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FERMION TEXTURE AND STERILE NEUTRINOS �Wojieh KrólikowskiInstitute of Theoretial Physis, Warsaw UniversityHo»a 69, 00-681 Warszawa, Poland(Reeived Marh 2, 1999)An expliit form of harged�lepton mass matrix, prediting m� =1776:80 MeV from the experimental values of me and m� (in good agree-ment with the experimental �gure m� = 1777:05+0:29�0:26 MeV), is applied tothree neutrinos �e, ��, �� in order to orrelate tentatively their masses andmixing parameters. It is suggested that for neutrinos the diagonal elementsof the mass matrix are small versus its o�-diagonal elements. Under suha onjeture, the neutrino masses, lepton Cabibbo�Kobayashi�Maskawamatrix and neutrino osillation probabilities are alulated in the orre-sponding lowest perturbative order. Then, the nearly maximal mixing of�� and �� is predited in onsisteny with the observed de�it of atmo-spheri ��'s. However, the predited de�it of solar �e's is muh too smallto explain the observed e�et, what suggests the existene of (at least) onesort, �(e)s , of sterile neutrinos, whose mixing with �e would be responsi-ble for the observed de�it. Perspetives for applying the same form ofmass matrix to quarks are also outlined. Two independent preditions ofjVubj=jVbj = 0:0753� 0:0032 and unitary angle  ' 70Æ are dedued fromthe experimental values of jVusj and jVbj (with the use of quark massesms, m and mb). In the last three Setions, the option of two sorts, �(e)sand �(�)s , of sterile neutrinos is onsidered. They may dominate neutrinomixing, and even ause that two extra neutrino mass states (arising then)are agents of some tiny neutrino instability and related damping of �e and�� osillations. In Appendix, three onventional Majorana sterile neutrinosare disussed.PACS numbers: 12.15.Ff, 14.60.Pq, 12.15.Hh1. IntrodutionIn this paper, the expliit form of mass matrix invented for three gener-ations of harged leptons e� ; �� , ��, and being surprisingly good for their� Work supported in part by the Polish KBN Grant 2 P03B 052 16 (1999�2000).(2631)



2632 W. Królikowskimasses [1℄, is applied to three generations of neutrinos �e, ��, �� , in order toorrelate tentatively their masses and mixing parameters. This form reads�M (f)�� � = 129 0BBBBB� �(f)"(f) 2�(f)ei'(f) 02�(f)e�i'(f) 4�(f) (80+"(f))9 8p3�(f)ei'(f)0 8p3�(f)e�i'(f) 24�(f) (624+"(f))25
1CCCCCA ; (1)where the label f = �; e denotes neutrinos and harged leptons, respetively,while �(f), "(f), �(f) and '(f) are real onstants to be determined from thepresent and future experimental data for lepton masses and mixing param-eters (�(f) and �(f) are mass-dimensional). In our approah, neutrinos areassumed to arry pure Dira masses.Here, the form (1) of mass matries �M (�)�� � and �M (e)�� � may be on-sidered as a detailed ansatz to be ompared with the lepton data. However,in the past, we have presented an argument [2,1℄ in favour of the form (1),based on: (i) Kähler-like generalized Dira equations (interating with theStandard Model gauge bosons) whose a priori in�nite series is neessarilyredued (in the ase of fermions) to three Dira equations, due to an intrinsiPauli priniple, and (ii) an ansatz for the fermion mass matrix, suggestedby the above three-generation harateristis (i).In the ase of harged leptons, assuming that the o��diagonal elementsof the mass matrix �M (e)�� � an be treated as a small perturbation of itsdiagonal terms (i.e., that �(e)=�(e) is small enough), we alulate in thelowest perturbative order [1℄m� = 241776:80 + 10:2112 �(e)�(e)!2 35 MeV ;�(e) = 85:9924 MeV +O24 �(e)�(e)!2 35 �(e) ;"(e) = 0:172329 +O24 �(e)�(e)!235 ; (2)when the experimental values of me and m� [3℄ are used as inputs. InEqs. (2), the �rst terms are given as Æm�= 6(351m� � 136me)=125, Æ�(e)=29(9m� � 4me)=320 and Æ"(e)= 320me=(9m� � 4me), respetively. We an



Fermion Texture and Sterile Neutrinos 2633see that the predited value of m� agrees very well with its experimental�gure mexp� = 1777:05+0:29�0:26 MeV [3℄, even in the zero perturbative order. Toestimate ��(e)=�(e)�2, we an take this experimental �gure as another input,obtaining  �(e)�(e)!2 = 0:024+0:028�0:025 ; (3)whih value is not inonsistent with zero. Hene, �(e) 2 = 180+210�190 MeV2 dueto Eq. (2).For the unitary matrix �U (e)�� �, diagonalizing the harged-lepton massmatrix �M (e)�� � aording to the relation U (e) yM (e) U (e) = diag(me;m�;m� ),we get in the lowest perturbative order�U (e)�� � =0BBBBBBBB� 1� 2292 ��(e)m� �2 229 �(e)m� ei'(e) 16p3292 ��(e)m� �2 e2i'(e)� 229 �(e)m� e�i'(e) 1� 2292 ��(e)m� �2� 96292 ��(e)m� �2 8p329 �(e)m� ei'(e)16p3292 �(e) 2m�m� e�2i'(e) �8p329 �(e)m� e�i'(e) 1� 96292 ��(e)m� �2
1CCCCCCCCA :(4)2. Neutrino masses and mixing parametersIn the ase of neutrinos, beause of their expeted tiny mass sale �(�),we will tentatively onjeture that the diagonal elements of the mass matrix�M (�)�� � an be treated as a small perturbation of its o��diagonal terms (i.e.,that �(�)=�(�) is small enough). In addition, we put "(�) = 0 i.e., M (�)11 = 0.Then, we alulate in the lowest perturbative order the following neutrinomasses: m�1 = jM (�)12 j2M (�)33jM (�)12 j2 + jM (�)23 j2 = 149M (�)33 = 149�jM (�)12 j ;m�2; �3 = �qjM (�)12 j2 + jM (�)23 j2 + 12 �4849M (�)33 +M (�)22 �= ��7 + 12 �4849� + ��� jM (�)12 j ; (5)



2634 W. Królikowskiwhere � � M (�)33jM (�)12 j = 748825 �(�)�(�) = 299:52�(�)�(�) ;� � M (�)22jM (�)12 j = 1609 �(�)�(�) = 1252106 � = 116:848� ; (6)are relatively small by our perturbative onjeture, whilejM (�)12 j = 229�(�) ; jM (�)23 j = 8p329 �(�) = p48jM (�)12 j : (7)As seen from Eqs. (5), the atual perturbative parameters are not � and�, but rather �=7 and �=7, what is on�rmed later in Eqs. (9). Note thatm�2 < 0, the minus sign being irrelevant in the relativisti ase, whereonly m2�2 is measured (f. Dira equation): jm�2 j may be onsidered as aphenomenologial mass of �2.Using Eqs. (5), we an write the formulam2�3 �m2�2 = 14�4849� + �� jM (�)12 j2 = 20:721�(�)�(�) ; (8)whih will enable us to determine the produt �(�)�(�) from the observedde�it of atmospheri neutrinos ��, if �� ! �� osillations are really respon-sible for this e�et.We alulate also the unitary matrix �U (�)� i � diagonalizing the neutrinomass matrix �M (�)�� � aording to the relation U (�) yM (�)U (�) =diag(m�1 ;m�2 ;m�3). In the lowest perturbative order we obtainU (�)11 = r4849 �1�� 24493 � 1494� �2� ;U (�)21 = 149r4849�e�i'(�) ;U (�)31 = �17 �1�� 73493 � 1494� �2 + 149��� e�2i'(�) ;U (�)12 = � 1p2 17 �1 + 367 � 49� + 128�� ei'(�) ;U (�)22 = 1p2 �1 + 127 � 49� � 128�� ;



Fermion Texture and Sterile Neutrinos 2635U (�)32 = � 1p2r4849 �1� 137 � 49� + 128�� e�i'(�) ;U (�)13 = 1p2 17 �1� 367 � 49� � 128�� e2i'(�) ;U (�)23 = 1p2 �1� 127 � 49� + 128�� ei'(�) ;U (�)33 = 1p2r4849 �1 + 137 � 49� � 128�� (9)with � = (125=2106)� = �=16:848.Denoting by �� = �e ; �� ; �� and �i = �1; �2; �3 the �avor and massneutrino �elds, respetively, we have the unitary transformation�� =Xi �V y�� i �i =Xi V �i ��i ; (10)where the lepton ounterpart (Vi �) of the Cabibbo�Kobayashi�Maskawa ma-trix is given as V = U (�) yU (e) ' U (�) y orVi � =X� �U (�) y�i � U (e)�� ' U (�) �� i ; (11)the approximate equality being valid for negligible �(e)=�(e) when U (e)�� ' Æ��due to Eq. (4). Of ourse, in Eqs. (9) we wrote � = 1; 2; 3 for simpliity.From Eq. (10), we get the unitary transformation j��i =Pi j�iiVi �, wherej��i = �y�j0i and j�ii = �yi j0i are �avor and mass neutrino states1.In the limit of �(�) ! 0 (implying � ! 0 and � ! 0), we obtainfrom Eqs. (10), (11) and (9) the following unperturbed mixing formulaefor �1; �2; �3:�e ! 17 �p48�1e�i'(�) � 1p2 ��2 � �3ei'(�)�� ei'(�) ;�� ! 1p2 ��2 + �3ei'(�)� ;�� ! �17 "�1e�i'(�) +r482 ��2 � �3ei'(�)�# e�i'(�) : (12)1 In plae of �i =P� Vi ��� one might use the notation �0� =P� V����, analoguousto d0� =P� V��d� ustomary in the ase of quarks where V�� =P �U (u) y��  U (d) � .



2636 W. KrólikowskiThese display the maximal mixing between �2 and �3 in all three ases anda smaller mixing of ��2 � �3 exp �i'(�)�� =p2 with �1 in the ases of �e and�� , giving a minor admixture to �e and a dominating admixture to �� (in�� there is no admixture of �1).2. Neutrino osillationsOne knowing the elements Vi � of the lepton Cabibbo�Kobayashi�Maskawa matrix, we an alulate the probabilities of neutrino osillations�� ! �� (in the vauum) making use of the general formulaP (�� ! ��) = jh��j��(t)ij2 =Xi j Vj �V �j �V �i �Vi �e2ixj i ; (13)where j��(t)i = exp(�iHt)j��i andxj i = 1:26693�m2j i L=E ; �m2j i = m2�j �m2�i ; (14)if �m2j i, L and E are measured in eV2, km and GeV, respetively, withL = t and E = j~pj ( = 1 = ~) denoting the experimental baseline andneutrino energy.It is not di�ult to show that for the mass matrix �M (�)�� �, as it is givenin Eq. (1), the quarti produts of Vi �'s in Eq. (13) are always real (forany phase '(�)), if only Vi � = U (�) �� i (i.e., U (e)�� = Æ��). This implies thatP (�� ! ��) = P (�� ! ��). In general, the last relation is valid in thease of CP invariane whih, under the CPT theorem, provides the time�reversal invariane. Beause of the real values of quarti produts of Vi �'s,the formula (13) an be rewritten asP (�� ! ��) = Æ�� � 4Xi<j Vj �V �j �V �i �Vi � sin2 xj i (15)without the neessity of introduing phases of these produts.With the lowest-order perturbative expressions (9) for Vi � = U (�) �� i , theformula (15) leads to the following forms of appearane osillation probabil-ities: P (�� ! �e) = 149 sin2 x32+ 967 � 492 � ��1 + 487 � 49�� sin2 x21 ��1� 487 � 49�� sin2 x31� ; (16)



Fermion Texture and Sterile Neutrinos 2637
P (�� ! �� ) = 4849 sin2 x32+ 967 � 492 � ���1� 17 � 49�� sin2 x21 +�1 + 17 � 49�� sin2 x31� ; (17)P (�e ! �� ) = � 48492 sin2 x32+ 96492 ��1 + 237 � 49� + 114�� sin2 x21 +�1� 237 � 49� � 114�� sin2 x31� (18)as well as of survival osillation probabilities :P (�e ! �e) = 1� 1492 sin2 x32� 96492 ��1 + 727 � 49� + 114�� sin2 x21 +�1� 727 � 49� � 114�� sin2 x31� ;(19)P (�� ! ��) = 1� sin2 x32 � 96493 �2 �sin2 x21 + sin2 x31� ; (20)P (�� ! �� ) = 1��4849�2 sin2 x32� 96492 ��1� 267 � 49� + 114�� sin2 x21 +�1 + 267 � 49� � 114�� sin2 x31� :(21)Thus, we get P (�e ! �e) + P (�e ! ��) + P (�e ! �� ) = 1 and two otherobvious summation rules for probabilities. Among these probabilities,P (�� ! ��) displays (in the lowest perturbative order) maximal mixing be-tween �2 and �3.In the lowest perturbative order,x31 � x21 = x32 = 14�4849� + ���1:26693jM (�)12 jL=E� (22)due to Eqs. (8) and (14). Hene,sin2 x31 = sin2 x21 + x32 sin 2x21 + x232 sin 2x21 (23)in experiments where x32 � �=2. When in suh ases the relation (23) isinserted into the formulae (16), (17) and (20), its x32 and x232 terms an benegleted in the lowest perturbative order.Note that the mass formulae (5) imply m2�1 � m2�2 <� m2�3 , wherem2�1=m2�2;�3 = �2=493+O(�3) and m2�2=m2�3 = 1�(2=7)(48�=49+�)+O(�3).



2638 W. KrólikowskiThus, the inequality x31 >� x21 � x32 holds in all neutrino osillation exper-iments (with some given L and E).We have alulated the neutrino masses, lepton Cabibbo�Kobayashi�Maskawa matrix and neutrino osillation probabilities also in the next tolowest perturbative order. Then, in Eqs. (5) the mass m�1 gets no quadratiorretion, while m�2 and m�3 are orreted by the terms� 114 �13 � 48492 �2 � 2449��+ 14�2� jM (�)12 j ; (24)respetively. Among the derived osillation formulae, Eq. (20), for instane,is extended to the formP (�� ! ��) = 1��1� 672493 �2 + 24492 ��� 14 � 49�2� sin2 x32� 96493 �2 �sin2 x21 + sin2 x31�= 1� �1� 0:00514 �2� sin2 x32 � 0:000816 �2 �sin2 x21 + sin2 x31�(25)displaying nearly maximal mixing between �2 and �3.In the ase of Super-Kamiokande atmospheri neutrino experiment [4℄,if �� ! �� osillations are responsible for the observed de�it of atmo-spheri ��'s, we have xatm = x32 � x21 <� x31, what implies that sin2 x21 =sin2 x31 = 1=2 due to averaging over many osillation lengths. Then, Eq. (25)leads to the following e�etive two��avor osillation formula:P (�� ! ��) = 1� �1� 0:00350 �2� sin2 x32 ; (26)if we assume in Eq. (25) that 0:000816�2 = 0:000816�2(2 sin2 x32) e�etively.Identifying the estimation (26) with the two��avor formula �tted in theSuper-Kamiokande experiment, we obtain the limits1� 0:00350 �2 � sin2 2�atm � 0:82 to 1 ;�m232 � �m2atm � (0:5 to 6)� 10�3 eV2 : (27)Hene, � � 7:17 to 0 and�(�)�(�) � 0:00334� � 0:0239 to 0 ;�(�)�(�) � 0:483�m232 � (0:241 to 2:90) � 10�4 eV2 ; (28)where Eqs. (6) and (8) are used. For instane, with sin2 2�atm � 0:999 and�m2atm � 5� 10�3 eV2, we get � � 0:535 and�(�)�(�) � 0:00178 ; �(�)�(�) � 2:41 � 10�4 eV2 ; (29)



Fermion Texture and Sterile Neutrinos 2639what gives the estimation�(�) � 0:368 eV ; �(�) � 6:55� 10�4 eV : (30)Note that � < 1 for sin2 2�atm > 0:9965. As was already mentioned, ouratual perturbative parameters are not � and �, but rather �=7 and �=7 =0:0594�=7.Having estimated �(�) and �(�), we an alulate neutrino masses fromEqs. (5) with (6) and (7). Making use of the values (30) (valid for sin2 2�atm �0:999 and �m2atm � 5� 10�3 eV2), we obtainm�1 � 2:76� 10�4 eV ;m�2 � �1:71� 10�1 eV ;m�3 � 1:85� 10�1 eV : (31)Beause of the smallness of these masses, the neutrinos �1, �2, �3 are notlikely to be responsible for the entire hot dark matter.In the ase of solar neutrino experiments, all three popular �ts [5℄ of theobserved de�it of solar �e's to an e�etive two��avor osillation formularequire �m2sol � �m2atm what implies �m2sol � �m232 � �m221 <� �m231,if �� ! �� osillations are responsible for the de�it of atmospheri ��'s.Then, xsol � x32 � x21 <� x31, giving sin2 x32 = sin2 x21 = sin2 x31 = 1=2due to averaging over many osillation lengths. In suh a ase, Eq. (19)leads to P (�e ! �e) = 1� 1932 � 492 = 1� 0:0402 = 0:960 ; (32)prediting only a 4% de�it of solar �e's, muh too small to explain solarneutrino observations.An intriguing situation arises in the ase of formula (16) for P (�� ! �e),if �� ! �� osillations really ause the bulk of de�it of atmospheri ��'s.Then, for a new xnew = x32 � x21 <� x31 (with some new L and E) wemay have sin2 x21 = sin2 x31 = 1=2 due to averaging over many osillationlengths and so, infer from Eq. (16) thatP (�� ! �e) = 149 sin2 x32+ 2 � 482494 �2 � 0:0204 sin2 x32+2:29� 10�4 ; (33)where �2 � 0:286 (what is valid for sin2 2�atm � 0:999 and �m2atm �5 � 10�3 eV2). Suh a predited osillation amplitude sin2 2�new � 0:02would lie in the range of sin2 2�LSND estimated in the positive (though stillrequiring on�rmation) LSND aelerator experiment on �� ! �e osilla-tions [6℄. However, the lower limit �m2LSND >� 0:1 eV2 reported by thisexperiment is by one order of magnitude larger than the Super-Kamiokande



2640 W. Królikowskiupper limit �m232 <� 0:01 eV2. On the other hand, the small predited osil-lation amplitude sin2 2�new � 0:02 would not be in on�it with the negativeresult of the CHOOZ long�baseline reator experiment on ��e ! ��� osilla-tions [7℄.In onlusion, our expliit model of lepton texture displays a number ofimportant features. (i) It orrelates orretly (with high preision) the tauonmass with eletron and muon masses. (ii) It predits (without parameters)the maximal mixing between muon and tauon neutrinos in the limit �(�) !0, onsistent with the observed de�it of atmospheri ��'s. (iii) It failsto explain the observed de�it of solar �e's. (iv) It predits new �� ! �eosillations with the amplitude onsistent with LSND experiment, but witha phase orresponding to the mass squared di�erene at least one order ofmagnitude smaller.In the framework of our model, the point (iii) may suggest that inNature there exists (at least) one sort, �(e)s , of sterile neutrinos (blind tothe Standard Model interations), responsible for the observed de�it of so-lar �e's through �e ! �(e)s osillations dominating the survival probabilityP (�e ! �e) ' 1� P (�e ! �(e)s ) [8℄. In an extreme version of this piture, itmight even happen that in Nature there would be two sorts, �(e)s and �(�)s ,of sterile neutrinos, where �(�)s would replae �� in explaining the observedde�it of atmospheri ��'s by means of �� ! �(�)s osillations that shoulddominate the survival probability P (�� ! ��) ' 1 � P (�� ! �(�)s ) [9℄. Inthis ase, the onstant �(�) for ative neutrinos might be even zero (however,very small �(�) would be still allowed). Suh a model is disussed in Setions5 and 6.For the author of the present paper the idea of existene of two sortsof sterile neutrinos is fairly appealing, sine two suh spin�1/2 fermions,blind to all Standard Model interations, do follow (besides three standardfamilies of ative leptons and quarks) [8℄ from the argument (i) mentioned inIntrodution, based on the Kähler-like generalized Dira equations. Note inaddition that the �e ! �(e)s and �� ! �(�)s osillations aused by appropriatemixings should be a natural onsequene of the spontaneous breaking ofeletroweak SU(2)�U(1) symmetry.In Setion 7, a possibility is onsidered that two extra neutrino massstates, whose existene is implied by two sterile neutrinos �(e)s and �(�)s ,ause in the Standard Model framework some tiny neutrino instability andrelated damping of �e and �� osillations.



Fermion Texture and Sterile Neutrinos 26413. Perspetives for uni�ation with quarksIn this Setion, we try to apply to quarks the form of mass matrix whihwas worked out above for leptons. To this end, we onjeture for threegenerations of up quarks u; ; t and down quarks d; s; b the mass matries�M (u)�� � and �M (d)�� �, respetively, essentially of the form (1), where thelabel f = u; d denotes now up and down quarks. The only modi�ationintrodued is a new real onstant C(f) added to "(f) in the element M (f)33whih now reads M (f)33 = 24�(f)25 � 29 �624 + "(f) +C(f)� : (34)Sine for quarks the mass sales �(u) and �(d) are expeted to be evenmore important than the sale �(e) for harged leptons, we assume that theo�-diagonal elements of mass matries �M (u)�� � and �M (d)�� � an be onsid-ered as a small perturbation of their diagonal terms. Then, in the lowestperturbative order, we obtain the following mass formulaemu;d = �(u;d)29 "(u;d) �A(u;d) �(u;d)�(u;d)!2 ;m;s = �(u;d)29 49 �80 + "(u;d)�+ �A(u;d) �B(u;d)� �(u;d)�(u;d)!2 ;mt;b = �(u;d)29 2425 �624 + "(u;d) + C(u;d)�+B(u;d) �(u;d)�(u;d)!2 ; (35)whereA(u;d) = �(u;d)29 36320� 5"(u;d) ; B(u;d) = �(u;d)29 1080031696 + 54C(u;d) + 29"(u;d) :(36)In Eqs. (35), the relative smallness of perturbating terms is more pronouneddue to extra fators. In our disussion, we will take for experimental quarkmasses the arithmeti means of their lower and upper limits quoted in theReview of Partile Physis [3℄ i.e.,mu = 3:3MeV ; m = 1:3GeV ; mt = 174GeV (37)and md = 6MeV ; ms = 120MeV ; mb = 4:3GeV : (38)



2642 W. KrólikowskiEliminating from the unperturbed terms in Eqs. (35) the onstants �(u;d)and "(u;d), we derive the orrelating formulae being ounterparts of Eqs. (2)for harged leptons:mt;b = 6125 (351m;s � 136mu;d) + �(u;d)29 2425C(u;d)� 1125 �2922A(u;d) � 2231B(u;d)� �(u;d)�(u;d)!2 ;�(u;d) = 29320 (9m;s � 4mu;d)� 29320 �5A(u;d) � 9B(u;d)� �(u;d)�(u;d)!2 ;"(u;d) = 29mu;d�(u;d) + 29�(u;d)A(u;d) �(u;d)�(u;d)!2 : (39)The unperturbed parts of these relations are:Æmt;b = 6125 (351m;s � 136mu;d) + Æ�(u;d)29 2425 ÆC(u;d)= � 21:91:98 � GeV + Æ�(u;d)29 2425 ÆC(u;d) ;Æ�(u;d) = 29320 (9m;s � 4mu;d) = � 106095:7 � MeV ;Æ"(u;d) = 29mu;dÆ�(u;d) = � 0:09041:82 � : (40)In the spirit of our perturbative approah, the �oupling� onstant �(u;d)an be put zero in all perturbing terms in Eqs. (35) and (39), exept for�(u;d) 2 in the numerator of the fator ��(u;d)=�(u;d)�2 that now beomes��(u;d)= Æ�(u;d)�2. Then, A(u;d) and B(u;d) are replaed byÆA(u;d) = Æ�(u;d)29 36320 � 5 Æ"(u;d) ;ÆB(u;d) = Æ�(u;d)29 1080031696 + 54 ÆC(u;d) +29 Æ"(u;d) : (41)



Fermion Texture and Sterile Neutrinos 2643Note that the �rst Eq. (35) an be rewritten identially as mu;d =Æ�(u;d) Æ"(u;d)=29 aording to the third Eq. (40).We shall be able to return to the disussion of quark masses after theestimation of onstants �(u) and �(d) is made. Then, we shall determine theparameters C(u) and C(d) (as well as their unperturbed parts ÆC(u) and ÆC(d))playing here an essential role in providing large values for mt and mb.At present, we �nd the unitary matries �U (u;d)�� � that diagonalize themass matries �M (u;d)�� � aording to the relations U (u;d) yM (u;d)U (u;d) =diag(mu;d ; m;s ; mt;b). In the lowest perturbative order, the result has theform (4) with the neessary replaement of labels:(e)! (u) or (d) ; �!  or s ; � ! t or b ; (42)respetively.Then, the elements V�� of the Cabibbo�Kobayashi�Maskawa matrixV = U (u) yU (d) an be alulated with the use of Eqs. (42) in the lowestperturbative order. Six resulting o��diagonal elements are:Vus = �V �d = 229  �(d)ms ei'(d) � �(u)m ei'(u)! ;Vb = �V �ts = 8p329  �(d)mb ei'(d) � �(u)mt ei'(u)! ' 8p329 �(d)mb ei'(d) ;Vub ' �16p3841 �(u)�(d)mmb ei('(u)+'(d)) ;Vtd ' 16p3841 �(d) 2msmb e�2i'(d) ; (43)where the indiated approximate steps were made due to the inequalitymt � mb and/or under the assumption that �(u)=m � �(d)=mb [f. theonjeture (46)℄. All three diagonal elements are real and positive in a goodapproximation: Vud ' 1� 12 jVusj2 ;Vs ' 1� 12 jVusj2 � 12 jVbj2 ;Vtb ' 1� 12 jVbj2: (44)



2644 W. KrólikowskiIn fat, in the lowest perturbative order,arg Vud ' 4841 �(u)�(d)mms sin�'(u) � '(d)� 180Æ� ' � arg Vs; arg Vtb ' 0 ;(45)what gives arg Vud = 0:88Æ = � arg Vs, if the values (46), (49) and (52) areused.Taking as an input the experimental value jVbj = 0:0395 � 0:0017 [3℄,we estimate from the seond Eq. (43) that�(d) ' 298p3 mb jVbj = (355 � 15) MeV ; (46)where mb = 4:3 GeV. In order to estimate also �(u), we will tentativelyonjeture the approximate proportion�(u) : �(d) ' Q(u) 2 : Q(d) 2 = 4 (47)to hold, where Q(u) = 2=3 and Q(d) = �1=3 are quark eletri harges. Notethat in the ase of leptons we had �(�) : �(e) = 0:37 : (p180 � 106) =2:8 � 10�8 for the entral value of �(e) [f. Eqs. (3) and (30)℄, what isonsistent with the analogial approximate proportion�(�) : �(e) ' Q(�) 2 : Q(e) 2 = 0 ; (48)where Q(�) = 0 and Q(e) = �1 are lepton eletri harges. Under theonjeture (47): �(u) ' (1420 � 60)MeV : (49)In this ase, from the seond and third Eq. (43) we obtain the preditionjVubj=jVbj ' 229 �(u)m ' 0:0753 � 0:0032 ; (50)where m = 1:3 GeV. This is onsistent with the experimental �gurejVubj=jVbj = 0:08 � 0:02 [3℄.Now, with the experimental value jVusj = 0:2196� 0:0023 [3℄ as anotherinput, we an alulate from the �rst Eq. (43) the phase di�erene '(u)�'(d).In fat, taking the absolute value of this equation, we getos�'(u) � '(d)� = 18mms "1 + 16�msm�2 � 8414 � m�(d)�2 jVusj2# = �0:0301(51)



Fermion Texture and Sterile Neutrinos 2645with m = 1:3 GeV and ms = 120 MeV, if the proportion (47) is taken intoaount. Here, the entral values of �(d) and jVusj were used. Hene,'(u) � '(d) = 91:7Æ = �88:3Æ + 180Æ (52)so, this phase di�erene turns out to be near 90Æ. Then, alulating theargument of the �rst Eq. (43), we infer thattan�arg Vus � '(d)� = �4 msm sin �'(u) � '(d)�1� 4(ms=m) os �'(u) � '(d)� = �0:365 ;(53)what gives arg Vus = �20:1Æ + '(d) : (54)The results (52) and (54) together with the formula (43) enable us toevaluate the rephasing-invariant CP-violating phasesarg (V �usV �bVub) = 20:1Æ � 88:3Æ = �68:2Æ (55)and arg (V �dV �tsVtd) = �20:1Æ; (56)whih turn out to be near to �70Æ and �20Æ, respetively (they are invariantunder quark rephasing equal for up and down quarks of the same genera-tion). Note that the sum of arguments (55) and (56) is always equal to'(u) � '(d) � 180Æ. Carrying out quark rephasing (equal for up and downquarks of the same generation), wherearg Vus ! 0 ; arg Vb ! 0 ; arg Vd ! 180Æ ; arg Vts ! 180Æ (57)and arg Vud, arg Vs, arg Vtb remain unhanged, we onlude from Eqs. (55)and (56) that arg Vub ! �68:2Æ ; arg Vtd ! �20:1Æ : (58)The sum of arguments (58) after rephasing (57) is always equal to'(u) � '(d) � 180Æ.Thus, in this quark phasing, we predit the following Cabibbo�Kobayashi�Maskawa matrix:(V��) = 0� 0:976 0:220 0:00297 e�i 68:2Æ�0:220 0:975 0:03950:00805 e�i 20:1Æ �0:0395 0:999 1A : (59)



2646 W. KrólikowskiHere, only jVusj and jVbj [and quark masses ms ; m ; mb onsistent withthe mass matries �M (u)�� � and �M (d)�� �℄ are our inputs, while all other ma-trix elements V��, partly indued by unitarity, are evaluated from the re-lations derived in this Setion from the Hermitian mass matries �M (u)�� �and �M (d)�� � [and the onjetured proportion (47)℄. The independent pre-ditions are jVubj and argVub. In Eq. (59), the small phases arising fromEqs. (45), arg Vud = 0:9Æ and arg Vs = �0:9Æ, are negleted (here, arg(VudVsVtb) = 0).The above predition of V�� implies the following values of Wolfensteinparameters [3℄:� = 0:2196 ; A = 0:819 ; � = 0:127 ; � = 0:319 (60)and of unitary�triangle angles: = artan �� = � arg Vub = 68:2Æ ;� = artan �1� � = � arg Vtd = 20:1Æ : (61)The predited large value of  follows the present experimental tendeny.If instead of the entral value jVusj = 0:2196 we take as the input therange jVusj = 0:2173 to 0.2219, we obtain from Eq. (51) '(u) � '(d) =89:8Æ to 93:6Æ (with jVbj = 0:0395 giving �(d) = 355 MeV), what im-plies through Eq. (53) that arg Vus � '(d) = �20:3Æ to �19:8Æ. Then,after rephasing (57), argVub = �69:9Æ to � 66:6Æ and arg Vtd = �20:3Æ to�19:8Æ. In this ase, the Wolfenstein parameters are � = 0:2173 to 0.2219,A = 0:837 to 0.802, � = 0:119 to 0.135 and � = 0:325 to 0.312 (here,�p�2 + �2 = jVubj=jVbj = 0:0753 is �xed). Thus,  = � arg Vub = 69:9Æ to66:6Æ and � = � arg Vtd = 20:3Æ to 19:8Æ.In ontrast, if the entral value jVdj = 0:0395 (giving �(d) = 355 MeV) isreplaed by the input of the range Vd = 0:0378 to 0.0412 (orresponding to�(d) = 340 to 370 MeV), we alulate from Eq. (51) that '(u)�'(d) = 97:3Æ to84:9Æ (with jVusj = 0:2196), what leads to argVus�'(d) = �19:3Æ to �20:9Æ.Hene, after rephasing (57), argVub = �63:4Æ to �74:6Æ and arg Vtd =�19:3Æ to� 20:9Æ. In this ase, the Wolfenstein parameters take the values� = 0:2196, A = 0:784 to 0.854, � = 0:149 to 0.0951 and � = 0:298 to 0.345.Thus,  = � arg Vub = 63:4Æ to 74:6Æ and � = � arg Vtd = 19:3Æ to 20:9Æ.Here, jVubj = 0:00273 to 0.00323 and jVtdj = 0:00738 to 0.00874.



Fermion Texture and Sterile Neutrinos 2647Eventually, we may turn bak to quark masses. From the third Eq. (35)we an evaluateC(u;d) = 29�(u;d) 2524 mt;b � 624� "(u;d) � 29�(u;d) 2524 B(u;d) �(u;d)�(u;d)!2 ; (62)what, in the framework of our perturbative approah, givesC(u;d) = ÆC(u;d) + 29Æ�(u;d) 2524 mt;b 29320 Æ�(u;d) �5 ÆA(u;d) �9 ÆB(u;d)�  �(u;d)Æ�(u;d)!2� 29Æ�(u;d) � ÆA(u;d) + ÆB(u;d)�  �(u;d)Æ�(u;d)!2 ; (63)where ÆC(u;d) = 29Æ�(u;d) 2524 mt;b � 624� Æ"(u;d)= � 4339733:2 � = � 4340733 � : (64)With the entral values of �(u) and �(d) as estimated in Eqs. (46) and (49)we �nd from Eqs. (41)ÆA(u;d)  �(u;d)Æ�(u;d)!2 = � 7:395:26 � MeV ; ÆB(u;d)  �(u;d)Æ�(u;d)!2 = � 2:666:88 � MeV ;(65)where Æ�(u;d)29  �(u;d)Æ�(u;d)!2 = � 65:645:4 � MeV : (66)We alulate from Eqs. (63) with the use of values (65) thatC(u;d) = � 4339 + 5:25733:2 � 49:5 � = � 4344683:7 � = � 4340684 � : (67)Similarly, from the seond Eq. (39), making use of the values (65), weobtain�(u;d) = � 1060 � 1:1895:7 + 3:23 � MeV = � 105998:9 � MeV = � 106098:9 � MeV :(68)



2648 W. KrólikowskiWe an easily hek that, with the values (40) for Æ�(u;d) and Æ"(u;d) andthe value (64) for ÆC(u;d) determined as above from quark masses, the un-perturbed parts of mass formulae (35) reprodue orretly these masses. Infat, Æmu;d = Æ�(u;d)29 Æ"(u;d)= � 3:36 � MeV ;Æm;s = Æ�(u;d)29 49 �80+ Æ"(u;d)� = � 1300120 � MeV ;Æmt;b = Æ�(u;d)29 2425 �624+ Æ"(u;d) + ÆC(u;d)� = � 1744:3 � GeV : (69)The same is true for the unperturbed part of the �rst orrelating formula(39). The � here omitted � orretions to Eqs. (69), arising from allperturbing terms in the mass formulae (35) (inluding the orretions fromÆ�(u;d), Æ"(u;d) and ÆC(u;d)), are relatively small, viz.Æmu;d = � 3:7 � 10�3�2:0� 10�1 � MeV ; Æm;s = � 9:5�3:8 � MeV ;Æmt;b = � 170�74 � MeV ; (70)respetively.We would like to stress that, in ontrast to the ase of harged leptons,where m� has been predited from me and m�, in the ase of up and downquarks two extra parameters C(u) and C(d) appear neessarily to providelarge masses mt and mb (muh larger than m� ). They ause that mt (mb)annot be predited from mu and m (md and ms), till the new parametersare quantitatively understood.Note that a onjeture about C(u) and C(d) might lead to a predition forquark masses and so, introdue hanges in the �experimental� quark masses(37) and (38) aepted here. The same is true for a onjeture about '(u)and '(d).For instane, the onjeture that the phase di�erene '(u)�'(d) is max-imal, '(u) � '(d) = 90Æ ; (71)



Fermion Texture and Sterile Neutrinos 2649leads through the �rst equality in Eq. (51) to the ondition1 + 16�msm�2 � 8414 � ms�(d)�2 jVusj2 = 0 (72)prediting for s quark the massms = 118:7MeV = 119MeV (73)(with �(d) = 355 MeV), being only slightly lower than the value 120 MeVused previously. Here, m and mb are kept equal to 1.3 and 4.3 GeV, re-spetively (also masses of u ; d and t quarks are not hanged, while Æ�(d), Æ"(d)and ÆC(d) hange slightly). Then, from the �rst equality in Eq. (53)tan�arg Vus � '(d)� = �4 msm = �0:365 ; arg Vus = �20:1Æ + '(d): (74)After rephasing (57), this gives arg Vub+arg Vtd = '(u)�'(d)�180Æ = �90Æ,where arg Vub = �69:9Æ ; arg Vtd = �20:1Æ (75)i.e., pratially �70Æ and�20Æ. All jV�� j remain unhanged (with our inputsof jVusj = 0:2196 and jVbj = 0:0395), exept for jVtdj whih hanges slightly,beoming jVtdj = 0:00814 : (76)Thus, in the Cabibbo�Kobayashi�Maskawa matrix predited in Eq. (59),only jVtdj and the phases (75) show some hanges. The Wolfenstein param-eters are � = 0:118 ; � = 0:322 (77)and � and A unhanged (here, the sum �2 + �2 = 0:118 is also unhanged).Hene,  + � = 90Æ and � = 180Æ �  � � = 90Æ, where = artan �� = � arg Vub = 69:9Æ ; � = artan �1� � = � arg Vtd = 20:1Æ:(78)So, in the ase of onjeture (71), the new restritive relation�� = 1� �� ; �2 + �2 = � (79)holds, implying the preditionjVtdj=jVubj =s(1� �)2 + �2�2 + �2 = �� = 2:74 ; (80)



2650 W. Królikowskidue to the de�nition of � and � from Vub and Vtd. It is in agreement withour �gures for jVtdj and jVubj. Then, the new relationship14mms = �(d)m�(u)ms = �� (81)follows for quark masses m, ms and Wolfenstein parameters �, �, in onse-quene of Eqs. (43) and the onjetured proportion (47). Both its sides arereally equal for our values of m, ms and �, �.Thus, summarizing, we annot predit quark masses without an addi-tional knowledge or onjeture about the onstants �(u;d), "(u;d), C(u;d), �(u;d)and '(u;d) (in partiular, the onjeture (71) prediting ms may be natural).However, we always desribe them orretly. If we desribe them jointlywith quark mixing parameters, we obtain two independent preditions ofjVubj and  = � arg Vub: the whole Cabibbo�Kobayashi�Maskawa matrix isalulated from the inputs of jVusj and of jVubj [and of quark masses ms, mand mb onsistent with the mass matries �M (u)�� � and �M (d)�� �℄.Conluding this Setion, we an laim that our leptoni form of massmatrix works also in a promising way for up and down quarks. But, it turnsout that, in the framework of the leptoni form of mass matrix, the heaviestquarks, t and b, require an additional mehanism in order to produe thebulk of their masses (here, it is represented by the large onstants C(u) andC(d)). Suh a mehanism, however, intervenes into the proess of quarkmixing only through quark masses (pratially mt and mb) and so, it doesnot modify for quarks the leptoni form of mixing mehanism.4. A model of texture with two sterile neutrinosAssume that there are two sorts, �(e)s and �(�)s , of sterile neutrinos (blindto all Standard Model interations and so, interating only gravitation-ally). Conjeture that their mixings with two ative neutrinos �e and ��,respetively, dominate all neutrino mixings. Thus, �ve �avor neutrino �elds,�� = �e, ��, �� , �(e)s , �(�)s , exist in this texture and mix aording to a neu-trino mass matrix M (�). This an be assumed onsistently in the following5� 5 form:M (�) = �M (�)�� � = 0BBBBBB� M (�)11 0 0 M (�)14 00 M (�)22 0 0 M (�)250 0 M (�)33 0 0M (�)41 0 0 0 00 M (�)52 0 0 0
1CCCCCCA (82)



Fermion Texture and Sterile Neutrinos 2651withM (�)�� = M (�)��� ,M (�)�� = jM (�)�� j andM (�)�� = jM (�)�� j exp �i'(�)� for � < �,where the diagonal elements M (�)11 , M (�)22 and M (�)33 are given in terms of �(�)and "(�) as in Eq. (1) (with f = �). Here, we put M (�)44 = 0 = M (�)55 andeven M (�)12 = 0 = M (�)23 , the latter implying �(�) = 0 due to Eq. (1) (withf = �). With suh a spei� ansatz as (82), all neutrino mixings are ausedby the existene of sterile neutrinos responsible for the o�-diagonal matrixelements M (�)14 and M (�)25 .It is important to notie that, aording to the useful formula for eletriharge, Q = IL3 + Y=2 with Y=2 = IR3 + (B � L)=2, sterile neutrinos anarry no lepton number, L = 0. This may be a reason for M (�)44 = 0 = M (�)55 .On the other hand, the o�-diagonal matrix elements M (�)14 and M (�)25 , if nonzero, violate the lepton number onservation.The mass matrix of the form (82) leads to the following masses orre-sponding to �ve mass neutrino �elds �i = �1 ; �2 ; �3 ; �4 ; �5:m�1; �4 = M (�)112 �vuut M (�)112 !2 + jM (�)14 j2 ;m�3 = M (�)33 ;m�2; �5 = M (�)222 �vuut M (�)222 !2 + jM (�)25 j2 : (83)Note that in Eq. (82) we used for simpliity � = 1 ; 2 ; 3 ; 4 ; 5, whih on-vention, if used properly, does not introdue any serious onfusion withi = 1 ; 2 ; 3 ; 4 ; 5.The orresponding 5� 5 unitary matrix U (�), diagonalizing the neutrinomass matrix (82) aording to the relationU (�) yM (�) U (�) = diag(m�1 ; m�2 ; m�3 ; m�4 ; m�5) ;takes the formU (�) = �U (�)�i � =0BBBBBB� 1p1+X2 0 0 � Xp1+X2 ei'(�) 00 1p1+Y 2 0 0 � Yp1+Y 2 ei'(�)0 0 1 0 0Xp1+X2 e�i'(�) 0 0 1p1+X2 00 Yp1+Y 2 e�i'(�) 0 0 1p1+Y 2
1CCCCCCA ;(84)



2652 W. Królikowskiwhere X = m�1 �M (�)11jM (�)14 j = � M (�)112jM (�)14 j +vuut1 + M (�)112jM (�)14 j!2 ;Y = m�5 �M (�)22jM (�)25 j = � M (�)222jM (�)25 j +vuut1 + M (�)222jM (�)25 j!2 : (85)Note that always 0 < X � 1 and 0 < Y � 1.The �avor neutrino �elds �� are onneted to the mass neutrino �elds �ithrough the �ve�dimensional unitary transformation�� =Xi (V y)�i �i (86)with �V y��i = (V )�i� = V �i�, where V = (Vi�) denotes the lepton 5 � 5ounterpart of Cabibbo�Kobayashi�Maskawa matrix:V = U (�)yU (e) ;U (e) = �U (e)�� � = 0� U (e)�� (�; � = 1; 2; 3) 00 Æ�� (�; � = 4; 5) 1A ; (87)where �U (e)�� (�; � = 1; 2; 3)� is the harged-lepton diagonalizing unitarymatrix given perturbatively in Eq. (4). If there �(e)=�(e) (jointly with itsnumerial oef�ients) is negleted, then U (e) ' (Æ��) and so, we an put inEq. (86) V �i� = �V y��i = �U (e) yU (�)��i ' �U (�)��i = U (�)�i : (88)In our model, U (�)�i are given as in Eq. (84).5. Neutrino osillations and their possible dampingHaving one found the extended Cabibbo�Kobayashi�Maskawa matrixV , we an alulate the probabilities P (�� ! ��) of neutrino osillations�� ! �� (in the vauum) i.e., the probabilities of (vauum) osillations ofthe �avor neutrino states j��i ! j��i, where j��i = �y�j0i andj��i =Xi j�iiVi� (89)



Fermion Texture and Sterile Neutrinos 2653with j�ii = �yi j0i. If allowing that, in general, not all mass neutrino statesj�ii are absolutely stable, thenj�i(t)i = e�i(H�i� )tj�ii = j�iie�i(Ei�ii)t ; (90)where Ei =q~p 2 +m2�i ' j~pj+m2�i=2j~pj and i = (jm�i j=E) (0)i are neutrinoenergies and deay widths (with (0)i and E ' j~pj denoting the neutrino deaywidths at rest and neutrino beam energy, respetively). Thus, generally,we obtain for neutrinos (in the vauum) the following damped osillationformulae:P (�� ! ��) = jh�� je�i(H�i� )tj��ij2 =Xj i Vj�V �j�V �i�Vi�ei(Ej�Ei)te�(j+i)t= Æ�� +Xj i Vj�V �j�V �i�Vi� hei(Ej�Ei)te�(j+i)t � 1i : (91)They are analogues of the formulae for K0 ! K0 and K0 ! K0 osillations.Note that Eqs. (91) imply the probability sum rules in the nonunitarity formX� P (�� ! ��) =Xi jVi�j2e�2it ; (92)in spite of the unitarity of V . Of ourse, the rhs of Eq. (92) is equal to1, if all (here involved) i are zero. In this ase, the damping in Eqs. (91)disappears and they beome the onventional neutrino osillation formulae.The same is true for the next Eqs. (93).If the quarti produts in Eqs. (91) are real (as it turns out to be in ourase), we an rewrite these equations in the formP (�� ! ��) = Xj i Vj�V �j�V �i�Vi�e�(j+i)t� Xj>i Vj�V �j�V �i�Vi� sin2�Ej �Ei2 t� e�(j+i)t ; (93)where the �rst term is equal toÆ�� �Xj i Vj�V �j�V �i�Vi� h1� e�(j+i)ti : (94)Writing (Ej�Ei)t = �m2j iL=2E and (j+i)t = (jm�j j(0)j + jm�i j(0)i )L=Ewith�m2j i � m2�j�m2�i , E = j~pj and L = t, and then expressing the neutrino



2654 W. Królikowskimasses m�i and rest widths (0)i in eV, the experimental baseline L in kmand the neutrino beam energy in GeV, we an insertEj �Ei2 t ! 1:27�m2j iLE � xj � xi ;(j + i)t ! 5:07(jm�j j(0)j + jm�i j(0)i )LE � yj + yi (95)in Eq. (91) and (93) (here,  = 1 = ~) 2.From Eqs. (93) with Vi� = U (�) ��i , we derive in the ase of our form(84) of U (�)�i the following damped osillation formulae for ative neutrinos�e ; �� ; �� (in the vauum):P (�e ! ��) = 0 = P (�� ! �e) ;P (�e ! �� ) = 0 = P (�� ! �e) ;P (�� ! �� ) = 0 = P (�� ! ��) ;P (�e ! �e) = �e�y1 +X2e�y41 +X2 �2 �� 2X1 +X2�2 sin2(x4 � x1)e�(y4+y1) ;P (�� ! ��) = �e�y2 + Y 2e�y51 + Y 2 �2 �� 2Y1 + Y 2�2 sin2(x5 � x2)e�(y5+y2) ;P (�� ! �� ) = e�2y3 (96)and those where, beside �e ; �� ; �� , the sterile neutrinos �(e)s ; �(�)s partii-pate expliitly:P (�e ! �(e)s ) = �X(e�y1 � e�y4)1 +X2 �2 +� 2X1 +X2�2 sin2(x4 � x1)e�(y4+y1) ;P (�e ! �(�)s ) = 0 ;2 The insertion L = vt with v = j~pj=E '  ( = 1) is alled by Lipkin [10℄ the �righthandwaving� whih onverts the �gedanken osillation experiment� in time into thereal osillation experiment in spae. In the �rst experiment, a �avor neutrino isreated by a weak-interation soure (of size � L) in a momentum eigenstate j��; ~pibeing a superposition of a few energy eigenstates j�i; Eii (with Ei = p~p 2 +m2�i)desribing mass neutrinos evolving in time. Inversely, in the seond experiment, the�avor neutrino is emitted in an energy eigenstate j��; Ei given as a superposition of afew momentum eigenstates j�i; ~pii (with j~pij =pe2 �m2�i) desribing mass neutrinospropagating in spae (the requirement of oherene within this superposition leadsto the ondition j j~pij � j~pj j j � 1=soure size). In the �rst ase Ei�Ej ' �m2ij=2j~pj,while in the seond j~pij � j~pj j ' �m2ij=2E. Here, E ' j~pj ( = 1). A �wronghandwaving� would be the insertion L = viti with vi = ~p=Ei.



Fermion Texture and Sterile Neutrinos 2655P (�� ! �(e)s ) = 0 ;P (�� ! �(�)s ) =�Y (e�y2 � e�y5)1 + Y 2 �2+� 2Y1 + Y 2�2sin2(x5 � x2)e�(y5+y2);P (�� ! �(e)s ) = 0 ;P (�� ! �(�)s ) = 0 : (97)The probabilities (96) and (97) satisfy the sum rules (92) whih now read :P (�e ! �e) + P (�e ! �(e)s ) = e�2y1 +X2e�2y41 +X2 ;P (�� ! ��) + P (�� ! �(�)s ) = e�2y2 + Y 2e�2y51 + Y 2 : (98)Note that damping in our neutrino osillation formulae dereases withgrowing neutrino energy E, beause yi = 5:07jm�i j(0)i L=E dereases. Thus,the larger ���neutrino energy is explored in ���neutrino experiments, thesmaller damping in�uene is exerted on P (�� ! ��), provided not all (in-volved) i are zero. Of ourse, the e�et of damping, if any, is expeted tobe very small. 6. A mehanism of negligible dampingNow, we turn to the disussion of a possible mehanism of neutrinoinstability i.e., instability of mass neutrino states. To this end observe thatthe neutrino weak urrentJ (�) � = �eL��eL + ��L���L + ��L���L ; (99)though it is diagonal in the ative neutrinos �e ; �� ; �� , is no longer diago-nal in the mass neutrinos �1 ; �2 ; �3 ; �4 ; �5, if the sterile neutrinos �(e)s ,�(�)s really exist. In fat, inserting in Eq. (99) the unitary transforma-tion (86), we obtain generally, beside �iL��iL, some nondiagonal produts�iL��jL (i 6= j), sine only three of �ve produts ��L���L are originallypresent in Eq. (99).For instane, in the ase of our form (84) of U (�)�i , the unitary transfor-mation (86) with V �i� = U (�)�i gives



2656 W. Królikowski�e = 1p1 +X2 ��1 �X�4ei'(�)� ;�� = 1p1 + Y 2 ��2 � Y �5ei'(�)� ;�� = �3;�(e)s = 1p1 +X2 �X�1e�i'(�) + �4� ;�(�)s = 1p1 + Y 2 �Y �2e�i'(�) + �5� : (100)Thus, in our ase, the neutrino weak urrent (93) transits into the formJ (�) � = 11 +X2 h�1L��1L +X2�4L��4L�X ��1L��4Le'(�) + �4L��1Le�i'(�)� i+ �3L��3L+ 11 + Y 2 h�2L��2L + Y 2�5L��5L�Y ��2L��5Le'(�) + �5L��2Le�i'(�)� i: (101)Sine in the Standard Model Lagrangian this neutrino weak urrent isoupled to the Z boson [with the oupling onstant �g=(2 os �W ) =�e=(2 sin �W os �W )℄, some neutrino deays of the type �i ! �j �k ��l with(i; j) = (1; 4) or (4; 1) and (2; 5) or (5; 2), and with similar (k; l),are Z-mediated, so that they an be real proesses if onlyjm�i j > jm�j j+ jm�k j+ jm�l j (here, ��l denotes an antipartile of �l).In the ase of our neutrino mass spetrum (83), we get the inequalitiesm�1 > jm�4 j,m�2 > jm�5 j andm�2 > m�1 , where in the last relation we makeuse of M (�)22 > M (�)11 . Further, jm�5 j > m�1 , jm�5 j > jm�4 j, m�3 > m�2 andm�3 > jm�5 j, if Y �X > M (�)11 =jM (�)25 j, Y > X, Y < (M (�)33 �M (�)22 )=jM (�)25 jand Y < M (�)33 =jM (�)25 j, respetively. Thus, for Y � X > M (�)11 =jM (�)25 j andY < (M (�)33 �M (�)22 )=jM (�)25 j all these inequalities hold. In this ase, therefore,jm�4 j < m�1 < jm�5 j < m�2 < m�3 ; (102)showing that then jm�4 j is the lowest neutrino mass.We an see that for any virtual deay �1 ! �4 �k ��l we getm�1 � jm�4 j � jm�k j � jm�l j � m�1 � jm�4 j � 2jm�4 j= 2M (�)11 �qM (�) 211 + 4jM (�)14 j2= M (�)11 � 2jM (�)14 jX > or � 0 ; (103)



Fermion Texture and Sterile Neutrinos 2657depending on X < or � M (�)11 =2jM (�)14 j. This implies that, a priori, thedeay width of �1 neutrino may be 1 6= 0 or 1 = 0, respetively. Sinejm�4 j < m�1 , no virtual deay �4 ! �1 �k ��l an be a real proess, what leadsto 4 = 0 for �4 neutrino.Similarly, for any virtual deay �2 ! �5 �k ��l, we obtainm�2�jm�5 j�jm�k j�jm�l j � m�2�jm�5 j�2jm�4 j= M (�)11 +M (�)22 �qM (�) 211 + 4jM (�)14 j2= M (�)22 �2jM (�)14 jX > 0 (104)if X < M (�)22 =2jM (�)14 j, where M (�)22 = (4=9)(80="(�) � 1)M (�)11 with "(�) < 1(f. Eq. (1) with f = �). If true, this gives a nonzero deay width 2 6= 0 for�2 neutrino. On the other hand, for �5 neutrino 5 = 0, sine jm�5 j < m�2 .Antiipating that 1 = 0 (or is extremely small) and putting 3 = 4 =5 = 0, we obtain from Eqs. (96) and (97) the following neutrino osillationformulae (possibly damped if 2 6= 0):P (�e ! �e) = 1�� 2X1 +X2�2 sin2(x4 � x1) = 1� P (�e ! �(e)s ) ;P (�� ! ��) = �e�y2 + Y 21 + Y 2 �2 �� 2Y1 + Y 2�2 sin2(x5 � x2)= e�2y2 + Y 21 + Y 2 � P (�� ! �(�)s ) ;P (�� ! �� ) = 1 : (105)Here,x1 � x4 = 2:53 jM (�)14 jM (�)11 LE ; x2 � x5 = 2:53 jM (�)25 jM (�)22 LE : (106)From the neutrino mass spetrum (83) and the de�nitions (85) of X andY , we an derive the useful equations expressing M (�)11 and jM (�)14 j throughX and �m214, as well as M (�)22 and jM (�)25 j through Y and �m225:M (�)11 = �1�X21 +X2�m214�1=2 ; jM (�)14 j = � X21�X4�m214�1=2 (107)as well asM (�)22 = �1� Y 21 + Y 2�m225�1=2 ; jM (�)25 j = � Y 21� Y 4�m225�1=2 : (108)



2658 W. KrólikowskiFurther, writing1 � � 2X1 +X2�2 � sin2 2�(e) ; 1 � � 2Y1 + Y 2�2 � sin2 2�(�) ; (109)we obtain 1 � X � tan �(e) ; 1 � Y � tan �(�) ; (110)where 0 � 2�(e) � �=2 and 0 � 2�(�) � �=2. We an see from Eqs. (108)that for a �xed �nite jM (�)25 j we get �m225 ! 0 as Y ! 1, exluding in thislimit the orresponding neutrino osillations. On the other hand, if we insistin an argument to keep �m225 �xed and nonzero as Y ! 1, we formally havejM (�)25 j ! 1, implying m�2 !1 and jm�5 j ! 1. (In both ases M (�)22 ! 0as Y ! 1.) Analogial onlusions follow from Eqs. (107) for jM (�)14 j and�m214 (and M (�)11 ) when X ! 1.The �rst Eq. (105) enables us to asribe the observed de�it of solar �e'sto �e ! �(e)s osillations. In fat, we an determine our parameters M (�)11and jM (�)14 j putting� 2X1 +X2�2 = sin2 2�solar � 0:75 ;�m214 = �m2solar � 6:5 � 10�11 eV2 ; (111)if the global vauum �t to solar data [5℄ is hosen. Then, due to Eqs. (110)and (107) X = tan �solar � 1=p3 = 0:577 ;M (�)11 � 5:70 � 10�6 eV ;jM (�)14 j � 4:94 � 10�6 eV : (112)Here, we an see that M (�)11 =2jM (�)14 j = (1 � X2)=2X � 1=p3 � X. Thus,the ondition leading to 1 = 0 is satis�ed on the edge [f. Eq. (103)℄. Atthe same time, this shows that the ondition M (�)22 =2jM (�)14 j > X, providing2 6= 0 in the seond Eq. (105), is ful�lled omfortably [f. Eq. (104)℄.Damping in the seond Eq. (105) ompliates our disussion, though it isnatural to expet that this formula allows us to asribe the observed de�itof atmospheri ��'s to �� ! �(�)s osillations. In fat, antiipating thatdamping in this ase is tiny [f. Eq. (119)℄, we may write exp(�y2) ' 1� y2and, therefore,
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P (�� ! ��) ' 1�� 2Y1 + Y 2�2 sin2(x5 � x2)�y2� 2Y1 + Y 2�2 �12 � sin2(x5 � x2)� ; (113)where the oe�ient at y2 in the orretion O(y2) is almost ompensated tozero. Thus, we an put approximately� 2Y1 + Y 2�2 ' sin2 2�atm � 0:82 to 1 ;�m225 ' �m2atm � (0:5 to 6)� 10�3 eV2 ; (114)where the reent data from Super-Kamiokande atmospheri neutrino exper-iment [4℄ is applied. Here, we will put, for instane, sin2 2�atm � 0:999 and�m2atm � 5� 10�3 eV2 as in Setion 3. Then,Y ' tan �atm � 0:969 ; M (�)22 � 0:126� 10�1 eV ; jM (�)25 j � 1:99� 10�1eV(115)due to Eqs (110) and (108).Making use of the estimations (112) and (115), we an evaluate "(�) and�(�) from Eq. (1) (with f = �),"(�) = 801 + 9M (�)22 =4M (�)11 � 1:61 � 10�2 ;�(�) = 29M (�)11"(�) � 1:03 � 10�2 eV ; (116)and then, the neutrino masses m�1 , m�4 , m�2 , m�5 and m�3 from Eqs. (83),m�1 � 8:55 � 10�6 eV ; m�4 � �2:85� 10�6 eV ;m�2 � 2:05 � 10�1 eV ; m�5 � �1:93� 10�1 eV (117)and m�3 = �(�)29 2425 �624 + "(�)� � 2:12 � 10�1 eV : (118)These masses satisfy onsistently the inequalities (102) and reprodue theexperimental values (101) and (114): �m214 � 6:5� 10�11 eV2 and �m225 �5� 10�3 eV2.Now, we an evaluate the total deay width at rest, (0)i , for a massneutrino �i deaying through the Z�mediated proesses �i ! �j �k ��l, where



2660 W. Królikowskimi = Ej + Ek + El > mj +mk +ml with mn = jm�n j. In the ase of m2,m5 and m2 �m5 dominating over mk and ml (k; l = 1; 4), we obtain theapproximate formula(0)2 = 14 G2F192�3 � Y1 + Y 2�2 (m2 �m5)4 (m2 + 2m5) ; (119)where the total deay width (0)2 is the sum of four partial deay widths for�2 ! �5 �k ��l with (k ; l) = (1 ; 4) ; (4 ; 1) ; (1 ; 1) ; (4 ; 4) whih are propor-tional to � Y1 + Y 2�2� X1 +X2�2; � Y1 + Y 2�2� X1 +X2�2;� Y1 + Y 2�2� 11 +X2�2; � Y1 + Y 2�2� X21 +X2�2;respetively, the sum of these weights being equal to Y 2=(1 + Y 2)2. In thisalulation, we used the Standard Model oupling of the neutrino weak ur-rent (101) to the Z boson [with the oupling onstant �g=(2 os �W ), whereGF =p2 = g2=(8MW ) = g2=(8MZ os �W )℄, and onsidered the situationwhen (p2 � p5) � M2Z at the rest frame of deaying �2: p2 = (m2 ; ~0). InEq. (119), the fator 1/4 at the front is a onsequene of using the neutralweak urrent (rather than harged weak urrent), while Y 2=(1+Y 2)2 stemsfrom mixing of ative and sterile neutrinos.If Y , m2 and m5 are estimated as in Eqs. (115) and (117), then theformula (119) gives (with the Fermi onstant GF = 1:17� 10�5 GeV�2) theextremely small value (0)2 � 10�59 eV (120)orresponding to the enormous lifetime �2 = 1=(0)2 � 1043 se (as eV�1 =6:58�10�16 se). This implies for the Super-Kamiokande atmospheri exper-iment that y2 = 5:07m2(0)2 L=E � 10�55 withm2(0)2 � 10�60, L � 1:3�104and E � 1 expressed in eV2, km and GeV, respetively. Thus, pratially,y2 = 0 and so exp(�y2) = 1. If m2 = m�2 and m5 = jm�5 j grow by oneorder of magnitude (what is the ase when sin 2�atm rises to 0.9999 and so,Y to 0.990), then (0)2 beomes not larger than � 10�54 eV and �2 notsmaller than � 1038 se.Conluding the last Setion, we an say that damping in neutrino osil-lation formulae an be ompletely negleted, unless there are other souresof neutrino instability [11℄, more e�etive than the Z�mediated deays �i !



Fermion Texture and Sterile Neutrinos 2661�j �k ��l onsidered in this paper. The last deays appear in the StandardModel framework if, additionally, there are sterile neutrinos mixing with theative ones and so, breaking the elektroweak symmetry SU(2)�U(1). Ourdisussion shows that the neutrino deay widths i are zero for i = 1; 3; 4; 5and are ompletely negligible for i = 2. However, our damped osillationformulae (93) [and their more spei� versions given in Eqs. (96) and (97)℄an work for any sort of potential neutrino instability.AppendixMajorana sterile neutrinosThe �avor neutrinos, three ative �e ; �� ; �� and two sterile �(e)s , �(�)s ,onsidered in Sets. 5, 6 and 7, lead to �ve mass neutrinos �1 ; �2 ; �3 ; �4 ; �5having pure Dira masses (also in previous Setions neutrinos had alwayspure Dira masses). Now, assume that there are solely three ative �avorneutrinos, but they possess the �Majorana� 2� 2 mass matriesM (�)� =  m(L)� m(D)�m(D)� m(R)� ! (� = e ; � ; �) ; (A.1)eah onsisting of one Dira and two Majorana masses, m(D)� and m(L;R)� ,respetively [12℄. The mass matries (A.1) imply the following mass term inthe Lagrangian:�Lmass = 12X� ��(a)� �(s)� � M (�)�  �(a)��(s)� ! ; (A.2)where�(a)� � ��L + (��L) ; �(s)� � ��R + (��R) (� = e ; � ; �) (A.3)are the Majorana �avor neutrinos, three ative �(a)� and three sterile �(s)� ,built up of hiral �elds ��L, (��L) = (��)R and ��R, (��R) = (��)Linvolved already in the Dira �avor neutrinos �� = ��L+ ��R and antineu-trinos �� = (��L)+(��R). These onventional Majorana sterile neutrinos�(s)� ontain, therefore, no extra neutrino degrees of freedom, in ontrast toour previous Dira sterile neutrinos �(e;�)s = �(e;�)sL +�(e;�)sR involving extra hi-ral �elds �(e;�)sL and �(e;�)sR . Of ourse, in ontrast to the Dira, the Majorananeutrinos mix (maximally) the lepton number L.



2662 W. KrólikowskiIn the ase of �Majorana� mass matries (A.1), the overall neutrino massmatrix takes the 6� 6 formM (�) = �Æ��M (�)� � =  Æ��  m(L)� m(D)�m(D)� m(R)� !! : (A.4)In this �pure-Majorana� mass matrix there is no mixing between �avor neu-trinos from three lepton families � = e ; � ; � .Diagonalizing the �pure-Majorana� mass matrix (A.4), we obtain theneutrino massesmI; II� = m(L)� +m(R)�2 �vuut m(L)� �m(R)�2 !2 +m(D) 2�' m(L)� +m(R)�2 �m(D)� (A.5)orresponding to six Majorana mass neutrinos�I� = os ���(a)� � sin ���(s)� ;�II� = sin ���(a)� + os ���(s)� ; (A.6)whereos �� = m(D)�rm(D) 2� + �mII� �m(R)� �2 ' 1p2  1� m(L)� �m(R)�4m(D)� ! ' 1p2 ;sin �� = mII� �m(R)�rm(D) 2� + �mII� �m(R)� �2 ' 1p2  1 + m(L)� �m(R)�4m(D)� ! ' 1p2(A.7)with �� ' �=4+�m(L)� �m(R)� � =4m(D)� ' �=4 (mI� may be negative). Here,the approximate equalities are valid in the ase of m(L)� ' m(R)� . If inaddition m(L)� ' m(R)� ' m(D)� , then Eqs. (A.5) give mI� ' 0 and mII� '2m(D)� . In ontrast, if m(L)� ' m(R)� � m(D)� , they imply mI; II� ' �m(D)�(this ase is known as the pseudo-Dira ase). Note that in the ase ofm(L)� ' m(R)� the mass neutrinos �I� and �II� are in an obvious analogy to themesons KL = pK0 � qK0 and KS = qK0 + pK0, where q=p ' 1� 2~" ' 1 isa ounterpart of our tan �� ' 1� �m(R)� �m(L)� � =2m(D)� ' 1.



Fermion Texture and Sterile Neutrinos 2663Any model with m(L)� ' m(R)� , leading to the nearly maximal mix-ing �I; II� ' ��(a)� � �(s)� � =p2, is orthogonal to the popular see�saw modelwith m(L)� � m(D)� � m(R)� whih gives �I� ' �(a)� and �II� ' �(s)� . In fat, inthis ase we get from Eqs. (A.5) and (A.7)mI� ' �m(D) 2�m(R)� ' 0 ; mII� ' m(R)� + m(D) 2�m(R)� ' m(R)� (A.8)and os �� ' 1� 12  m(D)�m(R)� !2 ' 1 ; sin �� ' m(D)�m(R)� ' 0 : (A.9)In both ases, however, we may have very small mI�. Notie that the presentexperimental limit on the (still not observed) neutrinoless double � deay(violating the lepton number L) allows for m(L)e or m(D)2e =m(R)e of the mag-nitude not larger than 0.2 eV in the ase of m(L)e ' m(R)e or m(L)e � m(R)e ,respetively.With the use of the neutrino mass matrix (A.4) we get the �pure-Majorana�osillation formulaeP ��(a)� ! �(s)� � = jh�(s)� je�iHtj�(a)� ij2 = Æ� � sin2 2�� sin2 �xII� � xI�� (A.10)andP ��(a)� ! �(a)� � = jh�(a)� je�iHtj�(a)� ij2 = Æ� � � P ��(a)� ! �(s)� � ; (A.11)where xI; II� = 1:27(mI; II� )2L=E with mI; II� , L and E expressed in eV, kmand GeV, respetively. Here, sin2 2�� ' 1 if m(L)� ' m(R)� .For a form of neutrino mass matrix more general than the �pure-Majorana�form (A.4), more general mass spetrum and mixing appear. A fairly gen-eral mixing may be given by the following antiipated formulae for Majoranamass neutrinos:�I; IIi =X� U (�)�� i �I; II� =X� U (�)�� i ( os �� �(a)� � sin �� �(s)�sin �� �(a)� + os �� �(s)� (A.12)(with i = 1; 2; 3 and � = e ; � ; �). Here, U (�) = �U (�)� i � is a 3 � 3 familyunitary matrix diagonalizing a 3 � 3 neutrino family mass matrix M (�) =�M (�)�� � through the relation �U (�) yM (�)U (�)�ij = Æijmi [and U (e) = (Æ��)i.e., M (e) = diag (me;m�;m� ) and V = U (�) y = (U (�)��i )℄.



2664 W. KrólikowskiIf the Majorana mixing angle �� is taken as a universal � (what ertainlywould be the ase for �� = 45Æ orresponding to m(L)� = m(R)� ), then themixing (A.12) follows from the 6� 6 neutrino mass matrixM (�) = �M (�)�� � with M (�)�� =M (�)�� � �(L) �(D)�(D) �(R) � ; (A.13)all entries �(L) ; �(R) and �(D) being dimensionless. In fat, suh a formleads to the 6� 6 unitary matrixbU (�) = �bU (�)� i � with bU (�)� i = U (�)� i � os � sin �� sin � os � � (A.14)whih diagonalizes M (�) aording to the relation�bU (�) yM (�) bU (�)�ij = Æij � mIi 00 mIIi � ; (A.15)where mI; IIi = mi�I; IIwith �I; II = �(L)+�(R)2 �s��(L)��(R)2 �2+�(D) 2' �(L)+�(R)2 � �(D) (A.16)(i = 1; 2; 3) are neutrino masses. The approximate equality in Eq. (A.16)is valid for �(L) ' �(R). Note that the mass matrix (A.13) is the diretprodut of two matries (3 � 3 and 2 � 2) ontaining separately the fam-ily and �Majorana� degrees of freedom. Thus, also the spetrum (A.16) ismultipliative.In the ase of neutrino mass matrix (A.13), the �pure-Majorana� os-illation formulae (A.11) are extended to the form (if U (e)�� = Æ�� i.e.,Vi� = U (�)��i )P ��(a)� ! �(a)� � = jh�(a)� je�iHtj�(a)� ij2= Æ� � � sin2 2�Xi jU (�)� i j2jU (�)� i j2 sin2 �xIIi �xIi��4Xj>i U (�) �� j U (�)� j U (�)� i U (�) �� i �os4 � sin2 �xIi�xIj�+ sin4 � sin2 �xIIj �xIIi �+os2� sin2� �sin2 �xIIj �xIi�+ sin2 �xIj�xIIi ��	 (A.17)



Fermion Texture and Sterile Neutrinos 2665whih holds when the quarti produts of matrix elements U (�)� i are real. InEqs. (A.17), xI; II = 1:27(mI; IIi )2L=E. Here, sin2 2� ' 1 and os2 � ' 1=2 'sin2 � if �(L) ' �(R).The neutrino family mass matrix M (�) = �M (�)�� � may be assumed inthe form (1) (with f = �). Then, in the ase of small � = M (�)33 =jM (�)12 jand � = M (�)22 =jM (�)12 j, the family unitary matrix U (�) = �U (�)�i � is given inEqs. (9). In order to derive from the neutrino osillation formulae (A.17)expliit results, we put �(L) = �(R) �� �(M)�. In this ase, the neutrinomass matrix (A.13) has the formM (�) = �M (�)�� �with M (�)�� = M (�)�� � �(M) �(D)�(D) �(M) � ; (A.18)and the neutrino mass spetrum givesmI; IIi = mi ��(M) � �(D)�, wheremi �m�i are determined as in Eqs. (5) implying m3 >� jm2j � m1 (m2 = �jm2j).With this mass spetrum, the further disussion depends on the ratioof �(M) and �(D). We will onsider two ases: (i) �(M) = �(D) or (ii)�(M) � �(D) (the pseudo-Dira ase). We derive from Eqs. (A.17) and (9)the following neutrino osillation formulae: in the ase (i)P ��(a)e ! �(a)e � = 1� 4849 sin2 1:274m21�(D) 2LE !� 972 � 492 ;P ��(a)� ! �(a)� � = 1� sin2 1:274m22�(D) 2LE ! ;P ��(a)� ! �(a)e � = 14 � 49 sin2 1:274(m23 �m22)�(D) 2LE ! (A.19)or, in the ase (ii)P ��(a)e ! �(a)e �= 1��4849�2 sin2 1:274m21�(M)�(D)LE !� 3874 � 492 ;P ��(a)� ! �(a)� �= 1� 12 sin2 1:274m22�(M)�(D)LE !� sin2 1:274(m23 �m22)�(D) 2LE ! ;



2666 W. KrólikowskiP ��(a)� ! �(a)e �= 149 sin2 1:274(m23�m22)�(D) 2LE !� 12 � 49 sin2 1:274m22�(M)�(D)LE ! ; (A.20)where the L's are three di�erent experimental baselines. In these equations,the negligible onstant terms ome out from terms ontaining sin2 of largephases averaged over many osillation lengths determined by the leadingterms with sin2 of small phases. The phases in Eqs. (A.19) and (A.20) werealulated in both ases from the relations(mI; IIj )2 � (mI; IIi )2 = m2j ��(M) � �(D)�2 �m2i ��(M) � �(D)�2 ;(mII; Ij )2 � (mI; IIi )2 = m2j ��(M) � �(D)�2 �m2i ��(M) � �(D)�2 ; (A.21)working for �(L) = �(R) �� �(M)�. Note that the seond and third Eq. (A.20)are not of the two-�avor form, in ontrast to the seond and third Eq. (A.19).Comparing two �rst osillation formulae (A.19) with the results of solarand atmospheri neutrino experiments [f. Eqs. (111) and (114)℄, respe-tively, we get4849 $ sin2 2�sol � 0:75 ; 4m21�(D) 2 $ �m2sol � 6:5� 10�11 eV2 (A.22)and1$ sin2 2�atm � 0:82 to 1; 4m22�(D) 2 $ �m2atm � (0:5 to 6)� 10�3 eV2:(A.23)Hene, we obtain m1jm2j � (3:61 to 1:04) � 10�4 (A.24)and, due to Eqs. (5),� = (49)3=2 m1jm2j � (12:4 to 3:57) � 10�2; (A.25)while m23 � m22 = 14[(48=49)� + �℄jM (�)12 j2 � (1:80 to 0:52)jM (�)12 j2 with� = �=16:848. This estimation on�rms that � � M (�)33 =jM (�)12 j and � �M (�)22 =jM (�)12 j are small.In ontrast to solar and atmospheri results, the LSND result (f. Ref. [6℄),say, sin2 2�LSND � 0:02 and �m2LSND � 0:5 eV2 annot be explained in thease (i), sine in the third Eq. (A.19)



Fermion Texture and Sterile Neutrinos 26674(m23�m22)�(D) 2 � 4m22�(D) 2 � (0:5 to 6)�10�3 eV2 � �m2LSND (A.26)for the estimation (A.25) (m23'm22 ' 49jM (�)12 j).In the ase (ii), however, one may try to ompare the third Eq. (A.20)with the LSND result getting, say,149 $ sin2 2�LSND � 0:02 ;(m23 �m22)�(D) 2 $ �m2LSND � 0:5 eV2: (A.27)If in the ase (ii) the relation 4m22�(M)�(D) $ �m2atm analogial to (A.23)held approximately [f. the seond Eq. (A.20)℄, the omparison with (A.27)would give 4m22�(M)(m23 �m22)�(D) = �m2atm�m2LSND � (0:1 to 1:2) � 10�2 (A.28)and �(M)�(D) = 114 �4849� + �� �m2atm�m2LSND � (9:2 to 2:6) � 10�3 �m2atm�m2LSND� (0:92 to 3:2)� 10�5 ; (A.29)sine m23 �m22m22 = 27 �4849� + �� (A.30)through Eqs. (5) (in making the estimation (A.29) the value (A.25) wasused, whih holds also in the ase (ii) if 4m21�(M)�(D) $ �m2sol). Thus, forthe value (A.29) of �(M)=�(D) the third Eq. (A.20) might be onsistent withthe LSND result.In onlusion of this Appendix, we an say that a simple neutrino massmatrix (A.13), operating with three neutrinos �e ; �� ; �� only and beingmultipliative in �Majorana� and family degrees of freedom, is onsistent ina natural way with solar and atmospheri neutrino experiments, but notwith the LSND result (that still requires on�rmation). Suh a onsistenyof �Majorana� option does not di�er muh from that based on the neutrinomass matrix (82) inluding two Dira sterile neutrinos �(e)s and �(�)s . Theseonlusions were drawn with the use of our family mass matrix (1) (withf = �), where the dominane of its o�-diagonal elements was onjetured.The opposite onjeture of dominane of its diagonal elements does not



2668 W. Królikowskihange our onlusions essentially. The nearly bimaximal mixing that ap-pears in the �(a)e ! �(a)e and �(a)� ! �(a)� osillation formulae (A.19) is aonsequene of maximal mixings of �(a)e with �(s)e and �(a)� with �(s)� , re-�eting the equality �(L) = �(R) and so, not holding in the see�saw modelorresponding to �(L) � �(D) � �(R).When disussing the Majorana �avor neutrinos �(a)� and �(s)� (� = e; �; �),one presumes that the superpositions (A.3) de�ning formally these objetsare really oherent in proesses of eletroweak interations whih operate onlefthanded hiral �elds ��L = �(a)�L , ignoring their righthanded ounterparts��R = �(s)�R.The Dira part of mass term (A.2) and the kineti term P� ��i � ���an be expressed by �� as well as �(a)� and �(s)� , viz.�L(D)mass =X� m(D)� ���� =X� m(D)� ��(s)� �(a)� + �(a)� �(s)� � (A.31)and, up to the full divergene i� �P� ����,Lkin =X� ��i � ��� = 12X� ��(a)� i � ��(a)� + �(s)� i � ��(s)� � : (A.32)Thus, the deiding role in the oherene question is played by the Majoranapart of the mass term (A.2),�L(M)mass = 12X� �m(L)� �(a)� �(a)� +m(R)� �(s)� �(s)� �= 12X� nm(L)� h(��L)��L + ��L (��L) i+m(R)� h(��R)��R + ��R (��R)io; (A.33)whih an be presented also in terms of Dira superpositions �� = ��L+��Rand �� = (��L)+(��R), but only ifm(L)� = m(R)� . Hene, ifm(L)� 6= m(R)� (oreven if m(L)� ' m(R)� only approximately), the oherene of Majorana super-positions �(a)� and �(s)� seems to be physially preferred over the ohereneof Dira superposition ��.
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