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MEASURING THE COMPLEXITYOF NON-STATIONARY TIME SERIES� NONLINEAR INTERPRETATIONS OFSELECTED PHYSIOLOGICAL PROCESSES�J.J. �ebrowskia, W. Popªawskab, R. Baranowskiband T. Bu
hneraaInstitute of Physi
s, Warsaw University of Te
hnologyKoszykowa 75, 00-662 Warszawa, Polande-mail: zebra�if.pw.edu.plbNational Institute of CardiologyAlpejska 42, 04-628 Warsaw, Polande-mail: baranows�ikard.waw.pl(Re
eived February 24, 1999)A general method of analysis of non-stationary time series (time inter-vals of the human ele
tro
ardiogram) is presented: a short sliding windowis used in 
onjun
tion with two di�erent 
omplexity measures. The �rst� a modi�ed Shannon entropy 
alled pattern entropy � quanti�es thelevel of statisti
al order. The se
ond is based on a symboli
 dynami
s indelay 
oordinate spa
e and quanti�es the level of sequential order by meansof an estimator of algorithmi
 
omplexity. The sliding window pro
eduremaps the original time series into a time series of the given 
omplexity mea-sure. The global state of the system is then 
hara
terized by the propertiesof the distribution of the resultant 
omplexity measure. To 
hara
terizestates on a lo
al time s
ale the distribution of symboli
 words is used. Themethod is applied to di�erent data on heart rate variability, heart a

elera-tion/de
eleration and on the repolarization pro
esses in the heart. We showthat the nonlinear methods des
ribed may be applied to the analysis of theintera
tion of autonomi
 nervous system and the repolarization pro
essesin the heart. This resear
h was initiated to �nd new ways of prognosis therisk of sudden 
ardia
 death. Below we show how the methods developedunveil new images of some physiologi
al pro
esses.PACS numbers: 05.45.+b, 87.10+e, 87.80.+s� Invited paper presented at the XI Marian Smolu
howski Symposium on Statisti
alPhysi
s, Zakopane, Poland September 1�5, 1998(2547)
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tionThis paper dis
usses two issues at the frontier between di�erent dis
i-plines of s
ien
e: physi
s and medi
ine. On the one hand, we summarizeand also present new results of our resear
h on the te
hniques for measuringthe 
omplexity of nonlinear states of systems whi
h have to be 
onsiderednon-stationary. On the other hand, we demonstrate how these te
hniquesmay be used � in 
onjun
tion with medi
al knowledge � to assess the stateof the autonomi
 nervous system. In the latter 
ase, the ultimate goal is to�nd new diagnosti
 methods allowing to predi
t the risk of sudden 
ardia
death.One of the topi
s dis
ussed at this meeting was fuzzy logi
 and its usein bio-physi
al resear
h. It is often a
knowledged that medi
ine is not an'exa
t' s
ien
e. Fuzzy terms su
h as `an ordered arrhythmia', `a disorderedarrhythmia', `heart rate variability be
omes in�exible in su
h and su
h 
ir-
umstan
es' are used in day to day des
riptions of parti
ular 
ases and sup-plement the many pre
ise bio-
hemi
al and ele
trophysiologi
al measure-ments helping to form a 
ardiologi
 diagnosis. One of the purposes of theresear
h des
ribed below was to �nd non-linear dynami
al methods to quan-tify these fuzzy terms.In studying heart rate variability, spe
i�
 patterns visible in the ECGtra
e are looked for. Linear spe
tral analysis and time domain analysis [1℄have made a signi�
ant 
ontribution to the understanding of the patho-physiology of heart rate variability. Linear analysis methods have severelimitations mostly due to the non-stationarity of the system studied. Re-
ently, signi�
ant resear
h [2�8℄ has been reported that non-linear methodsderived from 
haos theory perform better in assessing the risk of 
ardia
 ar-rest. The issue whether heart rate variability is truly a deterministi
 
haoti
state is hotly dis
ussed, however [9, 10℄. This is a strong indi
ation thatmethods must be 
hosen whi
h will be appropriate both for deterministi
and for sto
hasti
 pro
esses.The time s
ale on whi
h events whi
h may be signi�
ant for sudden
ardia
 death o

ur is important. One of the reasons of the relative failureof su
h linear methods as the power spe
trum in 
orre
tly predi
ting therisk of sudden 
ardia
 death may be due to the number of data the methodrequires thus limiting the time s
ale from below. Woo et al. [11℄ and our ownresear
h [12℄ indi
ate that 24-hour measurements of heart rate variabilitymay be mapped into 2 or 3 dimensional phase portraits. Certainly the`torpedo shape' found by Woo et al. [11℄ may be asso
iated with 24 hours ofthe natural heart rhythm (sinus rhythm). It is true also that various typesof pathology distort the phase spa
e traje
tory produ
ing a wide variety ofshapes [12, 11℄. It is however di�
ult to asso
iate the level of risk with
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esses 2549these shapes alone. On the other hand, we have shown that on a short times
ale of a few hundred heart beats (1.5-4.5 minutes) spe
i�
 patterns in 3-dimensional phase spa
e may be found [7, 12℄. The dominant are the spiraland the radial patterns as dis
ussed in [12�14℄. In some 
ases a limit 
y
lemay be obtained [15℄. An elaborate embedding allowing to extra
t su
hpatterns from the 24-hour time series was devised by Babloyantz et al. [16℄.In our resear
h, we have fo
used on �nding the proper 
omplexity measuresto 
hara
terize the patterns obtained in phase spa
e.The data analyzed in this paper is dis
ussed in Se
tion 2. The methodsused to analyze regularity in the statisti
al and in the sequential sense inphenomena o

urring on a long time s
ale are presented in Se
tion 3 whileSe
tion 4 dis
usses analysis of the short time s
ale e�e
ts both in heart ratevariability and in the intera
tion of the heart rate with the repolarizationpro
esses the heart tissue. A summary of our results is given in Se
tion 5.2. The dataMost of this paper dis
usses heart rate variability whi
h is measured as aseries of time intervals between spe
i�
 points of the ECG (the RR intervalsas marked in Fig. 1). The R peak represents the moment in time when theventri
les 
ontra
t. The 
ontra
tion of heart tissue is asso
iated with a de-polarization phase super
eded by a repolarization phase. The repolarizationtime (the RT interval1 in Fig. 1) is an important diagnosti
 parameter.
Fig. 1. S
hemati
 of two 
y
les of an ECG tra
e with the 
hara
teristi
 points andtime intervals marked.Within the last 5 years our group has analyzed over 300 24-hour ECGre
ordings in the 
ontext of using nonlinear dynami
s methods for medi
alprognosis of the risk of 
ardia
 arrest. The bulk of the heart rate variabilityanalysis was performed using the Del Mar Strata S
an 563 software at a128 Hz sampling frequen
y. The repolarization pro
esses were analyzed1 Although it is more usual to 
onsider the QT interval as the repolarization time,be
ause the point Q of the ECG tra
e is di�
ult to extra
t automati
ally and reliablyfrom a Holter re
ording, we prefer to use the RT interval. It is well known that, fora given individual, the QR interval has 
onstant length of approximately 10�20 ms.



2550 J.J. �ebrowski et al.by extra
ting at 256 Hz both the RR and RT intervals from the 24-hourre
ordings using a 
ustom software designed at the Institute of Cyberneti
sof the Polite
hni
a de Catalunya, Bar
elona. [17℄. All our re
ordings were
arefully 
he
ked for artifa
ts and for arrhythmia by a quali�ed 
ardiologist.No kind of arrhythmia �ltering was applied to the data.Below we present results for 60 
ases of apparently healthy individuals16-64 years of age (only 7 of them were women), and 86 patients with hyper-trophi
 
ardiomyopathy. This disease 
aused by geneti
 mutations results inan abnormal stru
ture of the heart mus
le with a wide spe
trum of 
hangesranging from small abnormalities in the ECG tra
e through di�erent typesof 
ardiomyopathy in
luding even a dilation of the heart (dilated 
ardiomy-opathy). At any stage of the disease the main risk is sudden 
ardia
 death.So far there is no method to predi
t whi
h patient would be prone to thisrisk i.e. whi
h patient should be equipped with an automati
 de�brillator.The group of patients with hypertrophi
 
ardiomyopathy 
hosen for analy-sis were 
hosen pre
isely be
ause of the failure of the standard time domainand spe
tral methods of the analysis of heart rate variability in de�ning thepatients with the highest risk of sudden 
ardia
 death.In 7 older men, we performed additional testing of the autonomi
 nervoussystem fun
tions in
luding tilting of the whole body to the verti
al positionwhi
h stimulates the sympatheti
 part of this system. Before and after thismaneuver, in addition to the ECG, the plasma levels of the sympatheti
neurotransmitters norepinephrine and dopamine were also measured.3. Long time s
ale3.1. Statisti
al 
omplexityTo analyze the heart rate variability, we have used pattern entropy[12, 14, 15, 18�21℄. This is a 
omplexity measure derived from the Shannonentropy: S = � NXi=1 Pi(k) logPi(k) ;where N is the number of bins in the histogram of RR intervals, is theprobability distribution (a normalized histogram) of RR intervals within thetime window, i is the bin index and k is the index of the RR interval atthe end of the time window. Pattern entropy is obtained by substitutingfor the usual one dimensional probability density Pi(k) the in
omplete jointprobability density: Pi = pi(k)pi(k + �)pi(k + 2�) ;
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esses 2551where is the delay of the time delay re
onstru
tion. In all our 
omputationswe use � = 2 beats [12, 14℄. The use of the in
omplete joint probability(in pla
e of the full joint probability in 3-dimensions) with the Shannonentropy (1) implies that pattern entropy will be large for highly ordered timeseries � 
ontrary to the properties of Shannon entropy itself. Note, thatpattern entropy does not have all the properties of 
onventional entropy (e.g.it is not additive). For 
onvenien
e, throughout our work we use arbitraryunits whi
h are obtained by multiplying pattern entropy given by the abovedes
ribed equations by 104.If the length of the time window is small 
ompared to the length of thetime series analyzed, window pattern entropy WPE is obtained. The lengthof the time window may be varied between 50 and 400 beats (for the e�e
tof window size see [18℄). Note that a window length measured in integertime (beats) rather than a �xed window size in real time (e.g. se
onds) ispreferred as for a real time length window � due to heart rate variability� the number of beats would 
hange drasti
ally from window to window.Typi
ally a window length of 50 beats is equivalent to 20�35 s of real timewhile 400 beats is equivalent to approximately 3�4 Min.Window pattern entropy �u
tuates as the window sweeps through timeseries. Initially we 
al
ulated the minimum, maximum and average of WPEand 
ompared these values with the risk of 
ardia
 arrest for individual
ases [12℄. We now see that the full distribution of WPE of heart rate yieldsa better image of the given 
ase studied [18�21℄. We �nd, for example, thatthe most probable pattern entropy value measured in a 5 Min. epo
h seemsto 
orrelate strongly with the plasma level of norepinephrine when thatis measured simultaneously [15℄. Although the shape of the distribution ofWPE in a 24-hour heart rate time series is Poisson-like (see Figs 8�10 below)in a predominant number of 
ases, the most probable WPE value emergesas an indi
ator of the state of the system. Similar results were obtained forthe dynami
 states of the logisti
 map [19℄.All de�nitions of the entropies used in 
haos theory su
h as theKolmogorov�Sinai entropy and generalized Renyi entropies [22℄ avoid theproblem of �u
tuations by assuming ergodi
ity and taking the limit of in-�nite time. For this, an in�nitely long time series is required so that inpra
ti
al appli
ations one only 
al
ulates an estimator of the entropy. Inour 
ase, the problem is made more 
omplex by the non-stationarity of thesystem: no restri
tions are made on the behavior of the human subje
t dur-ing the 24-hour measurement of heart rate. In stationary state, windowpattern entropy is a de
reasing fun
tion of the time i.e. of the length oftime window (
f. similar dis
ussion in [3℄). In a non-stationary state, weassumed that the best approximation of pattern entropy with the limit oft ! 1 may be obtained by the following pro
edure: we 
al
ulate 
umula-



2552 J.J. �ebrowski et al.tive pattern entropy CPE as pattern entropy with the length of the windowgradually expanding to span the whole 24-hour RR interval time series. Theminimum of CPE we assume to be the best approximation of the patternentropy at t!1 . Although this is a purely empiri
al approa
h, we foundthat, often, CPE is a monotoni
ally de
reasing fun
tion of the time and onlyrarely does it in
rease during the given 24-hour re
ording of heart rate. Inother words, observation of a large number of 
ases shows that instan
es oftrue non-stationarity due to the a
tivity of the subje
t whi
h 
ause a 
hangeof state (thereby 
ausing an in
rease of the 
umulative pattern entropy) arerelatively rare. Note that we have often found that the 24-hour minimum ofCPE remains the best indi
ator of the risk of 
ardia
 arrest [12, 14℄.It has been shown before [23℄ that the di�eren
es of RR intervals and therespe
tive pattern entropies (denoted WPD and CPD) [18℄ are a measureof the a
tivity of the parasympatheti
 nervous system. On the other hand,heart rate variability itself together with the resultant pattern entropiesWPE and CPE re�e
t the a
tivity of both the parasympatheti
 and thesympatheti
 nervous systems [18℄.When studying simultaneously pairs of the time series � the RR in-tervals and their di�eren
es � we found that even for healthy persons therelation between the pattern entropies 
al
ulated from these time series isnot always the same. This e�e
t is seen both in the dependen
e on thetime of WPE and WPD as well as in the shape of the distributions of thesemeasures of statisti
al 
omplexity.Fig. 2 depi
ts an example of the dependen
e of RR intervals (part a) andtheir su

essive di�eren
es (part b) as fun
tions of the time during a exer
isestress test. In Fig. 2 the stress test lasted from about t = 1000 s to aboutt = 2700 s. This test manifests itself by a period of linear de
rease of the RRinterval length (during whi
h the load is in
reased) followed by a re
overyperiod. The varian
e of the RR interval de
reases during the test and doesnot regain the value from before the test for a long time. It 
an be seenthat window pattern entropy WPE (thi
k 
urve in part a) of Fig. 2) risessharply at the beginning of the test and de
ays slowly afterwards. Patternentropy of the RR interval di�eren
es WPD (thi
k 
urve in part b) of Fig. 2)follows the 
hanges of WPE during the initial part of stress test but its valueremains 
onstant on the average at a moderate level for a long time afterthe test. In other examples, of the same type of behavior, WPD de
reasessharply as soon as the load is redu
ed. This type of heart rate variabilitymay be dubbed `�exible' .An example of the `in�exible' heart rate variability is seen in Fig. 3 duringa stress test 
ondu
ted on a di�erent (and mu
h older) healthy subje
t. Inthis 
ase, the stress test lasted from 600 s to 1900 s. It 
an be seen that, forthis subje
t, rea
tion to the stress test o

urs only brie�y during the highest
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Fig. 2. An example of the `�exible' heart rate variability: the dependen
e of RRintervals and the 
orresponding WPE as fun
tions of the time (part a) 
omparedwith the RR interval di�eren
es and the 
orresponding WPD (part b) measuredin a healthy subje
t during a stress test performed between about t = 1000 s toabout t = 2700 s.
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Fig. 3. An example of the `in�exible' heart rate variability: the dependen
e of RRintervals and the 
orresponding WPE as fun
tions of the time (part a) 
omparedwith the RR interval di�eren
es and the 
orresponding WPD (part b) measuredduring a stress test performed between t = 600 s and t = 1900 s on a healthysubje
t.
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Fig. 4. The dependen
e of pattern entropy of RR interval di�eren
es WPD onthe pattern entropy of RR intervals during the stress test itself. Thi
k 
urve �`in�exible' heart rate variability; thin 
urve � `�exible' heart rate variability. Theraw data for the stress test is the same as in Fig. 2 and Fig. 3, respe
tively.
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Fig. 5. The dependen
e of the RR interval di�eren
es on the RR interval lengthsduring period of the stress tests for the `�exible' (part a) and the `in�exible' heartrate variability (part b). This �gure depi
ts the raw data used to 
al
ulate Fig. 4.load phase and that the de
rease in the level of statisti
al 
omplexity of theRR intervals during re
overy after the stress test o

urs mu
h faster. At thesame time, the behavior of the 
omplexity of the RR interval di�eren
es asa fun
tion of the time seems not to re�e
t the stress test at all.Fig. 4 depi
ts WPD as a fun
tion of WPE during the stress test for thetwo examples just des
ribed. It 
an be seen that in the `�exible' heart ratevariability 
ase (thin 
urve in Fig. 4) the stress test in
reases the level ofthe statisti
al order of both RR intervals and their di�eren
es. On the otherhand, for the example of the `in�exible' kind (thi
k 
urve in Fig. 4) the sta-tisti
al order of the heart rate �u
tuates in a wide range throughout the testwhile the 
omplexity of heart a

eleration/de
eleration stays 
onstant on ahigh level. Fig. 5 demonstrates that the di�eren
es between the examplesare not visible in the raw data itself.
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Fig. 6. The distributions of pattern entropy for the RR intervals (WPE � thin
urve) and for the RR interval di�eren
es (WPD � thi
k 
urve) 
al
ulated for thefull 24-hour time series for the `�exible' heart rate variability. The raw data inFig. 2 is a fragment of the re
ording used to 
al
ulate these distributions.
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Fig. 7. The distributions of pattern entropy for the RR intervals (WPE � thin
urve) and for the RR interval di�eren
es (WPD � thi
k 
urve) 
al
ulated for thefull 24-hour time series for the `in�exible' heart rate variability. The raw data inFig. 3 is a fragment of the re
ording used to 
al
ulate these distributions.Figs 2�5 depi
t e�e
ts seen only during the short period of the stress test.However, the property of `�exibility' of the heart rate variability may beseen also in the shape of the 24-hour distributions of the respe
tive patternentropies. For the �exible heart rate variability, it 
an be seen in Fig. 6that the distributions of both WPE and WPD 
oin
ide. In the 
ase ofthe `in�exible' heart rate variability (Fig. 7) an extremely large peak in thedistribution of WPD (thi
k 
urve) appears at a high value of the 
omplexity



2556 J.J. �ebrowski et al.measure indi
ating that heart rate variability with a highly ordered mode ofrate 
hange is dominant during the whole 24-hours of the re
ording.4. Sequential 
omplexitySymboli
 dynami
s [24℄ is obtained by introdu
ing a 
oarse grained par-titioning and analyzing the way in whi
h the given system visits ea
h parti-tion. Although it may be argued that the partitioning may be arbitrary, itis a

epted that the most 
lear results are obtained when physi
al propertiesof the system are taken into a

ount. Thus, in the symboli
 dynami
s ofone dimensional maps [24℄ the partition border is given by the 
riti
al pointsof the map and the symbols are uniquely asso
iated with its bran
hes. Inthe 
ase of heart rate variability, the dynami
s is too 
ompli
ated to modelby a simple map for whi
h su
h bran
hes may de�ned. On the other hand,the spiral shape of three dimensional traje
tories of RR intervals [12℄ � adominant feature of heart rate variability in healthy individuals � indi
atesthat an unstable �xed point may play an important role in the dynami
s.For this reason, we introdu
ed [15℄ [25℄ the following symboli
 
oding whi
htakes advantage of the Takens delay 
oordinate re
onstru
tion.As a surrogate of the 
riti
al point of 1-dimensional maps, we used theaverage interval for ea
h time window (i.e. the fo
al point of the spiraltraje
tory). All intervals were 
ompared with this the referen
e level anda symbol was assigned: if the RR(i) value was less than the average thesymbol was �L� and �R� if the opposite was true. Similar 
omparisons were
arried out for RR(i + �) (symbols �D� or �U�) and RR(i + 2� ) (symbols�T� or �B�). If the value of the RR intervals was 
loser to the average thanthe sampling error (7.5 ms) the symbol �C� was written. Thus, a givenpattern in 3-dimensional spa
e was mapped to a sequen
e of 3 letter words
omposed of 7 di�erent symbols. To quantify the 
omplexity of the sequen
eof symboli
 words, the Lempel-Ziv algorithmi
 
omplexity [26℄ was then usedby means of an algorithm implemented after Kaspar and S
huster [27℄. Thisalgorithm 
ounts the number of unique k-symbol strings (k =1,2,...,K, withK the length of symbol sequen
e) into whi
h the given sequen
e of symbolsmay be de
omposed. By de�nition, algorithmi
 
omplexity is obtained inthe limit of an in�nite length of the symbol sequen
e analyzed. Sin
e, here,we 
al
ulated algorithmi
 
omplexity of a �nite sequen
e of symbols (threetimes the number of intervals per time window), the value 
al
ulated is onlyan estimator. A similar estimator was used by Witt et al. [28℄ ex
ept thatthere the normalized estimator of [27℄ re�e
ting algorithmi
 
omplexity persymbol was used. Here, with the length of the time window held 
onstantat 100 beats, the estimator that we used is not normalized. The numbersobtained dire
tly from the Lempel�Ziv algorithm were easier to interpretbeing related to the number of unique sequen
es within a window.
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esses 2557Similarly as in [7℄, we also found that better results are obtained if thereferen
e level for symboli
 
oding is slightly shifted with respe
t to theaverage of the RR intervals in a time window. In our 
ase, we multiplied theaverage by a 
onstant a = 1:01. The reason for the use of su
h a 
onstantwith heart rate variability is the natural asymmetry of the distribution ofthe RR intervals themselves.Sin
e the 100 interval time window used here throughout the symboli
dynami
s analysis is relatively short, sweeping the 24-hour time series withthe time window results in a distribution of the algorithmi
 
omplexity val-ues. The distributions dis
ussed below were 
onstru
ted only from lo
alextrema of algorithmi
 
omplexity or from 
onstant values of the 
omplex-ity at whi
h the system stayed for at least 3 window positions.Fig. 8 depi
ts 24-hour distributions of the extrema of the algorithmi

omplexity for 3 healthy persons 25 years of age. Below them the 
orre-sponding distributions of the lo
al extrema of window pattern entropy areplotted. The 
entral example kndt in Fig. 8 depi
ts a 
ase whi
h deviatesfrom the general 
hara
ter of other persons belonging to this age group.Patients 
hm and pzr are both very typi
al: the distribution of algorithmi

omplexity is Gaussian-like in appearan
e with a small negative skewnessand a moderate positive kurtosis. The 
orresponding distributions of win-dow pattern entropy are mu
h more Poisson-like and relatively narrow witha long tail extending into high entropy values indi
ating that episodes ofhigh statisti
al order are relatively rare. By 
ontrast, for kndt both distri-butions are broader and a distin
t peak of probability 
lose to 4000 windowpattern entropy is found.When su
h distributions were 
onstru
ted for persons just above 40 yearsof age (Fig. 9) the e�e
t of age 
ould be seen. The two typi
al examplesfor this age group (stra and k
zk) again have a Poisson-like distributionof algorithmi
 
omplexity: skewed to the left and with a positive kurtosis.Now, however, the maximum of the distribution has shifted towards higher
omplexity values. For ttk � a 
ase whi
h just barely meets the 
lassi
almedi
al 
riteria for 
ardiologi
 norm � the 
hanges are even more apparent.The distributions of both measures are very broad and the distribution ofwindow pattern entropy is skewed to the left with a large peak at the valueof 4000. This is one example of only three su
h 
ases we found among the 60healthy subje
ts reported here � for all others the most probable windowpattern entropy was between 800 and 1600. Note that when studying therisk of 
ardia
 arrest we found su
h 
hara
teristi
 peak at 4000 entropyvalue predominantly in the high risk group of patients after a myo
ardialinfar
tion or with valvular heart disease [18, 19, 21℄.When normals older than 50 were studied, it was found that the 
hangeswith age were not so large between this group and the 40 year old group.
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Fig. 8. Comparison of the distributions of algorithmi
 
omplexity (top row) andwindow pattern entropy wpe (bottom row) for three examples of 24-hour re
ordingsof sinus rhythm measured in persons about 25 years of age.
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Fig. 9. Comparison of the distributions of algorithmi
 
omplexity (top row) andwindow pattern entropy wpe (bottom row) for three examples of 24-hour re
ordingsof sinus rhythm measured in persons 1 or 2 years above 40 years of age.Basi
ally the distributions of both 
omplexity measures were broader anda shift towards higher values was evident espe
ially for window pattern en-tropy. Three examples for the oldest age group are shown in Fig. 10 whereagain the 
entral 
ase is borderline normal while the other two are typi
al.The shapes of the 24-hour probability distributions of 
omplexity measuresdo not re�e
t the instantaneous relation between the entropy and algorith-mi
 
omplexity measures as fun
tions of the time. We showed elsewhere
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Fig. 10. Comparison of the distributions of algorithmi
 
omplexity (top row) andwindow pattern entropy wpe (bottom row) for three examples of 24-hour re
ordingsof sinus rhythm measured in persons above 50 years of age.for 
hara
teristi
, spe
ially 
hosen medi
al examples [15℄ that, over shortperiods of the time, sequential 
omplexity of the heart rate variability for ahealthy individual may repeatedly be larger than for the medi
al 
ondition
alled atrial �brillation. The latter is 
onsidered to be the most randomtype of heart rate variability. It seems that the notion of the randomnessof heart rate in atrial �brillation is due mostly to the widely used spe
tralanalysis [1℄. We have shown before [15, 25℄ that the level of order of heartrate variability for atrial �brillation � as seen by both pattern entropy andby algorithmi
 
omplexity � was low as expe
ted. In other 
ases, however,the dependen
e on the time of the simultaneously 
al
ulated window patternentropy and algorithmi
 
omplexity is not trivial. Most of the time, a 
hangeof the value of pattern entropy is a

ompanied by a like 
hange of the 
or-responding algorithmi
 
omplexity. Sin
e pattern entropy is low for higherdisorder the fa
t that the two 
omplexity measures follow ea
h other as fun
-tions of the time would indi
ate a 
ompensation of an in
rease of statisti
alorder in the series (less frequen
ies used) by a more 
omplex sequen
e of RRintervals. There are both short periods of the time (up to 2 minutes) as wellas long periods of the time (about 20 minutes) when the behavior of the two
omplexity measures is not 
orrelated. An ex
eptionally 
lear 
ase of su
hindependent behavior was found [15℄ for the 
ase of a person who su�ereda 
ardia
 arrest at the end of the 24-hour re
ording. Within that re
ord-ing long periods of de
orrelation between pattern entropy and algorithmi

omplexity o

urred often while in a re
ording made for the same subje
t 9months later and under medi
ation no su
h periods 
ould be found.



2560 J.J. �ebrowski et al.4.1. Short time s
ale � histograms of words4.1.1. Heart rate variabilityIn this s
ale the sequen
e of events plays a dominant role. To 
hara
terizethe short term e�e
ts within the 24-hour time series we used histograms ofsymboli
 words [24℄ [7℄. A typi
al example of su
h a histogram for a timeseries of RR intervals representing a sinus rhythm (i.e. the heart rhythmof a healthy person) is shown in Fig. 11. The referen
e level given by thehorizontal dotted line at 1/27 represents the probability density of the wordsin the 
ase of a 
omplete la
k of pattern. It 
an be seen that in spite of the
oarse graining introdu
ed by the symboli
 
oding, 
ertain words are mu
hmore probable than others while some words have a probability mu
h lowerthan the referen
e level. Note the large peaks of the distribution in Fig. 11at the words `000' and `222'. These peaks represent the probability of asustained (spanning 5 beats) higher than the window average heart beatrate and a sustained lower than the average heart rate, respe
tively. Typi
alfor a healthy person is also the low level of probability density at the word`111' whi
h represents a sustained very stable heart rate equal to the averagewithin the sampling error.
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2Fig. 11. Distribution of symboli
 words 
al
ulated for a 24-hour time series ofRR intervals measured in a healthy person (sinus rhythm). The dashed line atprobability density 1/27 marks the level of a random distribution of words.The distribution of symboli
 words 
hanges with the risk of 
ardia
 ar-rest. These 
hanges may be only quantitative as in the 
ase depi
ted inFig. 12 of the young patient without any symptoms ex
ept for a twi
e sus-tained 
ardia
 arrest. Comparing this distribution with that of the 
ontrolpair in Fig. 11, it 
an be seen that the most visible 
hange is seen in theoutlying peaks `000' and `222'. There is, however, a subgroup of patientsat high risk of 
ardia
 arrest, for whi
h the words 
ontaining the symbol `1'signifying rate stability play a signi�
ant role. An example of su
h a 
aseis seen in Fig. 13 in whi
h the distribution of symboli
 words, for a 2 hourre
ording whi
h ended in 
ardia
 arrest, is depi
ted.
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2Fig. 12. Distribution of symboli
 words 
al
ulated for a 24-hour time series ofRR intervals measured in a person at risk of 
ardia
 arrest. The dashed line atprobability density 1/27 marks the level of a random distribution of words.
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2Fig. 13. Distribution of symboli
 words 
al
ulated for a 2-hour time series of RRintervals whi
h ended in a fatal 
ardia
 arrest. The dashed line at probabilitydensity 1/27 marks the level of a random distribution of words.We examined the probability densities of various words and their ratiosand we found that the index of maximum variability ImaxVar i.e. the ratioof the probability densities p('000')/p('222') 
orrelates best with the risk ofsudden 
ardia
 death in the otherwise di�
ult to analyze group of patientswith hypertrophi
 
ardiomyopathy. The index ImaxVar was strongly relatedto 
ertain e
ho
ardiographi
 parameters of hypertrophy (Pearson 
orrelation
oe�
ient r = 0:75 with p < 0:001). The word `111' expressing a la
k ofvariability of the heart rhythm 
orrelated strongly with su
h medi
al pa-rameters that indi
ate a kind of ventri
ular overload. The index of maximalvariability was found also to identify the high risk patients with a sensitivity,spe
i�
ity and predi
tive a

ura
y of 81 %. This result is signi�
antly betterthan the parameters of any other noninvasive te
hnique so far.



2562 J.J. �ebrowski et al.4.1.2. Relation between the heart rate variability and the repolarization pro-
esses in the heartThe length of time needed for the repolarization of the heart tissue (theRT interval in Fig. 1) depends to a 
ertain extent on the heart rate. Be
auseof this, simple normalization formulas whi
h allow to re
al
ulate the repolar-ization interval taking into a

ount the length of the RR interval are oftenused [29℄. These formulas were derived for the sinus rhythm and usuallywith the assumption that a heart rate is limited to some range. Plotting theRT interval data as a fun
tion of the RR interval length shows that even iffor a healthy person (Fig. 14) assuming that a simple relation may be jus-ti�ed, it is 
ertainly not so for patients with hypertrophi
 
ardiomyopathy(Fig. 15 and Fig. 16). We have previously reported that 24h repolarizationvariability expressed as standard deviation is lower in normal subje
ts in
ontrast to hypertrophi
 
ardiomyopathy patients [29℄. In 
ontrast to heartrate variability, higher signal varian
e is a feature of normality. In fa
t, al-though from the statisti
al point of view the average linear 
orrelation of theRT intervals with respe
t to the RR intervals is strong (Pearson 
orrelation
oe�
ient r = 0:67 in Fig. 14), note that during short duration 
hanges ofthe heart rate this dependen
e is weak (Fig. 17). Only during a prolongedperiod of the in
rease in the heart rate (between 225 s and 325 s in the toppart of Fig. 17) a 
omplex dependen
e between the two pro
esses may o

ur(bottom part of Fig. 17). Su
h behavior is most often seen in persons witha high risk of sudden 
ardia
 death.
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Fig. 14. The dependen
e of RT interval length on the heart rate for a healthyperson. The dashed line depi
ts a linear regression �t to the data. The time serieswas 4 hours long and measured during the night.To examine this dependen
e, we formed a 4-dimensional phase spa
efRR(t), RR(t+ � ), RT(t), RT(t+ 2�)g. We next applied the 
oding algo-rithm des
ribed above to the RR intervals and to the RT intervals 
al
ulatingtheir proper window averages as referen
e levels. Using data on the risk of
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Fig. 15. The dependen
e of RT interval length on the heart rate for a person withhypertrophi
 
ardiomyopathy who has sin
e died. The dashed line depi
ts a linearregression �t to the data. The time series was 4 hours long and measured duringthe night.

Fig. 16. The dependen
e of RT interval length on the heart rate for a person withhypertrophi
 
ardiomyopathy who has sin
e died � 
ase di�erent from that inFig. 15. The dashed line depi
ts a linear regression �t to the data. The time serieswas 4 hours long and measured during the night.
ardia
 arrest in hypertrophi
 
ardiomyopathy, we studied the e�e
t of dif-ferent values of the toleran
e parameters for RR intervals and RT intervalson the histograms of 4-dimensional symboli
 words. We found that the bestresults were obtained when the toleran
e parameter values were 7.5 ms forthe RR intervals and 4 ms for the RT intervals. Note that here the optimumtoleran
e parameter for the former is about twi
e the sampling error andthat, usually, the varian
e of the heart rate is also is mu
h larger than thevarian
e of the RT interval.We stress that we do not know of any formal theory for su
h a hybridphase spa
e 
omposed of two delay 
oordinate embeddings of di�erent vari-ables related to di�erent pro
esses o

urring in a single system. The under-
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Fig. 17. The dependen
e of the RR and RT intervals on the time (top). The bottom�gure depi
ts the dependen
e of the RT interval on the heart rate during the stresstest visible in the top part approximately between 225 s and 325 s.
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Fig. 18. The dependen
e of the distribution of the 4-dimensional symboli
 wordsin fRR,RTg spa
e on the length of the series as marked in ea
h graph. The 10000interval long data series lasted 4 hours.
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esses 2565lying heuristi
s is the following. By the Takens theorem, di�eomorphismsexist between the true traje
tories for the heart rate and for the repolariza-tion pro
esses and their delay 
oordinate 
ounterparts. We thus expe
t thatthe hybrid phase spa
e 
omposed of delay 
oordinate embeddings may beformed just as the proper phase spa
e to examine the relation between heartrate and repolarization pro
esses would be one formed by all the variablesdes
ribing them. The approa
h des
ribed here is 
ompletely empiri
al ofne
essity as neither all su
h variables are known nor has the dimensionalityof ea
h of the pro
esses been as
ertained. We demonstrate below, however,that the empiri
al approa
h yields useful results.Fig. 18 demonstrates the e�e
t of the length of the data series on theshape of the distribution of 4D symboli
 words. Fig. 18 is also an exampleof su
h a distribution for a healthy person obtained by sweeping through thetime series of RR and RT intervals with a 100 data point window. It 
anbe seen that there is some stru
ture whi
h is invariant with respe
t to thelength of the time series and that even for a very short time series of 1000data points this stru
ture is re
ognizable.To �nd out whi
h of the two data series is responsible for the stru
turein Fig. 18, we performed a series of surrogate data tests. We 
ompared thedistribution of the symboli
 words obtained with the original data with su
ha distribution obtained by sele
tively shu�ing the data the RR interval timeseries only, by shu�ing the RT data only and by shu�ing both (Fig. 19).It 
an be seen that sele
tive shu�ing only of the RR intervals retains themajor stru
ture of the original distribution while sele
tive shu�ing only ofthe RT intervals 
reates a distribution similar to that obtained when bothtypes of data are shu�ed.An opposite e�e
t was observed when data from some 
ases of high riskpatients with hypertrophi
 
ardiomyopathy were examined. An example ofthis is given in Fig. 20. It 
an be seen that the distribution obtained for thesele
tively shu�ed RR intervals resembles that found when both RR and RTwere shu�ed. On the other hand, sele
tive shu�ing of RT only produ
esa symboli
 word distribution whi
h resembles the original one the maine�e
t being the destru
tion of the large peaks at word `0000' and at word `2222', as expe
ted. The two 
ases shown in Fig. 19 and Fig. 20 demonstrateagain how 
omplex and variable may be the relation between the heart rateand the repolarization pro
esses. Global heart rate variability (expressed asstandard deviation of RR intervals) in both 
ases is very similar � 112msfor the data of Fig. 19 versus 92 ms for that of Fig. 20 (i.e. a di�eren
e ofabout 10%). However, the variability of the RT intervals is larger by 30%in the latter 
ase (18 ms) than in the former (12 ms). This explains whyshu�ing the RT series in Fig. 20 
hanged the basi
 features of the histogrammore than shu�ing the same type of data in 
ase of the example of the sinus
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Fig. 19. The e�e
t of data shu�ing on the distribution of 4-dimensional symboli
words measured during sinus rhythm (i.e. in a healthy person): a) original data,b) only RR shu�ed and RT as measured 
) both time series surrogate d) only RTshu�ed and RR as measured. The time series was 4-hours long and was measuredduring the night.
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Fig. 20. The e�e
t of data shu�ing on the distribution of 4-dimensional symboli
words measured in a person with hypertrophi
 
ardiomypathy at high of a 
ardia
arrest: a) original data, b) only RR shu�ed and RT as measured 
) both timeseries surrogate d) only RT shu�ed and RR as measured. The time series was4-hours long and measured during the night.
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Fig. 21. Probability density of the symboli
 word 2211 for 46 persons with hyper-trophi
 
ardiomyopathy: open bars � low risk 
ases, dark bars � persons whodied due to 
ardia
 arrest.rhythm in Fig. 19. We see that the histograms of the 4-dimensional symboli
words allow a detailed analysis of repolarization dynami
s as a fun
tion ofdi�erent sequen
es of heart rate variability.The signi�
an
e of the individual symboli
 words were analyzed using8 sex, age and disease mat
hed 
ontrol pairs ea
h 
ontaining a high riskand low risk patient with hypertrophi
 
ardiomyopathy. We subtra
ted thesymboli
 word distributions of all 
ontrols from su
h distributions for therespe
tive high risk patients. The di�eren
es between the probabilities of allwords 
ontaining the symbols `11' on the last two positions in a word weresigni�
antly di�erent from zero. The largest di�eren
e for all pairs was ob-tained for the word `2211'. This word may be interpreted: it represents theprobability that during a period of sustained (5 beats) heart rate below theaverage in a given window the RT interval length remains stable. For 
ardi-ologi
 norm, this word a
hieves a probability density of 10% or more. Theprobability of obtaining the word `2211' for all patients with hypertrophi

ardiomyopathy analyzed is shown in Fig. 21. It 
an be seen that for allhigh risk patients (they all had died) (bla
k bars in Fig. 21) the probabilityof obtaining this word falls within a very narrow range. Note that one ofthe patients in the high risk group died during the study (the �rst dark barfrom the left in Fig. 21) � he had been �rst 
lassi�ed as low risk by stan-dard methods. The probability of the word 2211 for this person falls exa
tlywithin the spe
i�ed range marked by the two horizontal lines in Fig. 21. Ifone assumes that the persons, for whom the probability of the word `2211'is within the range marked by horizontal broken lines in Fig. 21, then a
riterion for the risk of sudden 
ardia
 death in hypertrophi
 
ardiomyopa-thy is obtained with rather high �gures of merit: sensitivity (i.e. the abilityof the method to separate the low risk group from the high risk group) of85 % and spe
i�
ity (i.e. the ability of the method to assign ea
h individualpatient to the low risk or the high risk group) of 80 %. Given the fa
t that
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al methods su
h as analysis of standard deviation yield �guresof merit of the order of 50�60 %, the result seems very en
ouraging. Moreresear
h is needed analyze the properties of other symboli
 words similar to`2211' in view of enhan
ing the method further. Also, although the groupstudied here is not small (46 patients), the sensitivity and spe
i�
ity of the
riterion proposed here need to be veri�ed on a larger group.5. Con
lusionsRe
ently we have developed methods for the study of the level of regu-larity in the dynami
s of 
omplex systems whi
h may be non-stationary. Tostudy statisti
al properties of these systems we have used a sweeping timewindow in whi
h pattern entropy [12℄ and Renyi entropy [14℄ was 
al
ulated.Furthermore, to study the importan
e of the sequen
e of events o

urring inthe dynami
s of the system we have used the sweeping window with a sym-boli
 dynami
s s
heme [15, 25℄ involving the 
al
ulation of the distributionof algorithmi
 
omplexity and, more re
ently, of the distribution of symboli
words.In the system studied here i.e. the system whi
h 
ontrols the variabilityof the rate of the human heart, statisti
al regularity and sequential regu-larity have di�erent properties: they relate to di�erent bio-
hemi
al agentswhi
h 
ontrol heart rate variability, the shape of the statisti
al distributionof the 
omplexity measures is di�erent and the e�e
t of age on these dynam-i
al properties of the system may be di�erent. In parti
ular, in a subgroupof the population studied by us (mostly younger persons) the level of sta-tisti
al regularity is strongly 
orrelated with that of sequential regularity.Most of the persons from the older subgroup show no 
orrelation of the levelof statisti
al regularity with sequential regularity. Not that for one dimen-sional maps and other simple models no distin
tion is usually made betweenstatisti
al and sequential regularity.Another aspe
t studied by us was the properties of statisti
al regularityof heart rate variability versus those of heart rate a

eleration. It is wellknown that heart rate is a result of the balan
e between the a
tivity of thesympatheti
 nervous system and that of the parasympatheti
 nervous sys-tem. Heart rate a

eleration, on the other hand, is a fun
tion of the in
reaseda
tivity of the sympatheti
 nervous system 
ombined with a de
rease in thea
tivity of the parasympatheti
 system. Comparing the 24-hour distribu-tions of pattern entropy of hear rate and heart rate a

eleration, we showedthat healthy humans may be divided into two groups: in one the statisti
alproperties of heart rate are similar to those of heart rate a

eleration i.e.the positions of the maxima of both pattern entropy distributions indi
ate astatisti
ally ordered time series. In the se
ond, the position of the maximum
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esses 2569of one distribution indi
ates a statisti
ally well ordered time series while thedominant level of entropy for the other distribution large indi
ates a lowlevel of regularity in the time series. This type of behavior may also be seenin the behavior of the respe
tive pattern entropies with the time. Both theproperties of the distributions of pattern entropies of the appropriate sig-nals and their behavior as fun
tions of the time yield a non-linear dynami
simage of the fuzzy 
ategories of `�exible' and `in�exible' behavior as noti
edoften during diagnosis but unquanti�able up to now.On the short time s
ale, we have studied the statisti
s of symboli
 wordsobtained both from the heart rate variability and from a hybrid delay 
o-ordinate phase spa
e 
omposed both from heart rate variability and heartrepolarization times data. We �nd that the distribution of symboli
 wordsmay be used as a diagnosti
 tool for the assessment of both the risk of 
ar-dia
 arrest in 
ertain types of heart disorders and as a method of the analysisof the intera
tions between two di�erent pro
esses o

urring in a 
omplexsystem.The authors would like to thank J. Kurths, A. Malliani, A. Trzebski andA. Voss for important dis
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