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FROM A DISCRETE TO CONTINUOUS DESCRIPTIONOF TWO-DIMENSIONAL CURVED ANDHOMOGENEOUS CLUSTERS:SOME KINETIC APPROACH �A. GadomskiDepartment of Theoretial Physis, Institute of Mathematis and PhysisUniversity of Tehnology and Agriulture85-796 Bydgoszz, Al. Kaliskiego 7, Polandand Christine TrameStrutural Biology Department, Stanford University,Fairhild Bldg. D147, Stanford, CA 94305, USA(Reeived September 21, 1998)Starting with a disrete piture of the self-avoiding polygon embed-dable in the square lattie, and utilizing both saling arguments as well asa Steinhaus rule for evaluating the polygon's area, we are able, by imposinga disrete time-dynamis and making use of the onept of quasi-stati ap-proximation, to arrive at some evolution rules for the surfae fratal. Theproess is highly urvature-driven, whih is very harateristi of manyphenomena of biologial interest, like rystallization, wetting, formation ofbiomembranes and interfaes. In a disrete regime, the number of subunitsonstituting the luster is a nonlinear funtion of the number of the perime-ter sites ative for the growth. A hange of the number of subunits in timeis essentially determined by a hange in the urvature in ourse of time,given expliitly by a di�erene operator. In a ontinuous limit, the proessis assumed to proeed in time in a self-similar manner, and its desriptionis generally o�ered in terms of a nonlinear dynamial system, even for thehomogeneous lusters. For a su�iently mature stage of the growing pro-ess, and when linearization of the dynamial system is realized, one mayget some generalization of Mullins�Sekerka instability onept, where thefuntion perturbing the irle is assumed to be everywhere ontinuous butnot neessarily di�erentiable, like e.g., the Weierstrass funtion. Moreover,a time-dependent prefator appears in the simpli�ed dynamial system.PACS numbers: 71.10.+x, 81.30.Fb, 05.60.+w, 05.70.Fh� Presented at the XI Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 1�5, 1998.(2571)



2572 A. Gadomski, C. Trame1. IntrodutionA growing interest in kinetis as well as saling properties of objetswith randomly evolving interfaes (surfaes), being widely known in physisand hemistry as well as biology as separation boundaries, (bio)membranes,ative zones, et., is of theoretial interest to materials sientists, physiists,hemists and biologists, but reently also attrats interest of tehnologistsor materials engineers [1℄.The objets in question are usually reognized as grains (or mirodo-mains) with urved boundaries [2℄, systems with �utuating interfaes, spread-ing or invading assemblies and/or rystals with either smooth or rough sur-faes, et. [3℄. They may represent a behavior of suh far-from-equilibriumphenomena, like e.g., grain oalesene in metals and alloys, evolution of therystallization front (e.g., with a zigzag shape modulation in two-dimensionalmatries), growth and volume inrease of bubbles, formation of biomem-branes (vesiles, mielles, et.) or even expansion of natural patterns, likebaterial or algae olonies [3℄. The kineti behaviour of many of them still at-trats some interest of researhers in many disiplines, and is a subjet of per-manent onsiderations. Espeially, saling or similarity properties whih al-ways assume some invariane of the system properties under a saling rule(s),appear to be informative mostly to physiists who, most frequently underthe self-similarity assumption(s), try to understand quite general stati aswell as dynami properties of the system under investigation [4℄.Theoretial studies on the kinetis of luster growth are observed to splitup into two main diretions:1) omputer simulations: Monte Carlo (MC), ellular automata (CA) aswell as moleular dynamis (MD);2) analytial studies on dynamis or kinetis of some systems with evolv-ing fronts, espeially when utilizing the onepts of the master equationfor the di�usive and/or onvetive front propagation; Langevin-typeequations for the evolution of a �utuating di�usion-reation front [5℄;notie that the onept of fratality of any kind is often used fordesription of the above mentioned phenomena; f. [1, 6℄ for generaloverview; also, a saling onept, being very useful in polymer physis,is very muh advised here [4, 7℄.In this study, beginning the whole story with a disrete piture of a self-avoiding polygon embedded in the square lattie (Fig. 1(a)), and applyingboth saling arguments as well as a Steinhaus rule for evaluating the poly-gon's area (Fig. 2), we may, by imposing a disrete time-dynamis on thesystem in question and working within a quasi-stati approximation, obtainsome evolution rules for the surfae fratal in 2d spae. The surfae (line)



: : : Two-Dimensional Curved and Homogeneous Clusters : : : 2573(a)

(b)

F (�s)
�s

F (�)
�

Fig. 1. Cartoon of disrete (a) and ontinuous (b) urves as the possible boundariesof 2d luster in the disrete as well as ontinuous representations, respetively; notethat the disrete stairase-like urve F (�s) (a nowhere di�erentiable funtion of itsargument, starting from a beginning point B and reahing an ending point E) analso be useful for the ontinuous approah (a ontinuous periodi urve F (�) washosen from a standard textbook in physis; other examples applied an be foundelsewhere [11, 18℄; the lattie onstant is designated by s, and it represents alsothe lower index of angular argument �, whih symbolizes disreteness of the upperurve).is modelled here by the self-avoiding random walk (SARW) trajetory, i.e.a trajetory obtained under restrition that eah of its points an never bevisited or touhed more than one. Suh a trajetory is a fratal with thefratal dimension of 4=3 [8℄. The proess is highly urvature-driven, whihis very harateristi of many phenomena of biologial interest, like rys-tallization in omplex (natural) media, (non)retarded wetting, formation ofbiomembranes (vesiles, mielles), interfaes (phase transitions from angu-
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Fig. 2. Sketh of examples of Steinhaus rule (2). The areas of the triangle, trapez-ium and square are designated by A1, A2 and A3, respetively, and are evaluated tobe: 9, 8 and 4 (see, Eq. (2)); the internal as well as perimetri (periphery) points ofthe triangle have been drawn, too (for additional graphial symbols, see the legendof the �gure).lar to smooth shapes; f. Fig. 1) or (in)ommensurable layers [8, 9℄. In thedisrete (say, mirosopi) regime, the number of subunits onstituting theluster is a nonlinear funtion of the number of the perimeter sites. Theperimeter sites an be de�ned as the most outer sites either of the fratalitself or the sites of its nearest neighborhood. The latter sites do not for-mally belong to the luster. They an be desribed as the sites very ativefor the growth. It depends upon what kind of the growing proess we wishto desribe. If the proess is not realized by some aretion or stiking ofpartiles (subunits) oming from the external medium, we will have to dowith a ertain expansion of the luster, like in swelling or bubble expansion;here, some inrease in volume of the luster is manifested. If, in turn, somearetion of external partiles in the ative zone of the luster is allowedto take plae, then the luster tends to grow by the inrease of mass thanvolume, rather, like e.g. in di�usion-ontrolled proesses [1, 6℄. A hange ofthe number of subunits in time is exlusively determined by a hange in theurvature in ourse of time (though, a saling prefator and exponent doenter as the parameters), given expliitly by a di�erene operator. In theontinuous (say, meso- or even marosopi) regime, the proess is assumedto proeed in time in a self-similar manner, and its desription is generallyo�ered in terms of a nonlinear dynamial system, even for the homogeneouslusters (of onstant density). For a su�iently mature stage of the growingproess, and when a linearization of the dynamial system is performed, one



: : : Two-Dimensional Curved and Homogeneous Clusters : : : 2575an have a generalization of the Mullins�Sekerka (MS) instability onept,where the funtion perturbing the irle of radius Rg is assumed to be every-where ontinuous but not neessarily di�erentiable (f. Fig. 1, and ompareFig. 1(a) to Fig. 1(b)), like e.g., the Weierstrass funtion (a speial ase isthe Levy �ight) [10℄, whih is a kind of the SARW-trajetory; moreover, atime-dependent (kineti-thermodynamial) prefator may appear in the sim-pli�ed dynamial system, where the radius Rg and the small perturbationamplitude Æ, like in the original dynamial MS-system [11℄, are the so-alleddependent variables (the independent variable is always time t).2. Disrete desription as a ombination of Steinhausrule and some saling argumentationLet us imagine a self-avoiding polygon embedded in the square lattieof onstant s. This may physially represent a two-dimensional vesile (amodel biomembrane), in whih the boundary of the vesile is the perimeterof the self-avoiding trajetory (see the sketh in Fig. 1(a)). Another suitableexample here an be 2d faed rystals with dynamially stable zigzag orangular shape modulation [2℄.Fisher and o-workers (see [12�15℄, and Refs therein) using Monte Carlosimulation results and saling arguments showed that for s � 1, or equiv-alently for Ngrid � 1 (Ngrid is the number of grids of the square lattie), asaling formula is valid for either the mean-square radius of gyration or thearea (being an averaged value over many realizations) of the polygon hAi,namely hAi = a1pD1 ; D1 �= 32 ; (1)where a1 is a positive onstant of thermodynami nature, p� 1 stands forthe number of the perimeter sites of the polygon (luster), and D1 representsthe self-avoiding walk size exponent [8,12,13℄; in general, D1 2 [1; 2℄ is valid.On the other hand, however, appealing to our elementary knowledge onplanimetry, we realize that a polygon with the above stated perimeter (i.e.,being a SARW-perimeter) is a two-dimensional (disrete) geometri objet;the most simplest are, e.g. : triangle, trapezium or square, or a ombinationof them; f. Fig. 2.Polish mathematiian Hugo Steinhaus found out [16℄ that the area A ofsuh a onvex single polygon embedded in the square lattie (spanned onthe lattie nodes) is found to be (f. Fig. 2)A = i+ p2 � 1 ; (2)



2576 A. Gadomski, C. Tramewhere i (here: i � 1, too) is the number of the internal points of thepolygon (subunits omposing the luster, and plaed in the nodes of thesquare lattie), and A stands for the exat value of the polygon's area.Postulating some very small statistial unertainty in the system (�ompat�lattie objets grown from a nuleus; no fuzzy or �extremally dispersive�aggregates or agglomerates), namelyj hAi �A j< " ; (3)where 0 < "� 1, one may onlude, within the (negligible) statistial error,that an equality, like a1pD1 = i+ p2 � 1, by omparing diretly (1) and (2),is possible to get; rearranging that the equality readsi = a1pD1 � p2 + 1 ; (4)with D1 = 3=2 (approximately), but with some quite high auray [13,15℄.From (4) it rudely follows that if D1 were about 1, Eq. (4) would desribea straigth-line dependene (for i � i(p)). If, in turn, D1 were around 2, aparabola-like harateristis must undoubtedly be assigned to relationship(4). Note that we are just in between sine a. D1 = 3=2, whih means, thatwe somehow interpolate between the two types of i(p)-behavior mentioned(i(p) is nevertheless nonlinear in p).Let from now try to evolve the system (our `virtual' ensemble of i- and p-points) or to impose a disrete time-dynamis on it. (It will be equivalent topass the system through a number of instants of stable `dynami' equilibriawhih is a kind of quasi-stati approximation sine it is in agreement with theonept of interest [11℄; in general, the instants may be randomly distributed,whih is the ase of dispersive or fratal-like kinetis, and the probabilitydistribution funtion appears to be an inverse power funtion of time.) Inother words, we will be interested in knowing what is the total number ofthe luster subunits in time instant t (denoted by it), having known that atthe preeding time moment t � 1 the number is it�1. We an get it whenwe simply perform disrete di�erentiation over the both sides of (4), whihresults in �i = �a1D1pD1�1 � 12��p ; (5)where �i = it � it�1 and �p = pt � pt�1. Applying (5) one arrives at adi�erene equation of the formit = it�1 + d%t;t�1(p) ; (6)where d is a onstant (e.g., for a1 = 1=3, one has d = 1=2; D1 = 3=2, asabove), and %t;t�1(p) is a urvature (or, a urvature like) hange di�erene



: : : Two-Dimensional Curved and Homogeneous Clusters : : : 2577operator (ating on p) fully determined by p-s, i.e. by the two total perimetersites numbers pt and pt�1 at t and t � 1, respetively, as well as by D1(one an see here some analogy between this operator and the homogeneityLaplaian operator for the di�erene di�usion equation, espeially when animpliit di�erene sheme is applied; note that mathematially Laplaianfrequently means the existene of urvature in the system [9℄). If pt 6= pt�1then %t;t�1(p) 6= 0. Otherwise, we get a stagnation (no growth or dissolution)e�et, whih results in it = it�1, i.e. one sees that the urvature hangeoperator has no e�et when ating on p-s. The growth (or aggregation)proess takes plae when %t;t�1(p) > 0. Otherwise, one has to do with aountere�et, i.e. a dissolution (or disaggregation) proess an be observed(this e�et is of no interest in our present study).One an realize, however, some shortage of the desription proposed.Mostly, that it does not take into aount the positions of the perimetersites and their distanes to the aggregation enter. Next, that D1 has to beadditionally determined during the whole growing proess so that one mustreah a staturation e�et if one wishes to have D1 solely piked up. The�rst remark mentioned above is equivalent to say that we have no expliitgrowth (aggregation or agglomeration) rule, whih stays behind the wholeproess; in other words, till now no growth mehanism has been o�ered.The only possibility of realizing with whih physial mehanism one hasto do relies on knowing reliably the values of D1 and a1, but it may notsu�e to be sure whih is the growing proess that we investigate; at most,being luky, we will be able to indiate a lass of the growing proesses [1℄.Sine D1 = 2=DSARW, where the fratal dimension of SARW-trajetoryDSARW = 4=3 (D1 = 3=2) [8℄, we an expet that we might also haveto do with another type of growing proess (di�usion-limited aggregation,�ngered growth; polymerization, perolation, gelation, et.), in whih nota surfae fratal, but a mass fratal emerges; in suh a ase the inequalitythat D1 6= 3=2, but 1 < D1 � 2 [17℄ holds. Anyway, one should stateexpliitly that some appliation of Eqs (5) or (6) makes sense if there is apreise set of growing rules that stays behind, whih enables to determineD1 (and, perhaps, a1); we see a hane to remove this inonveniene byo�ering a ontinuous desription (see below). It is worth mentioning thatSteinhaus formula (2) or the evolution rules built on it, i.e. (5) or (6), havesome information on the urvature (urvature hanges) of the disrete 2dobjet ontained in a natural way, just by having expliitly inluded thetotal number of the perimeter sites p or its hanges �p in ourse of time t.



2578 A. Gadomski, C. Trame3. Continuous limit as a generalization of Mullins�Sekerkainstability oneptThe ontinuity of the growing proess [18℄ an be physially notied whensomething in�nitezimally small desribing the system, starts to hange, solet us assume that s ! 0 (or, Ngrid ! 1). Obviously, the total numbersof points, i and p, have to be large enough, too, and we have to mentionformally that the disrete time-dynamis is to be replaed by a ontinuousone, i.e., as usually, with �t ! 0, where �t is of deterministi nature, forsimpliity. Under suh assumptions i � i(t) and p � p(t), t � t0 � 0 (t0 isthe initial instant), and Eq. (5) an be rewritten asdidt = �a1D1pD1�1 � 12�dpdt ; (7)where di=dt and dp=dt are the �rst order time derivatives of i and p, respe-tively.Now, we wish to introdue the growing rule by reminding the followingnatural observation, namelydidt = f(t; pT ) � 0 ; (8)where f is a non negative and ontinuous funtion of t as well as of somethermodynami parameter pT (in general, we have to speak about a set ofthe thermodynami parameters); if f = 0 no growth is observed (stagnationor �freezing� are realized), but if f > 0 the growing proess is assumed totake plae. There is still another requirement that we wish to assign to f ;we all it: a self-similarity ondition. This means that we expet to have fas a power funtion of time (either an inverse or a diret power funtion).Suh a requirement is usually expeted, mostly for some omplex systems,like polymers, model biomaterials, alloys, et. [1, 4, 7�9, 19℄. By the way,it would be notied further that this also enfores to have the behavior ofthe radius of giration of the luster as a power law of time [7, 8℄ so that italso auses to get the problem well-posed from the mathematial point ofview [20℄.Now, we may expliitly write Eqs (7) and (8) as a nonautonomous dy-namial system onsisting of two ordinary di�erential equations, whih areoupled by funtion f , namelydidt = f(t; pT ) ; dpdt = f(t; pT )�a1D1pD1�1 � 12��1: (9)We see quite natural to rewrite system (9) in terms of the luster densities.This means that one has to use the number area density �i for i-s as well as



: : : Two-Dimensional Curved and Homogeneous Clusters : : : 2579the number perimeter density �p for p-s. They an be de�ned by the integralformulae i = AZ0 dA0�i and p = lZ0 dl0�p ;where i, p, �-s, A and l (the length of the irumferene of the luster)may generally be time-(t) and position- or x-dependent; notie that in thedisrete desription orresponding sums an be used instead of the integrals.In this study, we wish to onentrate on the evolution of homogeneouslusters, i.e.�i(t; x) � �i = onst: ; �p(t; x) � �p = onst: (10)whih leads to a substitution of (9) by�idAdt = f(t; pT ) ; �p dldt = f(t; pT )�a1D1(�pl)D1�1 � 12��1: (11)To have some relation to known systems desribing the evolution of grow-ing objets (e.g., those ontrolled by di�usion [11, 18℄), we have to presentsystem (11) in terms of a perturbed quasi-irle of radius Rg, where theirumferene of the ideal irle is perturbed by a fator ÆF (�; pg), requiringhowever, that j Æ j� 1, and F is an everywhere ontinuous, bounded and(usually) osillating funtion of � (like, osine or sine or a ombination ofthem� see [11,18℄ and Fig. 1(b); here pg is a geometrial parameter of minorimportane in our further onsiderations so that we take F (�; pg) � F (�),for simpliity). We wish to state very muh here that F does not have tobe di�erentiable in �. On the ontrary, it may be a nowhere di�erentiablefuntion of �; f. Fig. 1(a) for getting an example (some other examplesan be listed, like the Weierstrass funtion or the Levy �ight as well as a`devil's stairase' as spei� ases [10℄). This assumption ensures to havethe evolution rules for a surfae fratal (like, e.g., the Eden fratal [1℄).Rewriting (11) in terms of a perturbed quasi-irle, one getsdRgdt = G(2�ia2Rg)�1 ; dldt = 2G�p�1�2a1D1(�pl)D1�1 � 1��1; (12)where for brevity G � G(t) = f(t; pT ) > 0 (note that in this term the driv-ing fore of the growing proess is also inluded, e.g., the supersaturation,underooling, apillary fore, lowering of the interfaial free energy, pressuredi�erene, et. [1, 3, 18, 21℄, and it is always a funtion of thermodynami



2580 A. Gadomski, C. Trameonditions represented by pT ). Moreover, the following relations have beenassumed to hold [8℄: A = a2Rg2 ; a2 > 0 ; (13)whih is a well-known saling law [4℄ (for the mass fratals a departurefrom the rule an be expeted, i.e. A � RgD2 ;D2 2 (1; 2)) [1℄, and a leargeometrial relationship of the form [11, 18℄l = 2�(Rg � F (�)Æ) ; j Æ j� 1 : (14)Notie that we have got fully nonlinear system (12) with (14), whih stilldesribes our proess being urvature-driven (see, e.g. [9, 11, 18, 21℄), nomatter whether the driving fore is spei�ed or not (f. Eq. (8), obviously).By the way, we also believe that a1 and a2 (f., Eqs (1) and (13)) survive asbeing independent of time, within the frame of our approximation.The full system (12) with ondition (14) is, unfortunately, not so muhuseful for pratial reasons. We may also extend it by adding some newperturbation terms with Æ2 or higher in Eq. (14), but it inreases the om-plexity. Nevertheless, a numerial analysis an be done in this ase. To have,however, the approah simpler and, in some sense, more robust, and also topreserve its self-onsisteny, a linearization of it has to be done, like in theoriginal quasi-stati MS-approah [11,18℄. It an easily be done for a maturegrowth stage (here, Rg has to be muh greater than a ritial radius [11℄),and by notiing that ����F (�)ÆRg ����� 1 ; (15)whih is very well ful�lled under suh physial irumstanes. Now, thesimpli�ed system ((12) with (14)) looks likedRgdt = G(2�ia2Rg)�1 ; dÆdt = �G(D1 � 1)Æ�a1D1(2��p)D1Rg2��1 ; (16)(note formally that Rg � Rg(t) and Æ � Æ(t)) where the proportionalityfators a1 and a2 must depend on one another, namelya1a2 = 2�iD1(2��p)D1 : (17)It is so indeed, beause the saling laws (1) and (13) (via Eq. (3)) are usuallyrelated to one another (see [8℄).In this way, the so-alled Mullins�Sekerka (MS) Laplaian (stationary)�eld driven system [3,11,18℄ has been reovered. It is exatly the MS-system



: : : Two-Dimensional Curved and Homogeneous Clusters : : : 2581when G = onst: (� = 0, see below), but it is not when G depends upontime t (otherwise, see below again). If we reall the growing rule (Eq. (8))in a self-similar form, we have to expet to write expliitlyG = G0t�� ; G0 > 0; � 2 [0; 1) ; (18)(G may be alled: a kineti-thermodynami growth term, in whih the pref-ator G0 represents the driving fore [9,18℄, where a ertain dependene uponpH-onditions of the proess should also be notied, mostly for reative aswell as �utuating and aggregating biosystems [11, 17, 18℄, but some kinetipeuliarities of the proess are olleted in the power law form as well as byknowing the value of �; G0 and � must be known a priori or provided bythe experiment [1, 3℄) so that as an asymptoti solution to the �rst of theequations of system (16), we obtainRg(t) � t(1��)=2 ; (19)for the �long� times limit, ertainly. For the mass fratals [17℄ one mightprobably state Rg(t) � t(1��)=D2 (see above). Note that result (19) doesnot depend essentially upon D1 (though, the prefator formally does). Notealso that dynamial system (16) does not depend upon F (�) (reall Fig. 1),and that for � = 0 one provides Rg � pt, whih is the lassial di�usionalpower law, inevitably related to MS-approah [11,18℄. Let us realize that, inthis ase, the di�usion onstant used in MS-approah ould be determinedby 1=a1(2��p)D1 , or beause of (17), one an provide it by D1=2a2�i [11℄.Varying the saling exponent � in (18) we may get many power law behav-iors, espeially for a very slow growth (like Rg(t) � t1=4 or slower) [7, 9, 21℄.Assuming the inverse power law in (18), with � = 1=3, we an reover (see(19)) the saling formula obtained from some extensive MC-simulations ofthe SARW-proess (growth of small rings) [8℄, namelyRg(t) � t1=3 ; (20)whih is also a well-known asymptoti result for a droplet ondensation oroalesene, 2d grain growth or for the Ostwald ripening of two-dimensionalrystals at the solid�liquid interfae in binary mixtures, even (with manypotential pratial appliations to be thought of) [22℄. Some `oinidene'of growth exponent � and the saling exponent (equal to 1=3) involved in(20) is worth notiing here.Another interesting result an be revealed when looking at the seondof equations onstituting system (16). Namely, it is a strethed exponen-tial or Kohlraush�Williams�Watts [10℄ behavior of the small perturbationamplitude Æ. Sine Rg and Æ pratially grow (or shrink) as proeeding in



2582 A. Gadomski, C. Tramedi�erent time sales, for a given Rg-value (furnished or kept onstant, whihis also a `physial truth' seen from the standpoint of very small perturbationamplitude Æ, espeially, when ompared to huge Rg-value), one has to getÆ(t) / exp(�onst:� t1��) ; (21)(in the �long� times limit, again) where the onstant gathers all the fators,like, e.g. (D1 � 1)=D1, i.e. some ompetition exponent [1,5,2℄, or densities�-s (see system (16), again), and an even be interpreted in terms of theVogel�Fulher relaxation times, �vf , very harateristi of slow relaxationphenomena [22, 23℄, and to be determined by the nuleation radius, the ra-dius of giration at a saturation limit, Rgs, where Rgs � p�vf . If D1 ! 1(irregular shape), perturbation amplitude Æ tends to a positive onstant inthe ourse of time, and pratially, no perturbation e�et is manifested. If,in turn, D1 ! 2 (regular shape), the perturbation e�et is muh pronouned,and Eq. (21) desribes the proess in a nontrivial way. Notie, by the way,that for � = 0 the lassial M-S result (Debyean or simple exponential re-laxation) is reovered. (A promising generalization here would be if one willreplae the ordinary �rst order time derivative in the seond of equationsof system (16) by a frational time derivative, just to make the time salemore sensitive to hanges of Æ in a omplex physial environment, like fer-roeletri, ferromagneti or unstable homoepitaxial thin �lms (deposits) orsemiondutor 2d omposites, and to get additionally a nonexponential re-laxation of it; this is immediately to obtain using the results of [23℄; f. [22℄for having a few examples.)4. Conlusion and perspetiveIn this work, some preliminaries of the disrete geometrial-kineti de-sription of a growing proess realized on a square lattie have been pro-posed. The key idea was to apply both the saling argumentation as wellas a planimetri (Steinhaus) rule within some level of unertainty (Eq. (3)),and to postulate a quasi-stati harater of the proess. The result wasthat a nonlinear relationship (Eq. (4)) has been found, and by imposinga (disrete) time-dynamis on the system, one may arrive at an evolutionequation (di�erene sheme; f. Eq. (6)) that inludes inherently a urvaturehange term very harateristi of the growing phenomena, like rystalliza-tion (also, single rystalline domains in lipid monolayers [24℄), solidi�ation(faed 2d quasi-rystals [2℄), mirodomain-growth [2, 18, 21℄, formation ofbiomembranes (interfaes) [9℄ as well as of wetting [9, 13, 15℄. It is worthstating here that the desription o�ered is based on inorporating the self-avoiding random walk (SARW) onept, whih has proved to be useful inthis subjet [8,19℄. By the way, notie that a SARW-trajetory di�ers from a



: : : Two-Dimensional Curved and Homogeneous Clusters : : : 2583Brownian path sine eah of its points an only be visited one by a travellingwalker whih is not the ase of the latter [6, 8℄.Starting with the disrete desription mentioned above (see, Setion 2),we are able to perform some useful ontinuity proedure (Setion 3), just forembarking on a ertain more �rm (known) landsape very muh assignedto the above mentioned growing phenomena, and for arriving eventuallyat the e�etively modi�ed Mullins�Sekerka (MS) kineti approah, whihenables to reover many kineti harateristis, mostly with the so-alledsmall (frational) dimensionalities as well as being of non-Debyean nature(f., Eqs (19) and (21); see also [2,3,21℄). At this moment, we wish to stateexpliitly that the modi�ation of original MS-desription is due to:(i) inorporation (use) of the nowhere di�erentiable funtions as the bound-aries of 2d lusters (f. Fig. 1; note that a SARW-trajetory is justsuh a funtion!);(ii) extension by inluding the kineti-thermodynamial nature of the grow-ing mehanism (rule (8) and G-term (18) in system (16)).Also, in the ontinuous limit, the proess remains to be urvature-driven (f.system (16), and [11,18℄ for omparison; notie that a surfae or line tensionharaterizes the boundary of the system, but only when assumed that thesurfae is su�iently smooth) so that our ontinuity proedure proposed inSetion 3 makes sense.Looking at the disrete desription, one might notie that some type ofthe physially interesting (say!) Gedankenexperiment have been proposed.Namely, we have straightforwardly got i(p)-dependene and an a priori dis-rete evolution sheme (Eq. (5)), but we did not know, whih is the aggre-gation (growing) proess that we deal with (it ould be any growing proesswith D1 = 3=2 and following saling law (1), where the resulting lusters arenot so muh dispersed so that Steinhaus rule (2) may be applied; onlusion:some appliation of our approah to di�usion-limited or reation-limitedluster luster aggregation is forbidden, but to di�usion-limited aggregationis probably not, in partiular, when the surfae tension e�et an easily benotied [1, 2℄; in the latter the extension with D2 � 1:7 or smaller inluded,but with � = 0, should work [24℄; f. disussion beneath Eq. (19).There an be many extensions or generalizations of the approah pro-posed, and a few of them have been mentioned in Setions 2 and 3. Letus now mention another one, whih may onern the stohastis [25℄ of theproess. Negleting the fat that growth term G is generally time-dependent(by enforing � = 0, for instane), we an try to follow some natural observa-tion (at least, for some highly �utuating systems, like the high-temperaturevisous systems, e.g., polymers or some �soft-matter� systems) that G an



2584 A. Gadomski, C. Tramesplit up into two terms: one of some deterministi nature (a �referene�growth term), say Gd, and the seond of stohasti harater, Gs; in thisase: G = Gd + Gs; and Gs � Gs(t) stands for a noise, e.g. the Gausssiannoise [25℄, for simpliity. Suh kind of analyses one an �nd, e.g. in [26℄, andit is to be applied to the �rst of equations of (16) (that for Rg). Also, someother future diretion of thinking an be explored when looking for ommonpoints with other onepts. Namely, beause of utilizing the power law ofform (18) (or having the system in a self-similar regime), and beause thesize of the SARW-trajetory inreases powerly with the number of onstitu-tive units (e.g., points) a ertain suspetion of having the system as beingable to be self-organized ould be heked [5, 22℄.To illustrate the model in a preliminary experimental way, let us reall asimple experiment done as some ontinuation of work [27℄. This is as follows:(i) experimental set-up:a) protein droplet immersed in (or plaed slightly above a well of) a1 ml preipitant solution spread on silionized glass;b) rystallization is observed using Leia mirosope of 40� (magni�-ation fator) with observation error about 4� 10 perent;) temperature is maintained at 18Æ C.(ii) physiohemistry of the rystallization proess:a) the protein from whih the rystallites are made of is alled mole-ular haperone, and belongs to heat shok proteins; it is baterialprotein expressed in E oli, and it is a promoting fore for ellularreations it gets from binding to ATP;b) the driving fore is a stati pressure di�erene between the dropletand the solution (a rheologial �uid);) the resulting rystallites are 2d hexagonal platelets of a. 0:08�0:34mm in size;d) the rystallization proess is very sensitive to temperature andmovement of a tray on whih the experimental set-up (sealed) is plaed;if one moves the tray with the rystals they start to grow twinned, fromthe surfae starts to grow a perpendiular one or a paralell one to theold one;e) they are also light sensitive so that under a longer light exposurethey start to �sweat�, and small bubbles appear all over the surfae(onlusion: one must be very areful experimenting with them; seealso the preeding point);f) the thermodynamial equilibrium an be ahieved by vapour di�u-sion.



: : : Two-Dimensional Curved and Homogeneous Clusters : : : 2585(iii) kinetis:very preliminary measurements (from a few to almost 73 hours) oversome small sets of data show that the kinetis are well �tted byEq. (18), with � � 1=3 or greater than 1=3, but less than 1, thoughthe best �tted set of data leads to the kinetis, like Rg � t0:311 (verylose to 1=3) so that Eq. (19) an pratially be used; this way, thedispersive kinetis given by Eq. (18), where G � t�� , with � � 1=3is manifested. Notie again a possible sensitivity of the proess (withsmall frational dimensionalities [10, 21, 22℄) to light as well temper-ature, whih is very harateristi of that kind of kinetis (also, aswas said above, another harateristi feature is that the probabilitydistribution of times is of a power form [10℄); f. [10, 23, 28℄.Sometimes, there is a need to extend the approah proposed into third di-mension (see [11℄) so that one wants to know Steinhaus formula (2) as e�e-tively working in 3d spae. Suh an extension is possible to be thought of,espeially when some e�etive geometrial onstrutions onerning polyg-onal �gures and their form spaes, desribed e.g. in [29℄, will be of use. Onemay easily notie here that the formula should work smartly at least whenthe area of the objet spanned on 3d lattie will be, as seen from Eq. (2), alinear funtion of both i and p. Otherwise, one an expet some di�ultiesin reahing the MS-limit in suh a natural way.Finally, let us pose a question: how big (deep) is the range of ationof very simple dynamial systems, like MS-system and alike (e.g., Taylor�Sa�man �ngered growth [18℄), and how do they emerge from �rst priniplesof the matter reorganization?Some tehnial assistane of Mr. Jaek Mielarzewiz in preparing the�gures is aknowledged. A support of the Polish State Committee of Si-enti� Researhes as well as of the Tehnial University of Bydgoszz ismentioned. A.G. wishes to thank Dr. A.E. Köhler from the Friedrih-Shiller-Universität Jena, for his interest in this work.REFERENCES[1℄ H.J. Herrmann, Phys. Rep. 136, 153 (1986); T. Visek, Fratal Growth Phe-nomena, World Sienti�, Singapore 1992.[2℄ H.E. Stanley, N. Ostrowsky, eds, On Growth and Form, Nijho�, Dordreht1985; B. Berge, L. Fauheux, K. Shwab, A. Libhaber, Nature 350, 322(1991); M. Matsushita, H. Fujikawa, Physia A168, 498 (1990).[3℄ F. Family, D.P. Landau, eds, Kinetis of Aggregation and Gelation, NorthHolland, Amsterdam 1984; J. Feder, Fratals, Plenum, New York 1988.
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