in short-time memory therefore raises the possibility of exsitence of a
yet unidentified mechanism underlying neural control of short-time memory.
Hopefully, future studies will help to determine the origin of this fractal scal-
ing and find out whether (and to what extent) a stochastic or deterministic
mechanism lies behind this property of neural control.

Our treatment of the chaotic dynamics of R—R intervals in human ECG
shows both the extremely complex character of such dynamics and big in-
formation content of the dynamical information entropy. Our investigation
had a preliminary character. However, it shows that there are big number of
static, dynamical and frequency parameters of the human heart dynamics.
It can be predicted with confidence that the dynamical entropy will let us
establish fundamentally new diagnostic techniques of assessment of the state
of the human cardiovascular system.

The dynamical information entropy for realistic complex system allows
an adequate description of the temporal behaviour with the many-scale cor-
relations of fluctuations. Moreover, using the results of experimental inves-
tigation of different object, it is possible to calculate their static, correlation
and information functions and parameters.

This work was partially supported by Competitive Centre of Fundamen-
tal Research at Sant-Peterburg University, (Grant -0-14.0-12), RHSF (Grant
-06-08048).
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