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An explicit form of charged—lepton mass matrix, predicting m, =
1776.80 MeV from the experimental values of m. and m, (in good agree-
ment with the experimental figure m, = 1777.051“8:3‘2 MeV), is applied to
three neutrinos v,, v, v, in order to correlate tentatively their masses and
mixing parameters. It is suggested that for neutrinos the diagonal elements
of the mass matrix are small versus its off-diagonal elements. Under such
a conjecture, the neutrino masses, lepton Cabibbo-Kobayashi—-Maskawa
matrix and neutrino oscillation probabilities are calculated in the corre-
sponding lowest perturbative order. Then, the nearly maximal mixing of
v, and v, is predicted in consistency with the observed deficit of atmo-
spheric v,,’s. However, the predicted deficit of solar v.’s is much too small
to explain the observed effect, what suggests the existence of (at least) one
sort, z/ge), of sterile neutrinos, whose mixing with v, would be responsi-
ble for the observed deficit. Perspectives for applying the same form of
mass matrix to quarks are also outlined. Two independent predictions of
|Vusl/|Ves] = 0.0753 £ 0.0032 and unitary angle v ~ 70° are deduced from
the experimental values of |V,s| and |Vep| (with the use of quark masses

ms, m. and my). In the last three Sections, the option of two sorts, Vge)

and Vﬁ” ), of sterile neutrinos is considered. They may dominate neutrino

mixing, and even cause that two extra neutrino mass states (arising then)
are agents of some tiny neutrino instability and related damping of v, and
v,, oscillations. In Appendix, three conventional Majorana sterile neutrinos
are discussed.

PACS numbers: 12.15.Ff, 14.60.Pq, 12.15.Hh

1. Introduction

In this paper, the explicit form of mass matrix invented for three gener-
ations of charged leptons e™, u=, 77, and being surprisingly good for their

* Work supported in part by the Polish KBN Grant 2 P03B 052 16 (1999-2000).
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masses [1], is applied to three generations of neutrinos v, v, v-, in order to
correlate tentatively their masses and mixing parameters. This form reads

M(f)g(f) 200 gie? 0
1 . .
(M) = 55 | 20eme? 4u0 CLDY g Baeie |, (1)
0 8v3alNemie! 94y, (1) 0240)

where the label f = v, e denotes neutrinos and charged leptons, respectively,
while ), e alf) and ) are real constants to be determined from the
present and future experimental data for lepton masses and mixing param-
eters (1) and olf) are mass-dimensional). In our approach, neutrinos are
assumed to carry pure Dirac masses.

Here, the form (1) of mass matrices (Mé?) and (Mé?) may be con-
sidered as a detailed ansatz to be compared with the lepton data. However,
in the past, we have presented an argument [2,1] in favour of the form (1),
based on: (7) Kahler-like generalized Dirac equations (interacting with the
Standard Model gauge bosons) whose a priori infinite series is necessarily
reduced (in the case of fermions) to three Dirac equations, due to an intrinsic
Pauli principle, and (4i) an ansatz for the fermion mass matrix, suggested
by the above three-generation characteristics (7).

In the case of charged leptons, assuming that the off-diagonal elements

of the mass matrix (Mé?) can be treated as a small perturbation of its

diagonal terms (i.e., that o(®/u(®) is small enough), we calculate in the
lowest perturbative order [1]

2
()
m, = |1776.80 4+ 10.2112 (O‘—) MeV
M(e)

NOAS
p® = 85.9924 MeV + O | | — moN
'u,(e)

™
n_
>
Il

NOME
0172329 +0 | (=5 | | - 2)
W

when the experimental values of m, and m, [3| are used as inputs. In
e} O(e)

Egs. (2), the first terms are given as m,= 6(351m, — 136m,)/125, i =

29(9m,, — 4m,)/320 and g(e): 320m./(9m, — 4m,), respectively. We can
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see that the predicted value of m, agrees very well with its experimental
figure me® = 1777.051“8:32 MeV [3], even in the zero perturbative order. To

estimate (a(e)/u(e))g, we can take this experimental figure as another input,
obtaining

al®) i 0.028

@ = 0.024100%5 (3)

which value is not inconsistent with zero. Hence, ale)? = 1801?91)8 MeV? due
to Eq. (2).
For the unitary matrix (Ué%)), diagonalizing the charged-lepton mass

af
we get in the lowest perturbative order

(vs) =

matrix (M(e)> according to the relation U©) T M(¢) U7(®) = diag(m,, My, M),

1= 2 (a9)? 2 al®) ig(® 163 (a©\? 2ip©)
292 \ my, 29 my 292 mr
_20@ g 2 (a@?_ 06 (a©)? 8300 ip®
29 my 292 \ my 292 \ m, 29 m-
1613 a(9)? i) _8v3al) —ip©) 96 (a©)?
292 m, m, 29 m, 292 \ m,

(4)

2. Neutrino masses and mixing parameters

In the case of neutrinos, because of their expected tiny mass scale u(”),
we will tentatively conjecture that the diagonal elements of the mass matrix

(Mo%)) can be treated as a small perturbation of its off-diagonal terms (i.e.,

that u(*)/a(*) is small enough). In addition, we put ¢*) =0 i.e., Ml(? = 0.
Then, we calculate in the lowest perturbative order the following neutrino
masses:

My |2 M) ~ L = L)
a2 +aggp 49T 49T
48

1
e = MG+ MR+ 3 (5

_ 1 /48 (v)
= [:F7+ 2 <55+X>] | M5’ (5

M) + Mé?)

~—
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where
(v) (v) (v)
M, 7488 7
= = = 299.52——
¢ |M1(;)| 25 a) 99:5 aw)’
(v) (v)
M 160 125 1
|My | o 6.848

are relatively small by our perturbative conjecture, while

W 2 v sf
|M1(2)| = Ea( )7 |M2(3)| = 29 \/_|M12 | (7)

As seen from Egs. (5), the actual perturbative parameters are not £ and
X, but rather £/7 and x/7, what is confirmed later in Eqgs. (9). Note that
my, < 0, the minus sign being irrelevant in the relativistic case, where
only m2 is measured (cf. Dirac equation): |my,| may be considered as a
phenomenological mass of vs.

Using Egs. (5), we can write the formula
48 y
m2, —m?2, =14 <E§ + x) \MY)2 = 20721 a®) ) (8)

which will enable us to determine the product o)) from the observed
deficit of atmospheric neutrinos v, if v, — v, oscillations are really respon-
sible for this effect.

We calculate also the unitary matrix (Ué’?) diagonalizing the neutrino
mass matrix (M(%)) according to the relation UMIMWU® =
diag(my, , my,, my,). In the lowest perturbative order we obtain

v 48 24 1
Uy’ = _[1 <493_@ 52 )

v 11 36 1 i)
UV = 214+ 2 ety ¥
12 \/§7< +7-49£+28X)e ’
v 1 12, 1

Vo' = 2( Tt T 28X )
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) 1 /48 13 1\ i
Ul = 20 (12 2 e Sy ) e
52 V2 49< 7-49£+28X)e ’

v 11 36 1 W
= T S L) e,

2 7-49 28
v) 1 12 1 o)
e ¢
Vas 2( 7ot TasX) ¢
) 1 /48 13 1
Usy! = —\/—= |1+ —¢6— — 9
w = Vo LTt T asX )
with x = (125/2106)¢ = £/16.848.
Denoting by v4 = ve, vy, vr and v; = v1,15,v3 the flavor and mass

neutrino fields, respectively, we have the unitary transformation

=3 (V1) 5= Evion. (10)

i

where the lepton counterpart (V) of the Cabibbo—Kobayashi-Maskawa ma-
trix is given as V = UM TU©) ~ g0t or

Via = zﬁ: (U(m)w ule) ~ Ul (11)

the approximate equality being valid for negligible a(¢) / 1) when Uéz) ~ 684
due to Eq. (4). Of course, in Eqgs. (9) we wrote a = 1,2, 3 for simplicity.
From Eq. (10), we get the unitary transformation |vo) = >, |V3)Via, where
Vo) = y£|0) and |v;) = VZT|0> are flavor and mass neutrino states'.

In the limit of ) — 0 (implying ¢ — 0 and x — 0), we obtain
from Eqs. (10), (11) and (9) the following unperturbed mixing formulae
for v1, v, v3:

1 —ip®) 1 i) i)
— = [V48pe™ ——( — v3e'? ) W
Ve - [ vie 7 Vo — U3e e
1

i)
v, — —<V2+l/3€w ) ,

\/i
> v 48 o v > 14
vie ’LLp( ) H - (1/2 — ygeuﬂ( )> e Z(p( ) . (].2)

1

Vr — — ?
I'In place of v; = Ea Vi aVa one might use the notation v, = ZB Va gvg, analoguous
to dy, = 35 Vapdp customary in the case of quarks where Vog = 3, (U(") T) U,Edﬂ).
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These display the maximal mixing between v and v3 in all three cases and
a smaller mixing of [1/2 — v3exp (up )] /\/_ with v in the cases of v, and
vr, giving a minor admixture to v, and a dominating admixture to v, (in
v, there is no admixture of v).

2. Neutrino oscillations

Once knowing the elements V;, of the lepton Cabibbo—-Kobayashi
—Maskawa matrix, we can calculate the probabilities of neutrino oscillations
Vo — v (in the vacuum) making use of the general formula

P(vo — vg) = |(v3lva(?) Zm A VigViae®i, (13)

where |vq(t)) = exp(—iHt)|vy) and

zji = 1.26693 Am3, L/E, Am}; =m.

vj Vi (]‘4)
if Am?i, L and E are measured in eV?, km and GeV, respectively, with
L =tand E = |p| (c =1 = h) denoting the experimental baseline and

neutrino energy.
It is not difficult to show that for the mass matrix (M (%)), as it is given
in Eq. (1), the quartic products of V;,’s in Eq. (13) are always real (for

any phase ™), if only Vi, = Uéyi)* (i.e., Ug;) = 0gq). This implies that
P(vy — vg) = P(vg — vg). In general, the last relation is valid in the
case of CP invariance which, under the CPT theorem, provides the time—
reversal invariance. Because of the real values of quartic products of V;,’s,

the formula (13) can be rewritten as

P(l/a—>l/5)=55a—4zvjﬁ aVZ,szaSHl?x]z (15)
1<j

without the necessity of introducing phases of these products.

With the lowest-order perturbative expressions (9) for V;, = Ué’? * the
formula (15) leads to the following forms of appearance oscillation probabil-
ities:

2

P (1/# = V) = sin” x39

49
—1—%5 [(1 - 495) sin? o) — <1 - mf) sin xgl] , (16)
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48

Py, —v,) = 9 sin® z39
+i§ — 11— —f sin®zo + (14 Lf sin? ¢ (17)
7492 7-49 21 749 o
48
P, —v;) = ~ 192 sin® 739
96 23 1 .
—1—@ [(1 f—i— 14 ) sin® 191 + < f— — ) sin’ $31:| (18)

as well as of survival oscillation probabilities :

1
Pwe—ve)=1- — sin® 739

492
96 72 1 72 1
By i 1— —— ¢ — —y|sin? 19
197 [( +o 4gf+ X) sin $21+< - 495 14X) sin 1531] ,(19)
Py, —uv,)=1- sin? 239 — 4935 (sm T91 + sin IL'31) (20)
48\ 2
Pv,—v;)=1- <E) sin® z39

96 26 1\ ., 26 1
—@ |:<1 - mf + ) sSin” xro1 + <1 + mf - ﬂx) sin I31:| (21)

Thus, we get P (ve = ve) + P (ve = vy) + P (Ve = v;) = 1 and two other
obvious summation rules for probabilities. Among these probabilities,
P (v, — v,) displays (in the lowest perturbative order) maximal mixing be-
tween v9 and vs.

In the lowest perturbative order,

48 y
T — Ty, = T3y = 14 <E§ + x) (1.26693|M1(2) | L/E) (22)

due to Egs. (8) and (14). Hence,
sin? z31 = sin® z91 + 239 8in 2291 + m§2 sin 2z91 (23)

in experiments where z32 < 7/2. When in such cases the relation (23) is
inserted into the formulae (16), (17) and (20), its 232 and 3, terms can be
neglected in the lowest perturbative order.

Note that the mass formulae (5) imply m2 < m2, < m2,, where

My, [y, = &2/49° +0(&%) and mi,, fmj, = 1—(2/7)(48¢/49+x) +O(&?).
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Thus, the inequality 31 2 %21 > x32 holds in all neutrino oscillation exper-
iments (with some given L and E).

We have calculated the neutrino masses, lepton Cabibbo-Kobayashi—
Maskawa matrix and neutrino oscillation probabilities also in the next to
lowest perturbative order. Then, in Egs. (5) the mass m,, gets no quadratic
correction, while m,, and m,, are corrected by the terms

1 (13-48
T4\ 102

24 1
& - Lo p ) i), 24
respectively. Among the derived oscillation formulae, Eq. (20), for instance,
is extended to the form

672 , 24 L\
P(Vu_”/u):l—(l—@f+@§X—mx)8m$32
96

493
=1— (1-0.00514¢?) sin® 35 — 0.000816 &> (sin” zo1 + sin® z31) (25)

52 (sin2 To1 + sin? £E31)

displaying nearly maximal mixing between 15 and vs.

In the case of Super-Kamiokande atmospheric neutrino experiment [4],
if v, — v, oscillations are responsible for the observed deficit of atmo-
spheric v,’s, we have Tatm = 732 < 21 £ 731, what implies that sin? zo; =
sin? z3; = 1/2 due to averaging over many oscillation lengths. Then, Eq. (25)
leads to the following effective two—flavor oscillation formula:

P (v, = v,) =1— (1-0.00350£2) sin® 73 , (26)

if we assume in Eq. (25) that 0.000816£2 = 0.000816£2 (2 sin” x32) effectively.
Identifying the estimation (26) with the two-flavor formula fitted in the
Super-Kamiokande experiment, we obtain the limits

1 —0.00350£2 = sin? 20,44m ~ 0.82 to 1,

Am3, = AmZ,, ~ (0.5 to 6) x 1073 eV? . (27)
Hence, £ ~ 7.17 to 0 and
§@)
= 0.00334¢ ~ 0.0239 to 0,
a(V)
o W) = 0.483Am32, ~ (0.241 to 2.90) x 10~*eV?, (28)

where Eqgs. (6) and (8) are used. For instance, with sin? 20,4y, ~ 0.999 and
Am?2, ~5x 1073 eV? we get & ~ 0.535 and

)

o5 ~ 000178, o)~ 2.41 x 1074 V2, (29)
o 14
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what gives the estimation
o ~0.368eV, u) ~6.55x 107" eV. (30)

Note that ¢ < 1 for sin® 20aim > 0.9965. As was already mentioned, our
actual perturbative parameters are not & and y, but rather £/7 and x/7 =
0.0594¢£/7.

Having estimated o) and p(*), we can calculate neutrino masses from
Egs. (5) with (6) and (7). Making use of the values (30) (valid for sin? 20,4y, ~
0.999 and Am2, ~ 5 x 1073 eV?), we obtain

atm

my, ~ 2.76 x 107 eV,
My, ~ —1.71 x 107" eV,
my, ~ 1.85 x 107 teV. (31)

Because of the smallness of these masses, the neutrinos vy, 15, v3 are not
likely to be responsible for the entire hot dark matter.

In the case of solar neutrino experiments, all three popular fits [5] of the
observed deficit of solar v,’s to an effective two—flavor oscillation formula
require Am2, < Am2, what implies Am?2, < Am3, < Am3, £ Am},
if v, — v, oscillations are responsible for the deficit of atmospheric v,’s.
Then, z4 K z39 K 21 < %31, giving sin? T390 = sin? Tl = sin? r3] = 1/2
due to averaging over many oscillation lengths. In such a case, Eq. (19)

leads to
193

2 - 492
predicting only a 4% deficit of solar v,’s, much too small to explain solar
neutrino observations.

An intriguing situation arises in the case of formula (16) for P (v, — v.),
if v, — v; oscillations really cause the bulk of deficit of atmospheric v,’s.
Then, for a new Zpew = 32 < %21 S 231 (with some new L and FE) we
may have sin® zo; = sin® z3; = 1/2 due to averaging over many oscillation
lengths and so, infer from Eq. (16) that

Pve—ve) =1 =1-0.0402 = 0.960 (32)

2482
494

1
P (v, — ve) = — sin® 235 + €2 ~ 0.0204 sin? 235 +2.29 x 1074, (33)

49
where ¢2 ~ 0.286 (what is valid for sin%260,im ~ 0.999 and Am2,,, ~

atm
5 x 1073eV?). Such a predicted oscillation amplitude sin?260pey ~ 0.02
would lie in the range of sin® 201 gnp estimated in the positive (though still
requiring confirmation) LSND accelerator experiment on v, — v, oscilla-
tions [6]. However, the lower limit Am?qp 2 0.1eV? reported by this

experiment is by one order of magnitude larger than the Super-Kamiokande



2640 W. KROLIKOWSKI

upper limit Am§2 < 0.01eV2. On the other hand, the small predicted oscil-
lation amplitude sin? 206 ~ 0.02 would not be in conflict with the negative
result of the CHOOZ long-baseline reactor experiment on 7, — 7, oscilla-
tions [7].

In conclusion, our explicit model of lepton texture displays a number of
important features. (i) It correlates correctly (with high precision) the tauon
mass with electron and muon masses. (i1) It predicts (without parameters)
the maximal mixing between muon and tauon neutrinos in the limit p(*) —
0, consistent with the observed deficit of atmospheric v,’s. (i) It fails
to explain the observed deficit of solar v.’s. (iv) It predicts new v, — v,
oscillations with the amplitude consistent with LSND experiment, but with
a phase corresponding to the mass squared difference at least one order of
magnitude smaller.

In the framework of our model, the point (iii) may suggest that in

(e)

Nature there exists (at least) one sort, v5~, of sterile neutrinos (blind to

the Standard Model interactions), responsible for the observed deficit of so-
lar v,’s through v, — uge) oscillations dominating the survival probability
Plve > ve) ~1—P(ve — uge)) [8]. In an extreme version of this picture, it

might even happen that in Nature there would be two sorts, uge) and VLS,“ )

(1)

of sterile neutrinos, where v’ would replace v, in explaining the observed

)

deficit of atmospheric v,’s by means of v, — yg“ ) oscillations that should
dominate the survival probability P(v, — v,) ~1 - P(v, — VLS,“)) [9]. In
this case, the constant o) for active neutrinos might be even zero (however,
very small o) would be still allowed). Such a model is discussed in Sections
5 and 6.

For the author of the present paper the idea of existence of two sorts
of sterile neutrinos is fairly appealing, since two such spin—1/2 fermions,
blind to all Standard Model interactions, do follow (besides three standard
families of active leptons and quarks) [8] from the argument (i) mentioned in
Introduction, based on the K&hler-like generalized Dirac equations. Note in

(1)

addition that the v, — u§e) and v, — v’ oscillations caused by appropriate
mixings should be a natural consequence of the spontaneous breaking of
electroweak SU(2)xU(1) symmetry.

In Section 7, a possibility is considered that two extra neutrino mass

states, whose existence is implied by two sterile neutrinos uge) and u§“ ),
cause in the Standard Model framework some tiny neutrino instability and

related damping of v, and v, oscillations.
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3. Perspectives for unification with quarks

In this Section, we try to apply to quarks the form of mass matrix which
was worked out above for leptons. To this end, we conjecture for three
generations of up quarks u,c¢,t and down quarks d, s,b the mass matrices

(MSZ;) and (Mo(é%)), respectively, essentially of the form (1), where the

label f = u,d denotes now up and down quarks. The only modification
introduced is a new real constant C) added to £/) in the element Mg)
which now reads

24,
Qg 25“—29 (62440 4+ c) . (34)

Since for quarks the mass scales p(*) and ;{4 are expected to be even
more important than the scale u(e) for charged leptons, we assume that the

(d)

off-diagonal elements of mass matrices (M(Sg)) and (M o ﬁ) can be consid-

ered as a small perturbation of their diagonal terms. Then, in the lowest
perturbative order, we obtain the following mass formulae

(u7d) (u,d) 2
— P (ud) _ pwd) [ &
Mhusd 29 © A (W,d)) ’

Mes = M(;S;d)g (80 n 6(%,1)) + (A(“vd) B B(“’d)) (a(u,d)

2
(u,d) 94 (u,d)
_ K (u,d) (u,d) (u,d) [ &
miy = Log=2e (6244 0) 4+ B ( (%d)) . (35)

o’
where
Alwd) _ () 36 Blwd) _ () 10800

29 320 — 5He(ud)’ 29 31696 + 54C(wd) 4 29¢(u.d)

(36)
In Egs. (35), the relative smallness of perturbating terms is more pronounced
due to extra factors. In our discussion, we will take for experimental quark
masses the arithmetic means of their lower and upper limits quoted in the
Review of Particle Physics [3] i.e.,

my = 3.3MeV, m.=13GeV, m; =174 GeV (37)

and
mg=6MeV, mg; =120MeV, my = 4.3GeV . (38)
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Eliminating from the unperturbed terms in Eqs. (35) the constants (%%
and (™% we derive the correlating formulae being counterparts of Egs. (2)
for charged leptons:

6 (u,d) 2
myp = ﬁ (351mc,s - 136mu7d) + MZQ %C(u;d)

2
(u,d)
L (292214(“#0 - 22313(“@)) (O‘_> :

125 ()

320 320

2
u,d
6(u’d) _ 29mu7d+ 29)A(u’d) (a( )) ‘ (39)

2
(u,d)
,U(u’d) — 2 (gmc’s _ 4mu,d) _ E <5A(u,d) B gB(u,d)) (a > ’

M(u,d) M(u,d M(u,d)

The unperturbed parts of these relations are:

o (ud
o 6 (351 136 )+M(u )24 é(u’d)
m = — — R —
Lb T qgp (OO Mes Mouyd 29 25
O(uvd)

21.9 B 24 ol(ud)

o (u,d) 29
I

1060
= % (9m67s - 4mu7d) = { 05.7 } MeV,

olwd)  29myg4 { 0.0904 }

o (u,d) 1.82
I

(40)

In the spirit of our perturbative approach, the “coupling” constant alwd)
can be put zero in all perturbing terms in Egs. (35) and (39), except for

u,d

oD 2 in the numerator of the factor (oz(“’d)/,u(“7d))2 that now becomes

o(u7d) 2
<0‘(“’d)/ H ) . Then, A% and B9 are replaced by

o (u7d)

s _ 36
= (i)’
29 390 _ 52"
way Y 10800
o (u, /,[/
B B o (u,d) o(u,d) ) (41)

31696 + 54 C +29 ¢
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Note that the first Eq. (35) can be rewritten identically as my,q =
o(u.d) o d
% e(u )/29 according to the third Eq. (40).

We shall be able to return to the discussion of quark masses after the
estimation of constants &) and a(? is made. Then, we shall determine the

o (u) o (d)
parameters C*) and C(%) (as well as their unperturbed parts ¢ and C

playing here an essential role in providing large values for m; and my,.
At present, we find the unitary matrices (Uo%’d)> that diagonalize the

mass matrices (Mo(é%’d)> according to the relations U Tpf(wdyud) —
diag(muy,q, Me,s, Mip). In the lowest perturbative order, the result has the

form (4) with the necessary replacement of labels:

() > (u) or (d), pu—cor s, 7—torb, (42)
respectively.
Then, the elements V3 of the Cabibbo-Kobayashi-Maskawa matrix

V = UWIUW@ can be calculated with the use of Eqs. (42) in the lowest
perturbative order. Six resulting off-diagonal elements are:

Voo — _yr— 2 @ew@ o ie™

us cd 99 \ m, Me ’

Vip = V' = 8v3 @ew(‘“ _ ﬂew(") ~ %@ew@

¢ 7 929 \ m, my T 29 my ’
v 16VBaa®

Y 841  memy ’

164/3 ald)?2 2o

Vig 2~ ————e % 43
td 841 msmbe ’ (43)

where the indicated approximate steps were made due to the inequality
my > my and/or under the assumption that o™ /m. > a(¥ /my [cf. the
conjecture (46)]. All three diagonal elements are real and positive in a good
approximation:

1
Vud ~ 1- §|Vus|2a

Ves

1

1 1
1- §|Vus|2 - §|Vcb|2a

1

1
Vb = 1= 5 [Val” (44)
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In fact, in the lowest perturbative order,

d )
arg Viya ~ 4 oo sin <<P(u) - SD(d)> 150 ~ —arg Ve, argVy ~0,
841 MM T
(45)
what gives arg V,,4 = 0.88° = —arg Vs, if the values (46), (49) and (52) are
used.
Taking as an input the experimental value |V = 0.0395 £ 0.0017 [3],
we estimate from the second Eq. (43) that

(@) ~ V| = (355 £15) MeV 46
(0% m c (V]
8\/_ b | b| ( ) ( )

where m;, = 4.3 GeV. In order to estimate also o™, we will tentatively
conjecture the approximate proportion

o oD ~ Q2. )2 = 4 (47)

to hold, where Q) = 2/3 and Q@ = —1/3 are quark electric charges. Note
that in the case of leptons we had a( ) cal®) = 0.37 : (V180 x 10) =
2.8 x 1078 for the central value of a!® [¢f. Eqs. (3) and (30)], what is
consistent with the analogical approximate proportion

o a8 ~ Q(V)2 . Q(e)2 =0, (48)
where Q) = 0 and Q® = —1 are lepton electric charges. Under the
conjecture (47):

o™ ~ (1420 + 60) MeV . (49)

In this case, from the second and third Eq. (43) we obtain the prediction

2 o
[Vaol / Ve | = 55— = 0.0753 + 0.0032, (50)
C
where m, = 1.3 GeV. This is consistent with the experimental figure

|Vl /| Ves| = 0.08 £+ 0.02 [3].

Now, with the experimental value |V,5| = 0.2196 £ 0.0023 [3] as another
input, we can calculate from the first Eq. (43) the phase difference () — p(d).
In fact, taking the absolute value of this equation, we get

1m ms\2 841
(w) _ (@) e s - _
cos ((p © ) s m, [1 + 16 <mc) e (a 0.0301

) Vil

(51)
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with m. = 1.3 GeV and m, = 120 MeV, if the proportion (47) is taken into
account. Here, the central values of a{® and |V,;s| were used. Hence,

o) — oD — 91.7° = _88.3° 4 180° (52)

so, this phase difference turns out to be near 90°. Then, calculating the
argument of the first Eq. (43), we infer that

; - sin (o) — (@)
tan (arg Viys — o )) Rt v Ty (o @] 0.365,
(53)
what gives
arg Vis = —20.1° + (@ . (54)

The results (52) and (54) together with the formula (43) enable us to
evaluate the rephasing-invariant CP-violating phases

arg (Vs Vo Vup) = 20.1° — 88.3° = —68.2° (55)
and
arg (VogVisVia) = —20.1°, (56)

which turn out to be near to —70° and —20°, respectively (they are invariant
under quark rephasing equal for up and down quarks of the same genera-
tion). Note that the sum of arguments (55) and (56) is always equal to
o) — () _ 180°. Carrying out quark rephasing (equal for up and down
quarks of the same generation), where

arg Vs — 0, argVy — 0, arg Vg — 180°, arg Vi, — 180° (57)

and arg Vyq, arg Vs, arg Vy;, remain unchanged, we conclude from Egs. (55)
and (56) that

arg Vyp — —68.2° ) arg Vg — —20.1°. (58)

The sum of arguments (58) after rephasing (57) is always equal to
o) — pld) —180°.

Thus, in this quark phasing, we predict the following Cabibbo—Kobayashi
—Maskawa matrix:

0.976 0.220  0.00297 ¢ ©68-2°
(Vag) = —0.220 0.975 0.0395 ) (59)
0.00805e %2017 _0.0395 0.999
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Here, only |V,s| and |Vg| [and quark masses ms, m., my consistent with
the mass matrices (M é}?) and (M é?)] are our inputs, while all other ma-
trix elements Vg, partly induced by unitarity, are evaluated from the re-

lations derived in this Section from the Hermitian mass matrices (MS;;)

and (Mé?) [and the conjectured proportion (47)]. The independent pre-

dictions are |Vy| and argVy,. In Eq. (59), the small phases arising from
Eqs. (45), argVyq = 0.9° and arg Vs = —0.9°, are neglected (here, arg
(Vuchthb) = O)

The above prediction of V,g implies the following values of Wolfenstein
parameters [3]:

A=02196, A=0819, p=0.127, 5=0.319 (60)

and of unitary—triangle angles:

v = arctan L arg V,p = 68.2°,
p

[ = arctan 1 1 P = —arg Vg = 20.1°. (61)

The predicted large value of y follows the present experimental tendency.

If instead of the central value |V,s| = 0.2196 we take as the input the
range |Vis| = 0.2173 to 0.2219, we obtain from Eq. (51) o) — o(d) =
89.8° to 93.6° (with V| = 0.0395 giving /¥ = 355 MeV), what im-
plies through Eq. (53) that arg Vi — @ = —20.3° to —19.8°. Then,
after rephasing (57), argV,, = —69.9° to — 66.6° and arg V;y = —20.3° to
—19.8°. In this case, the Wolfenstein parameters are A = 0.2173 to 0.2219,
A = 0.837 to 0.802, p = 0.119 to 0.135 and n = 0.325 to 0.312 (here,
A2+ 0% = |Vl /|Ves| = 0.0753 is fixed). Thus, v = —arg V,, = 69.9° to
66.6° and g = —arg Vg = 20.3° to 19.8°.

In contrast, if the central value |Vq| = 0.0395 (giving o{® = 355 MeV) is
replaced by the input of the range V.4 = 0.0378 to 0.0412 (corresponding to
oD = 340 to 370 MeV), we calculate from Eq. (51) that () —o(@) = 97.3° to
84.9° (with |Vys| = 0.2196), what leads to argV,; — (¥ = —19.3° to —20.9°.
Hence, after rephasing (57), argV,, = —63.4° to —74.6° and argVyy =
—19.3° to — 20.9°. In this case, the Wolfenstein parameters take the values
A =10.2196, A = 0.784 to 0.854, p = 0.149 to 0.0951 and n = 0.298 to 0.345.
Thus, v = —arg V, = 63.4° to 74.6° and f = — arg Vi = 19.3° to 20.9°.
Here, |Vy5| = 0.00273 to 0.00323 and |Vi4| = 0.00738 to 0.00874.
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Eventually, we may turn back to quark masses. From the third Eq. (35)
we can evaluate

2
29 25 29 25 a(wd)
(ud) _ 27 49 o4 _ ~lud) _ 29 pud) [ Y77
C M(“’d) 54 myp — 624 — € M(“’d) o B (M(“’d)) , (62)

what, in the framework of our perturbative approach, gives

2
o (u7d) o ('qu) o (U7d) (uad)
clud) _ gD 29 %5 29 <5 swd oo ) (a )

o(ud) 24 Y T (ud) > (wd)
K 24 320 p L
2
29 o(u,d) o (u,d) o(tsd)
o (A + B ) ( ) | (63)
H 1
where

o (u,d) 29 25 o(u,d) 4339 4340
¢ o m ﬂ b = 624— ¢ - { 733.9 } = { 733 } . (64)

With the central values of a® and (% as estimated in Egs. (46) and (49)
we find from Egs. (41)

2 2
o (u,d) [ qu.d) 7.39 o (ud) [ () 2.66
4 (o(u,d) :{ 5.26 } MeV, B W) :{ 6.88 } MeV,

I I
(65)
where
o (u,d) 2
P o) 65.6
29 <o<u,d)) - { 454  MeV. (66)
W
We calculate from Egs. (63) with the use of values (65) that
() _ J 43394525 | _f 4344 | _ [ 4340
¢ { 733.2 - 49.5 683.7 6sa [ (67
Similarly, from the second Eq. (39), making use of the values (65), we
obtain
(ud) _ J 1060 —1.18 _ J 1059 _ J 1060
# { 05.7+3.23 | MoV 98.9 [ MeV 98.9 [ MeV-

(68)
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. . O(u’d) 0(u7d)
We can easily check that, with the values (40) for ¢ and € and

o (uvd)
the value (64) for C determined as above from quark masses, the un-
perturbed parts of mass formulae (35) reproduce correctly these masses. In
fact,

mCS

o o(u,d
g = B €= {7 Jone,
1300
ST { 120}Mev’
O(uad)

o W 24 o(ud) o (usd) 174

[0
‘t
|
A/~
oo
(an)
T
mo
R
2
~
Il

The same is true for the unperturbed part of the first correlating formula
(39). The — here omitted — corrections to Egs. (69), arising from all
perturbing terms in the mass formulae (35) (including the corrections from
opwd) | §e(wd) and 60D are relatively small, viz.

3.7 x 1073 9.5
OMy,q = { —90x 10~ } MeV, émes= { 338 } MeV ,

dmyp = { _1;01 } MeV, (70)

respectively.

We would like to stress that, in contrast to the case of charged leptons,
where m, has been predicted from m, and m,, in the case of up and down
quarks two extra parameters C®) and C(@ appear necessarily to provide
large masses m; and my (much larger than m,). They cause that my (my)
cannot be predicted from m, and m, (mg and my), till the new parameters
are quantitatively understood.

Note that a conjecture about C®*) and C(4) might lead to a prediction for
quark masses and so, introduce changes in the “experimental” quark masses
(37) and (38) accepted here. The same is true for a conjecture about ¢(*)
and (@),

For instance, the conjecture that the phase difference ¢ — (@ is max-
imal,

P — ol = 90°, (71)
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leads through the first equality in Eq. (51) to the condition

2
Mg 841 s mg \? 9

predicting for s quark the mass

ms = 118.7MeV = 119 MeV (73)

(with a(® = 355 MeV), being only slightly lower than the value 120 MeV

used previously. Here, m. and m; are kept equal to 1.3 and 4.3 GeV, re-
O(d) o d
spectively (also masses of u, d and ¢ quarks are not changed, while 1t | 6( )
o (d)
and ¢ change slightly). Then, from the first equality in Eq. (53)

tan (arg Vis — (p(d)) — 4™ — 0365, argVis = —20.1° + o@D (74)

me

After rephasing (57), this gives arg Vi +arg Vig = ¢ — (@ —180° = —90°,
where

arg V,p = —69.9°, argVjy = —20.1° (75)

i.e., practically —70° and —20°. All |V,5| remain unchanged (with our inputs
of |Vis| = 0.2196 and |V ;| = 0.0395), except for |Vi4| which changes slightly,
becoming

V,q| = 0.00814. (76)

Thus, in the Cabibbo—Kobayashi-Maskawa matrix predicted in Eq. (59),
only |Vi4| and the phases (75) show some changes. The Wolfenstein param-
eters are

p=0118, 15=0.322 (77)

and A and A unchanged (here, the sum p? 4+ 7% = 0.118 is also unchanged).
Hence, v+ 8 =90° and a = 180° — v — 8 = 90°, where

v = arctan L arg Vyp = 69.9°, [ = arctan 1 L arg Viq = 20.1°.
p —p
(78)

So, in the case of conjecture (71), the new restrictive relation

n_1l-p
—=——, P47 =p (79)
P

holds, implying the prediction

(1=p)+n*
[Vial/[Vus| = \/% == 2.74, (80)
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due to the definition of p and 7 from V,;, and Vi4. It is in agreement with
our figures for |Vi4| and |V,p|. Then, the new relationship

Ime _olme _n (81)
4dms  oWmg  p

follows for quark masses m., ms and Wolfenstein parameters p, 1, in conse-
quence of Egs. (43) and the conjectured proportion (47). Both its sides are
really equal for our values of m., ms and p, 1.

Thus, summarizing, we cannot predict quark masses without an addi-
tional knowledge or conjecture about the constants p(%®) g(wd) C(wd) o (u.d)
and (4 (in particular, the conjecture (71) predicting m, may be natural).
However, we always describe them correctly. If we describe them jointly
with quark mixing parameters, we obtain two independent predictions of
|Vup| and y = — arg Vy;: the whole Cabibbo—Kobayashi-Maskawa matrix is
calculated from the inputs of |V,5| and of |Vy;| [and of quark masses mg, m,

and my consistent with the mass matrices (M(Sg)) and (M(Efé))]

Concluding this Section, we can claim that our leptonic form of mass
matrix works also in a promising way for up and down quarks. But, it turns
out that, in the framework of the leptonic form of mass matrix, the heaviest
quarks, ¢ and b, require an additional mechanism in order to produce the
bulk of their masses (here, it is represented by the large constants C™) and
C@). Such a mechanism, however, intervenes into the process of quark
mixing only through quark masses (practically m; and m;) and so, it does
not modify for quarks the leptonic form of mixing mechanism.

4. A model of texture with two sterile neutrinos

Assume that there are two sorts, uge) and yg“ ), of sterile neutrinos (blind

to all Standard Model interactions and so, interacting only gravitation-
ally). Conjecture that their mixings with two active neutrinos v, and v,

respectively, dominate all neutrino mixings. Thus, five flavor neutrino fields,
(e) (m)

Vo = Ve, Vy, Vr, Vs ', Vs, exist in this texture and mix according to a neu-
trino mass matrix M®*). This can be assumed consistently in the following

5 x 5 form:

MY 0 o MY 0
My 0 0 My
M(V) — (MC%)) 0 0 Még) 0 0 (82)
My 0 0 0 0
My 0 0 0
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with M(%) = M/(;Z)*, My = |M | and M aﬁ =|M |exp (ip®)) for a < B,
(v)

where the diagonal elements M}’ , M2(2) and M§3) are given in terms of p(*)
and £ as in Eq. (1) (with f = v). Here, we put MEZ) =0= Még) and
even Ml(;) =0= Mg(g), the latter implying o) = 0 due to Eq. (1) (with
f =v). With such a specific ansatz as (82), all neutrino mixings are caused
by the existence of sterile neutrinos responsible for the off-diagonal matrix
elements Ml(i) and Még)

It is important to notice that, according to the useful formula for electric
charge, Q@ = I¥ + Y/2 with Y/2 = IF + (B — L)/2, sterile neutrinos can

carry no lepton number, L = 0. This may be a reason for ML’I) =0= Még)

On the other hand, the off-diagonal matrix elements MI(Z) and MQ(g), if non
zero, violate the lepton number conservation.

The mass matrix of the form (82) leads to the following masses corre-
sponding to five mass neutrino fields v; = vy, 19, v3, vy, Vs:

MY M®\’ )
mV17V4 = 2 :l:\ 2 + |M14 |2 3
My, = M?Eg) )
(v) )\ 2
M. M. v
Myy,vs = 222 :l:\ ( 222 ) + |JM2(5)|2 . (83)

Note that in Eq. (82) we used for simplicity « = 1, 2, 3, 4, 5, which con-
vention, if used properly, does not introduce any serious confusion with
1=1,2,3,4,5.

The corresponding 5 x 5 unitary matrix U®*), diagonalizing the neutrino
mass matrix (82) according to the relation

UNT M@ U®) = diag(my, , My s My > May s Mas) s
takes the form

U — (U(I{)> _

[0%)

1 X ip™®)
VX2 0 0 A= 0 "
1 Y il
0 e 0 0 RN
0 0 1 0 0 ,
X —ip®) 1
X7 © Y 0 0 1+X2 0
Y —ch(") 1
0 Nirsel: 0 0 e
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where
v v v 2
x = M _Ml(l) _ Ml(l) 1 Ml(l)
= O Wy T T ©)
M) Mm@\ \ M)
v v v 2
v = T i Mg(?u)) " H( M%u)) ) - (89)
M) oM\ \ M)

Note that always 0 < X <land 0<Y < 1.
The flavor neutrino fields v, are connected to the mass neutrino fields v;
through the five-dimensional unitary transformation

Vo = Z(VT)M v; (86)

i
with (V‘L)ai = (V);, = V,,, where V = (Vi) denotes the lepton 5 x 5
counterpart of Cabibbo—Kobayashi—-Maskawa matrix:

v = uWige
(e) —
U, (a,8=1,2,3) 0
v = (U8) = o . (87)
0 dap (o, =4,5)

where (Uéeﬂ) (a, B = 1,2,3)) is the charged-lepton diagonalizing unitary

matrix given perturbatively in Eq. (4). If there o(®)/u(®) (jointly with its
numerical coefficients) is neglected, then U(®) ~ (d,4) and so, we can put in
Eq. (86)

i (), = (0010) = (0¥) =0

(%]

In our model, UO(Z)

are given as in Eq. (84).

5. Neutrino oscillations and their possible damping

Having once found the extended Cabibbo-Kobayashi-Maskawa matrix
V, we can calculate the probabilities P(r, — vg) of neutrino oscillations
Vo — vg (in the vacuum) i.e., the probabilities of (vacuum) oscillations of

the flavor neutrino states |v,) — |vg), where |v,) = VL|O) and

Vo) = Z_ Vi) Via (89)
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with |v;) = VZT |0). If allowing that, in general, not all mass neutrino states
|v;) are absolutely stable, then

vi(t)) = e T ) = Juy)e Pt (90)

where E; = /p? + m2, ~ |p|+m? /2|p] and v; = (|my,|/E) 'yz-(o) are neutrino

energies and decay widths (with %_(0) and E ~ |p] denoting the neutrino decay
widths at rest and neutrino beam energy, respectively). Thus, generally,
we obtain for neutrinos (in the vacuum) the following damped oscillation

formulae:

P(Ua — yﬂ) — |<Vﬁ|e_i(H_iF)t|Va Z V]ﬁ ‘/Zﬁ ZOée (E]_Ez)te_(wj+'yz)t
= 0a + Z Vig j*oc ifﬁVia [el(EffEi)te*(%‘Jr%)t —1]. (91)
ji

They are analogues of the formulae for K% — K’ and K — KO oscillations.
Note that Eqs. (91) imply the probability sum rules in the nonunitarity form

> Plva —vp) =Y |Viel?e 2, (92)
B i

in spite of the unitarity of V. Of course, the rhs of Eq. (92) is equal to
1, if all (here involved) 4; are zero. In this case, the damping in Eqs. (91)
disappears and they become the conventional neutrino oscillation formulae.
The same is true for the next Egs. (93).

If the quartic products in Eqgs. (91) are real (as it turns out to be in our
case), we can rewrite these equations in the form

P(vy — vp) ZV5 i VigViae — (i)t

B, - E,
o ZV5 jo 25 Via Vi sin’ <% t) e_(’yj'f")/i)t’ (93)

7>

where the first term is equal to

Zvaﬁ aVisVia [1 — e (] (94)

Writing (E; — E;)t = Am L/2F and (7yj+7i)t = (|mw, |'y](.0)—i—|ml,i|'yi(0))L/E'
with Amji = mgj —m2,, E’ |p] and L = ¢, and then expressing the neutrino
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masses m,,; and rest widths 72(0) in eV, the experimental baseline L in km

and the neutrino beam energy in GeV, we can insert

E; — E; Am?.L
%t — 1.27% =z —x;,
0 0
(I, |1 + o)L

(v; + 7))t — 5.07 7 =yt (95)
in Eq. (91) and (93) (here, c =1 = h)2.

From Egs. (93) with Vi, = U(EZ-)*, we derive in the case of our form
(84) of Ug:-) the following damped oscillation formulae for active neutrinos
Ve, Vy, Vr (in the vacuum):

Plve—v,) = 0=P(v, = ve),

Plve—v;) = 0=Pv; = ve),
Py, —v;) = 0=Pv; - 1,),
e Y + X2eva\” 2X \? . _
Poco ) = (S5 )~ (i) st —eetem),
e7¥2 4 Y2 ¥\ 2 2y \? | 9 _ .
P ) = () (s st —ae ),
P, »v,) = e 2 (96)

(e) (m)

and those where, beside v, , v, , v;, the sterile neutrinos vs ', vs "’ partici-
pate explicitly:

—Y1 _ a—Ya) )\ 2 2

Plv, — vy = 0,

?> The insertion L = vt with v = |§]/E ~ ¢ (c = 1) is called by Lipkin [10] the “right
handwaving” which converts the “gedanken oscillation experiment” in time into the
real oscillation experiment in space. In the first experiment, a flavor neutrino is
created by a weak-interaction source (of size <« L) in a momentum eigenstate |V, p)
being a superposition of a few energy eigenstates |v;, E;) (with E; = (/p2 4+ m2))
describing mass neutrinos evolving in time. Inversely, in the second experiment, the
flavor neutrino is emitted in an energy eigenstate |v,, E) given as a superposition of a
few momentum eigenstates |v;, p;) (with |pi| = y/e2 — m2,) describing mass neutrinos
propagating in space (the requirement of coherence within this superposition leads
to the condition | |Fi| — |F;| | < 1/source size). In the first case E; — E; ~ Am; /2|p],
while in the second |p;| — |pj| ~ Amj;/2E. Here, E ~ c|p] (c = 1). A “wrong
handwaving” would be the insertion L = v;t; with v; = p/E;.
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Py, — Vge)) =

Y2 _ o=U5)\ 2 2
Py, — v = M) +< 2y ) sin? (x5 — mo)e ¥5F92),

14+Y? 14Y?2
Py, — Vge)) =
P(vy, — M) =

o o -~ N o

(97)

The probabilities (96) and (97) satisfy the sum rules (92) which now read :

e 4 X2em W4
P(Ve_>Ve)+P(Ve_>V§e)) - 14+ X2 )

e”2 4+ Y2em s
P(v, = v,) + Py, — vy = 577 . (98)

Note that damping in our neutrino oscillation formulae decreases with

growing neutrino energy E, because y; = 5.07|m,, |7Z(0)L /E decreases. Thus,
the larger v,—neutrino energy is explored in r,—neutrino experiments, the
smaller damping influence is exerted on P(vq, — 1), provided not all (in-
volved) ~; are zero. Of course, the effect of damping, if any, is expected to
be very small.

6. A mechanism of negligible damping

Now, we turn to the discussion of a possible mechanism of neutrino
instability s.e., instability of mass neutrino states. To this end observe that
the neutrino weak current

JIH = Gy ver, + Upiy vur, + iy ver (99)

though it is diagonal in the active neutrinos v, , v, , V7, is no longer diago-
(e)

nal in the mass neutrinos vy, v9, v3, v4, Vs, if the sterile neutrinos vs /,
y§” ) really exist. In fact, inserting in Eq. (99) the unitary transforma-
tion (86), we obtain generally, beside 7;;,v"v;r,, some nondiagonal products
Tiry*vjr (i # j), since only three of five products Zarv"var, are originally
present in Eq. (99).

For instance, in the case of our form (84) of U(”), the unitary transfor-

mation (86) with V%, = U gives
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1 @)
Vo = ——— (1 — X1ye'? )
¢ Virx? (1 =00
1 ()
v, = ———— (o — Yuse¥ ),
» = (e
Vr = V3,
vle) = ! (Xz/ e 1y, )
: T+xz ’
by = L (YVQe—isoW +u5>. (100)
V1+Y?

Thus, in our case, the neutrino weak current (93) transits into the form
1
1+ X2
-X (ylLfy y4Le“p "L viyHvipe i“"(u))] + By vsL
1
1+Y?

-Y (V2L’Y vspe?” + iry vare ZW))]- (101)

Since in the Standard Model Lagrangian this neutrino weak current is
coupled to the Z boson [with the coupling constant —g/(2cosfy) =
—e/(2sin Oy cos by )], some neutrino decays of the type v; — v v ) with
(1,5) = (1,4) or (4,1) and (2,5) or (5,2), and with similar (k,I),
are Z-mediated, so that they can be real processes if only
[my,;| > |my,;| + |my, | + |my,| (here, 7 denotes an antiparticle of 1;).

In the case of our neutrino mass spectrum (83), we get the inequalities
my, > |my,|, my, > |my,| and my, > m,,, where in the last relation we make

JWu — [mv“m + X2 Ty v,

+— [V2L'Y vor, + Y sy vy,

use of MQ(;) > Mllf). Further, |m, | > my,, |my,| > |my,|, my, > m,, and
My, > ||, Y — X > MY /|ME|, Y > X, ¥ < (M) — M)/ ||
and Y < Még)/|M2(g)|, respectively. Thus, for Y — X > M1(§)/|M2(g)| and
Y < (Még) - MQ(Z)) / |M2(g)| all these inequalities hold. In this case, therefore,

|, | < my, < |my| < my, < my,, (102)

showing that then |m,,| is the lowest neutrino mass.
We can see that for any virtual decay v1 — v4 vy v we get

my, — |m,,4| - |ka| - |mV1| < my, — |mV4| - 2|mV4|

= 21\411 \/Mll +4|M14 2
= MY oMY |X > or <0, (103)
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depending on X < or > Ml(lf)/2|M1(Z)|. This implies that, a priori, the
decay width of vy neutrino may be 1 # 0 or 7 = 0, respectively. Since
|my, | < my,, no virtual decay v4 — v v ) can be a real process, what leads
to 4 = 0 for v4 neutrino.

Similarly, for any virtual decay vo — v5 v, ), we obtain

Moy — My | — |ka |- |m,,l | < myy, —|my | —2|my,|

= MY + M) MY P
= MY oM |Xx >0 (104)

if X < MY /21MY)|, where MY = (4/9)(80/e® — 1)M") with £ < 1
(cf. Eq. (1) with f = v). If true, this gives a nonzero decay width 9 # 0 for
v9 neutrino. On the other hand, for v5 neutrino 5 = 0, since |m,,| < my,.

Anticipating that v; = 0 (or is extremely small) and putting y3 = y4 =
75 = 0, we obtain from Egs. (96) and (97) the following neutrino oscillation
formulae (possibly damped if v5 # 0):

2X
P(Ve—>l/e) = 1_<]_—{—7

e v + Y2\’ 2y \? .
P = (ryr) ~ (roys) st =

2
) sin?(z4 — 1) =1 — P(ve — ),

e 4 Y?
- W_P(”“_}”gm)’
Plv; - v:) = 1. (105)
Here,
W) 17 ®) W) 17 ®)
M| MY L My | My L
T — Ty = 2.53& Ty — x5 = 2.53M . (106)

E ’ E

From the neutrino mass spectrum (83) and the definitions (85) of X and
(

Y, we can derive the useful equations expressing Mllf) and |M1(Z)| through
X and Am2,, as well as MQ(;) and |M2(g)| through Y and AmZ,:

Y 1— X2 1/2 y X2 1/2
My = <7Am%4) M| = <ﬁAm%4) (107)
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Further, writing

2 2

2Y

1> 2. 200¢) 1> = sin? 20\ | 109
14+ X2 14+Y2

we obtain
1>X=tan6®, 1>V =tang®, (110)

where 0 < 20(9) < /2 and 0 < 20(®) < /2. We can see from Egs. (108)
that for a fixed finite |M2(g)| we get Am3, — 0 as Y — 1, excluding in this
limit the corresponding neutrino oscillations. On the other hand, if we insist
in an argument to keep Am3; fixed and nonzero as Y — 1, we formally have
|M2(g)| — 00, implying m,, — oo and |m,, | — oo. (In both cases MQ(Z) —0
as Y — 1.) Analogical conclusions follow from Egs. (107) for |M1(Z)| and
Am?, (and Ml('f)) when X — 1.

The first Eq. (105) enables us to ascribe the observed deficit of solar ve's

to Ve — u§e) oscillations. In fact, we can determine our parameters Ml('f)

and |M1(Z) | putting

2X 1\’
<m> = SiIl2 20SOlaI‘ ~ 075,

Am?, = Am?2,,, ~6.5x 107" eV?, (111)
if the global vacuum fit to solar data [5] is chosen. Then, due to Egs. (110)
and (107)

X = tanOgpar ~ 1/V3 = 0.577,
MY~ 570 x 1070 eV,
MY ~ 4.94x 10 6 eV . (112)

Here, we can see that Ml('f)/2|M1(Z)| = (1-X2)/2X ~ 1/v/3 ~ X. Thus,
the condition leading to 1 = 0 is satisfied on the edge [c¢f. Eq. (103)]. At
the same time, this shows that the condition MQ(S) / 2|M1(Z)| > X, providing
72 # 0 in the second Eq. (105), is fulfilled comfortably [c¢f. Eq. (104)].
Damping in the second Eq. (105) complicates our discussion, though it is
natural to expect that this formula allows us to ascribe the observed deficit

(1)

of atmospheric v,’s to v, — vg'’ oscillations. In fact, anticipating that
damping in this case is tiny [¢f. Eq. (119)], we may write exp(—y2) ~ 1 —ys
and, therefore,
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2y 1\ .
Py, —v,) ~1- <m) sin?(z5 — )
2y \[1 .,
—y <1—|—7Y2> [5 —sin®(z5 — z2) |, (113)

where the coefficient at yo in the correction O(y2) is almost compensated to
zero. Thus, we can put approximately

2y \?
<1+Y2> ~ $in” 20,¢m ~ 0.82 to 1,

Amis ~ Am?2, ~ (0.5 to 6) x 107 eV?, (114)
where the recent data from Super-Kamiokande atmospheric neutrino exper-
iment [4] is applied. Here, we will put, for instance, sin?20,¢m ~ 0.999 and
Am2,  ~5x 107 eV? as in Section 3. Then,
Y ~ tan Oum ~ 0.969 , MY ~0.126x 107" eV | |MY)| ~1.99x 107 eV
(115)
due to Egs (110) and (108).
Making use of the estimations (112) and (115), we can evaluate ¢*) and
1) from Eq. (1) (with f = v),
W = ?0) oy ~ 1.61 % 1072,
1+ 9MY jam”
v _ 29M)
a )

~1.03x 10 2eV, (116)

and then, the neutrino masses m,,, m,,, m,,, m,, and m,, from Egs. (83),

my, ~ 855 x107%eV |, m,, ~—-285x10"%eV,

My, ~ 2.05x 107" eV | m,, ~—1.93x 107" eV (117)
and )
_p24 ) -1
ma, = B <624+5 ) 212 x 10 ! eV . (118)

These masses satisfy consistently the inequalities (102) and reproduce the
experimental values (101) and (114): Am?, ~ 6.5 x 107" eV? and Am; ~
5x 103 eV2.

Now, we can evaluate the total decay width at rest, %_(0)’ for a mass

neutrino v; decaying through the Z-mediated processes v; — v; v}, i, where



2660 W. KROLIKOWSKI

m; = Ej + E, + E; > mj + my, +my with m,, = |m,,|. In the case of ma,
ms and mo — ms dominating over my and my (k, I = 1,4), we obtain the
approximate formula

0 _1 G%
20T 4 1923

2
<1 _:/y?) (mg — ms)" (ma + 2ms) (119)

where the total decay width 750) is the sum of four partial decay widths for
vy = vz with (k, 1) =(1,4), (4,1), (1, 1), (4, 4) which are propor-

tional to
Y \/ x \? Y \V/ x \?
<1+Y2)<1+X2)’ <1+Y2)<1+X2)’

Y \/ 1\’ Y \¥ x2 \°
() (m) (o) (=)
respectively, the sum of these weights being equal to Y2/(1 + Y?2)2. In this
calculation, we used the Standard Model coupling of the neutrino weak cur-
rent (101) to the Z boson [with the coupling constant —g/(2 cos fyy), where
Gr/V2 = ¢?/(8My) = ¢*/(8 Mz cos by )], and considered the situation
when (pg — ps) < M2 at the rest frame of decaying vy: pa = (msz, 0). In
Eq. (119), the factor 1/4 at the front is a consequence of using the neutral
weak current (rather than charged weak current), while Y2/(1+Y?2)?2 stems
from mixing of active and sterile neutrinos.
If Y, mo and ms are estimated as in Eqs. (115) and (117), then the
formula (119) gives (with the Fermi constant G = 1.17 x 107> GeV ?) the
extremely small value

AW 1075 eV (120)

corresponding to the enormous lifetime 7 =1 /'yéo) ~ 10% sec (as eV ! =
6.58x 10716 sec). This implies for the Super-Kamiokande atmospheric exper-
iment that ys = 5.07may " L/ E ~ 10755 with myy”) ~ 10750, I, ~ 1.3 x 104
and E ~ 1 expressed in eV?, km and GeV, respectively. Thus, practically,
yo = 0 and so exp(—y2) = 1. If mg = m,, and ms = |m,,| grow by one
order of magnitude (what is the case when sin 20,¢, rises to 0.9999 and so,
Y to 0.990), then 'yéo) becomes not larger than ~ 1075 eV and 7 not
smaller than ~ 1038 sec.

Concluding the last Section, we can say that damping in neutrino oscil-
lation formulae can be completely neglected, unless there are other sources
of neutrino instability [11], more effective than the Z—mediated decays v; —
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vj v by considered in this paper. The last decays appear in the Standard
Model framework if, additionally, there are sterile neutrinos mixing with the
active ones and so, breaking the elektroweak symmetry SU(2)xU(1). Our
discussion shows that the neutrino decay widths ~; are zero for i = 1,3,4,5
and are completely negligible for 4 = 2. However, our damped oscillation
formulae (93) [and their more specific versions given in Eqgs. (96) and (97)]
can work for any sort of potential neutrino instability.

Appendix

Majorana sterile neutrinos

(e)  (u)

The flavor neutrinos, three active v,, v, , v; and two sterile vs 7, vs",
considered in Sects. 5, 6 and 7, lead to five mass neutrinos v , vs, V3, V4, U5
having pure Dirac masses (also in previous Sections neutrinos had always
pure Dirac masses). Now, assume that there are solely three active flavor
neutrinos, but they possess the “Majorana” 2 x 2 mass matrices

r(v) mSJzL) mSJzD)
Ma = (D) (R) (a:ea H, T)a (Al)
Me Me
(D) (L,R)

each consisting of one Dirac and two Majorana masses, my ~ and mgy ",
respectively [12]. The mass matrices (A.1) imply the following mass term in
the Lagrangian:

_ 1 @ 6 e [ Ve
—ﬁmass—52<va vy ) MW R (A.2)

«a Va
where
1/,(1“) =vor + (Vo) Vés) =var+ (War)” (a=e,p, ) (A.3)

are the Majorana flavor neutrinos, three active 1/,(1“) and three sterile V,(Jf),

built up of chiral fields vor, (Var) = (Va)% and var, (Var)" = (Va)]

involved already in the Dirac flavor neutrinos v, = v, 1, + Vo r and antineu-
trinos v§, = (Vo 1)+ (Va r)®. These conventional Majorana sterile neutrinos

(s)

Vg’ contain, therefore, no extra neutrino degrees of freedom, in contrast to

(e,m) (

. . . . e e . . .
our previous Dirac sterile neutrinos vg "’ = v L’” ) +1/§ é" ) involving extra chi-

ral fields l/geL’“) and l/ge}’z“). Of course, in contrast to the Dirac, the Majorana
neutrinos mix (maximally) the lepton number L.
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In the case of “Majorana” mass matrices (A.1), the overall neutrino mass
matrix takes the 6 x 6 form

(L) (D)

17w 17w Ma Ma
M) — (5aﬁM& )) - <5a5 ( Moy M )) . (A.4)

In this “pure-Majorana’ mass matrix there is no mixing between flavor neu-
trinos from three lepton families « = e, u, 7.

Diagonalizing the “pure-Majorana” mass matrix (A.4), we obtain the
neutrino masses

(L) (R) (L) . (R)\?
1,11 Mq ~ + Ma - (ma Ma ) 1 (D)2

@ 2 2
~ M Fm{” (A.5)
corresponding to six Majorana mass neutrinos
vl = cos O\ — sin v,
VI = sin 0,0 + cos 0,0 (A.6)
where
cosf, = m(aD) ZL<I—M> :ia
% (it - mi)" dm? ) V2
sinf, = mi — ma" ~ L (HL;”&R)) ~ L
\/m&D)2 n (mg _ m((f'“))2 V2 4mP) V2

(A7)

with 6, ~ w/4+ (m(aL) - m(aR)> /4m(aD) ~ /4 (m), may be negative). Here,
the approximate equalities are valid in the case of m&L) ~ m&R). If in
addition m(aL) ~ m(aR) ~ m(aD), then Eqs. (A.5) give mL ~ 0 and mg ~

(D) (L) (R) (D) 11 (D)

2mg 7. In contrast, if mg’ ~ mey’ <K mg °, they imply m}; ~ Fmgy

(this case is known as the pseudo-Dirac case). Note that in the case of
m& ~ m{® the mass neutrinos vy and vl are in an obvious analogy to the
mesons Kj, = pK° — ¢K0 and Kg = ¢K° + pK°, where ¢/p~1—2 ~11is

a counterpart of our tanf, ~ 1 — (m(aR) — m((lL)> /ngD) ~ 1.
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Any model with m&L) ~ m&R) leading to the nearly maximal mix-
ing I/I T~ ( (a) F 1/ ) /\/i is orthogonal to the popular see—saw model
(L) (D) (R) I (a) (s)

with ma”’ < ma ™’ K me ’ which gives v, ~ 1’ and I/a ~ vy . In fact, in
this case we get from Eqs. (A.5) and (A.7)

I m(ocD) ’ 11 (R) mr(xD) ’ (R)
ma:—m(R) ~0, m, ~m,"” + ) ~m, (A.8)
« «
and )
(D) (D)
cosf, ~1— % (%) ~1, sinf, ~ m((lR) ~0. (A.9)
me Mo

In both cases, however, we may have very small m),. Notice that the present
experimental limit on the (still not observed) neutrinoless double B decay

(L)

(violating the lepton number L) allows for m¢ ’ or miP /m of the mag-
nitude not larger than 0.2 eV in the case of mgL) ~ ng) or mg ) < ng)
respectively.

With the use of the neutrino mass matrix (A.4) we get the “pure-Majorana”’

oscillation formulae

)

P (Véa) — V[(;)) = |<I/és)|e_th|I/&a)>|2 = 0gq sin? 26,, sin? (:10}1I — .’L‘}l) (A.10)
and

P (v = o) = e T = 050 - P (v 5 ), (AD)

where zi'' = 1. 27(m£H)2L/E with my", L and E expressed in eV, km
and GeV, respectively. Here, sin? 26, ~ 1 if m((lL) ~ m((lR).

For a form of neutrino mass matrix more general than the “pure-Majorana”
form (A.4), more general mass spectrum and mixing appear. A fairly gen-
eral mixing may be given by the following anticipated formulae for Majorana

mass neutrinos:

(a) (s)

W« | cosB,vy’ —sinf, v
v Z i’H:ZU(gz) { @ ) (A.12)

sin 6, v’ + cos 0, Vo

(with 4 = 1,2,3 and @ = e, p, 7). Here, UV = (Ué’?) is a 3 x 3 family
unitary matrix diagonalizing a 3 x 3 neutrino family mass matrix M®*) =

(Mo%)) through the relation (U(”)TM(”)U(”))Z.J, = §;;m; [and Ule) — (3ap)
i.e., M) = diag (me, my, m;) and V. =UM1 = (U(SZ)*)]
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If the Majorana mixing angle 6, is taken as a universal 6 (what certainly

would be the case for 6, = 45° corresponding to m((f) = m((l )) then the
mixing (A.12) follows from the 6 x 6 neutrino mass matrix

— — — (L) A\D)

@ — (™Y wi O VIONE
MW = (M) with M%) = M5 ( 0 ® ) (A.13)
all entries A(X) | AX(B) and A(P) being dimensionless. In fact, such a form
leads to the 6 x 6 unitary matrix

(v (v s v v cosf  sind
0w = (0 with 0F) = vl < DA ) (A.14)
which diagonalizes M®) according to the relation
I
0t g®) —g. (™ O
(U Mg )] 5”< 0 ) (A.15)
where
m%’H — mAbT!
with
(L) 1 \(B) L) _\R)\?
o %#(%) A
(L) 4 \(R)
~ %:FMD) (A.16)

(1 = 1,2,3) are neutrino masses. The approximate equality in Eq. (A.16)
is valid for A\(F) ~ X(®) Note that the mass matrix (A.13) is the direct
product of two matrices (3 x 3 and 2 x 2) containing separately the fam-
ily and “Majorana” degrees of freedom. Thus, also the spectrum (A.16) is
multiplicative.

In the case of neutrino mass matrix (A.13), the “pure-Majorana” os-

cillation formulae (A.11) are extended to the form (if Ué%) = dap ..,

V;a = U(S:)*)
P (A = v7) = 1l )P
= 054 — sin’ 202 |U[(3VZ-)|2|U(§VZ-)| sin” (7} —})

_4ZU/33 Uﬂz U {cos 6 sin? (ml—m ) + sin® O sin® (m?—m?)
7>t

+ cos?0 sin?6 [sin® (x?—x ) + sin? (x§ x?)]} (A.17)
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which holds when the quartic products of matrix elements Ugi) are real. In
Eqs. (A.17), 281 = 1.27(m}™)2L/E. Here, sin?20 ~ 1 and cos?0 ~ 1/2 ~
sin? 6 if A(F) ~ \(F),

The neutrino family mass matrix M) = (M(%)) may be assumed in
the form (1) (with f = v). Then, in the case of small £ = Még)/|M1(g)|
and xy = MQ(;)/|M1(;)|, the family unitary matrix U®) = (US?) is given in
Egs. (9). In order to derive from the neutrino oscillation formulae (A.17)
explicit results, we put A(Z) = X&) (E )\(M)). In this case, the neutrino
mass matrix (A.13) has the form

u» — ( ]\7(”))

ap
with
MY = MY < @ e ) (A.18)

and the neutrino mass spectrum gives mi I _ m; ()\(M) F )\(D)), where m;

my, are determined as in Eqgs. (5) implying msg R |ma| > my (ma = —|mal).

With this mass spectrum, the further discussion depends on the ratio
of AM) and AXP). We will consider two cases: (i) AM) = XP) or (i)
AM) < X(D) (the pseudo-Dirac case). We derive from Egs. (A.17) and (9)
the following neutrino oscillation formulae: in the case (i)

48 Am2 D)2, 97
(@ _y @) — 1_ Zgip2 amiATT L) 90
P <ye vg ) 1 19 sin (1.27 I 9492

21(D)2
P <u(a> - u<a)) — 1 sin? (1.27M) ,

1 1 E
2 _ . 2\\(D)2
P <yl(;l> N ,,ga)) - - 149 sin2 (1.274(m3 "fE?)A L) (A.19)

or, in the case (i)

2 23 (M) (D)
P (1/(“) — V(“)> =1- <%) sin? (1.274m1)\ A L) 387

e e E 44927
1 Am2 M) \(D) T,
P (1/‘(‘“) — Vf;”) =1- 3 sin? (1.27m2T

— sin? (1.274(m§ _ m%)A(D)2L>
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2. 2\\(D)2
p(y<a>_>uga>)=ism2 (1.274(m3 ”Z)A L)

2\ (M) \(D)
sin? (1.27%) , (A.20)

2-49

where the L’s are three different experimental baselines. In these equations,
the negligible constant terms come out from terms containing sin? of large
phases averaged over many oscillation lengths determined by the leading
terms with sin? of small phases. The phases in Eqs. (A.19) and (A.20) were
calculated in both cases from the relations

2 2
(m;,II)Q _ (mi’H)Q _ m? (A(M) - )\(D)) —m? (A(M) - A(D)) :

2 2
(1) = (mi ™) = m3 (A0 £AP))" —mf (A0 £ AP)7 (a21)

working for A(") = \(F) (= )\(M)). Note that the second and third Eq. (A.20)
are not of the two-flavor form, in contrast to the second and third Eq. (A.19).

Comparing two first oscillation formulae (A.19) with the results of solar
and atmospheric neutrino experiments [¢f. Eqgs. (111) and (114)], respec-
tively, we get

4
£ & sin? 204 ~ 0.75, 4m2AP)2 o Am2 | ~ 6.5 x 107" eVZ  (A.22)

and

1 ¢ sin? 20,4 ~ 0.82 to 1, 4m3A)2 &5 Am2, ~ (0.5 to 6) x 1073 eV?2.

(A.23)
Hence, we obtain
|Z;—1| ~ (3.61 to 1.04) x 10~ (A.24)
2
and, due to Eqs. (5),
¢ = (49)%2 "L (124 to 3.57) x 102, (A.25)

|ma|

while m2 — m2 = 14[(48/49)¢ + x| MY |2 ~ (1.80 to 0.52)| M%) |2 with
X = £/16.848. This estimation confirms that ¢ = M /|MY)| and x =
MQ(;)/|M1(;)| are small.

In contrast to solar and atmospheric results, the LSND result (¢f. Ref. [6]),

say, sin® 20y snp ~ 0.02 and AmiSND ~ 0.5 eV? cannot be explained in the
case (1), since in the third Eq. (A.19)
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4(m3—m2)AP)2 < 4m2XP)2 ~ (0.5 to 6)x107% eV? <« Amignp (A.26)

for the estimation (A.25) (m3~m3 ~ 49|M1(;)|).
In the case (4i), however, one may try to compare the third Eq. (A.20)
with the LSND result getting, say,

1
E <~ SiIl2 20LSND ~ 0.02,

(m2 —m2)AP)2 & AmZoxp ~ 0.5 eV2. (A.27)

If in the case (i) the relation 4m3A\MXP) & Am2,  analogical to (A.23)
held approximately [cf. the second Eq. (A.20)], the comparison with (A.27)
would give

2y (M) Am?2
fm2’\2 = —Tam (0.1 to 1.2) x 102 (A.28)
(m3 —ma)AD) Amig
and
AM) 1 748 Am?2, Am?
== ——am (9.2 to 2.6) x 1073 —Am_
D) T 14 <49§+X> Ay, ~ (02 o 26) Am? g,
~ (0.92 to 3.2) x 1077, (A.29)
since ) ) A
ms —ms5 2 (48
I ! A.30
mi 7 <49§+X) (4.30)

through Eqs. (5) (in making the estimation (A.29) the value (A.25) was
used, which holds also in the case (i) if 4m?AMAXDP) 5 Am2 ). Thus, for
the value (A.29) of AM)/X(P) the third Eq. (A.20) might be consistent with
the LSND result.

In conclusion of this Appendix, we can say that a simple neutrino mass
matrix (A.13), operating with three neutrinos v, , v, , v, only and being
multiplicative in “Majorana” and family degrees of freedom, is consistent in
a natural way with solar and atmospheric neutrino experiments, but not
with the LSND result (that still requires confirmation). Such a consistency
of “Majorana” option does not differ much from that based on the neutrino
mass matrix (82) including two Dirac sterile neutrinos uﬁe) and u§“ ). These
conclusions were drawn with the use of our family mass matrix (1) (with
f = v), where the dominance of its off-diagonal elements was conjectured.
The opposite conjecture of dominance of its diagonal elements does not



2668 W. KROLIKOWSKI

change our conclusions essentially. The nearly bimaximal mixing that ap-

pears in the yD 5 U and Vl(f) — l/l(ta) oscillation formulae (A.19) is a

consequence of maximal mixings of uéa) with l/és) and u;(f) with u!(f), re-
flecting the equality A\(¥) = \(®) and so, not holding in the see-saw model
corresponding to A(F) <« A\(P) « A7)

When discussing the Majorana flavor neutrinos V&a) and V&s) (a=-e,p, 1),
one presumes that the superpositions (A.3) defining formally these objects
are really coherent in processes of electroweak interactions which operate on
lefthanded chiral fields vo7, = VSLL), ignoring their righthanded counterparts

(s)

Var = V,p-
The Dirac part of mass term (A.2) and the kinetic term ) Tpiy - Ov,
(a) ()

can be expressed by v, as well as vy, ' and vq’, viz.

mass Zm VgVo = Zm <Va Vaa) + @VC(VS)> (A.31)

and, up to the full divergence i0 - UaYVa,

Cin =S 7y v ==Y <@m v 4 iy - augf)) L (A32)

« «

Thus, the deciding role in the coherence question is played by the Majorana
part of the mass term (A.2),

£ = 5% (D) + )

- _Z{ [VaL Val, + Val, (Var)® ]

+m&R) [Wm + 7o (uaR)C} } (A.33)

which can be presented also in terms of Dirac superpositions I/a = Uy L +1/a R

(L) (R)

and vS = (Vor)+(Var)®, but onlyif mg” = mg . Hence, if mi) # miF (

even if m(aL) ~ m(aR) only approximately), the coherence of Majorana super-

(a) (s)

positions vy’ and vy’ seems to be physically preferred over the coherence
of Dirac superposition v,.
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