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Starting with a discrete picture of the self-avoiding polygon embed-
dable in the square lattice, and utilizing both scaling arguments as well as
a Steinhaus rule for evaluating the polygon’s area, we are able, by imposing
a discrete time-dynamics and making use of the concept of quasi-static ap-
proximation, to arrive at some evolution rules for the surface fractal. The
process is highly curvature-driven, which is very characteristic of many
phenomena of biological interest, like crystallization, wetting, formation of
biomembranes and interfaces. In a discrete regime, the number of subunits
constituting the cluster is a nonlinear function of the number of the perime-
ter sites active for the growth. A change of the number of subunits in time
is essentially determined by a change in the curvature in course of time,
given explicitly by a difference operator. In a continuous limit, the process
is assumed to proceed in time in a self-similar manner, and its description
is generally offered in terms of a nonlinear dynamical system, even for the
homogeneous clusters. For a sufficiently mature stage of the growing pro-
cess, and when linearization of the dynamical system is realized, one may
get some generalization of Mullins—Sekerka instability concept, where the
function perturbing the circle is assumed to be everywhere continuous but
not necessarily differentiable, like e.g., the Weierstrass function. Moreover,
a time-dependent prefactor appears in the simplified dynamical system.
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1. Introduction

A growing interest in kinetics as well as scaling properties of objects
with randomly evolving interfaces (surfaces), being widely known in physics
and chemistry as well as biology as separation boundaries, (bio)membranes,
active zones, etc., is of theoretical interest to materials scientists, physicists,
chemists and biologists, but recently also attracts interest of technologists
or materials engineers [1].

The objects in question are usually recognized as grains (or microdo-
mains) with curved boundaries [2], systems with fluctuating interfaces, spread-
ing or invading assemblies and/or crystals with either smooth or rough sur-
faces, etc. [3]. They may represent a behavior of such far-from-equilibrium
phenomena, like e.g., grain coalescence in metals and alloys, evolution of the
crystallization front (e.g., with a zigzag shape modulation in two-dimensional
matrices), growth and volume increase of bubbles, formation of biomem-
branes (vesicles, micelles, etc.) or even expansion of natural patterns, like
bacterial or algae colonies [3]. The kinetic behaviour of many of them still at-
tracts some interest of researchers in many disciplines, and is a subject of per-
manent considerations. Especially, scaling or similarity properties which al-
ways assume some invariance of the system properties under a scaling rule(s),
appear to be informative mostly to physicists who, most frequently under
the self-similarity assumption(s), try to understand quite general static as
well as dynamic properties of the system under investigation [4].

Theoretical studies on the kinetics of cluster growth are observed to split
up into two main directions:

1) computer simulations: Monte Carlo (MC), cellular automata (CA) as
well as molecular dynamics (MD);

2) analytical studies on dynamics or kinetics of some systems with evolv-
ing fronts, especially when utilizing the concepts of the master equation
for the diffusive and/or convective front propagation; Langevin-type
equations for the evolution of a fluctuating diffusion-reaction front [5];
notice that the concept of fractality of any kind is often used for
description of the above mentioned phenomena; cf. [1, 6] for general
overview; also, a scaling concept, being very useful in polymer physics,
is very much advised here [4,7].

In this study, beginning the whole story with a discrete picture of a self-
avoiding polygon embedded in the square lattice (Fig. 1(a)), and applying
both scaling arguments as well as a Steinhaus rule for evaluating the poly-
gon’s area (Fig. 2), we may, by imposing a discrete time-dynamics on the
system in question and working within a quasi-static approximation, obtain
some evolution rules for the surface fractal in 2d space. The surface (line)
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Fig. 1. Cartoon of discrete (a) and continuous (b) curves as the possible boundaries
of 2d cluster in the discrete as well as continuous representations, respectively; note
that the discrete staircase-like curve F'(¢5) (a nowhere differentiable function of its
argument, starting from a beginning point B and reaching an ending point E) can
also be useful for the continuous approach (a continuous periodic curve F(¢) was
chosen from a standard textbook in physics; other examples applied can be found
elsewhere [11,18]; the lattice constant is designated by s, and it represents also
the lower index of angular argument ¢, which symbolizes discreteness of the upper
curve).

is modelled here by the self-avoiding random walk (SARW) trajectory, i.e.
a trajectory obtained under restriction that each of its points can never be
visited or touched more than once. Such a trajectory is a fractal with the
fractal dimension of 4/3 [8]. The process is highly curvature-driven, which
is very characteristic of many phenomena of biological interest, like crys-
tallization in complex (natural) media, (non)retarded wetting, formation of
biomembranes (vesicles, micelles), interfaces (phase transitions from angu-
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Fig. 2. Sketch of examples of Steinhaus rule (2). The areas of the triangle, trapez-
ium and square are designated by A, A; and Az, respectively, and are evaluated to
be: 9, 8 and 4 (see, Eq. (2)); the internal as well as perimetric (periphery) points of
the triangle have been drawn, too (for additional graphical symbols, see the legend
of the figure).

lar to smooth shapes; ¢f. Fig. 1) or (in)commensurable layers [8,9]. In the
discrete (say, microscopic) regime, the number of subunits constituting the
cluster is a nonlinear function of the number of the perimeter sites. The
perimeter sites can be defined as the most outer sites either of the fractal
itself or the sites of its nearest neighborhood. The latter sites do not for-
mally belong to the cluster. They can be described as the sites very active
for the growth. It depends upon what kind of the growing process we wish
to describe. If the process is not realized by some accretion or sticking of
particles (subunits) coming from the external medium, we will have to do
with a certain expansion of the cluster, like in swelling or bubble expansion;
here, some increase in volume of the cluster is manifested. If, in turn, some
accretion of external particles in the active zone of the cluster is allowed
to take place, then the cluster tends to grow by the increase of mass than
volume, rather, like e.g. in diffusion-controlled processes [1,6]. A change of
the number of subunits in time is exclusively determined by a change in the
curvature in course of time (though, a scaling prefactor and exponent do
enter as the parameters), given explicitly by a difference operator. In the
continuous (say, meso- or even macroscopic) regime, the process is assumed
to proceed in time in a self-similar manner, and its description is generally
offered in terms of a nonlinear dynamical system, even for the homogeneous
clusters (of constant density). For a sufficiently mature stage of the growing
process, and when a linearization of the dynamical system is performed, one
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can have a generalization of the Mullins—Sekerka (MS) instability concept,
where the function perturbing the circle of radius R, is assumed to be every-
where continuous but not necessarily differentiable (¢f. Fig. 1, and compare
Fig. 1(a) to Fig. 1(b)), like e.g., the Weierstrass function (a special case is
the Levy flight) [10], which is a kind of the SARW-trajectory; moreover, a
time-dependent (kinetic-thermodynamical) prefactor may appear in the sim-
plified dynamical system, where the radius R, and the small perturbation
amplitude 9§, like in the original dynamical MS-system [11], are the so-called
dependent variables (the independent variable is always time t).

2. Discrete description as a combination of Steinhaus
rule and some scaling argumentation

Let us imagine a self-avoiding polygon embedded in the square lattice
of constant s. This may physically represent a two-dimensional vesicle (a
model biomembrane), in which the boundary of the vesicle is the perimeter
of the self-avoiding trajectory (see the sketch in Fig. 1(a)). Another suitable
example here can be 2d faced crystals with dynamically stable zigzag or
angular shape modulation |2].

Fisher and co-workers (see [12-15], and Refs therein) using Monte Carlo
simulation results and scaling arguments showed that for s < 1, or equiv-
alently for Ngiq > 1 (Ngrig is the number of grids of the square lattice), a
scaling formula is valid for either the mean-square radius of gyration or the
area (being an averaged value over many realizations) of the polygon (A),
namely

3
(A) = a;p”'; Dy = 5 (1)

where a1 is a positive constant of thermodynamic nature, p > 1 stands for
the number of the perimeter sites of the polygon (cluster), and Dy represents
the self-avoiding walk size exponent [8,12,13]; in general, D; € [1,2] is valid.

On the other hand, however, appealing to our elementary knowledge on
planimetry, we realize that a polygon with the above stated perimeter (i.e.,
being a SARW-perimeter) is a two-dimensional (discrete) geometric object;
the most simplest are, e.g. : triangle, trapezium or square, or a combination
of them; cf. Fig. 2.

Polish mathematician Hugo Steinhaus found out [16] that the area A of
such a convex single polygon embedded in the square lattice (spanned on
the lattice nodes) is found to be (¢f. Fig. 2)

.. D
A= -
z+2

_1a (2)
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where 4 (here: 7 > 1, too) is the number of the internal points of the
polygon (subunits composing the cluster, and placed in the nodes of the
square lattice), and A stands for the exact value of the polygon’s area.
Postulating some very small statistical uncertainty in the system (“compact”
lattice objects grown from a nucleus; no fuzzy or “extremally dispersive”
aggregates or agglomerates), namely

| (4) —A<e, (3)

where 0 < ¢ < 1, one may conclude, within the (negligible) statistical error,
that an equality, like a1pP! =i + £ —1, by comparing directly (1) and (2),
is possible to get; rearranging that the equality reads

z’:alle—;iJrl, (4)
with Dy = 3/2 (approximately), but with some quite high accuracy [13,15].
From (4) it crudely follows that if Dy were about 1, Eq. (4) would describe
a straigth-line dependence (for 7 = i(p)). If, in turn, Dy were around 2, a
parabola-like characteristics must undoubtedly be assigned to relationship
(4). Note that we are just in between since ca. Di = 3/2, which means, that
we somehow interpolate between the two types of i(p)-behavior mentioned
(i(p) is nevertheless nonlinear in p).

Let from now try to evolve the system (our ‘virtual’ ensemble of - and p-
points) or to impose a discrete time-dynamics on it. (It will be equivalent to
pass the system through a number of instants of stable ‘dynamic’ equilibria
which is a kind of quasi-static approximation since it is in agreement with the
concept of interest [11]; in general, the instants may be randomly distributed,
which is the case of dispersive or fractal-like kinetics, and the probability
distribution function appears to be an inverse power function of time.) In
other words, we will be interested in knowing what is the total number of
the cluster subunits in time instant ¢ (denoted by 4;), having known that at
the preceding time moment ¢ — 1 the number is 7;_;. We can get it when
we simply perform discrete differentiation over the both sides of (4), which
results in

Ai = (alDlle_l - %)Ap, (5)

where Ai = iy — 441 and Ap = p; — pi—1. Applying (5) one arrives at a
difference equation of the form

i = %1 + Ya01,t—1(p) , (6)

where «y,4 is a constant (e.g., for a; = 1/3, one has y4 = 1/2; D1 = 3/2, as
above), and g;¢—1(p) is a curvature (or, a curvature like) change difference
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operator (acting on p) fully determined by p-s, i.e. by the two total perimeter
sites numbers p; and p;—1 at ¢ and ¢ — 1, respectively, as well as by D;
(one can see here some analogy between this operator and the homogeneity
Laplacian operator for the difference diffusion equation, especially when an
implicit difference scheme is applied; note that mathematically Laplacian
frequently means the existence of curvature in the system [9]). If p; # pi—1
then g;4—1(p) # 0. Otherwise, we get a stagnation (no growth or dissolution)
effect, which results in 4, = 4;_1, i.e. one sees that the curvature change
operator has no effect when acting on p-s. The growth (or aggregation)
process takes place when g;; 1(p) > 0. Otherwise, one has to do with a
countereffect, i.e. a dissolution (or disaggregation) process can be observed
(this effect is of no interest in our present study).

One can realize, however, some shortage of the description proposed.
Mostly, that it does not take into account the positions of the perimeter
sites and their distances to the aggregation center. Next, that D; has to be
additionally determined during the whole growing process so that one must
reach a staturation effect if one wishes to have D; solely picked up. The
first remark mentioned above is equivalent to say that we have no explicit
growth (aggregation or agglomeration) rule, which stays behind the whole
process; in other words, till now no growth mechanism has been offered.
The only possibility of realizing with which physical mechanism one has
to do relies on knowing reliably the values of Di and @, but it may not
suffice to be sure which is the growing process that we investigate; at most,
being lucky, we will be able to indicate a class of the growing processes [1].
Since Dy = 2/Dsarw, where the fractal dimension of SARW-trajectory
Dgarw = 4/3 (D1 = 3/2) [8], we can expect that we might also have
to do with another type of growing process (diffusion-limited aggregation,
fingered growth; polymerization, percolation, gelation, etc.), in which not
a surface fractal, but a mass fractal emerges; in such a case the inequality
that Dy # 3/2, but 1 < Dy < 2 [17]| holds. Anyway, one should state
explicitly that some application of Eqs (5) or (6) makes sense if there is a
precise set of growing rules that stays behind, which enables to determine
Dy (and, perhaps, a1); we see a chance to remove this inconvenience by
offering a continuous description (see below). It is worth mentioning that
Steinhaus formula (2) or the evolution rules built on it, i.e. (5) or (6), have
some information on the curvature (curvature changes) of the discrete 2d
object contained in a natural way, just by having explicitly included the
total number of the perimeter sites p or its changes Ap in course of time ¢.
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3. Continuous limit as a generalization of Mullins—Sekerka
instability concept

The continuity of the growing process [18| can be physically noticed when
something infinitezimally small describing the system, starts to change, so
let us assume that s — 0 (or, Ngrq — o0). Obviously, the total numbers
of points, 2 and p, have to be large enough, too, and we have to mention
formally that the discrete time-dynamics is to be replaced by a continuous
one, i.e., as usually, with At — 0, where At is of deterministic nature, for
simplicity. Under such assumptions i = i(¢) and p = p(t), t > to > 0 (to is
the initial instant), and Eq. (5) can be rewritten as

di dp
== (app™ =) 7
di (al 1P 2)dt (7)
where di/dt and dp/dt are the first order time derivatives of 4 and p, respec-
tively.
Now, we wish to introduce the growing rule by reminding the following
natural observation, namely

W~ Jspr) >0, ©
where f is a non negative and continuous function of ¢ as well as of some
thermodynamic parameter pp (in general, we have to speak about a set of
the thermodynamic parameters); if f = 0 no growth is observed (stagnation
or “freezing” are realized), but if f > 0 the growing process is assumed to
take place. There is still another requirement that we wish to assign to f;
we call it: a self-similarity condition. This means that we expect to have f
as a power function of time (either an inverse or a direct power function).
Such a requirement is usually expected, mostly for some complex systems,
like polymers, model biomaterials, alloys, etc. [1,4,7-9,19]. By the way,
it would be noticed further that this also enforces to have the behavior of
the radius of giration of the cluster as a power law of time [7,8] so that it
also causes to get the problem well-posed from the mathematical point of
view [20].

Now, we may explicitly write Eqs (7) and (8) as a nonautonomous dy-
namical system consisting of two ordinary differential equations, which are
coupled by function f, namely

di d -

- =) d—lt) = f(t;pr) <a1D1pD11 - %) : 9)
We see quite natural to rewrite system (9) in terms of the cluster densities.
This means that one has to use the number area density p; for i-s as well as
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the number perimeter density p, for p-s. They can be defined by the integral

formulae
A l

i:/dA'pi and p:/dl'pp,

0 0

where i, p, p-s, A and [ (the length of the circumference of the cluster)
may generally be time-(¢) and position- or z-dependent; notice that in the
discrete description corresponding sums can be used instead of the integrals.

In this study, we wish to concentrate on the evolution of homogeneous
clusters, i.e.

pi(t,x) = p; = const. ; pp(t, ) = p, = const. (10)
which leads to a substitution of (9) by

dA dl - -
pir = fpr)s o = ftipr) <all?1(ppl)D1 - %) - (1D

To have some relation to known systems describing the evolution of grow-
ing objects (e.g., those controlled by diffusion [11,18]), we have to present
system (11) in terms of a perturbed quasi-circle of radius R,, where the
circumference of the ideal circle is perturbed by a factor 6 F(¢, py), requiring
however, that | 0 |[< 1, and F is an everywhere continuous, bounded and
(usually) oscillating function of ¢ (like, cosine or sine or a combination of
them — see [11,18] and Fig. 1(b); here p, is a geometrical parameter of minor
importance in our further considerations so that we take F(¢,py) = F(¢),
for simplicity). We wish to state very much here that F' does not have to
be differentiable in ¢. On the contrary, it may be a nowhere differentiable
function of ¢; c¢f. Fig. 1(a) for getting an example (some other examples
can be listed, like the Weierstrass function or the Levy flight as well as a
‘devil’s staircase’ as specific cases [10]). This assumption ensures to have
the evolution rules for a surface fractal (like, e.g., the Eden fractal [1]).
Rewriting (11) in terms of a perturbed quasi-circle, one gets

R,
dit

_ dl _ _ !
= G(2piaaRy) ™" pri 2Gp, ™" (20L1D1(ppl)D1 - 1) , (12)

where for brevity G = G(t) = f(¢,pr) > 0 (note that in this term the driv-
ing force of the growing process is also included, e.g., the supersaturation,
undercooling, capillary force, lowering of the interfacial free energy, pressure
difference, etc. [1,3,18,21], and it is always a function of thermodynamic
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conditions represented by pr). Moreover, the following relations have been
assumed to hold [8]:

A=ayR,*; a3 >0, (13)

which is a well-known scaling law [4] (for the mass fractals a departure
from the rule can be expected, 7.e. A ~ RgD2,D2 € (1,2)) [1], and a clear
geometrical relationship of the form [11,18]

I =2n(R, + F($)5), |d]<1. (14)

Notice that we have got fully nonlinear system (12) with (14), which still
describes our process being curvature-driven (see, e.g. [9, 11,18, 21]), no
matter whether the driving force is specified or not (¢f. Eq. (8), obviously).
By the way, we also believe that a1 and as (cf., Eqs (1) and (13)) survive as
being independent of time, within the frame of our approximation.

The full system (12) with condition (14) is, unfortunately, not so much
useful for practical reasons. We may also extend it by adding some new
perturbation terms with 62 or higher in Eq. (14), but it increases the com-
plexity. Nevertheless, a numerical analysis can be done in this case. To have,
however, the approach simpler and, in some sense, more robust, and also to
preserve its self-consistency, a linearization of it has to be done, like in the
original quasi-static MS-approach [11,18]. It can easily be done for a mature
growth stage (here, Ry has to be much greater than a critical radius [11]),
and by noticing that

‘F(¢)5

1 15
Rg‘<<, (15)

which is very well fulfilled under such physical circumstances. Now, the
simplified system ((12) with (14)) looks like

R,
dt

o, do -1

= G(Q,OZ'CLQRQ) 1 H % = —G(D1 — 1)5<G1D1 (27Tpp)D1RgQ> ,(16)
(note formally that Ry = R,(t) and 6 = §(t)) where the proportionality
factors a1 and as must depend on one another, namely

aq 2p;

e S 17
az  Di(2mp,)P {an)

It is so indeed, because the scaling laws (1) and (13) (via Eq. (3)) are usually
related to one another (see [8]).

In this way, the so-called Mullins—Sekerka (MS) Laplacian (stationary)
field driven system [3,11,18] has been recovered. It is exactly the MS-system
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when G = const. (v = 0, see below), but it is not when G depends upon
time ¢ (otherwise, see below again). If we recall the growing rule (Eq. (8))
in a self-similar form, we have to expect to write explicitly

G =Got™; Go>0,vel0,1), (18)

(G may be called: a kinetic-thermodynamic growth term, in which the pref-
actor G represents the driving force [9,18], where a certain dependence upon
pH-conditions of the process should also be noticed, mostly for reactive as
well as fluctuating and aggregating biosystems [11,17,18], but some kinetic
peculiarities of the process are collected in the power law form as well as by
knowing the value of v; Gg and v must be known a priori or provided by
the experiment [1,3]) so that as an asymptotic solution to the first of the
equations of system (16), we obtain

Ry(t) ~ 11502, (19)

for the “long” times limit, certainly. For the mass fractals [17] one might
probably state Ry(t) ~ t1#¥)/P2 (see above). Note that result (19) does
not depend essentially upon D; (though, the prefactor formally does). Note
also that dynamical system (16) does not depend upon F(¢) (recall Fig. 1),
and that for v = 0 one provides R, ~ V/t, which is the classical diffusional
power law, inevitably related to MS-approach [11,18]. Let us realize that, in
this case, the diffusion constant used in MS-approach could be determined
by 1/a1(2mp,)P1, or because of (17), one can provide it by Di/2asp; [11].
Varying the scaling exponent v in (18) we may get many power law behav-
iors, especially for a very slow growth (like R,(t) ~ t'/* or slower) [7,9,21].
Assuming the inverse power law in (18), with v = 1/3, we can recover (see
(19)) the scaling formula obtained from some extensive MC-simulations of
the SARW-process (growth of small rings) [8], namely

Ry(t) ~ /3, (20)

which is also a well-known asymptotic result for a droplet condensation or
coalescence, 2d grain growth or for the Ostwald ripening of two-dimensional
crystals at the solid-liquid interface in binary mixtures, even (with many
potential practical applications to be thought of) [22]. Some ‘coincidence’
of growth exponent v and the scaling exponent (equal to 1/3) involved in
(20) is worth noticing here.

Another interesting result can be revealed when looking at the second
of equations constituting system (16). Namely, it is a stretched exponen-
tial or Kohlrausch-Williams—Watts [10] behavior of the small perturbation
amplitude 0. Since Ry and ¢ practically grow (or shrink) as proceeding in
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different time scales, for a given Rgy-value (furnished or kept constant, which
is also a ‘physical truth’ seen from the standpoint of very small perturbation
amplitude d, especially, when compared to huge R,-value), one has to get

5(t) o exp(—const. x t1£) (21)

(in the “long” times limit, again) where the constant gathers all the factors,
like, e.g. (D1 —1)/Dy, i.e. some competition exponent [1,5,2], or densities
p-s (see system (16), again), and can even be interpreted in terms of the
Vogel-Fulcher relaxation times, 7,7, very characteristic of slow relaxation
phenomena [22,23], and to be determined by the nucleation radius, the ra-
dius of giration at a saturation limit, Rgs, where Rgs ~ (/Tpy. If D1 — 1
(irregular shape), perturbation amplitude 0 tends to a positive constant in
the course of time, and practically, no perturbation effect is manifested. If,
in turn, Dy — 2 (regular shape), the perturbation effect is much pronounced,
and Eq. (21) describes the process in a nontrivial way. Notice, by the way,
that for v = 0 the classical M-S result (Debyean or simple exponential re-
laxation) is recovered. (A promising generalization here would be if one will
replace the ordinary first order time derivative in the second of equations
of system (16) by a fractional time derivative, just to make the time scale
more sensitive to changes of d in a complex physical environment, like fer-
roelectric, ferromagnetic or unstable homoepitaxial thin films (deposits) or
semiconductor 2d composites, and to get additionally a nonexponential re-
laxation of it; this is immediately to obtain using the results of [23]; cf. [22]
for having a few examples.)

4. Conclusion and perspective

In this work, some preliminaries of the discrete geometrical-kinetic de-
scription of a growing process realized on a square lattice have been pro-
posed. The key idea was to apply both the scaling argumentation as well
as a planimetric (Steinhaus) rule within some level of uncertainty (Eq. (3)),
and to postulate a quasi-static character of the process. The result was
that a nonlinear relationship (Eq. (4)) has been found, and by imposing
a (discrete) time-dynamics on the system, one may arrive at an evolution
equation (difference scheme; cf. Eq. (6)) that includes inherently a curvature
change term very characteristic of the growing phenomena, like crystalliza-
tion (also, single crystalline domains in lipid monolayers [24]), solidification
(faced 2d quasi-crystals [2]), microdomain-growth [2, 18, 21], formation of
biomembranes (interfaces) [9] as well as of wetting [9,13,15]. It is worth
stating here that the description offered is based on incorporating the self-
avoiding random walk (SARW) concept, which has proved to be useful in
this subject [8,19]. By the way, notice that a SARW-trajectory differs from a
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Brownian path since each of its points can only be visited once by a travelling
walker which is not the case of the latter [6,8].

Starting with the discrete description mentioned above (see, Section 2),
we are able to perform some useful continuity procedure (Section 3), just for
embarking on a certain more firm (known) landscape very much assigned
to the above mentioned growing phenomena, and for arriving eventually
at the effectively modified Mullins-Sekerka (MS) kinetic approach, which
enables to recover many kinetic characteristics, mostly with the so-called
small (fractional) dimensionalities as well as being of non-Debyean nature
(cf., Egs (19) and (21); see also [2,3,21]). At this moment, we wish to state
explicitly that the modification of original MS-description is due to:

(i) incorporation (use) of the nowhere differentiable functions as the bound-
aries of 2d clusters (¢f. Fig. 1; note that a SARW-trajectory is just
such a function!);

(ii) extension by including the kinetic-thermodynamical nature of the grow-
ing mechanism (rule (8) and G-term (18) in system (16)).

Also, in the continuous limit, the process remains to be curvature-driven (cf.
system (16), and [11,18] for comparison; notice that a surface or line tension
characterizes the boundary of the system, but only when assumed that the
surface is sufficiently smooth) so that our continuity procedure proposed in
Section 3 makes sense.

Looking at the discrete description, one might notice that some type of
the physically interesting (say!) Gedankenexperiment have been proposed.
Namely, we have straightforwardly got i(p)-dependence and an a priori dis-
crete evolution scheme (Eq. (5)), but we did not know, which is the aggre-
gation (growing) process that we deal with (it could be any growing process
with D; = 3/2 and following scaling law (1), where the resulting clusters are
not so much dispersed so that Steinhaus rule (2) may be applied; conclusion:
some application of our approach to diffusion-limited or reaction-limited
cluster cluster aggregation is forbidden, but to diffusion-limited aggregation
is probably not, in particular, when the surface tension effect can easily be
noticed [1,2[; in the latter the extension with Dy & 1.7 or smaller included,
but with v = 0, should work [24]; ¢f. discussion beneath Eq. (19).

There can be many extensions or generalizations of the approach pro-
posed, and a few of them have been mentioned in Sections 2 and 3. Let
us now mention another one, which may concern the stochastics [25] of the
process. Neglecting the fact that growth term G is generally time-dependent
(by enforcing v = 0, for instance), we can try to follow some natural observa-
tion (at least, for some highly fluctuating systems, like the high-temperature
viscous systems, e.g., polymers or some “soft-matter” systems) that G can
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split up into two terms: one of some deterministic nature (a “reference”
growth term), say G4, and the second of stochastic character, Gg; in this
case: G = G4+ Gg; and G; = G4(t) stands for a noise, e.g. the Gausssian
noise [25], for simplicity. Such kind of analyses one can find, e.g. in [26], and
it is to be applied to the first of equations of (16) (that for R,). Also, some
other future direction of thinking can be explored when looking for common
points with other concepts. Namely, because of utilizing the power law of
form (18) (or having the system in a self-similar regime), and because the
size of the SARW-trajectory increases powerly with the number of constitu-
tive units (e.g., points) a certain suspection of having the system as being
able to be self-organized could be checked [5,22].

To illustrate the model in a preliminary experimental way, let us recall a
simple experiment done as some continuation of work [27]|. This is as follows:

(i) experimental set-up:
a) protein droplet immersed in (or placed slightly above a well of) a
1 ml precipitant solution spread on siliconized glass;
b) crystallization is observed using Leica microscope of 40x (magnifi-
cation factor) with observation error about 4 + 10 percent;
¢) temperature is maintained at 18° C.

(ii) physicochemistry of the crystallization process:
a) the protein from which the crystallites are made of is called molec-
ular chaperone, and belongs to heat shock proteins; it is bacterial
protein expressed in E coli, and it is a promoting force for cellular
reactions it gets from binding to ATP;
b) the driving force is a static pressure difference between the droplet
and the solution (a rheological fluid);
c) the resulting crystallites are 2d hexagonal platelets of ca. 0.08-+0.34
mm in size;
d) the crystallization process is very sensitive to temperature and
movement of a tray on which the experimental set-up (sealed) is placed;
if one moves the tray with the crystals they start to grow twinned, from
the surface starts to grow a perpendicular one or a paralell one to the
old one;
e) they are also light sensitive so that under a longer light exposure
they start to “sweat”, and small bubbles appear all over the surface
(conclusion: one must be very careful experimenting with them; see
also the preceding point);
f) the thermodynamical equilibrium can be achieved by vapour diffu-
sion.
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(#ii) kinetics:

very preliminary measurements (from a few to almost 73 hours) over
some small sets of data show that the kinetics are well fitted by
Eq. (18), with v = 1/3 or greater than 1/3, but less than 1, though
the best fitted set of data leads to the kinetics, like R, ~ t%-3 (very
close to 1/3) so that Eq. (19) can practically be used; this way, the
dispersive kinetics given by Eq. (18), where G ~ ¢t %, with v > 1/3
is manifested. Notice again a possible sensitivity of the process (with
small fractional dimensionalities [10,21,22]) to light as well temper-
ature, which is very characteristic of that kind of kinetics (also, as
was said above, another characteristic feature is that the probability
distribution of times is of a power form [10]); ¢f. [10,23,28].

Sometimes, there is a need to extend the approach proposed into third di-
mension (see [11]) so that one wants to know Steinhaus formula (2) as effec-
tively working in 3d space. Such an extension is possible to be thought of,
especially when some effective geometrical constructions concerning polyg-
onal figures and their form spaces, described e.g. in [29], will be of use. One
may easily notice here that the formula should work smartly at least when
the area of the object spanned on 3d lattice will be, as seen from Eq. (2), a
linear function of both 4 and p. Otherwise, one can expect some difficulties
in reaching the MS-limit in such a natural way.

Finally, let us pose a question: how big (deep) is the range of action
of very simple dynamical systems, like MS-system and alike (e.g., Taylor—
Saffman fingered growth [18]), and how do they emerge from first principles
of the matter reorganization?
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