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KINETICS OF THE DYNAMICAL INFORMATIONSHANNON ENTROPY FOR COMPLEX SYSTEMS�R.M. Yulmetyev and D.G. YulmetyevaDepartment of Physi
s, Kazan State Pedagogi
al UniversityMezhlauk Street 1, 420021 Kazan, Russia(Re
eived O
tober 12, 1998)Kineti
 behaviour of dynami
al information Shannon entropy is dis-
ussed for 
omplex systems: physi
al systems with non-Markovian prop-erty and memory in 
orrelation approximation, and biologi
al and physio-logi
al systems with sequen
es of the Markovian and non-Markovian ran-dom noises. For the sto
hasti
 pro
esses, a des
ription of the informationentropy in terms of normalized time 
orrelation fun
tions is given. Thein�uen
e and important role of two mutually dependent 
hannels of theentropy 
hange, 
orrelation (
reation or generation of 
orrelations) andanti-
orrelation (de
ay or annihilation of 
orrelation) is dis
ussed. Themethod developed here is also used in analysis of the density �u
tuationsin liquid 
esium obtained from slow neutron s
attering data, fra
tal kineti
sof the long-range �u
tuation in the short-time human memory and 
haoti
dynami
s of R�R intervals of human ECG.PACS numbers: 05.40.+j, 02.50.Ey1. Introdu
tionIn this work we are 
on
erned with the dynami
al properties of Shannonentropy. This resear
h has been strongly in�uen
ed by the book by BorisKadomzev, Dynami
s and Information, Mos
ow, 1997.Complexity, nonlinearity and nonstationarity of physi
al, 
hemi
al, bi-ologi
al and physiologi
al systems have been re
ently of profound interest.Complex systems are governed by numerous intera
ting variables and posea high dimensional problem with drifting parameters of the in�uen
e andpresen
e of many type of noises, internal and external perturbations. Su
h
omplexity may be due to stable s
aling asso
iated with �fra
tal� dynam-i
s and pe
uliarities related to internal and external e�e
ts. The fra
tal� Presented at the XI Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 1�5, 1998.(2511)
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hanism of many systems has re
ently re
eived mu
h attention. Self-similarity in temporal dynami
s as well as in the spatial stru
ture has beenreported for many physi
al, 
hemi
al, physiologi
al and biologi
al systemsand in pro
esses like ion 
hannel kineti
s, auditory nerve �rings, lung in-�ation, mus
ular, 
ardiovas
ular and pulmonary systems, human 
ognition,walking, blood pressure and heart rate [1�15℄.In this paper we are demonstrating a new 
on
ept in investigating thedynami
s of the temporal evolution of 
omplex system. The basi
 idea isthat information (Shannon) entropy of random pro
esses is holds both qual-itative and quantitative data on the obje
t under investigation. The paperis stru
tured as follows. Se
tion 2 
ontains a standard de�nition of an in-�nite 
hain of 
oupled nonlinear non-Markovian kineti
 equations for thetime-
orrelation fun
tions of �u
tuations of the physi
al system. The basi
equation and the de�nition of the information (Shannon) entropy for thefra
tal dynami
s of 
orrelation pro
esses are presented in Se
tion 3. Se
tion4 gives some useful formulas for the 
orrelation life time, anti-
orrelationde
ay time and for the parameters of 
orrelation partition. In Se
tion 5 wederive the pseudo-kineti
 equations and the related memory fun
tions forthe time-dependent information entropy. We would like to stress that weintrodu
e the 
orrelation (
reation of 
orrelation) and anti-
orrelation (de-
ay or annihilation of 
orrelation) 
hannels for the temporal 
hanges of theinformation entropy. In Se
tion 6 we 
onsider the e�e
t of s
aling of thedynami
al information entropy in liquid 
esium. Se
tion 7 in
orporates theresults of our analysis of fra
tal dynami
s of the long-range 
orrelations inthe short-time human memory. Se
tion 8 
ontains the analysis of 
haoti
 dy-nami
s of R�R intervals of human ECG. Se
tion 9 
ontains some 
on
lusionsof the results obtained.2. The basi
 non-Markov equations for the time 
orrelationfun
tions for the physi
al systemAt �rst let us 
onsider the time evolution of a dynami
al variable A(t),its statisti
al average1 over a distribution h: : :i ! Aav = hA(t)i, and �u
tu-ations ÆA(t) A(t); Aav = hA(t)i; ÆA(t) = A(t)� hA(t)i: (1)The variable A(t) and �u
tuations ÆA(t) obey the Liouville equation ofmotion ddtfÆA(t)g = iL̂ÆA(t) ; (2)1 We 
ons
iously omit the important pe
uliarity 
onne
ted with stationarity and er-godi
ity, whi
h lies beyond the s
ope of the present paper and will be dis
ussedseparately elsewhere.



Kineti
s of the Dynami
al Information Shannon Entropy for: : : 2513where we introdu
e the Liouville operator L̂. Here we suppose that the vari-able A(t), �u
tuations ÆA(t), operator L̂ form a many-dimensional problem.Su

essively applying the operator L̂ to the dynami
al variable ÆA(t) weobtain an in�nite set of dynami
al fun
tionsBn(0) = (L̂)nÆA(0) : (3)Applying the Gram�S
hmidt orthogonalization pro
edure [16, 17℄ to theset Bn(0), we 
an obtain the following in�nite set of dynami
al variables WnhW �n(0);Wm(0)i = Æn;mhj Wn(0) j2i ;where Æn;m is the Krone
ker symbol.Now we may easily infer the re
ursive formulae in whi
h the fun
tionsWn = Wn(t) are 
onne
ted to the pre
eding ones with smaller indi
es:W0 = ÆA(0);W1 = �L̂� !(0)0 �W0 : : : ;Wn = �L̂� !(n�1)0 ��
2n�1Wn�2; n > 1 : (4)Here we introdu
e the following notation!(n)0 = hW �nL̂Wnihj Wn j2i ; 
2n = hj Wn j2ihj Wn�1 j2i ; (5)where 
n are the general relaxation frequen
ies, and the frequen
ies !(n)0des
ribe the eigenspe
trum of the Liouville operator L̂.The set of orthogonal fun
tions (4) 
an be 
onne
ted with the set of pro-je
tors whi
h proje
t an arbitrary dynami
al variable Y on ve
tors belongingto the set �n = WnihW �nhjWnj2i ; Pn = 1��n;�n�m = Æn;m�n ;PnPm = Æn;mPn;�nPn = Pn�n = 0 : (6)Note that both sets (3) and (4) are in�nite. If we exe
ute the operationsin the spa
e of dynami
al variables, then the formal expression (6) must beunderstood as following:�nY = Wn hW �nY ihj Wn j2i ; Y �n = W �n hYWnihj Wn j2i : (7)
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orrelation fun
tions (TCF)Mn(t) = hW �n exp(iL̂(n)22 t)Wnihj Wn j2i ; (8)applying su

essively proje
tion operators Pn and �n to equation of mo-tion (1) on the left and solving these system of equations, we obtain anin�nite hierar
hy of 
onne
ted equations with indi
es n � 0dMn(t)dt = i!(n)0 Mn(t)�
2n+1 tZ0 d�Mn+1(�)Mn(t� �) : (9)The fun
tion M0(t) M0(t) = a(t) = hÆA�(0)ÆA(t)ihj ÆA(0) j2i (10)is usually 
onsidered [17�19℄ as the fun
tion 
hara
terizing the statisti
almemory of the system. We adopt the following notation for the diagonalmatrix elements of the Liouvillian (n � 1)L̂(0)22 = L̂; L̂(n)22 = Pn�1Pn�2 : : : P0L̂P0 : : : Pn�2Pn�1 : (11)TCF a(t) in Eq. (10) and set of memory fun
tions Mn(t) (Eq. (8)) isof profound importan
e for our further 
onsiderations. It is 
onvenient torewrite the set of equations (9) as an in�nite 
hain of 
oupled nonlinearnon-Markovian kineti
 equations for TCF a(t)da(t)dt = �
21 tZ0 d�M1(�)a(t� �) + i!(0)0 a(t) ;dM1(t)dt = �
22 tZ0 d�M2(�)M1(t� �) + i!(1)0 M1(t) ;dM2(t)dt = �
23 tZ0 dtM3(�)M2(t� �) + i!(2)0 M2(t) : (12)
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al Information Shannon Entropy for: : : 25153. Time-dependent information entropy and entropy memoryfun
tion for the 
orrelations of �u
tuations in 
omplex systemsFor the initial TCF a(t) and memory fun
tions of the n�th order Mn(t)in (11), (14) it is 
onvenient to introdu
e mi
ros
opi
 relaxation (
orrelation)times as [20℄ � = <~a(0) ; ~a(s) = 1Z0 dt e�sta(t) ; (13)�m1 = < ~M1(0) ; ~M1(s) = 1Z0 dt e�stM1(t); (14)�mn = < ~Mn(0) ; ~Mn(s) = 1Z0 dt e�stMn(t) : (15)In has been demonstrated in [20℄ that relaxation (
orrelation) and mem-ory times 
an also be de�ned as�l� =8<: 1Z0 dt tkW�(t)9=;1=k ; � = 
;m ; (16)where k is integer and W�(t) is the time-dependent probability density 
on-ne
ted with the TCF a(t) and M1(t). W�(t) is normalized:1Z0 dtW�(t) = 1 : (17)The following 
hoi
e 
orresponds to the most general 
aseW�(t) = j F�(t) j28<: 1Z0 dt j F�(t) j29=;�1 ;F
(t) = a(t) ;Fm(t) = M1(t) : (18)The situation with n = 1 and W�(t) = jF�(t)j�R10 dtjF�(t)j	�1 
ouldbe 
onsidered as a spe
ial 
ase. The de�nition (16) with n = 1 andW�(t) = F�(t)8<: 1Z0 dtF�(t)9=;�1 (19)



2516 R.M. Yulmetyev, D.G. Yulmetyevawas used by Egelsta� (Phys. Rev. A31, 3802 (1985); Z. Phys. Chem. 156,311 (1988)) for the analysis of the slow neutron s
attering data in 
ondensedmatter. However this de�nition is insu�
ient sin
e the time integrals 
ontainregions with negative time values. Moreover, in the general 
ase, the TCFa(t) and memory fun
tions Mn(t) themselves are 
omplex fun
tions. Letus note that the 
ase with n = 2 in equations (16) and (18) has a strikinganalogy with the de�nition of the 
oheren
e time in opti
s [21, 22℄.Now we 
an state thatPn(t) =jMn(t) j2 ; n � 0 (20)is the probability of the 
orrelation of �u
tuations (or memory) for the nthlevel of relaxation (see [17, 23℄ for details). That is to say that we have twofollowing probabilities of 
orrelation 
reation and memory 
reationP

(t) =j a(t) j2; P
m(t) =jM1(t) j2 : (21)Be
ause of the fa
t that the total probability is bound to be normalizedto unity (� = 
;m) Xi P i
�(t) = 1; i = 
; a ; (22)we 
an introdu
e the other probabilitiesPa
(t) = 1� P

(t) = 1� j a(t) j2;Pam(t) = 1� P
m(t) = 1� jM1(t) j2 :(23)Pa
(t) represents the probability of de
ay or annihilation of 
orrelations,and Pam(t) in (23) would 
onstitute the probability of annihilation of mem-ory.Two probabilities P
� and Pa�(t)(� = 
;m) make feasible the presenta-tion of the two statisti
al 
hannels of �u
tuations: 
reation of 
orrelations(the �rst 
hannel), and annihilation (de
ay) of 
orrelations (the se
ond 
han-nel). To assess quantitatively the di�eren
es between su
h two states (
re-ation and annihilation of 
orrelations), we 
an 
al
ulate the informationentropy of 
orrelation at time tS
(t) = S

(t) + Sa
(t) ;Sm(t) = S
m(t) + Sam(t) ; (24)where S��(t) are the partial information (Shannon) entropy for � = 
; a;� = 
;m S

(t) = �ja(t)j2 ln ja(t)j2 ;Sa
(t) = �f1� jaj2g lnf1� jaj2g ;S
m(t) = �jM1(t)j2 ln jM1(t)j2 ;Sam(t) = �f1� jM1j2g lnf1� jM1j2g : (25)
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s of the Dynami
al Information Shannon Entropy for: : : 2517Introdu
ing two di�erent 
hannels (
reation and annihilation of 
orre-lations) will allow us to understand the hidden role of the existen
e of the
orrelations in the 
ompli
ated behaviour of systems 
onsidered.4. Correlation life-times, annihilation of 
orrelation timesand nondimensional parameter of 
orrelation partitionNow we 
an introdu
e a series of dimensional and nondimensional pa-rameters for the des
ription of subtle details of the 
omplex pro
esses. At�rst let us 
onsider a simple example of the exponential relaxation for thenormalized TCF a(t) = a(0) exp(�t=�R) ; a(0) = 1 : (26)In addition to the de�nitions (15), (16) let us introdu
e life-times of
reation of 
orrelations (�

) and of annihilation of 
orrelations (�a
):�

 = 1Z0 dtS

(t) = � 1Z0 dtja(t)j2 ln ja(t)j2 ;�a
 = 1Z0 dtSa
(t) = � 1Z0 dtf1� ja(t)j2g lnf1� ja(t)j2g : (27)We 
an also use the total 
orrelation life-time and the memory life-time�s = 1Z0 S
(t) = 1Z0 fSa
(t) + S

(t)g ; (28)�m = 1Z0 dtSm(t) = 1Z0 dtfS
m(t) + Sam(t)g : (29)We propose a new nondimensional parameter of 
orrelation (
reation andannihilation) partition � = �a
�

 : (30)Using the integral [24℄ 1Z0 dxx lnx1� x = 1� �26
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tion (26) we have�

 = 12�R ; �a
 = ��212 � 12� �R ;�s = �212�R ; � = �26 � 1 �= 0; 645: (31)Note that the partition parameter � points to the relative splitting of no-tions of the 
reation of 
orrelations and annihilation of 
orrelations. The fa
tthat life-times �

 and �a
 show expli
itly the importan
e of use of smoothedtime dependent entropies S

(t) and Sa
(t) for an arbitrary value t is par-ti
ularly 
onvenient. On the other hand, the fa
t TCF a(t) itself in general
ase assumes either 
omplex or negative values may pose a problem for the
al
ulation of 
orrelation times. By de�nition, the entropies S�
(t); � = 
; a
an have only positive values, whi
h 
learly demonstrates their essentiallystatisti
al 
hara
ter.5. Pseudokineti
 equations for the time dependent 
hannelsof 
orrelation entropiesThe entropies de�ned in the previous se
tion are subje
t to the followingboundary 
onditionslimt!0S

(t) = 0 ; limt!1S

(t) = 0 ;limt!0Sa
(t) = 0 ; limt!1Sa
(t) = 0 ;limt!0S
(t) = 0 ; limt!1S
(t) = 0 : (32)Along with the exa
t kineti
 equation (14 a) for TCF, the pseudokineti
equation 
an be obtained from the relationship (14), (24), (25). For example,in the 
ase of the 
reation of 
orrelations 
hannel we havedS

(t)dt = �
21 tZ0 dtM (1)

 (t; �)S

(�) ; (33)where M (1)

 (t; �) are the relevant �rst order memory fun
tionM (1)

 (t; �) = ln j a(�) j21 + ln j a(t) j2 � a�(t)a�(�)M1(t� �) + a(t)a(�)M�1 (t� �)� ; (34)



Kineti
s of the Dynami
al Information Shannon Entropy for: : : 2519and for the annihilation of 
orrelations 
hannel we getdSa
(t)dt = �
21 tZ0 d�M (1)a
 (t; �)Sa
(�) +Na
(t) ; (35)M (1)a
 (t; �) = a�(t)a�(�)M1(t� �) + a(t)a(�)M�1 (t� �)f1 + ln[1� ja(t)j2℄g ln[1� ja(�)j2℄ ; (36)Na
(t) = �
21 tZ0 d� 11 + ln[1� ja(t)j2℄�� a�(t)a�(�)M1(t� �) + a(t)a(�)M�1 (t� �)� ; (37)where M (1)a
 (t; �) is the relevant �rst order memory fun
tion and Na
(t) isthe non-homogeneous part.For the total time dependent 
orrelation entropy we get the followingpseudokineti
 equation:dS
(t)dt = �
21 tZ0 d�M (1)
 (t; �)S
(�) +N
(t) ; (38)M (1)
 (t; �) = a�(t)a�(�)M1(t� �) + a(t)a(�)M�1 (t� �)fln[1� j a(t) j2℄� ln j a(t) j2g��ln[1� j a(�) j2℄� ln j a(�) j2	�1 ; (39)N
(t) = �
21 tZ0 d� [ a�(t)a�(�)M1(t� �) + a(t)a(�)M�1 (t� �)℄fln[1� j a(t) j2℄� ln j a(t) j2g� ln[1� j a(�) j2℄fln[1� a(�) j2℄� ln j a(�) j2g ; (40)where M (1)
 (t; �) is the �rst order memory fun
tion and N
(t) is the non-homogeneous part for the total 
orrelation entropy.The pseudokineti
 equations (33), (34), and (37) are very useful for the
areful analysis of memory and non-Markovian e�e
ts in the time evolutionof information entropies of 
orrelations of the physi
al systems.
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t of dynami
al s
aling on the dynami
al informationentropy in liquid 
esiumThe Shannon entropy is de�ned asS = � nXi=1 Pi(t) lnPi(t); (41)where i numbers states of the system and the probability distribution Pi(t)is normalized nXi=1 Pi(t) = 1: (42)In formaulas (41), (42) no expli
it dependen
e on the number n of dis-
rete states is present. However, a similar dependen
e is still available. Forthe entropy S(t) we haven = 1 ; for P = 0 ; we have S = 0 ; (43)n 6= 1 ; for Pi = 1n ; we have S = lnn : (44)The entropy in
reases from 0 to lnn as a system passes from full order(n = 1) to full disorder (n 6= 1). So, in
reasing the number of levels enhan
esthe information 
ontent of Shannon entropy. Therefore, 
onsidering thepro
esses of 
orrelations and memory by (20)�(24), one 
an �ndP

(t) + Pa
(t) = 1 ;P
m(t) + Pam(t) = 1 ;P1(t) + P2(t) + P3(t) + P4(t) = 1 ;P1 = P

(t)P
m(t) ;P2(t) = P

(t)Pam(t) ;P3(t) = Pa
(t)P
m(t) ;P4 = Pa
(t)Pam(t) : (45)In line Eq. (41) we are dealing here with 4th 
hannels entropyS = �P

(t)P
m(t) lnP

(t)P
m(t)�P

(t)Pam(t) lnP

(t)Pam(t)�Pa
(t)P
m(t) lnPa
(t)P
m(t)�Pa
(t)Pam(t) lnPa
(t)Pam(t) : (46)
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Fig. 1. Evolution in time of the dynami
al information entropy S(t)=�x lnx�(1�x)ln(1� x), where x =j a(t) j2; a(t) is the time 
orrelation fun
tion.The formulas (45), (46) are very 
onvenient for taking into a

ount non-Markovian e�e
ts and statisti
al memory in dynami
al entropy. Figure 1shows the TCF x =j a(t) j2-dependen
e of the entropy with maximum S =ln2 at the value j a(t) j= 1=p2.Fig. 2 gives the temporal dependen
e S(t) 
al
ulated with formula (46)for the some values of s
aling parameter � = 1; 0; 1; 5; 2; 0797; 2; 9005 and�<1. Using the s
aling parameter and Zwanzig�Mori memory fun
tion for-malism Sharma et al., Phys. Rev. E54, 3652 (1996); 55, 564 (1997) 
al
u-lated the dynami
al stru
ture fa
tor S(q; !) of liquid 
esium near its melt-ing point (see Fig. 2). Subsituting M3(q; t) = M2(q; �t) R.K. Sharma with
oauthors have shown that this approa
h predi
ts the 
olle
tive density ex-
itation peak in S(q; !) for wave ve
tor q < 1:2Å�1 at a frequen
y that is inagreement with experimental results. From these 
urves it is obvious that(1) non-Markovian e�e
ts in kineti
s of initial TCF give rise to in
reasingof the informativity of Shannon entropy (41);(2) the dynami
al s
aling 
hange signi�
antly entropy itself and its pa-rameters;(3) the 
hara
ter of dynami
s of the entropy is extremely sensitive to the
olle
tive ex
itations in the experimental systemsin a

ordan
e with Eqs. (43), (44).
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Fig. 2. Time dependen
e of the dynami
al information entropy S(z); z = 2
t;M3(t) = M2(�t): (a) two-
hannel evolution without memory; (b) four-
hannelevolution with � � 1; (
) four-
hannel evolution with s
ale parameter �:1 � � = 0; 9; 2 � � = 0; 8; 3 � � = 0; 7; 4 � � = 0; 6; 5 � � = 0; 5;6 � � = 0; 4; 7 � � = 0; 3; 8 � � = 0; 2; 9 � � = 0; 1; 10 � � = 0; 01:7. Fra
tal dynami
s of the long-range 
orrelationsin short-time human memoryIt should be pointed out that results presented in Se
tions 2�5 havea wide area of pra
ti
al implementation for 
omplex systems in physi
s,
hemistry, biology and living systems. All results obtained hold for thephysi
al systems, and this allows to use exa
t kineti
 equations (14) togetherwith (26)�(31). In the 
ase of 
omplex systems of the nonphysi
al nature,the exa
t kineti
 equations (14) do not exist. However, results (26)�(31) stillstand and they are very useful in des
ribing random dynami
s of 
omplexsystem.Some results of the resear
h on the temporal 
orrelations of the short-time human memory are presented here. An experiment has been performedon the free re
olle
tion in the 2 group of 84 volunteers: 56 students of the se-nior 
ourses of the Physi
s Department of the University and 18 s
hoolboys.With the purposes of de
reasing the in�uen
e of the semanti
 
ontent of var-



Kineti
s of the Dynami
al Information Shannon Entropy for: : : 2523ious obje
ts, lists involving only three-digit or two-digit numbers have beenused. Ea
h list in
luded thirty or �fteen numbers. Ea
h of these lists wasread out aloud to the subje
ts, the subje
ts re
orded a number, and so thatoperation was repeated down to the end of the list. After that, the subje
tswere supposed to note all the numbers they remembered. That pro
edurewas 
arried out repeatedly. Next list was o�ered after the �rst one and soon. Only up to 100 measurements were available. The delay time betweentwo su

essive experiments was 5 min or 3 min. The ratio of the number ofthe properly re
onstru
ted obje
ts to the number of all obje
ts was used asthe numeri
al value of the experiment. Thus, we have the series of values,ea
h determined by the ratio of the a
tual number of proper responses tothe number of all possible proper responses.

(a) (b)

(
) (d)Fig. 3. Example of time and frequen
y behaviour of TCF and dynami
al infor-mation entropy for the short-time human memory for subje
t L.K., hni = 9; 71;Æ=18; 091%; �
=9; 193 min; �a
 = 3; 0177 min; � = 0; 32826): (a) TCF; (b) infor-mation entropy; (
) power spe
trum of TCF and (d) power frequen
y spe
trum ofdynami
al entropy in units 9 min2.
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ts: time 
orrela-tion fun
tion (TCF), probability of 
reation of the 
orrelations, probabilityof annihilation of the 
orrelations, time dependent 
hannels of entropies of
reation and annihilation of the 
orrelations and the total entropy, the 
or-relation life-time and annihilation of the 
orrelation time, the total time of
orrelations, and the parameter of 
orrelation partition.In �gures 3, 4 the time dependen
e of TCF and entropy, and the 
or-responding power spe
tra are presented. The following 
on
lusions 
an bemade from these examples:

(a) (b)

(
) (d)Fig. 4. Example of time and frequen
y behaviour of TCF and entropy for the short-time human memory for subje
t R.L., hni=8; 44; Æ=18; 38%; �

=11; 53min; �a
 =3; 532min; � = 0; 30632: a) TCF; b) information entropy; 
) power spe
trum ofTCF and d) power spe
trum of entropy in units 9 min2.
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al Information Shannon Entropy for: : : 25251) all frequen
y spe
tra are 
hara
terized by the availability of some dis-tin
tive frequen
y peaks;2) dynami
al entropy is a nonlinear transformation of a signal. Its fre-quen
y spe
trum is di�erent from the TCF spe
trum � the high fre-quen
y peaks are suppressed and shifted into the domain of the lowfrequen
ies, and vi
e versa, entropy ampli�es the low frequen
y peaks.Be
ause of this joint treatment of TCF and entropy, we were able toinvestigate all the areas of frequen
y spe
tra more 
arefully;3) the most talented students show noti
eable peaks in the low frequen
yarea between 0:1!0 and 0:01!0, where !0 = 0:0349s�1. This is 
onsis-tent with the os
illation period T = 30�300 min. Probably, these lowfrequen
y peaks are asso
iated with the superslow ele
tri
 potentialsof the 
ortex.8. The 
haoti
 dynami
s of R�R intervals in human ECGHere we 
onsider appli
ation the method of the information entropyto the analysis of the temporal 
hanges in 
haoti
 parameters of humanECG. Figure 5 shows a s
hemati
 representation of human ECG. Figures6�8 present data obtained from individual patients. In Figs. 6, 7 the dy-
Fig. 5. De�nition of the 
hara
teristi
 points and of intervals of the human ECG(sket
h).nami
al fun
tions and power spe
tra of TCF and entropy for healthy woman(patient C3) and patient with sinus arrythmia (D3) by the short-time ECG-data (200 and 400 heart beats, respe
tively) are shown. Comparing stati
(mean value of the heart beat, absolute and relative dispersion) and kineti
parameters (
orrelation life-time �
, annihilation of 
orrelation time �a
, pa-rameter � of 
orrelation partition), one 
an see the following:
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(a) (b)

(
) (d)Fig. 6. Examples of time behaviour and power spe
tra of TCF and dynami
alinformation entropy for the short-time dynami
s of R�R intervals human ECG:(a) (healthy Akhm., 27 y, 1 time unit = hlRRi = 995; 51ms; Æ = 5; 208%; �

 =10; 61226t:u:; �a
 = 2; 51t:u:; � = 0; 23652): (a) TCF; (b) dynami
al informationentropy; (
) power spe
trum of TCF and (d) power spe
trum of dynami
al entropyin normalized form !P (!); s2 Hz.1) the stati
 �u
tuations of patient D3 are stronger than in patient C3;2) the kineti
 parameters of patient C3 are approximately 10 times higherthan in D3;3) the low frequen
y peak (approx.,0:06�0:2 s�1) of healthy man disap-pear at sinus arrythmia.Fig. 8 gives the data obtained by the long-time ECG spe
tra (approxi-mately, 4000 heart beats) for a patient with syndrome of sinus knot weakness(Golub, 43 y). The spe
ial pe
uliarities have engaged our attention at the
omparison studies of di�erent patients:1) Di�eren
e in phase density is very signi�
ant;2) stati
 �u
tuations (value of relative dispersion Æ ) 
ontain no informa-tion value;
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(a) (b)

(
) (d)Fig. 7. Examples of time behaviour and frequen
y spe
trum of TCF and dynami
alinformation entropy for the short-time dynami
s of R�R intervals of human ECG:(patient Nekh., a
ute stage of mio
ardial infar
tion, 47 y, 1 time unit=hlRRi =11; 92; 76ms; Æ = 20; 917%; �

 = 3; 87533t:u:; �a
 = 0; 92; 868t:u:; � = 0; 23964):(a) TCF; (b) dynami
al information entropy; (
) power frequen
y spe
trum ofTCF and (d) power frequen
y spe
trum of dynami
al entropy in normalized form!P (!); s2 Hz.3) 
orrelation times �
 and �a
 of a healthy man is mu
h longer than inother patients;4) parameter of 
orrelation partition � of a healthy man is mu
h largerthan in other patients;5) appre
iable di�eren
e of low-frequen
y spe
tra of 
orrelation and en-tropy exist for the healthy man;6) TCF anf entropy power spe
tra di�er 
onsiderably, espe
ially in themiddle to low frequen
ies.
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(a) (b)

(
) (d)

(e)Fig. 8. Example of time evolution and frequen
y spe
trum of the long-time dy-nami
s of R�R intervals in human ECG for a patient with syndrome of sinus knotweaknees (G., 43 y; hlR��R = 1204ims; �

 = 57; 04s; �a
 = 16; 74; � = 0; 29352; Æ =9; 492%): (a) time behaviour of TFC; (b) time evolution of the dynami
al entropy;(
) two-dimensional image of R�R intervals return map with i = 1; (d) powerspe
trum of time 
orrelations, !2P (!); s2(Hz)2; (e) power spe
trum of dynami
alinformation entropy, !2P (!); s2(Hz)2.
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al Information Shannon Entropy for: : : 2529The above presented data demonstrate a high diagnosti
 value of thedynami
al information entropy in 
ardiovas
ular resear
h as a whole.9. Dis
ussionIn the present paper we have 
onsidered a new 
on
ept of sto
hasti
 dy-nami
s based on su

essive use of the information entropy for the 
orrelationof �u
tuations of variables used to des
ribe a given system. It is a spe
i�
feature of our method that it extra
ts the information entropy of the timedependent state by the probability and the time 
orrelation fun
tion of therandom �u
tuations of a 
omplex system. That is espe
ially true in regardto two time dependent 
hannels of the information entropy: the 
reationof 
orrelations and the annihilation of 
orrelations. The appli
ation of thetime dependent information entropy permits us to use a set of time depen-dent sto
hasti
 fun
tions (TCF, probabilities of 
reation and annihilation of
orrelations, total 
orrelation entropy and its two 
hannels) and 
orrelationparameters (
orrelation life-time, annihilation of 
orrelation time, the total
orrelation time, the parameter of 
orrelation partition). This set gives usthe detailed information of the 
hara
teristi
s of sto
hasti
 dynami
s of the
omplex system.Our preliminary investigation of the short-time human memory leads usto the 
on
lusion that the �u
tuations in the values of numbers of re
olle
tiondisplay fra
tal dynami
s and long-range stable 
orrelations in the youngsubje
ts.Our �ndings indi
ate that the parameter of short-time human memoryexhibits long-range time 
orrelations. Flu
tuations in the memory parameterare statisti
ally 
orrelated with variations in the numerous values of param-eters earlier, and this in�uen
e de
ays in a s
ale-invariant, fra
tal manner.This behaviour appears to be intrinsi
 to the human memory.From neurophysiologi
al 
ontrol viewpoint, this behaviour is of inter-est be
ause it signi�es the presen
e of long-term dependen
e. The me
ha-nism(s) responsible for these parameters of memory 
orrelations are largelyunknown. The unexpe
ted observations of long-range 
orrelations in short-time memory raises important questions 
on
erning neuron networks dynam-i
s and the origins of �u
tuations in parameters of memory. Many naturalphenomena are 
hara
terized by short-term 
orrelations with a 
hara
teris-ti
 time s
ale and an auto
orrelation fun
tion that de
ays exponentially. In
ontrast, long-range 
orrelations have only been observed under vary spe
i�

onditions, for example when a system is near its 
riti
al point. In that 
asethere exists no well-de�ned 
orrelation length and auto
orrelation fun
tionde
ays a

ording to a power law. The present value is statisti
ally 
orrelatednot only with its most re
ent value, but also with its long-term history in
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ale-invariant fra
tal manner. The establishment of long-range 
orrela-tions in short-time memory therefore raises the possibility of exsiten
e of ayet unidenti�ed me
hanism underlying neural 
ontrol of short-time memory.Hopefully, future studies will help to determine the origin of this fra
tal s
al-ing and �nd out whether (and to what extent) a sto
hasti
 or deterministi
me
hanism lies behind this property of neural 
ontrol.Our treatment of the 
haoti
 dynami
s of R�R intervals in human ECGshows both the extremely 
omplex 
hara
ter of su
h dynami
s and big in-formation 
ontent of the dynami
al information entropy. Our investigationhad a preliminary 
hara
ter. However, it shows that there are big number ofstati
, dynami
al and frequen
y parameters of the human heart dynami
s.It 
an be predi
ted with 
on�den
e that the dynami
al entropy will let usestablish fundamentally new diagnosti
 te
hniques of assessment of the stateof the human 
ardiovas
ular system.The dynami
al information entropy for realisti
 
omplex system allowsan adequate des
ription of the temporal behaviour with the many-s
ale 
or-relations of �u
tuations. Moreover, using the results of experimental inves-tigation of di�erent obje
t, it is possible to 
al
ulate their stati
, 
orrelationand information fun
tions and parameters.This work was partially supported by Competitive Centre of Fundamen-tal Resear
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