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FROM A DISCRETE TO CONTINUOUS DESCRIPTIONOF TWO-DIMENSIONAL CURVED ANDHOMOGENEOUS CLUSTERS:SOME KINETIC APPROACH �A. GadomskiDepartment of Theoreti
al Physi
s, Institute of Mathemati
s and Physi
sUniversity of Te
hnology and Agri
ulture85-796 Bydgosz
z, Al. Kaliskiego 7, Polandand Christine TrameStru
tural Biology Department, Stanford University,Fair
hild Bldg. D147, Stanford, CA 94305, USA(Re
eived September 21, 1998)Starting with a dis
rete pi
ture of the self-avoiding polygon embed-dable in the square latti
e, and utilizing both s
aling arguments as well asa Steinhaus rule for evaluating the polygon's area, we are able, by imposinga dis
rete time-dynami
s and making use of the 
on
ept of quasi-stati
 ap-proximation, to arrive at some evolution rules for the surfa
e fra
tal. Thepro
ess is highly 
urvature-driven, whi
h is very 
hara
teristi
 of manyphenomena of biologi
al interest, like 
rystallization, wetting, formation ofbiomembranes and interfa
es. In a dis
rete regime, the number of subunits
onstituting the 
luster is a nonlinear fun
tion of the number of the perime-ter sites a
tive for the growth. A 
hange of the number of subunits in timeis essentially determined by a 
hange in the 
urvature in 
ourse of time,given expli
itly by a di�eren
e operator. In a 
ontinuous limit, the pro
essis assumed to pro
eed in time in a self-similar manner, and its des
riptionis generally o�ered in terms of a nonlinear dynami
al system, even for thehomogeneous 
lusters. For a su�
iently mature stage of the growing pro-
ess, and when linearization of the dynami
al system is realized, one mayget some generalization of Mullins�Sekerka instability 
on
ept, where thefun
tion perturbing the 
ir
le is assumed to be everywhere 
ontinuous butnot ne
essarily di�erentiable, like e.g., the Weierstrass fun
tion. Moreover,a time-dependent prefa
tor appears in the simpli�ed dynami
al system.PACS numbers: 71.10.+x, 81.30.Fb, 05.60.+w, 05.70.Fh� Presented at the XI Marian Smolu
howski Symposium on Statisti
al Physi
s,Zakopane, Poland, September 1�5, 1998.(2571)



2572 A. Gadomski, C. Trame1. Introdu
tionA growing interest in kineti
s as well as s
aling properties of obje
tswith randomly evolving interfa
es (surfa
es), being widely known in physi
sand 
hemistry as well as biology as separation boundaries, (bio)membranes,a
tive zones, et
., is of theoreti
al interest to materials s
ientists, physi
ists,
hemists and biologists, but re
ently also attra
ts interest of te
hnologistsor materials engineers [1℄.The obje
ts in question are usually re
ognized as grains (or mi
rodo-mains) with 
urved boundaries [2℄, systems with �u
tuating interfa
es, spread-ing or invading assemblies and/or 
rystals with either smooth or rough sur-fa
es, et
. [3℄. They may represent a behavior of su
h far-from-equilibriumphenomena, like e.g., grain 
oales
en
e in metals and alloys, evolution of the
rystallization front (e.g., with a zigzag shape modulation in two-dimensionalmatri
es), growth and volume in
rease of bubbles, formation of biomem-branes (vesi
les, mi
elles, et
.) or even expansion of natural patterns, likeba
terial or algae 
olonies [3℄. The kineti
 behaviour of many of them still at-tra
ts some interest of resear
hers in many dis
iplines, and is a subje
t of per-manent 
onsiderations. Espe
ially, s
aling or similarity properties whi
h al-ways assume some invarian
e of the system properties under a s
aling rule(s),appear to be informative mostly to physi
ists who, most frequently underthe self-similarity assumption(s), try to understand quite general stati
 aswell as dynami
 properties of the system under investigation [4℄.Theoreti
al studies on the kineti
s of 
luster growth are observed to splitup into two main dire
tions:1) 
omputer simulations: Monte Carlo (MC), 
ellular automata (CA) aswell as mole
ular dynami
s (MD);2) analyti
al studies on dynami
s or kineti
s of some systems with evolv-ing fronts, espe
ially when utilizing the 
on
epts of the master equationfor the di�usive and/or 
onve
tive front propagation; Langevin-typeequations for the evolution of a �u
tuating di�usion-rea
tion front [5℄;noti
e that the 
on
ept of fra
tality of any kind is often used fordes
ription of the above mentioned phenomena; 
f. [1, 6℄ for generaloverview; also, a s
aling 
on
ept, being very useful in polymer physi
s,is very mu
h advised here [4, 7℄.In this study, beginning the whole story with a dis
rete pi
ture of a self-avoiding polygon embedded in the square latti
e (Fig. 1(a)), and applyingboth s
aling arguments as well as a Steinhaus rule for evaluating the poly-gon's area (Fig. 2), we may, by imposing a dis
rete time-dynami
s on thesystem in question and working within a quasi-stati
 approximation, obtainsome evolution rules for the surfa
e fra
tal in 2d spa
e. The surfa
e (line)
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Fig. 1. Cartoon of dis
rete (a) and 
ontinuous (b) 
urves as the possible boundariesof 2d 
luster in the dis
rete as well as 
ontinuous representations, respe
tively; notethat the dis
rete stair
ase-like 
urve F (�s) (a nowhere di�erentiable fun
tion of itsargument, starting from a beginning point B and rea
hing an ending point E) 
analso be useful for the 
ontinuous approa
h (a 
ontinuous periodi
 
urve F (�) was
hosen from a standard textbook in physi
s; other examples applied 
an be foundelsewhere [11, 18℄; the latti
e 
onstant is designated by s, and it represents alsothe lower index of angular argument �, whi
h symbolizes dis
reteness of the upper
urve).is modelled here by the self-avoiding random walk (SARW) traje
tory, i.e.a traje
tory obtained under restri
tion that ea
h of its points 
an never bevisited or tou
hed more than on
e. Su
h a traje
tory is a fra
tal with thefra
tal dimension of 4=3 [8℄. The pro
ess is highly 
urvature-driven, whi
his very 
hara
teristi
 of many phenomena of biologi
al interest, like 
rys-tallization in 
omplex (natural) media, (non)retarded wetting, formation ofbiomembranes (vesi
les, mi
elles), interfa
es (phase transitions from angu-
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Fig. 2. Sket
h of examples of Steinhaus rule (2). The areas of the triangle, trapez-ium and square are designated by A1, A2 and A3, respe
tively, and are evaluated tobe: 9, 8 and 4 (see, Eq. (2)); the internal as well as perimetri
 (periphery) points ofthe triangle have been drawn, too (for additional graphi
al symbols, see the legendof the �gure).lar to smooth shapes; 
f. Fig. 1) or (in)
ommensurable layers [8, 9℄. In thedis
rete (say, mi
ros
opi
) regime, the number of subunits 
onstituting the
luster is a nonlinear fun
tion of the number of the perimeter sites. Theperimeter sites 
an be de�ned as the most outer sites either of the fra
talitself or the sites of its nearest neighborhood. The latter sites do not for-mally belong to the 
luster. They 
an be des
ribed as the sites very a
tivefor the growth. It depends upon what kind of the growing pro
ess we wishto des
ribe. If the pro
ess is not realized by some a

retion or sti
king ofparti
les (subunits) 
oming from the external medium, we will have to dowith a 
ertain expansion of the 
luster, like in swelling or bubble expansion;here, some in
rease in volume of the 
luster is manifested. If, in turn, somea

retion of external parti
les in the a
tive zone of the 
luster is allowedto take pla
e, then the 
luster tends to grow by the in
rease of mass thanvolume, rather, like e.g. in di�usion-
ontrolled pro
esses [1, 6℄. A 
hange ofthe number of subunits in time is ex
lusively determined by a 
hange in the
urvature in 
ourse of time (though, a s
aling prefa
tor and exponent doenter as the parameters), given expli
itly by a di�eren
e operator. In the
ontinuous (say, meso- or even ma
ros
opi
) regime, the pro
ess is assumedto pro
eed in time in a self-similar manner, and its des
ription is generallyo�ered in terms of a nonlinear dynami
al system, even for the homogeneous
lusters (of 
onstant density). For a su�
iently mature stage of the growingpro
ess, and when a linearization of the dynami
al system is performed, one
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an have a generalization of the Mullins�Sekerka (MS) instability 
on
ept,where the fun
tion perturbing the 
ir
le of radius Rg is assumed to be every-where 
ontinuous but not ne
essarily di�erentiable (
f. Fig. 1, and 
ompareFig. 1(a) to Fig. 1(b)), like e.g., the Weierstrass fun
tion (a spe
ial 
ase isthe Levy �ight) [10℄, whi
h is a kind of the SARW-traje
tory; moreover, atime-dependent (kineti
-thermodynami
al) prefa
tor may appear in the sim-pli�ed dynami
al system, where the radius Rg and the small perturbationamplitude Æ, like in the original dynami
al MS-system [11℄, are the so-
alleddependent variables (the independent variable is always time t).2. Dis
rete des
ription as a 
ombination of Steinhausrule and some s
aling argumentationLet us imagine a self-avoiding polygon embedded in the square latti
eof 
onstant s. This may physi
ally represent a two-dimensional vesi
le (amodel biomembrane), in whi
h the boundary of the vesi
le is the perimeterof the self-avoiding traje
tory (see the sket
h in Fig. 1(a)). Another suitableexample here 
an be 2d fa
ed 
rystals with dynami
ally stable zigzag orangular shape modulation [2℄.Fisher and 
o-workers (see [12�15℄, and Refs therein) using Monte Carlosimulation results and s
aling arguments showed that for s � 1, or equiv-alently for Ngrid � 1 (Ngrid is the number of grids of the square latti
e), as
aling formula is valid for either the mean-square radius of gyration or thearea (being an averaged value over many realizations) of the polygon hAi,namely hAi = a1pD1 ; D1 �= 32 ; (1)where a1 is a positive 
onstant of thermodynami
 nature, p� 1 stands forthe number of the perimeter sites of the polygon (
luster), and D1 representsthe self-avoiding walk size exponent [8,12,13℄; in general, D1 2 [1; 2℄ is valid.On the other hand, however, appealing to our elementary knowledge onplanimetry, we realize that a polygon with the above stated perimeter (i.e.,being a SARW-perimeter) is a two-dimensional (dis
rete) geometri
 obje
t;the most simplest are, e.g. : triangle, trapezium or square, or a 
ombinationof them; 
f. Fig. 2.Polish mathemati
ian Hugo Steinhaus found out [16℄ that the area A ofsu
h a 
onvex single polygon embedded in the square latti
e (spanned onthe latti
e nodes) is found to be (
f. Fig. 2)A = i+ p2 � 1 ; (2)



2576 A. Gadomski, C. Tramewhere i (here: i � 1, too) is the number of the internal points of thepolygon (subunits 
omposing the 
luster, and pla
ed in the nodes of thesquare latti
e), and A stands for the exa
t value of the polygon's area.Postulating some very small statisti
al un
ertainty in the system (�
ompa
t�latti
e obje
ts grown from a nu
leus; no fuzzy or �extremally dispersive�aggregates or agglomerates), namelyj hAi �A j< " ; (3)where 0 < "� 1, one may 
on
lude, within the (negligible) statisti
al error,that an equality, like a1pD1 = i+ p2 � 1, by 
omparing dire
tly (1) and (2),is possible to get; rearranging that the equality readsi = a1pD1 � p2 + 1 ; (4)with D1 = 3=2 (approximately), but with some quite high a

ura
y [13,15℄.From (4) it 
rudely follows that if D1 were about 1, Eq. (4) would des
ribea straigth-line dependen
e (for i � i(p)). If, in turn, D1 were around 2, aparabola-like 
hara
teristi
s must undoubtedly be assigned to relationship(4). Note that we are just in between sin
e 
a. D1 = 3=2, whi
h means, thatwe somehow interpolate between the two types of i(p)-behavior mentioned(i(p) is nevertheless nonlinear in p).Let from now try to evolve the system (our `virtual' ensemble of i- and p-points) or to impose a dis
rete time-dynami
s on it. (It will be equivalent topass the system through a number of instants of stable `dynami
' equilibriawhi
h is a kind of quasi-stati
 approximation sin
e it is in agreement with the
on
ept of interest [11℄; in general, the instants may be randomly distributed,whi
h is the 
ase of dispersive or fra
tal-like kineti
s, and the probabilitydistribution fun
tion appears to be an inverse power fun
tion of time.) Inother words, we will be interested in knowing what is the total number ofthe 
luster subunits in time instant t (denoted by it), having known that atthe pre
eding time moment t � 1 the number is it�1. We 
an get it whenwe simply perform dis
rete di�erentiation over the both sides of (4), whi
hresults in �i = �a1D1pD1�1 � 12��p ; (5)where �i = it � it�1 and �p = pt � pt�1. Applying (5) one arrives at adi�eren
e equation of the formit = it�1 + 
d%t;t�1(p) ; (6)where 
d is a 
onstant (e.g., for a1 = 1=3, one has 
d = 1=2; D1 = 3=2, asabove), and %t;t�1(p) is a 
urvature (or, a 
urvature like) 
hange di�eren
e
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ting on p) fully determined by p-s, i.e. by the two total perimetersites numbers pt and pt�1 at t and t � 1, respe
tively, as well as by D1(one 
an see here some analogy between this operator and the homogeneityLapla
ian operator for the di�eren
e di�usion equation, espe
ially when animpli
it di�eren
e s
heme is applied; note that mathemati
ally Lapla
ianfrequently means the existen
e of 
urvature in the system [9℄). If pt 6= pt�1then %t;t�1(p) 6= 0. Otherwise, we get a stagnation (no growth or dissolution)e�e
t, whi
h results in it = it�1, i.e. one sees that the 
urvature 
hangeoperator has no e�e
t when a
ting on p-s. The growth (or aggregation)pro
ess takes pla
e when %t;t�1(p) > 0. Otherwise, one has to do with a
ountere�e
t, i.e. a dissolution (or disaggregation) pro
ess 
an be observed(this e�e
t is of no interest in our present study).One 
an realize, however, some shortage of the des
ription proposed.Mostly, that it does not take into a

ount the positions of the perimetersites and their distan
es to the aggregation 
enter. Next, that D1 has to beadditionally determined during the whole growing pro
ess so that one mustrea
h a staturation e�e
t if one wishes to have D1 solely pi
ked up. The�rst remark mentioned above is equivalent to say that we have no expli
itgrowth (aggregation or agglomeration) rule, whi
h stays behind the wholepro
ess; in other words, till now no growth me
hanism has been o�ered.The only possibility of realizing with whi
h physi
al me
hanism one hasto do relies on knowing reliably the values of D1 and a1, but it may notsu�
e to be sure whi
h is the growing pro
ess that we investigate; at most,being lu
ky, we will be able to indi
ate a 
lass of the growing pro
esses [1℄.Sin
e D1 = 2=DSARW, where the fra
tal dimension of SARW-traje
toryDSARW = 4=3 (D1 = 3=2) [8℄, we 
an expe
t that we might also haveto do with another type of growing pro
ess (di�usion-limited aggregation,�ngered growth; polymerization, per
olation, gelation, et
.), in whi
h nota surfa
e fra
tal, but a mass fra
tal emerges; in su
h a 
ase the inequalitythat D1 6= 3=2, but 1 < D1 � 2 [17℄ holds. Anyway, one should stateexpli
itly that some appli
ation of Eqs (5) or (6) makes sense if there is apre
ise set of growing rules that stays behind, whi
h enables to determineD1 (and, perhaps, a1); we see a 
han
e to remove this in
onvenien
e byo�ering a 
ontinuous des
ription (see below). It is worth mentioning thatSteinhaus formula (2) or the evolution rules built on it, i.e. (5) or (6), havesome information on the 
urvature (
urvature 
hanges) of the dis
rete 2dobje
t 
ontained in a natural way, just by having expli
itly in
luded thetotal number of the perimeter sites p or its 
hanges �p in 
ourse of time t.



2578 A. Gadomski, C. Trame3. Continuous limit as a generalization of Mullins�Sekerkainstability 
on
eptThe 
ontinuity of the growing pro
ess [18℄ 
an be physi
ally noti
ed whensomething in�nitezimally small des
ribing the system, starts to 
hange, solet us assume that s ! 0 (or, Ngrid ! 1). Obviously, the total numbersof points, i and p, have to be large enough, too, and we have to mentionformally that the dis
rete time-dynami
s is to be repla
ed by a 
ontinuousone, i.e., as usually, with �t ! 0, where �t is of deterministi
 nature, forsimpli
ity. Under su
h assumptions i � i(t) and p � p(t), t � t0 � 0 (t0 isthe initial instant), and Eq. (5) 
an be rewritten asdidt = �a1D1pD1�1 � 12�dpdt ; (7)where di=dt and dp=dt are the �rst order time derivatives of i and p, respe
-tively.Now, we wish to introdu
e the growing rule by reminding the followingnatural observation, namelydidt = f(t; pT ) � 0 ; (8)where f is a non negative and 
ontinuous fun
tion of t as well as of somethermodynami
 parameter pT (in general, we have to speak about a set ofthe thermodynami
 parameters); if f = 0 no growth is observed (stagnationor �freezing� are realized), but if f > 0 the growing pro
ess is assumed totake pla
e. There is still another requirement that we wish to assign to f ;we 
all it: a self-similarity 
ondition. This means that we expe
t to have fas a power fun
tion of time (either an inverse or a dire
t power fun
tion).Su
h a requirement is usually expe
ted, mostly for some 
omplex systems,like polymers, model biomaterials, alloys, et
. [1, 4, 7�9, 19℄. By the way,it would be noti
ed further that this also enfor
es to have the behavior ofthe radius of giration of the 
luster as a power law of time [7, 8℄ so that italso 
auses to get the problem well-posed from the mathemati
al point ofview [20℄.Now, we may expli
itly write Eqs (7) and (8) as a nonautonomous dy-nami
al system 
onsisting of two ordinary di�erential equations, whi
h are
oupled by fun
tion f , namelydidt = f(t; pT ) ; dpdt = f(t; pT )�a1D1pD1�1 � 12��1: (9)We see quite natural to rewrite system (9) in terms of the 
luster densities.This means that one has to use the number area density �i for i-s as well as



: : : Two-Dimensional Curved and Homogeneous Clusters : : : 2579the number perimeter density �p for p-s. They 
an be de�ned by the integralformulae i = AZ0 dA0�i and p = lZ0 dl0�p ;where i, p, �-s, A and l (the length of the 
ir
umferen
e of the 
luster)may generally be time-(t) and position- or x-dependent; noti
e that in thedis
rete des
ription 
orresponding sums 
an be used instead of the integrals.In this study, we wish to 
on
entrate on the evolution of homogeneous
lusters, i.e.�i(t; x) � �i = 
onst: ; �p(t; x) � �p = 
onst: (10)whi
h leads to a substitution of (9) by�idAdt = f(t; pT ) ; �p dldt = f(t; pT )�a1D1(�pl)D1�1 � 12��1: (11)To have some relation to known systems des
ribing the evolution of grow-ing obje
ts (e.g., those 
ontrolled by di�usion [11, 18℄), we have to presentsystem (11) in terms of a perturbed quasi-
ir
le of radius Rg, where the
ir
umferen
e of the ideal 
ir
le is perturbed by a fa
tor ÆF (�; pg), requiringhowever, that j Æ j� 1, and F is an everywhere 
ontinuous, bounded and(usually) os
illating fun
tion of � (like, 
osine or sine or a 
ombination ofthem� see [11,18℄ and Fig. 1(b); here pg is a geometri
al parameter of minorimportan
e in our further 
onsiderations so that we take F (�; pg) � F (�),for simpli
ity). We wish to state very mu
h here that F does not have tobe di�erentiable in �. On the 
ontrary, it may be a nowhere di�erentiablefun
tion of �; 
f. Fig. 1(a) for getting an example (some other examples
an be listed, like the Weierstrass fun
tion or the Levy �ight as well as a`devil's stair
ase' as spe
i�
 
ases [10℄). This assumption ensures to havethe evolution rules for a surfa
e fra
tal (like, e.g., the Eden fra
tal [1℄).Rewriting (11) in terms of a perturbed quasi-
ir
le, one getsdRgdt = G(2�ia2Rg)�1 ; dldt = 2G�p�1�2a1D1(�pl)D1�1 � 1��1; (12)where for brevity G � G(t) = f(t; pT ) > 0 (note that in this term the driv-ing for
e of the growing pro
ess is also in
luded, e.g., the supersaturation,under
ooling, 
apillary for
e, lowering of the interfa
ial free energy, pressuredi�eren
e, et
. [1, 3, 18, 21℄, and it is always a fun
tion of thermodynami
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onditions represented by pT ). Moreover, the following relations have beenassumed to hold [8℄: A = a2Rg2 ; a2 > 0 ; (13)whi
h is a well-known s
aling law [4℄ (for the mass fra
tals a departurefrom the rule 
an be expe
ted, i.e. A � RgD2 ;D2 2 (1; 2)) [1℄, and a 
leargeometri
al relationship of the form [11, 18℄l = 2�(Rg � F (�)Æ) ; j Æ j� 1 : (14)Noti
e that we have got fully nonlinear system (12) with (14), whi
h stilldes
ribes our pro
ess being 
urvature-driven (see, e.g. [9, 11, 18, 21℄), nomatter whether the driving for
e is spe
i�ed or not (
f. Eq. (8), obviously).By the way, we also believe that a1 and a2 (
f., Eqs (1) and (13)) survive asbeing independent of time, within the frame of our approximation.The full system (12) with 
ondition (14) is, unfortunately, not so mu
huseful for pra
ti
al reasons. We may also extend it by adding some newperturbation terms with Æ2 or higher in Eq. (14), but it in
reases the 
om-plexity. Nevertheless, a numeri
al analysis 
an be done in this 
ase. To have,however, the approa
h simpler and, in some sense, more robust, and also topreserve its self-
onsisten
y, a linearization of it has to be done, like in theoriginal quasi-stati
 MS-approa
h [11,18℄. It 
an easily be done for a maturegrowth stage (here, Rg has to be mu
h greater than a 
riti
al radius [11℄),and by noti
ing that ����F (�)ÆRg ����� 1 ; (15)whi
h is very well ful�lled under su
h physi
al 
ir
umstan
es. Now, thesimpli�ed system ((12) with (14)) looks likedRgdt = G(2�ia2Rg)�1 ; dÆdt = �G(D1 � 1)Æ�a1D1(2��p)D1Rg2��1 ; (16)(note formally that Rg � Rg(t) and Æ � Æ(t)) where the proportionalityfa
tors a1 and a2 must depend on one another, namelya1a2 = 2�iD1(2��p)D1 : (17)It is so indeed, be
ause the s
aling laws (1) and (13) (via Eq. (3)) are usuallyrelated to one another (see [8℄).In this way, the so-
alled Mullins�Sekerka (MS) Lapla
ian (stationary)�eld driven system [3,11,18℄ has been re
overed. It is exa
tly the MS-system
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onst: (� = 0, see below), but it is not when G depends upontime t (otherwise, see below again). If we re
all the growing rule (Eq. (8))in a self-similar form, we have to expe
t to write expli
itlyG = G0t�� ; G0 > 0; � 2 [0; 1) ; (18)(G may be 
alled: a kineti
-thermodynami
 growth term, in whi
h the pref-a
tor G0 represents the driving for
e [9,18℄, where a 
ertain dependen
e uponpH-
onditions of the pro
ess should also be noti
ed, mostly for rea
tive aswell as �u
tuating and aggregating biosystems [11, 17, 18℄, but some kineti
pe
uliarities of the pro
ess are 
olle
ted in the power law form as well as byknowing the value of �; G0 and � must be known a priori or provided bythe experiment [1, 3℄) so that as an asymptoti
 solution to the �rst of theequations of system (16), we obtainRg(t) � t(1��)=2 ; (19)for the �long� times limit, 
ertainly. For the mass fra
tals [17℄ one mightprobably state Rg(t) � t(1��)=D2 (see above). Note that result (19) doesnot depend essentially upon D1 (though, the prefa
tor formally does). Notealso that dynami
al system (16) does not depend upon F (�) (re
all Fig. 1),and that for � = 0 one provides Rg � pt, whi
h is the 
lassi
al di�usionalpower law, inevitably related to MS-approa
h [11,18℄. Let us realize that, inthis 
ase, the di�usion 
onstant used in MS-approa
h 
ould be determinedby 1=a1(2��p)D1 , or be
ause of (17), one 
an provide it by D1=2a2�i [11℄.Varying the s
aling exponent � in (18) we may get many power law behav-iors, espe
ially for a very slow growth (like Rg(t) � t1=4 or slower) [7, 9, 21℄.Assuming the inverse power law in (18), with � = 1=3, we 
an re
over (see(19)) the s
aling formula obtained from some extensive MC-simulations ofthe SARW-pro
ess (growth of small rings) [8℄, namelyRg(t) � t1=3 ; (20)whi
h is also a well-known asymptoti
 result for a droplet 
ondensation or
oales
en
e, 2d grain growth or for the Ostwald ripening of two-dimensional
rystals at the solid�liquid interfa
e in binary mixtures, even (with manypotential pra
ti
al appli
ations to be thought of) [22℄. Some `
oin
iden
e'of growth exponent � and the s
aling exponent (equal to 1=3) involved in(20) is worth noti
ing here.Another interesting result 
an be revealed when looking at the se
ondof equations 
onstituting system (16). Namely, it is a stret
hed exponen-tial or Kohlraus
h�Williams�Watts [10℄ behavior of the small perturbationamplitude Æ. Sin
e Rg and Æ pra
ti
ally grow (or shrink) as pro
eeding in
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ales, for a given Rg-value (furnished or kept 
onstant, whi
his also a `physi
al truth' seen from the standpoint of very small perturbationamplitude Æ, espe
ially, when 
ompared to huge Rg-value), one has to getÆ(t) / exp(�
onst:� t1��) ; (21)(in the �long� times limit, again) where the 
onstant gathers all the fa
tors,like, e.g. (D1 � 1)=D1, i.e. some 
ompetition exponent [1,5,2℄, or densities�-s (see system (16), again), and 
an even be interpreted in terms of theVogel�Ful
her relaxation times, �vf , very 
hara
teristi
 of slow relaxationphenomena [22, 23℄, and to be determined by the nu
leation radius, the ra-dius of giration at a saturation limit, Rgs, where Rgs � p�vf . If D1 ! 1(irregular shape), perturbation amplitude Æ tends to a positive 
onstant inthe 
ourse of time, and pra
ti
ally, no perturbation e�e
t is manifested. If,in turn, D1 ! 2 (regular shape), the perturbation e�e
t is mu
h pronoun
ed,and Eq. (21) des
ribes the pro
ess in a nontrivial way. Noti
e, by the way,that for � = 0 the 
lassi
al M-S result (Debyean or simple exponential re-laxation) is re
overed. (A promising generalization here would be if one willrepla
e the ordinary �rst order time derivative in the se
ond of equationsof system (16) by a fra
tional time derivative, just to make the time s
alemore sensitive to 
hanges of Æ in a 
omplex physi
al environment, like fer-roele
tri
, ferromagneti
 or unstable homoepitaxial thin �lms (deposits) orsemi
ondu
tor 2d 
omposites, and to get additionally a nonexponential re-laxation of it; this is immediately to obtain using the results of [23℄; 
f. [22℄for having a few examples.)4. Con
lusion and perspe
tiveIn this work, some preliminaries of the dis
rete geometri
al-kineti
 de-s
ription of a growing pro
ess realized on a square latti
e have been pro-posed. The key idea was to apply both the s
aling argumentation as wellas a planimetri
 (Steinhaus) rule within some level of un
ertainty (Eq. (3)),and to postulate a quasi-stati
 
hara
ter of the pro
ess. The result wasthat a nonlinear relationship (Eq. (4)) has been found, and by imposinga (dis
rete) time-dynami
s on the system, one may arrive at an evolutionequation (di�eren
e s
heme; 
f. Eq. (6)) that in
ludes inherently a 
urvature
hange term very 
hara
teristi
 of the growing phenomena, like 
rystalliza-tion (also, single 
rystalline domains in lipid monolayers [24℄), solidi�
ation(fa
ed 2d quasi-
rystals [2℄), mi
rodomain-growth [2, 18, 21℄, formation ofbiomembranes (interfa
es) [9℄ as well as of wetting [9, 13, 15℄. It is worthstating here that the des
ription o�ered is based on in
orporating the self-avoiding random walk (SARW) 
on
ept, whi
h has proved to be useful inthis subje
t [8,19℄. By the way, noti
e that a SARW-traje
tory di�ers from a
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e ea
h of its points 
an only be visited on
e by a travellingwalker whi
h is not the 
ase of the latter [6, 8℄.Starting with the dis
rete des
ription mentioned above (see, Se
tion 2),we are able to perform some useful 
ontinuity pro
edure (Se
tion 3), just forembarking on a 
ertain more �rm (known) lands
ape very mu
h assignedto the above mentioned growing phenomena, and for arriving eventuallyat the e�e
tively modi�ed Mullins�Sekerka (MS) kineti
 approa
h, whi
henables to re
over many kineti
 
hara
teristi
s, mostly with the so-
alledsmall (fra
tional) dimensionalities as well as being of non-Debyean nature(
f., Eqs (19) and (21); see also [2,3,21℄). At this moment, we wish to stateexpli
itly that the modi�
ation of original MS-des
ription is due to:(i) in
orporation (use) of the nowhere di�erentiable fun
tions as the bound-aries of 2d 
lusters (
f. Fig. 1; note that a SARW-traje
tory is justsu
h a fun
tion!);(ii) extension by in
luding the kineti
-thermodynami
al nature of the grow-ing me
hanism (rule (8) and G-term (18) in system (16)).Also, in the 
ontinuous limit, the pro
ess remains to be 
urvature-driven (
f.system (16), and [11,18℄ for 
omparison; noti
e that a surfa
e or line tension
hara
terizes the boundary of the system, but only when assumed that thesurfa
e is su�
iently smooth) so that our 
ontinuity pro
edure proposed inSe
tion 3 makes sense.Looking at the dis
rete des
ription, one might noti
e that some type ofthe physi
ally interesting (say!) Gedankenexperiment have been proposed.Namely, we have straightforwardly got i(p)-dependen
e and an a priori dis-
rete evolution s
heme (Eq. (5)), but we did not know, whi
h is the aggre-gation (growing) pro
ess that we deal with (it 
ould be any growing pro
esswith D1 = 3=2 and following s
aling law (1), where the resulting 
lusters arenot so mu
h dispersed so that Steinhaus rule (2) may be applied; 
on
lusion:some appli
ation of our approa
h to di�usion-limited or rea
tion-limited
luster 
luster aggregation is forbidden, but to di�usion-limited aggregationis probably not, in parti
ular, when the surfa
e tension e�e
t 
an easily benoti
ed [1, 2℄; in the latter the extension with D2 � 1:7 or smaller in
luded,but with � = 0, should work [24℄; 
f. dis
ussion beneath Eq. (19).There 
an be many extensions or generalizations of the approa
h pro-posed, and a few of them have been mentioned in Se
tions 2 and 3. Letus now mention another one, whi
h may 
on
ern the sto
hasti
s [25℄ of thepro
ess. Negle
ting the fa
t that growth term G is generally time-dependent(by enfor
ing � = 0, for instan
e), we 
an try to follow some natural observa-tion (at least, for some highly �u
tuating systems, like the high-temperaturevis
ous systems, e.g., polymers or some �soft-matter� systems) that G 
an
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 nature (a �referen
e�growth term), say Gd, and the se
ond of sto
hasti
 
hara
ter, Gs; in this
ase: G = Gd + Gs; and Gs � Gs(t) stands for a noise, e.g. the Gausssiannoise [25℄, for simpli
ity. Su
h kind of analyses one 
an �nd, e.g. in [26℄, andit is to be applied to the �rst of equations of (16) (that for Rg). Also, someother future dire
tion of thinking 
an be explored when looking for 
ommonpoints with other 
on
epts. Namely, be
ause of utilizing the power law ofform (18) (or having the system in a self-similar regime), and be
ause thesize of the SARW-traje
tory in
reases powerly with the number of 
onstitu-tive units (e.g., points) a 
ertain suspe
tion of having the system as beingable to be self-organized 
ould be 
he
ked [5, 22℄.To illustrate the model in a preliminary experimental way, let us re
all asimple experiment done as some 
ontinuation of work [27℄. This is as follows:(i) experimental set-up:a) protein droplet immersed in (or pla
ed slightly above a well of) a1 ml pre
ipitant solution spread on sili
onized glass;b) 
rystallization is observed using Lei
a mi
ros
ope of 40� (magni�-
ation fa
tor) with observation error about 4� 10 per
ent;
) temperature is maintained at 18Æ C.(ii) physi
o
hemistry of the 
rystallization pro
ess:a) the protein from whi
h the 
rystallites are made of is 
alled mole
-ular 
haperone, and belongs to heat sho
k proteins; it is ba
terialprotein expressed in E 
oli, and it is a promoting for
e for 
ellularrea
tions it gets from binding to ATP;b) the driving for
e is a stati
 pressure di�eren
e between the dropletand the solution (a rheologi
al �uid);
) the resulting 
rystallites are 2d hexagonal platelets of 
a. 0:08�0:34mm in size;d) the 
rystallization pro
ess is very sensitive to temperature andmovement of a tray on whi
h the experimental set-up (sealed) is pla
ed;if one moves the tray with the 
rystals they start to grow twinned, fromthe surfa
e starts to grow a perpendi
ular one or a paralell one to theold one;e) they are also light sensitive so that under a longer light exposurethey start to �sweat�, and small bubbles appear all over the surfa
e(
on
lusion: one must be very 
areful experimenting with them; seealso the pre
eding point);f) the thermodynami
al equilibrium 
an be a
hieved by vapour di�u-sion.
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s:very preliminary measurements (from a few to almost 73 hours) oversome small sets of data show that the kineti
s are well �tted byEq. (18), with � � 1=3 or greater than 1=3, but less than 1, thoughthe best �tted set of data leads to the kineti
s, like Rg � t0:311 (very
lose to 1=3) so that Eq. (19) 
an pra
ti
ally be used; this way, thedispersive kineti
s given by Eq. (18), where G � t�� , with � � 1=3is manifested. Noti
e again a possible sensitivity of the pro
ess (withsmall fra
tional dimensionalities [10, 21, 22℄) to light as well temper-ature, whi
h is very 
hara
teristi
 of that kind of kineti
s (also, aswas said above, another 
hara
teristi
 feature is that the probabilitydistribution of times is of a power form [10℄); 
f. [10, 23, 28℄.Sometimes, there is a need to extend the approa
h proposed into third di-mension (see [11℄) so that one wants to know Steinhaus formula (2) as e�e
-tively working in 3d spa
e. Su
h an extension is possible to be thought of,espe
ially when some e�e
tive geometri
al 
onstru
tions 
on
erning polyg-onal �gures and their form spa
es, des
ribed e.g. in [29℄, will be of use. Onemay easily noti
e here that the formula should work smartly at least whenthe area of the obje
t spanned on 3d latti
e will be, as seen from Eq. (2), alinear fun
tion of both i and p. Otherwise, one 
an expe
t some di�
ultiesin rea
hing the MS-limit in su
h a natural way.Finally, let us pose a question: how big (deep) is the range of a
tionof very simple dynami
al systems, like MS-system and alike (e.g., Taylor�Sa�man �ngered growth [18℄), and how do they emerge from �rst prin
iplesof the matter reorganization?Some te
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