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MEASURING THE COMPLEXITYOF NON-STATIONARY TIME SERIES� NONLINEAR INTERPRETATIONS OFSELECTED PHYSIOLOGICAL PROCESSES�J.J. �ebrowskia, W. Popªawskab, R. Baranowskiband T. BuhneraaInstitute of Physis, Warsaw University of TehnologyKoszykowa 75, 00-662 Warszawa, Polande-mail: zebra�if.pw.edu.plbNational Institute of CardiologyAlpejska 42, 04-628 Warsaw, Polande-mail: baranows�ikard.waw.pl(Reeived February 24, 1999)A general method of analysis of non-stationary time series (time inter-vals of the human eletroardiogram) is presented: a short sliding windowis used in onjuntion with two di�erent omplexity measures. The �rst� a modi�ed Shannon entropy alled pattern entropy � quanti�es thelevel of statistial order. The seond is based on a symboli dynamis indelay oordinate spae and quanti�es the level of sequential order by meansof an estimator of algorithmi omplexity. The sliding window proeduremaps the original time series into a time series of the given omplexity mea-sure. The global state of the system is then haraterized by the propertiesof the distribution of the resultant omplexity measure. To haraterizestates on a loal time sale the distribution of symboli words is used. Themethod is applied to di�erent data on heart rate variability, heart aelera-tion/deeleration and on the repolarization proesses in the heart. We showthat the nonlinear methods desribed may be applied to the analysis of theinteration of autonomi nervous system and the repolarization proessesin the heart. This researh was initiated to �nd new ways of prognosis therisk of sudden ardia death. Below we show how the methods developedunveil new images of some physiologial proesses.PACS numbers: 05.45.+b, 87.10+e, 87.80.+s� Invited paper presented at the XI Marian Smoluhowski Symposium on StatistialPhysis, Zakopane, Poland September 1�5, 1998(2547)



2548 J.J. �ebrowski et al.1. IntrodutionThis paper disusses two issues at the frontier between di�erent disi-plines of siene: physis and mediine. On the one hand, we summarizeand also present new results of our researh on the tehniques for measuringthe omplexity of nonlinear states of systems whih have to be onsiderednon-stationary. On the other hand, we demonstrate how these tehniquesmay be used � in onjuntion with medial knowledge � to assess the stateof the autonomi nervous system. In the latter ase, the ultimate goal is to�nd new diagnosti methods allowing to predit the risk of sudden ardiadeath.One of the topis disussed at this meeting was fuzzy logi and its usein bio-physial researh. It is often aknowledged that mediine is not an'exat' siene. Fuzzy terms suh as `an ordered arrhythmia', `a disorderedarrhythmia', `heart rate variability beomes in�exible in suh and suh ir-umstanes' are used in day to day desriptions of partiular ases and sup-plement the many preise bio-hemial and eletrophysiologial measure-ments helping to form a ardiologi diagnosis. One of the purposes of theresearh desribed below was to �nd non-linear dynamial methods to quan-tify these fuzzy terms.In studying heart rate variability, spei� patterns visible in the ECGtrae are looked for. Linear spetral analysis and time domain analysis [1℄have made a signi�ant ontribution to the understanding of the patho-physiology of heart rate variability. Linear analysis methods have severelimitations mostly due to the non-stationarity of the system studied. Re-ently, signi�ant researh [2�8℄ has been reported that non-linear methodsderived from haos theory perform better in assessing the risk of ardia ar-rest. The issue whether heart rate variability is truly a deterministi haotistate is hotly disussed, however [9, 10℄. This is a strong indiation thatmethods must be hosen whih will be appropriate both for deterministiand for stohasti proesses.The time sale on whih events whih may be signi�ant for suddenardia death our is important. One of the reasons of the relative failureof suh linear methods as the power spetrum in orretly prediting therisk of sudden ardia death may be due to the number of data the methodrequires thus limiting the time sale from below. Woo et al. [11℄ and our ownresearh [12℄ indiate that 24-hour measurements of heart rate variabilitymay be mapped into 2 or 3 dimensional phase portraits. Certainly the`torpedo shape' found by Woo et al. [11℄ may be assoiated with 24 hours ofthe natural heart rhythm (sinus rhythm). It is true also that various typesof pathology distort the phase spae trajetory produing a wide variety ofshapes [12, 11℄. It is however di�ult to assoiate the level of risk with



Complexity of Non-Stationary Time Series � Physiologial Proesses 2549these shapes alone. On the other hand, we have shown that on a short timesale of a few hundred heart beats (1.5-4.5 minutes) spei� patterns in 3-dimensional phase spae may be found [7, 12℄. The dominant are the spiraland the radial patterns as disussed in [12�14℄. In some ases a limit ylemay be obtained [15℄. An elaborate embedding allowing to extrat suhpatterns from the 24-hour time series was devised by Babloyantz et al. [16℄.In our researh, we have foused on �nding the proper omplexity measuresto haraterize the patterns obtained in phase spae.The data analyzed in this paper is disussed in Setion 2. The methodsused to analyze regularity in the statistial and in the sequential sense inphenomena ourring on a long time sale are presented in Setion 3 whileSetion 4 disusses analysis of the short time sale e�ets both in heart ratevariability and in the interation of the heart rate with the repolarizationproesses the heart tissue. A summary of our results is given in Setion 5.2. The dataMost of this paper disusses heart rate variability whih is measured as aseries of time intervals between spei� points of the ECG (the RR intervalsas marked in Fig. 1). The R peak represents the moment in time when theventriles ontrat. The ontration of heart tissue is assoiated with a de-polarization phase supereded by a repolarization phase. The repolarizationtime (the RT interval1 in Fig. 1) is an important diagnosti parameter.
Fig. 1. Shemati of two yles of an ECG trae with the harateristi points andtime intervals marked.Within the last 5 years our group has analyzed over 300 24-hour ECGreordings in the ontext of using nonlinear dynamis methods for medialprognosis of the risk of ardia arrest. The bulk of the heart rate variabilityanalysis was performed using the Del Mar Strata San 563 software at a128 Hz sampling frequeny. The repolarization proesses were analyzed1 Although it is more usual to onsider the QT interval as the repolarization time,beause the point Q of the ECG trae is di�ult to extrat automatially and reliablyfrom a Holter reording, we prefer to use the RT interval. It is well known that, fora given individual, the QR interval has onstant length of approximately 10�20 ms.



2550 J.J. �ebrowski et al.by extrating at 256 Hz both the RR and RT intervals from the 24-hourreordings using a ustom software designed at the Institute of Cybernetisof the Politehnia de Catalunya, Barelona. [17℄. All our reordings werearefully heked for artifats and for arrhythmia by a quali�ed ardiologist.No kind of arrhythmia �ltering was applied to the data.Below we present results for 60 ases of apparently healthy individuals16-64 years of age (only 7 of them were women), and 86 patients with hyper-trophi ardiomyopathy. This disease aused by geneti mutations results inan abnormal struture of the heart musle with a wide spetrum of hangesranging from small abnormalities in the ECG trae through di�erent typesof ardiomyopathy inluding even a dilation of the heart (dilated ardiomy-opathy). At any stage of the disease the main risk is sudden ardia death.So far there is no method to predit whih patient would be prone to thisrisk i.e. whih patient should be equipped with an automati de�brillator.The group of patients with hypertrophi ardiomyopathy hosen for analy-sis were hosen preisely beause of the failure of the standard time domainand spetral methods of the analysis of heart rate variability in de�ning thepatients with the highest risk of sudden ardia death.In 7 older men, we performed additional testing of the autonomi nervoussystem funtions inluding tilting of the whole body to the vertial positionwhih stimulates the sympatheti part of this system. Before and after thismaneuver, in addition to the ECG, the plasma levels of the sympathetineurotransmitters norepinephrine and dopamine were also measured.3. Long time sale3.1. Statistial omplexityTo analyze the heart rate variability, we have used pattern entropy[12, 14, 15, 18�21℄. This is a omplexity measure derived from the Shannonentropy: S = � NXi=1 Pi(k) logPi(k) ;where N is the number of bins in the histogram of RR intervals, is theprobability distribution (a normalized histogram) of RR intervals within thetime window, i is the bin index and k is the index of the RR interval atthe end of the time window. Pattern entropy is obtained by substitutingfor the usual one dimensional probability density Pi(k) the inomplete jointprobability density: Pi = pi(k)pi(k + �)pi(k + 2�) ;



Complexity of Non-Stationary Time Series � Physiologial Proesses 2551where is the delay of the time delay reonstrution. In all our omputationswe use � = 2 beats [12, 14℄. The use of the inomplete joint probability(in plae of the full joint probability in 3-dimensions) with the Shannonentropy (1) implies that pattern entropy will be large for highly ordered timeseries � ontrary to the properties of Shannon entropy itself. Note, thatpattern entropy does not have all the properties of onventional entropy (e.g.it is not additive). For onveniene, throughout our work we use arbitraryunits whih are obtained by multiplying pattern entropy given by the abovedesribed equations by 104.If the length of the time window is small ompared to the length of thetime series analyzed, window pattern entropy WPE is obtained. The lengthof the time window may be varied between 50 and 400 beats (for the e�etof window size see [18℄). Note that a window length measured in integertime (beats) rather than a �xed window size in real time (e.g. seonds) ispreferred as for a real time length window � due to heart rate variability� the number of beats would hange drastially from window to window.Typially a window length of 50 beats is equivalent to 20�35 s of real timewhile 400 beats is equivalent to approximately 3�4 Min.Window pattern entropy �utuates as the window sweeps through timeseries. Initially we alulated the minimum, maximum and average of WPEand ompared these values with the risk of ardia arrest for individualases [12℄. We now see that the full distribution of WPE of heart rate yieldsa better image of the given ase studied [18�21℄. We �nd, for example, thatthe most probable pattern entropy value measured in a 5 Min. epoh seemsto orrelate strongly with the plasma level of norepinephrine when thatis measured simultaneously [15℄. Although the shape of the distribution ofWPE in a 24-hour heart rate time series is Poisson-like (see Figs 8�10 below)in a predominant number of ases, the most probable WPE value emergesas an indiator of the state of the system. Similar results were obtained forthe dynami states of the logisti map [19℄.All de�nitions of the entropies used in haos theory suh as theKolmogorov�Sinai entropy and generalized Renyi entropies [22℄ avoid theproblem of �utuations by assuming ergodiity and taking the limit of in-�nite time. For this, an in�nitely long time series is required so that inpratial appliations one only alulates an estimator of the entropy. Inour ase, the problem is made more omplex by the non-stationarity of thesystem: no restritions are made on the behavior of the human subjet dur-ing the 24-hour measurement of heart rate. In stationary state, windowpattern entropy is a dereasing funtion of the time i.e. of the length oftime window (f. similar disussion in [3℄). In a non-stationary state, weassumed that the best approximation of pattern entropy with the limit oft ! 1 may be obtained by the following proedure: we alulate umula-



2552 J.J. �ebrowski et al.tive pattern entropy CPE as pattern entropy with the length of the windowgradually expanding to span the whole 24-hour RR interval time series. Theminimum of CPE we assume to be the best approximation of the patternentropy at t!1 . Although this is a purely empirial approah, we foundthat, often, CPE is a monotonially dereasing funtion of the time and onlyrarely does it inrease during the given 24-hour reording of heart rate. Inother words, observation of a large number of ases shows that instanes oftrue non-stationarity due to the ativity of the subjet whih ause a hangeof state (thereby ausing an inrease of the umulative pattern entropy) arerelatively rare. Note that we have often found that the 24-hour minimum ofCPE remains the best indiator of the risk of ardia arrest [12, 14℄.It has been shown before [23℄ that the di�erenes of RR intervals and therespetive pattern entropies (denoted WPD and CPD) [18℄ are a measureof the ativity of the parasympatheti nervous system. On the other hand,heart rate variability itself together with the resultant pattern entropiesWPE and CPE re�et the ativity of both the parasympatheti and thesympatheti nervous systems [18℄.When studying simultaneously pairs of the time series � the RR in-tervals and their di�erenes � we found that even for healthy persons therelation between the pattern entropies alulated from these time series isnot always the same. This e�et is seen both in the dependene on thetime of WPE and WPD as well as in the shape of the distributions of thesemeasures of statistial omplexity.Fig. 2 depits an example of the dependene of RR intervals (part a) andtheir suessive di�erenes (part b) as funtions of the time during a exerisestress test. In Fig. 2 the stress test lasted from about t = 1000 s to aboutt = 2700 s. This test manifests itself by a period of linear derease of the RRinterval length (during whih the load is inreased) followed by a reoveryperiod. The variane of the RR interval dereases during the test and doesnot regain the value from before the test for a long time. It an be seenthat window pattern entropy WPE (thik urve in part a) of Fig. 2) risessharply at the beginning of the test and deays slowly afterwards. Patternentropy of the RR interval di�erenes WPD (thik urve in part b) of Fig. 2)follows the hanges of WPE during the initial part of stress test but its valueremains onstant on the average at a moderate level for a long time afterthe test. In other examples, of the same type of behavior, WPD dereasessharply as soon as the load is redued. This type of heart rate variabilitymay be dubbed `�exible' .An example of the `in�exible' heart rate variability is seen in Fig. 3 duringa stress test onduted on a di�erent (and muh older) healthy subjet. Inthis ase, the stress test lasted from 600 s to 1900 s. It an be seen that, forthis subjet, reation to the stress test ours only brie�y during the highest
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Fig. 2. An example of the `�exible' heart rate variability: the dependene of RRintervals and the orresponding WPE as funtions of the time (part a) omparedwith the RR interval di�erenes and the orresponding WPD (part b) measuredin a healthy subjet during a stress test performed between about t = 1000 s toabout t = 2700 s.
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Fig. 3. An example of the `in�exible' heart rate variability: the dependene of RRintervals and the orresponding WPE as funtions of the time (part a) omparedwith the RR interval di�erenes and the orresponding WPD (part b) measuredduring a stress test performed between t = 600 s and t = 1900 s on a healthysubjet.
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Fig. 4. The dependene of pattern entropy of RR interval di�erenes WPD onthe pattern entropy of RR intervals during the stress test itself. Thik urve �`in�exible' heart rate variability; thin urve � `�exible' heart rate variability. Theraw data for the stress test is the same as in Fig. 2 and Fig. 3, respetively.
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Fig. 5. The dependene of the RR interval di�erenes on the RR interval lengthsduring period of the stress tests for the `�exible' (part a) and the `in�exible' heartrate variability (part b). This �gure depits the raw data used to alulate Fig. 4.load phase and that the derease in the level of statistial omplexity of theRR intervals during reovery after the stress test ours muh faster. At thesame time, the behavior of the omplexity of the RR interval di�erenes asa funtion of the time seems not to re�et the stress test at all.Fig. 4 depits WPD as a funtion of WPE during the stress test for thetwo examples just desribed. It an be seen that in the `�exible' heart ratevariability ase (thin urve in Fig. 4) the stress test inreases the level ofthe statistial order of both RR intervals and their di�erenes. On the otherhand, for the example of the `in�exible' kind (thik urve in Fig. 4) the sta-tistial order of the heart rate �utuates in a wide range throughout the testwhile the omplexity of heart aeleration/deeleration stays onstant on ahigh level. Fig. 5 demonstrates that the di�erenes between the examplesare not visible in the raw data itself.
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Fig. 6. The distributions of pattern entropy for the RR intervals (WPE � thinurve) and for the RR interval di�erenes (WPD � thik urve) alulated for thefull 24-hour time series for the `�exible' heart rate variability. The raw data inFig. 2 is a fragment of the reording used to alulate these distributions.
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Fig. 7. The distributions of pattern entropy for the RR intervals (WPE � thinurve) and for the RR interval di�erenes (WPD � thik urve) alulated for thefull 24-hour time series for the `in�exible' heart rate variability. The raw data inFig. 3 is a fragment of the reording used to alulate these distributions.Figs 2�5 depit e�ets seen only during the short period of the stress test.However, the property of `�exibility' of the heart rate variability may beseen also in the shape of the 24-hour distributions of the respetive patternentropies. For the �exible heart rate variability, it an be seen in Fig. 6that the distributions of both WPE and WPD oinide. In the ase ofthe `in�exible' heart rate variability (Fig. 7) an extremely large peak in thedistribution of WPD (thik urve) appears at a high value of the omplexity



2556 J.J. �ebrowski et al.measure indiating that heart rate variability with a highly ordered mode ofrate hange is dominant during the whole 24-hours of the reording.4. Sequential omplexitySymboli dynamis [24℄ is obtained by introduing a oarse grained par-titioning and analyzing the way in whih the given system visits eah parti-tion. Although it may be argued that the partitioning may be arbitrary, itis aepted that the most lear results are obtained when physial propertiesof the system are taken into aount. Thus, in the symboli dynamis ofone dimensional maps [24℄ the partition border is given by the ritial pointsof the map and the symbols are uniquely assoiated with its branhes. Inthe ase of heart rate variability, the dynamis is too ompliated to modelby a simple map for whih suh branhes may de�ned. On the other hand,the spiral shape of three dimensional trajetories of RR intervals [12℄ � adominant feature of heart rate variability in healthy individuals � indiatesthat an unstable �xed point may play an important role in the dynamis.For this reason, we introdued [15℄ [25℄ the following symboli oding whihtakes advantage of the Takens delay oordinate reonstrution.As a surrogate of the ritial point of 1-dimensional maps, we used theaverage interval for eah time window (i.e. the foal point of the spiraltrajetory). All intervals were ompared with this the referene level anda symbol was assigned: if the RR(i) value was less than the average thesymbol was �L� and �R� if the opposite was true. Similar omparisons werearried out for RR(i + �) (symbols �D� or �U�) and RR(i + 2� ) (symbols�T� or �B�). If the value of the RR intervals was loser to the average thanthe sampling error (7.5 ms) the symbol �C� was written. Thus, a givenpattern in 3-dimensional spae was mapped to a sequene of 3 letter wordsomposed of 7 di�erent symbols. To quantify the omplexity of the sequeneof symboli words, the Lempel-Ziv algorithmi omplexity [26℄ was then usedby means of an algorithm implemented after Kaspar and Shuster [27℄. Thisalgorithm ounts the number of unique k-symbol strings (k =1,2,...,K, withK the length of symbol sequene) into whih the given sequene of symbolsmay be deomposed. By de�nition, algorithmi omplexity is obtained inthe limit of an in�nite length of the symbol sequene analyzed. Sine, here,we alulated algorithmi omplexity of a �nite sequene of symbols (threetimes the number of intervals per time window), the value alulated is onlyan estimator. A similar estimator was used by Witt et al. [28℄ exept thatthere the normalized estimator of [27℄ re�eting algorithmi omplexity persymbol was used. Here, with the length of the time window held onstantat 100 beats, the estimator that we used is not normalized. The numbersobtained diretly from the Lempel�Ziv algorithm were easier to interpretbeing related to the number of unique sequenes within a window.



Complexity of Non-Stationary Time Series � Physiologial Proesses 2557Similarly as in [7℄, we also found that better results are obtained if thereferene level for symboli oding is slightly shifted with respet to theaverage of the RR intervals in a time window. In our ase, we multiplied theaverage by a onstant a = 1:01. The reason for the use of suh a onstantwith heart rate variability is the natural asymmetry of the distribution ofthe RR intervals themselves.Sine the 100 interval time window used here throughout the symbolidynamis analysis is relatively short, sweeping the 24-hour time series withthe time window results in a distribution of the algorithmi omplexity val-ues. The distributions disussed below were onstruted only from loalextrema of algorithmi omplexity or from onstant values of the omplex-ity at whih the system stayed for at least 3 window positions.Fig. 8 depits 24-hour distributions of the extrema of the algorithmiomplexity for 3 healthy persons 25 years of age. Below them the orre-sponding distributions of the loal extrema of window pattern entropy areplotted. The entral example kndt in Fig. 8 depits a ase whih deviatesfrom the general harater of other persons belonging to this age group.Patients hm and pzr are both very typial: the distribution of algorithmiomplexity is Gaussian-like in appearane with a small negative skewnessand a moderate positive kurtosis. The orresponding distributions of win-dow pattern entropy are muh more Poisson-like and relatively narrow witha long tail extending into high entropy values indiating that episodes ofhigh statistial order are relatively rare. By ontrast, for kndt both distri-butions are broader and a distint peak of probability lose to 4000 windowpattern entropy is found.When suh distributions were onstruted for persons just above 40 yearsof age (Fig. 9) the e�et of age ould be seen. The two typial examplesfor this age group (stra and kzk) again have a Poisson-like distributionof algorithmi omplexity: skewed to the left and with a positive kurtosis.Now, however, the maximum of the distribution has shifted towards higheromplexity values. For ttk � a ase whih just barely meets the lassialmedial riteria for ardiologi norm � the hanges are even more apparent.The distributions of both measures are very broad and the distribution ofwindow pattern entropy is skewed to the left with a large peak at the valueof 4000. This is one example of only three suh ases we found among the 60healthy subjets reported here � for all others the most probable windowpattern entropy was between 800 and 1600. Note that when studying therisk of ardia arrest we found suh harateristi peak at 4000 entropyvalue predominantly in the high risk group of patients after a myoardialinfartion or with valvular heart disease [18, 19, 21℄.When normals older than 50 were studied, it was found that the hangeswith age were not so large between this group and the 40 year old group.
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Fig. 8. Comparison of the distributions of algorithmi omplexity (top row) andwindow pattern entropy wpe (bottom row) for three examples of 24-hour reordingsof sinus rhythm measured in persons about 25 years of age.
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Fig. 9. Comparison of the distributions of algorithmi omplexity (top row) andwindow pattern entropy wpe (bottom row) for three examples of 24-hour reordingsof sinus rhythm measured in persons 1 or 2 years above 40 years of age.Basially the distributions of both omplexity measures were broader anda shift towards higher values was evident espeially for window pattern en-tropy. Three examples for the oldest age group are shown in Fig. 10 whereagain the entral ase is borderline normal while the other two are typial.The shapes of the 24-hour probability distributions of omplexity measuresdo not re�et the instantaneous relation between the entropy and algorith-mi omplexity measures as funtions of the time. We showed elsewhere
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2560 J.J. �ebrowski et al.4.1. Short time sale � histograms of words4.1.1. Heart rate variabilityIn this sale the sequene of events plays a dominant role. To haraterizethe short term e�ets within the 24-hour time series we used histograms ofsymboli words [24℄ [7℄. A typial example of suh a histogram for a timeseries of RR intervals representing a sinus rhythm (i.e. the heart rhythmof a healthy person) is shown in Fig. 11. The referene level given by thehorizontal dotted line at 1/27 represents the probability density of the wordsin the ase of a omplete lak of pattern. It an be seen that in spite of theoarse graining introdued by the symboli oding, ertain words are muhmore probable than others while some words have a probability muh lowerthan the referene level. Note the large peaks of the distribution in Fig. 11at the words `000' and `222'. These peaks represent the probability of asustained (spanning 5 beats) higher than the window average heart beatrate and a sustained lower than the average heart rate, respetively. Typialfor a healthy person is also the low level of probability density at the word`111' whih represents a sustained very stable heart rate equal to the averagewithin the sampling error.
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2562 J.J. �ebrowski et al.4.1.2. Relation between the heart rate variability and the repolarization pro-esses in the heartThe length of time needed for the repolarization of the heart tissue (theRT interval in Fig. 1) depends to a ertain extent on the heart rate. Beauseof this, simple normalization formulas whih allow to realulate the repolar-ization interval taking into aount the length of the RR interval are oftenused [29℄. These formulas were derived for the sinus rhythm and usuallywith the assumption that a heart rate is limited to some range. Plotting theRT interval data as a funtion of the RR interval length shows that even iffor a healthy person (Fig. 14) assuming that a simple relation may be jus-ti�ed, it is ertainly not so for patients with hypertrophi ardiomyopathy(Fig. 15 and Fig. 16). We have previously reported that 24h repolarizationvariability expressed as standard deviation is lower in normal subjets inontrast to hypertrophi ardiomyopathy patients [29℄. In ontrast to heartrate variability, higher signal variane is a feature of normality. In fat, al-though from the statistial point of view the average linear orrelation of theRT intervals with respet to the RR intervals is strong (Pearson orrelationoe�ient r = 0:67 in Fig. 14), note that during short duration hanges ofthe heart rate this dependene is weak (Fig. 17). Only during a prolongedperiod of the inrease in the heart rate (between 225 s and 325 s in the toppart of Fig. 17) a omplex dependene between the two proesses may our(bottom part of Fig. 17). Suh behavior is most often seen in persons witha high risk of sudden ardia death.
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Fig. 14. The dependene of RT interval length on the heart rate for a healthyperson. The dashed line depits a linear regression �t to the data. The time serieswas 4 hours long and measured during the night.To examine this dependene, we formed a 4-dimensional phase spaefRR(t), RR(t+ � ), RT(t), RT(t+ 2�)g. We next applied the oding algo-rithm desribed above to the RR intervals and to the RT intervals alulatingtheir proper window averages as referene levels. Using data on the risk of
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Fig. 15. The dependene of RT interval length on the heart rate for a person withhypertrophi ardiomyopathy who has sine died. The dashed line depits a linearregression �t to the data. The time series was 4 hours long and measured duringthe night.

Fig. 16. The dependene of RT interval length on the heart rate for a person withhypertrophi ardiomyopathy who has sine died � ase di�erent from that inFig. 15. The dashed line depits a linear regression �t to the data. The time serieswas 4 hours long and measured during the night.ardia arrest in hypertrophi ardiomyopathy, we studied the e�et of dif-ferent values of the tolerane parameters for RR intervals and RT intervalson the histograms of 4-dimensional symboli words. We found that the bestresults were obtained when the tolerane parameter values were 7.5 ms forthe RR intervals and 4 ms for the RT intervals. Note that here the optimumtolerane parameter for the former is about twie the sampling error andthat, usually, the variane of the heart rate is also is muh larger than thevariane of the RT interval.We stress that we do not know of any formal theory for suh a hybridphase spae omposed of two delay oordinate embeddings of di�erent vari-ables related to di�erent proesses ourring in a single system. The under-
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Fig. 17. The dependene of the RR and RT intervals on the time (top). The bottom�gure depits the dependene of the RT interval on the heart rate during the stresstest visible in the top part approximately between 225 s and 325 s.
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Fig. 18. The dependene of the distribution of the 4-dimensional symboli wordsin fRR,RTg spae on the length of the series as marked in eah graph. The 10000interval long data series lasted 4 hours.



Complexity of Non-Stationary Time Series � Physiologial Proesses 2565lying heuristis is the following. By the Takens theorem, di�eomorphismsexist between the true trajetories for the heart rate and for the repolariza-tion proesses and their delay oordinate ounterparts. We thus expet thatthe hybrid phase spae omposed of delay oordinate embeddings may beformed just as the proper phase spae to examine the relation between heartrate and repolarization proesses would be one formed by all the variablesdesribing them. The approah desribed here is ompletely empirial ofneessity as neither all suh variables are known nor has the dimensionalityof eah of the proesses been asertained. We demonstrate below, however,that the empirial approah yields useful results.Fig. 18 demonstrates the e�et of the length of the data series on theshape of the distribution of 4D symboli words. Fig. 18 is also an exampleof suh a distribution for a healthy person obtained by sweeping through thetime series of RR and RT intervals with a 100 data point window. It anbe seen that there is some struture whih is invariant with respet to thelength of the time series and that even for a very short time series of 1000data points this struture is reognizable.To �nd out whih of the two data series is responsible for the struturein Fig. 18, we performed a series of surrogate data tests. We ompared thedistribution of the symboli words obtained with the original data with suha distribution obtained by seletively shu�ing the data the RR interval timeseries only, by shu�ing the RT data only and by shu�ing both (Fig. 19).It an be seen that seletive shu�ing only of the RR intervals retains themajor struture of the original distribution while seletive shu�ing only ofthe RT intervals reates a distribution similar to that obtained when bothtypes of data are shu�ed.An opposite e�et was observed when data from some ases of high riskpatients with hypertrophi ardiomyopathy were examined. An example ofthis is given in Fig. 20. It an be seen that the distribution obtained for theseletively shu�ed RR intervals resembles that found when both RR and RTwere shu�ed. On the other hand, seletive shu�ing of RT only produesa symboli word distribution whih resembles the original one the maine�et being the destrution of the large peaks at word `0000' and at word `2222', as expeted. The two ases shown in Fig. 19 and Fig. 20 demonstrateagain how omplex and variable may be the relation between the heart rateand the repolarization proesses. Global heart rate variability (expressed asstandard deviation of RR intervals) in both ases is very similar � 112msfor the data of Fig. 19 versus 92 ms for that of Fig. 20 (i.e. a di�erene ofabout 10%). However, the variability of the RT intervals is larger by 30%in the latter ase (18 ms) than in the former (12 ms). This explains whyshu�ing the RT series in Fig. 20 hanged the basi features of the histogrammore than shu�ing the same type of data in ase of the example of the sinus
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Fig. 19. The e�et of data shu�ing on the distribution of 4-dimensional symboliwords measured during sinus rhythm (i.e. in a healthy person): a) original data,b) only RR shu�ed and RT as measured ) both time series surrogate d) only RTshu�ed and RR as measured. The time series was 4-hours long and was measuredduring the night.
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Fig. 20. The e�et of data shu�ing on the distribution of 4-dimensional symboliwords measured in a person with hypertrophi ardiomypathy at high of a ardiaarrest: a) original data, b) only RR shu�ed and RT as measured ) both timeseries surrogate d) only RT shu�ed and RR as measured. The time series was4-hours long and measured during the night.
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Fig. 21. Probability density of the symboli word 2211 for 46 persons with hyper-trophi ardiomyopathy: open bars � low risk ases, dark bars � persons whodied due to ardia arrest.rhythm in Fig. 19. We see that the histograms of the 4-dimensional symboliwords allow a detailed analysis of repolarization dynamis as a funtion ofdi�erent sequenes of heart rate variability.The signi�ane of the individual symboli words were analyzed using8 sex, age and disease mathed ontrol pairs eah ontaining a high riskand low risk patient with hypertrophi ardiomyopathy. We subtrated thesymboli word distributions of all ontrols from suh distributions for therespetive high risk patients. The di�erenes between the probabilities of allwords ontaining the symbols `11' on the last two positions in a word weresigni�antly di�erent from zero. The largest di�erene for all pairs was ob-tained for the word `2211'. This word may be interpreted: it represents theprobability that during a period of sustained (5 beats) heart rate below theaverage in a given window the RT interval length remains stable. For ardi-ologi norm, this word ahieves a probability density of 10% or more. Theprobability of obtaining the word `2211' for all patients with hypertrophiardiomyopathy analyzed is shown in Fig. 21. It an be seen that for allhigh risk patients (they all had died) (blak bars in Fig. 21) the probabilityof obtaining this word falls within a very narrow range. Note that one ofthe patients in the high risk group died during the study (the �rst dark barfrom the left in Fig. 21) � he had been �rst lassi�ed as low risk by stan-dard methods. The probability of the word 2211 for this person falls exatlywithin the spei�ed range marked by the two horizontal lines in Fig. 21. Ifone assumes that the persons, for whom the probability of the word `2211'is within the range marked by horizontal broken lines in Fig. 21, then ariterion for the risk of sudden ardia death in hypertrophi ardiomyopa-thy is obtained with rather high �gures of merit: sensitivity (i.e. the abilityof the method to separate the low risk group from the high risk group) of85 % and spei�ity (i.e. the ability of the method to assign eah individualpatient to the low risk or the high risk group) of 80 %. Given the fat that



2568 J.J. �ebrowski et al.linear statistial methods suh as analysis of standard deviation yield �guresof merit of the order of 50�60 %, the result seems very enouraging. Moreresearh is needed analyze the properties of other symboli words similar to`2211' in view of enhaning the method further. Also, although the groupstudied here is not small (46 patients), the sensitivity and spei�ity of theriterion proposed here need to be veri�ed on a larger group.5. ConlusionsReently we have developed methods for the study of the level of regu-larity in the dynamis of omplex systems whih may be non-stationary. Tostudy statistial properties of these systems we have used a sweeping timewindow in whih pattern entropy [12℄ and Renyi entropy [14℄ was alulated.Furthermore, to study the importane of the sequene of events ourring inthe dynamis of the system we have used the sweeping window with a sym-boli dynamis sheme [15, 25℄ involving the alulation of the distributionof algorithmi omplexity and, more reently, of the distribution of symboliwords.In the system studied here i.e. the system whih ontrols the variabilityof the rate of the human heart, statistial regularity and sequential regu-larity have di�erent properties: they relate to di�erent bio-hemial agentswhih ontrol heart rate variability, the shape of the statistial distributionof the omplexity measures is di�erent and the e�et of age on these dynam-ial properties of the system may be di�erent. In partiular, in a subgroupof the population studied by us (mostly younger persons) the level of sta-tistial regularity is strongly orrelated with that of sequential regularity.Most of the persons from the older subgroup show no orrelation of the levelof statistial regularity with sequential regularity. Not that for one dimen-sional maps and other simple models no distintion is usually made betweenstatistial and sequential regularity.Another aspet studied by us was the properties of statistial regularityof heart rate variability versus those of heart rate aeleration. It is wellknown that heart rate is a result of the balane between the ativity of thesympatheti nervous system and that of the parasympatheti nervous sys-tem. Heart rate aeleration, on the other hand, is a funtion of the inreasedativity of the sympatheti nervous system ombined with a derease in theativity of the parasympatheti system. Comparing the 24-hour distribu-tions of pattern entropy of hear rate and heart rate aeleration, we showedthat healthy humans may be divided into two groups: in one the statistialproperties of heart rate are similar to those of heart rate aeleration i.e.the positions of the maxima of both pattern entropy distributions indiate astatistially ordered time series. In the seond, the position of the maximum
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