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MEMORY PROPERTIES OF ARTIFICIAL NEURALNETWORKS WITH DIFFERENT TYPES OFDILUTIONS AND DAMAGES�Robert A. Kosi«ski a;b and Magdalena M. Sinoª�kaaa Institute of Physis, Warsaw University of TehnologyKoszykowa 75, 00-662 Warsaw, Polandb Central Institue of Labor ProtetionCzerniakowska 16, 00-701 Warsaw, Poland(Reeived Otober 12, 1998)Memory properties of the Hop�eld type neural networks with four dif-ferent types of dilution of synapti onnetions (dilution inside bloks, di-lution outside bloks and dilution of exitory/inhibitory synapses) as wellas damaging of a part of neurons, are numerially investigated. Number ofstored bits per neuron an stored bits per synapse for these networks werealulated and ompared. In�uene of the type of dilution on the memoryproperties of the network is disussed.PACS numbers: 87.10.+ 1. IntrodutionOne of the main properties of neural networks are their memory prop-erties. Human brain is extremely e�etive in this ase � it an store, de-pending on the approximation, from 1021 to 1015 patterns ontaining 1011bits (for review of results see Ref. [1℄). Memory properties of arti�ial neu-ral networks were also extensively studied, due to the di�erent appliationsof suh networks. Important measure of the memory properties of neuralnetworks is a number of stored bits per neuron or a number of stored bitsper synapse [1,2℄. In human brain neural network is not fully onneted �synapti onnetions are diluted: for 1011 neurons the number of synaptionnetions per neuron is of the order of 104 . Maximal storage apaity ofarti�ial neural network � was analysed for fully onneted networks as wellas networks with diluted synapti onnetions. For fully onneted Hop�eld� Presented at the XI Marian Smoluhowski Symposium on Statistial Physis,Zakopane, Poland, September 1�5, 1998.(2589)



2590 R.A. Kosi«ski, M.M. Sinoª�kanetwork it was found analytially [1,3℄ that in the ase of thermodynamilimit (i.e. for the number of neurons N �!1) p = �N = 0:138N patterns,eah onsisting of N bits, an be stored e�etively.The important reason for the investigations of memory properties ofdiluted arti�ial neural networks is the fat that in their hardware imple-mentations it is easier to inrease the number of neurons than the numberof onnetions between them (e.g. in the form of onduting paths). Highdensity of these paths leads to the problems with their topology. One of thetypes of dilution, rather frequently analysed in the literature, is a randomdilution of synapti onnetions. For this ase, it was found that the maxi-mal storage apaity (proportional to the number of bits stored per neuron)dereases with the inrease of dilution of synapti onnetions; at the sametime the number of bits stored per synapse inreases and this parameter isgreater than for the ase of fully onneted network (see e.g. [1,4�7℄)In the present work four types of dilutions of synapti onnetions ormodi�ations of the states of neurons introdued to the Hop�eld type neuralnetwork (whih may refer to some properties of living neural networks), arenumerially examined. The storage apaity of suh networks is disussedand ompared. 2. The model of neural networkIn our work neural network onsists of N neurons Si whih may have twostates: +1 (�ring) or �1 (rest). All neurons are onneted with synaptionnetions Jij 2 [�1;+1℄, whih are onstruted aording to the standardHebb's rule [8℄. In the network p random patterns were stored. In the proessof time evolution of the network the e�etive retrieval of stored patterns wasontrolled, i.e. the value of overlap m� = (1=N)Pi ��i Si was alulated inthe omputations (where � = 1; 2; : : : p). It was assumed that the pattern isretrieved orretly if m� � 0:97. As the starting on�guration for the aseof �-th pattern, this pattern with a 1 or 10% of �ipped neurons was used.Synhronous dynamis of the network was used in omputations.Maximal storage apaity of the network � may have di�erent de�ni-tions. Let us assume, that when in the network p = p+ patterns an beorretly retrieved, then maximal storage apaity is given by � = p+=N .In the ase of in�nite Hop�eld network, when an additional p++1 pattern isstored in the network, blakout atastrophe is observed, i.e. no one patternan be retrieved suesfully. In Fig. 1(a) the dependene between maximalstorage apaity � and � = p=N for N �! 1 is shown. On the otherhand, for the networks with de�nite size onsidered here, typial relation(alulated for N = 1024 neurons) is shown in Fig. 1(b). As we see blak-out atastrophe is not observed and the �rst maximum of this urve will betreated as a value of maximal storage apaity �.
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Fig. 1. Maximal storage apaity � for the in�nite Hop�eld's network � (a).Typial storage apaity for the network with de�nite size alulated for N = 1024neurons � (b).3. The types of dilution of synapti onnetionsThe most known type of dilution of synapti onnetions is random di-lution, whih means that synapti onnetions (having the values resultingfrom the Hebb's learning rule) are ut with ertain probability C. Synaptionnetions in this ase have the formJij = ijN pX�=1 ��i ��j ; (1)where ij = � 0 with probability C1 with probability 1� C : (2)For this ase maximal storage apaity of the network dereases (almostlinearly) with inreasing values of dilution parameter C [1℄.In the �rst type of dilutions of synapti onnetions investigated here, thenetwork was divided into n bloks, onsisting of V neurons eah. All synaptionnetions inside bloks were ut, while onnetions between bloks wereunhanged in omparison to the values resulting from the Hebb's rule. Thus,synapti onnetions are given byJabij = � 1(n�1)�V Pp�=1 ��ia��jb a 6= b0 a = b ; (3)where i; j are indies numbering neurons inside the bloks; a; b are indiesloalizing blok in the network. The matrix [J ℄ for the whole network (andthe for n = 4 bloks) has the form0BB� [0℄ [Jij ℄ [Jij ℄ [Jij ℄[Jij℄ [0℄ [Jij ℄ [Jij ℄[Jij℄ [Jij ℄ [0℄ [Jij ℄[Jij℄ [Jij ℄ [Jij ℄ [0℄ 1CCA ; (4)



2592 R.A. Kosi«ski, M.M. Sinoª�kawhere [0℄ is the matrix onsisting of zeroes and [J ij ℄ ontains values resultingfrom the Hebb's rule. Network onsiting of N = 1260 neurons, whih enableto divide it into n = 2; 3; 4; 5; 6; 7 and 9 bloks, was investigated. Below weall this type of dilution � dilution inside bloks.In the seond type of dilution of synapti onnetions the network wasdivided into n bloks, eah onsisting of V neurons (as previously), but nowsynapti onnetions between bloks were diluted in a following way. Allonnetions between bloks were ut, exept the onnetions between neu-rons with the same indies inside the bloks. Thus, the synapti onnetionshave the formJabij = 8<: 1(n�1)�V Pp�=1 ��ia��jb a 6= b & i = j1(n�1)�V Pp�=1 ��ia��jb a = b & i 6= j0 � ; (5)where the meanings of i; j; a and b and the values of n are the same as earlier.For the present ase matrix of synapti onnetions for the whole networkhas the form 0BB� [Jij℄ [00℄ [00℄ [00℄[00℄ [Jij ℄ [00℄ [00℄[00℄ [00℄ [Jij ℄ [00℄[00℄ [00℄ [00℄ [Jij ℄ 1CCA ; (6)where [Jij ℄ = 0BBB� 0 Jij. . .Jij 0 1CCCA and �00� = 0BB� Jij 0. . .0 Jij 1CCA : (7)Suh type of dilution of synapti onnetions exists also in a humanneural network. It was indiated in the physiologial investigations that inthe brain ertain parts with very high density of synapti onnetions our.On the other hand, the number of onnetions between other, funtionallydi�ering pats of human brain, are rather sparse [9,10℄. The simplest exampleare relatively sparse synapti onnetions between two erebral hemispheres.Below this type of dilution is alled � dilution outside the bloks.In the next type of modi�ation of synapti onnetions the network wasdivided into two equal parts. In the �rst part of the network all inhibitorysynapti onnetions (e.g. those with negative values) were ut, while theexitory (positive) onnetions (as result from the Hebb's rule) were un-hanged. In the seond part of the network all onnetions with positivevalues were ut, while the onnetions with negative values were unhanged.Synapti onnetions between neurons belonging to both parts of the net-work were diluted also: in a part of them only positive and in the seond



Memory Properties of Arti�ial Neural Networks with Di�erent Types: : : 2593part only negative onnetions were maintained. Full matrix of synaptionnetions for this type of dilution has the form0BBBBBBBBBBB�
0 A+ j. . . j C�A+ 0 j� � ��������j����������j 0 B�C+ j . . .j B� 0

1CCCCCCCCCCCA ; (8)
whereA+ denotes the matrix of positive Hebb's onnetions for the �rst N=2neurons, B� denotes matrix of negative Hebb's onnetions and matriesC+ andC� denote the synapti onnetions between the �rst and the seondparts of the network. This type of dilution will be alled � dilution ofexitory / inhibitory synapses.In the last type of modi�ation of the network the in�uene of damagingof a part of neurons on the memory properties was investigated. It wasassumed, that the states of ertain number K of the neurons in the networkare bloked during the time evolution: K=2 of bloked neurons is in reststates and K=2 neurons in �ring states. This kind of damaging of neuronsmay refer to some perturbations of the amount of neurotransmitters in apart of synapses. This modi�ation is alled below � a network with partialdamaging. 4. Results and disussionFor the ase of dilution inside bloks maximal storage apaity � isshowed by the urve marked by triangles in Fig. 2. It dereases slightlyslower with inreasing dilution parameter C than in the ase of randomlydiluted networks (f. urve marked by triangles with the urve marked withsquares in Fig. 2). In this ase maximal value of C parameter equals 0.5,whih orresponds to the division of the network into n = 2 bloks.For the ase of dilution outside the bloks maximal storage apaity �is shown by a urve marked with irles in Fig. 2. This urve starts at C= 0.5 whih orresponds to the minimal dilution of synapti onnetions inthis ase whih ours for n = 2 bloks. For inreasing number of bloks,whih results in inreasing values of dilution parameter C, maximal storageapaity � dereases faster than for the ase of randomly diluted network(f. urves marked with irles with the urve marked with squares in this
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Fig. 2. Maximal storage apaity � as a funtion of dilution parameter C forthe network with N = 1260 neurons. Dilution inside bloks � triangles; randomdilution � squares; dilution outside bloks � irles.piture). Note that both urves for inreasing number of bloks n tend toC = 1, whih results from the fat that dilution vanishes for inreasingnumber of bloks (n �! N) and the network beome fully unonneted.Comparison of storage apaity per synapse �=C for the networks withdilution inside the bloks with the ase of dilution outside the bloks andwith the ase of random dilution is shown in Fig. 3 (symbols on the urvesare the same as in Fig. 2). It is interesting that �=C for network withdilution outside the bloks is almost onstant, irrespetively of the value ofdilution parameter C.
Fig. 3. Maximal Storage apaity per synapse �=C as a funtion of dilution pa-rameter C. Symbols on the urves are the same as in Fig. 2.Comparing two �rst types of dilution of synapti onnetions we annotie that the dilution inside the bloks is more efetive i.e. the in�ueneof the inrease of dilution C for derease of maximal storage apaity � issmaller than in the ase of random dilution of network.



Memory Properties of Arti�ial Neural Networks with Di�erent Types: : : 2595In the dilution of exitory/inhibitory synapses the number of e�etivelyretrieved patterns p+ vs. number of stored patterns p is shown in Fig. 4. Itan be seen that the urve has rather �at maximum for p+=p � 0:8, whihis muh smaller value than for the ase of previous types of dilution. Onthe other hand, memory properties dereases muh slower with inreasing pthan previously � in this kind of dilution overloading of memory has notsuh ritial in�uene on memory properties as earlier.
Fig. 4. Maximal number of e�etively retrieved patters p+ as a funtion of storedpattern p for the network with dilution of exitory/inhibitory synapses.For the ase of network with the bloked neurons, during the ontrolof similarity of the state of the network to the retrieved pattern, overlapm� was alulated only for not damaged neurons. Thus, it was possible toompare real similarity of urrent network's state to the �-th pattern (forthe ase of K bloked neurons overlap is dereased as m��K=N). In�ueneof the number of bloked neurons K for maximal ritial apaity is shownin Fig. 5, where the standard maximal apaity is marked by (+), whilethe maximal apaity per funtioning neuron � � = p= (N �K) � ismarked by (x). As we see the maximal stoarge apaity dereases with theinreasing number of bloked neurons. For the ase of random, unbiasedpatterns, whih were used in the present work, half of the bloked neuronsdo not agree with the pattern. For the proper work of suh network uttingo� these K damaged neurons from the network would have less in�ueneon the memory properties of the network than their autonomous behavior.Maximal ritial apaity of suh network without K bloked neurons wouldhave onstant value � (K = 0) = 0:12 (with the size e�et negleted).In onlusions we an say that dilutions of synapti onnetions in�uenesigni�antly the memory properties of the network. This in�uene dependson the type of dilution � the dilution inside the bloks seems to be themost e�etive, i.e. gives the highest storage apaity per synapse. As wasexpeted, the partial damaging of the network has not ritial meaning forits memory � storage apaity uniformly dereases with inrease of the
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Fig. 5. Maximal ritial apaity as a funtion of number K of bloked neurons;(+) � standard apaity; (x) � apaity per funtioning neuron.number of damaged neurons. It results from our omputations that uttingo� the damaged neurons has less in�uene on the work of the whole networkthan their improper funtioning.REFERENCES[1℄ D.J. Amit,Modeling Brain Funtions, Cambridge Univ. Press, New York 1989.[2℄ P. Peretto, An Introdution to the Modeling of Neural Networks, CambridgeUniv. Press, New York 1992.[3℄ J. Hertz, A. Krogh, R. Palmer, Introdution to the Theory of Neural Compu-tations, Addison-Wesley, Redwood City 1991.[4℄ T.L.H. Watkin, D. Sherrington, Europhys. Lett. 14, 791 (1991).[5℄ D.M.L. Barbato, J.F. Fontanari, Phys. Rev. E51 , 6219 (1995).[6℄ R.A. Kosi«ski, A. Zagórski, Ata Phys. Pol. A86, 427 (1994).[7℄ E. Gardner, J. Phys. A: Math. Gen. 21, 257 (1988).[8℄ D.O. Hebb, The Organization of Behavior, Wiley, New York 1949.[9℄ C.J. Shatz, Neuron, 5, 605 (1989).[10℄ K. Miller, J.B. Keller, M.P. Stryker, Siene, 245, 605 (1989).


