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FERMION TEXTURE AND STERILE NEUTRINOS �Woj
ie
h KrólikowskiInstitute of Theoreti
al Physi
s, Warsaw UniversityHo»a 69, 00-681 Warszawa, Poland(Re
eived Mar
h 2, 1999)An expli
it form of 
harged�lepton mass matrix, predi
ting m� =1776:80 MeV from the experimental values of me and m� (in good agree-ment with the experimental �gure m� = 1777:05+0:29�0:26 MeV), is applied tothree neutrinos �e, ��, �� in order to 
orrelate tentatively their masses andmixing parameters. It is suggested that for neutrinos the diagonal elementsof the mass matrix are small versus its o�-diagonal elements. Under su
ha 
onje
ture, the neutrino masses, lepton Cabibbo�Kobayashi�Maskawamatrix and neutrino os
illation probabilities are 
al
ulated in the 
orre-sponding lowest perturbative order. Then, the nearly maximal mixing of�� and �� is predi
ted in 
onsisten
y with the observed de�
it of atmo-spheri
 ��'s. However, the predi
ted de�
it of solar �e's is mu
h too smallto explain the observed e�e
t, what suggests the existen
e of (at least) onesort, �(e)s , of sterile neutrinos, whose mixing with �e would be responsi-ble for the observed de�
it. Perspe
tives for applying the same form ofmass matrix to quarks are also outlined. Two independent predi
tions ofjVubj=jV
bj = 0:0753� 0:0032 and unitary angle 
 ' 70Æ are dedu
ed fromthe experimental values of jVusj and jV
bj (with the use of quark massesms, m
 and mb). In the last three Se
tions, the option of two sorts, �(e)sand �(�)s , of sterile neutrinos is 
onsidered. They may dominate neutrinomixing, and even 
ause that two extra neutrino mass states (arising then)are agents of some tiny neutrino instability and related damping of �e and�� os
illations. In Appendix, three 
onventional Majorana sterile neutrinosare dis
ussed.PACS numbers: 12.15.Ff, 14.60.Pq, 12.15.Hh1. Introdu
tionIn this paper, the expli
it form of mass matrix invented for three gener-ations of 
harged leptons e� ; �� , ��, and being surprisingly good for their� Work supported in part by the Polish KBN Grant 2 P03B 052 16 (1999�2000).(2631)



2632 W. Królikowskimasses [1℄, is applied to three generations of neutrinos �e, ��, �� , in order to
orrelate tentatively their masses and mixing parameters. This form reads�M (f)�� � = 129 0BBBBB� �(f)"(f) 2�(f)ei'(f) 02�(f)e�i'(f) 4�(f) (80+"(f))9 8p3�(f)ei'(f)0 8p3�(f)e�i'(f) 24�(f) (624+"(f))25
1CCCCCA ; (1)where the label f = �; e denotes neutrinos and 
harged leptons, respe
tively,while �(f), "(f), �(f) and '(f) are real 
onstants to be determined from thepresent and future experimental data for lepton masses and mixing param-eters (�(f) and �(f) are mass-dimensional). In our approa
h, neutrinos areassumed to 
arry pure Dira
 masses.Here, the form (1) of mass matri
es �M (�)�� � and �M (e)�� � may be 
on-sidered as a detailed ansatz to be 
ompared with the lepton data. However,in the past, we have presented an argument [2,1℄ in favour of the form (1),based on: (i) Kähler-like generalized Dira
 equations (intera
ting with theStandard Model gauge bosons) whose a priori in�nite series is ne
essarilyredu
ed (in the 
ase of fermions) to three Dira
 equations, due to an intrinsi
Pauli prin
iple, and (ii) an ansatz for the fermion mass matrix, suggestedby the above three-generation 
hara
teristi
s (i).In the 
ase of 
harged leptons, assuming that the o��diagonal elementsof the mass matrix �M (e)�� � 
an be treated as a small perturbation of itsdiagonal terms (i.e., that �(e)=�(e) is small enough), we 
al
ulate in thelowest perturbative order [1℄m� = 241776:80 + 10:2112 �(e)�(e)!2 35 MeV ;�(e) = 85:9924 MeV +O24 �(e)�(e)!2 35 �(e) ;"(e) = 0:172329 +O24 �(e)�(e)!235 ; (2)when the experimental values of me and m� [3℄ are used as inputs. InEqs. (2), the �rst terms are given as Æm�= 6(351m� � 136me)=125, Æ�(e)=29(9m� � 4me)=320 and Æ"(e)= 320me=(9m� � 4me), respe
tively. We 
an



Fermion Texture and Sterile Neutrinos 2633see that the predi
ted value of m� agrees very well with its experimental�gure mexp� = 1777:05+0:29�0:26 MeV [3℄, even in the zero perturbative order. Toestimate ��(e)=�(e)�2, we 
an take this experimental �gure as another input,obtaining  �(e)�(e)!2 = 0:024+0:028�0:025 ; (3)whi
h value is not in
onsistent with zero. Hen
e, �(e) 2 = 180+210�190 MeV2 dueto Eq. (2).For the unitary matrix �U (e)�� �, diagonalizing the 
harged-lepton massmatrix �M (e)�� � a

ording to the relation U (e) yM (e) U (e) = diag(me;m�;m� ),we get in the lowest perturbative order�U (e)�� � =0BBBBBBBB� 1� 2292 ��(e)m� �2 229 �(e)m� ei'(e) 16p3292 ��(e)m� �2 e2i'(e)� 229 �(e)m� e�i'(e) 1� 2292 ��(e)m� �2� 96292 ��(e)m� �2 8p329 �(e)m� ei'(e)16p3292 �(e) 2m�m� e�2i'(e) �8p329 �(e)m� e�i'(e) 1� 96292 ��(e)m� �2
1CCCCCCCCA :(4)2. Neutrino masses and mixing parametersIn the 
ase of neutrinos, be
ause of their expe
ted tiny mass s
ale �(�),we will tentatively 
onje
ture that the diagonal elements of the mass matrix�M (�)�� � 
an be treated as a small perturbation of its o��diagonal terms (i.e.,that �(�)=�(�) is small enough). In addition, we put "(�) = 0 i.e., M (�)11 = 0.Then, we 
al
ulate in the lowest perturbative order the following neutrinomasses: m�1 = jM (�)12 j2M (�)33jM (�)12 j2 + jM (�)23 j2 = 149M (�)33 = 149�jM (�)12 j ;m�2; �3 = �qjM (�)12 j2 + jM (�)23 j2 + 12 �4849M (�)33 +M (�)22 �= ��7 + 12 �4849� + ��� jM (�)12 j ; (5)



2634 W. Królikowskiwhere � � M (�)33jM (�)12 j = 748825 �(�)�(�) = 299:52�(�)�(�) ;� � M (�)22jM (�)12 j = 1609 �(�)�(�) = 1252106 � = 116:848� ; (6)are relatively small by our perturbative 
onje
ture, whilejM (�)12 j = 229�(�) ; jM (�)23 j = 8p329 �(�) = p48jM (�)12 j : (7)As seen from Eqs. (5), the a
tual perturbative parameters are not � and�, but rather �=7 and �=7, what is 
on�rmed later in Eqs. (9). Note thatm�2 < 0, the minus sign being irrelevant in the relativisti
 
ase, whereonly m2�2 is measured (
f. Dira
 equation): jm�2 j may be 
onsidered as aphenomenologi
al mass of �2.Using Eqs. (5), we 
an write the formulam2�3 �m2�2 = 14�4849� + �� jM (�)12 j2 = 20:721�(�)�(�) ; (8)whi
h will enable us to determine the produ
t �(�)�(�) from the observedde�
it of atmospheri
 neutrinos ��, if �� ! �� os
illations are really respon-sible for this e�e
t.We 
al
ulate also the unitary matrix �U (�)� i � diagonalizing the neutrinomass matrix �M (�)�� � a

ording to the relation U (�) yM (�)U (�) =diag(m�1 ;m�2 ;m�3). In the lowest perturbative order we obtainU (�)11 = r4849 �1�� 24493 � 1494� �2� ;U (�)21 = 149r4849�e�i'(�) ;U (�)31 = �17 �1�� 73493 � 1494� �2 + 149��� e�2i'(�) ;U (�)12 = � 1p2 17 �1 + 367 � 49� + 128�� ei'(�) ;U (�)22 = 1p2 �1 + 127 � 49� � 128�� ;



Fermion Texture and Sterile Neutrinos 2635U (�)32 = � 1p2r4849 �1� 137 � 49� + 128�� e�i'(�) ;U (�)13 = 1p2 17 �1� 367 � 49� � 128�� e2i'(�) ;U (�)23 = 1p2 �1� 127 � 49� + 128�� ei'(�) ;U (�)33 = 1p2r4849 �1 + 137 � 49� � 128�� (9)with � = (125=2106)� = �=16:848.Denoting by �� = �e ; �� ; �� and �i = �1; �2; �3 the �avor and massneutrino �elds, respe
tively, we have the unitary transformation�� =Xi �V y�� i �i =Xi V �i ��i ; (10)where the lepton 
ounterpart (Vi �) of the Cabibbo�Kobayashi�Maskawa ma-trix is given as V = U (�) yU (e) ' U (�) y orVi � =X� �U (�) y�i � U (e)�� ' U (�) �� i ; (11)the approximate equality being valid for negligible �(e)=�(e) when U (e)�� ' Æ��due to Eq. (4). Of 
ourse, in Eqs. (9) we wrote � = 1; 2; 3 for simpli
ity.From Eq. (10), we get the unitary transformation j��i =Pi j�iiVi �, wherej��i = �y�j0i and j�ii = �yi j0i are �avor and mass neutrino states1.In the limit of �(�) ! 0 (implying � ! 0 and � ! 0), we obtainfrom Eqs. (10), (11) and (9) the following unperturbed mixing formulaefor �1; �2; �3:�e ! 17 �p48�1e�i'(�) � 1p2 ��2 � �3ei'(�)�� ei'(�) ;�� ! 1p2 ��2 + �3ei'(�)� ;�� ! �17 "�1e�i'(�) +r482 ��2 � �3ei'(�)�# e�i'(�) : (12)1 In pla
e of �i =P� Vi ��� one might use the notation �0� =P� V����, analoguousto d0� =P� V��d� 
ustomary in the 
ase of quarks where V�� =P
 �U (u) y�� 
 U (d)
 � .



2636 W. KrólikowskiThese display the maximal mixing between �2 and �3 in all three 
ases anda smaller mixing of ��2 � �3 exp �i'(�)�� =p2 with �1 in the 
ases of �e and�� , giving a minor admixture to �e and a dominating admixture to �� (in�� there is no admixture of �1).2. Neutrino os
illationsOn
e knowing the elements Vi � of the lepton Cabibbo�Kobayashi�Maskawa matrix, we 
an 
al
ulate the probabilities of neutrino os
illations�� ! �� (in the va
uum) making use of the general formulaP (�� ! ��) = jh��j��(t)ij2 =Xi j Vj �V �j �V �i �Vi �e2ixj i ; (13)where j��(t)i = exp(�iHt)j��i andxj i = 1:26693�m2j i L=E ; �m2j i = m2�j �m2�i ; (14)if �m2j i, L and E are measured in eV2, km and GeV, respe
tively, withL = t and E = j~pj (
 = 1 = ~) denoting the experimental baseline andneutrino energy.It is not di�
ult to show that for the mass matrix �M (�)�� �, as it is givenin Eq. (1), the quarti
 produ
ts of Vi �'s in Eq. (13) are always real (forany phase '(�)), if only Vi � = U (�) �� i (i.e., U (e)�� = Æ��). This implies thatP (�� ! ��) = P (�� ! ��). In general, the last relation is valid in the
ase of CP invarian
e whi
h, under the CPT theorem, provides the time�reversal invarian
e. Be
ause of the real values of quarti
 produ
ts of Vi �'s,the formula (13) 
an be rewritten asP (�� ! ��) = Æ�� � 4Xi<j Vj �V �j �V �i �Vi � sin2 xj i (15)without the ne
essity of introdu
ing phases of these produ
ts.With the lowest-order perturbative expressions (9) for Vi � = U (�) �� i , theformula (15) leads to the following forms of appearan
e os
illation probabil-ities: P (�� ! �e) = 149 sin2 x32+ 967 � 492 � ��1 + 487 � 49�� sin2 x21 ��1� 487 � 49�� sin2 x31� ; (16)



Fermion Texture and Sterile Neutrinos 2637
P (�� ! �� ) = 4849 sin2 x32+ 967 � 492 � ���1� 17 � 49�� sin2 x21 +�1 + 17 � 49�� sin2 x31� ; (17)P (�e ! �� ) = � 48492 sin2 x32+ 96492 ��1 + 237 � 49� + 114�� sin2 x21 +�1� 237 � 49� � 114�� sin2 x31� (18)as well as of survival os
illation probabilities :P (�e ! �e) = 1� 1492 sin2 x32� 96492 ��1 + 727 � 49� + 114�� sin2 x21 +�1� 727 � 49� � 114�� sin2 x31� ;(19)P (�� ! ��) = 1� sin2 x32 � 96493 �2 �sin2 x21 + sin2 x31� ; (20)P (�� ! �� ) = 1��4849�2 sin2 x32� 96492 ��1� 267 � 49� + 114�� sin2 x21 +�1 + 267 � 49� � 114�� sin2 x31� :(21)Thus, we get P (�e ! �e) + P (�e ! ��) + P (�e ! �� ) = 1 and two otherobvious summation rules for probabilities. Among these probabilities,P (�� ! ��) displays (in the lowest perturbative order) maximal mixing be-tween �2 and �3.In the lowest perturbative order,x31 � x21 = x32 = 14�4849� + ���1:26693jM (�)12 jL=E� (22)due to Eqs. (8) and (14). Hen
e,sin2 x31 = sin2 x21 + x32 sin 2x21 + x232 sin 2x21 (23)in experiments where x32 � �=2. When in su
h 
ases the relation (23) isinserted into the formulae (16), (17) and (20), its x32 and x232 terms 
an benegle
ted in the lowest perturbative order.Note that the mass formulae (5) imply m2�1 � m2�2 <� m2�3 , wherem2�1=m2�2;�3 = �2=493+O(�3) and m2�2=m2�3 = 1�(2=7)(48�=49+�)+O(�3).



2638 W. KrólikowskiThus, the inequality x31 >� x21 � x32 holds in all neutrino os
illation exper-iments (with some given L and E).We have 
al
ulated the neutrino masses, lepton Cabibbo�Kobayashi�Maskawa matrix and neutrino os
illation probabilities also in the next tolowest perturbative order. Then, in Eqs. (5) the mass m�1 gets no quadrati

orre
tion, while m�2 and m�3 are 
orre
ted by the terms� 114 �13 � 48492 �2 � 2449��+ 14�2� jM (�)12 j ; (24)respe
tively. Among the derived os
illation formulae, Eq. (20), for instan
e,is extended to the formP (�� ! ��) = 1��1� 672493 �2 + 24492 ��� 14 � 49�2� sin2 x32� 96493 �2 �sin2 x21 + sin2 x31�= 1� �1� 0:00514 �2� sin2 x32 � 0:000816 �2 �sin2 x21 + sin2 x31�(25)displaying nearly maximal mixing between �2 and �3.In the 
ase of Super-Kamiokande atmospheri
 neutrino experiment [4℄,if �� ! �� os
illations are responsible for the observed de�
it of atmo-spheri
 ��'s, we have xatm = x32 � x21 <� x31, what implies that sin2 x21 =sin2 x31 = 1=2 due to averaging over many os
illation lengths. Then, Eq. (25)leads to the following e�e
tive two��avor os
illation formula:P (�� ! ��) = 1� �1� 0:00350 �2� sin2 x32 ; (26)if we assume in Eq. (25) that 0:000816�2 = 0:000816�2(2 sin2 x32) e�e
tively.Identifying the estimation (26) with the two��avor formula �tted in theSuper-Kamiokande experiment, we obtain the limits1� 0:00350 �2 � sin2 2�atm � 0:82 to 1 ;�m232 � �m2atm � (0:5 to 6)� 10�3 eV2 : (27)Hen
e, � � 7:17 to 0 and�(�)�(�) � 0:00334� � 0:0239 to 0 ;�(�)�(�) � 0:483�m232 � (0:241 to 2:90) � 10�4 eV2 ; (28)where Eqs. (6) and (8) are used. For instan
e, with sin2 2�atm � 0:999 and�m2atm � 5� 10�3 eV2, we get � � 0:535 and�(�)�(�) � 0:00178 ; �(�)�(�) � 2:41 � 10�4 eV2 ; (29)



Fermion Texture and Sterile Neutrinos 2639what gives the estimation�(�) � 0:368 eV ; �(�) � 6:55� 10�4 eV : (30)Note that � < 1 for sin2 2�atm > 0:9965. As was already mentioned, oura
tual perturbative parameters are not � and �, but rather �=7 and �=7 =0:0594�=7.Having estimated �(�) and �(�), we 
an 
al
ulate neutrino masses fromEqs. (5) with (6) and (7). Making use of the values (30) (valid for sin2 2�atm �0:999 and �m2atm � 5� 10�3 eV2), we obtainm�1 � 2:76� 10�4 eV ;m�2 � �1:71� 10�1 eV ;m�3 � 1:85� 10�1 eV : (31)Be
ause of the smallness of these masses, the neutrinos �1, �2, �3 are notlikely to be responsible for the entire hot dark matter.In the 
ase of solar neutrino experiments, all three popular �ts [5℄ of theobserved de�
it of solar �e's to an e�e
tive two��avor os
illation formularequire �m2sol � �m2atm what implies �m2sol � �m232 � �m221 <� �m231,if �� ! �� os
illations are responsible for the de�
it of atmospheri
 ��'s.Then, xsol � x32 � x21 <� x31, giving sin2 x32 = sin2 x21 = sin2 x31 = 1=2due to averaging over many os
illation lengths. In su
h a 
ase, Eq. (19)leads to P (�e ! �e) = 1� 1932 � 492 = 1� 0:0402 = 0:960 ; (32)predi
ting only a 4% de�
it of solar �e's, mu
h too small to explain solarneutrino observations.An intriguing situation arises in the 
ase of formula (16) for P (�� ! �e),if �� ! �� os
illations really 
ause the bulk of de�
it of atmospheri
 ��'s.Then, for a new xnew = x32 � x21 <� x31 (with some new L and E) wemay have sin2 x21 = sin2 x31 = 1=2 due to averaging over many os
illationlengths and so, infer from Eq. (16) thatP (�� ! �e) = 149 sin2 x32+ 2 � 482494 �2 � 0:0204 sin2 x32+2:29� 10�4 ; (33)where �2 � 0:286 (what is valid for sin2 2�atm � 0:999 and �m2atm �5 � 10�3 eV2). Su
h a predi
ted os
illation amplitude sin2 2�new � 0:02would lie in the range of sin2 2�LSND estimated in the positive (though stillrequiring 
on�rmation) LSND a

elerator experiment on �� ! �e os
illa-tions [6℄. However, the lower limit �m2LSND >� 0:1 eV2 reported by thisexperiment is by one order of magnitude larger than the Super-Kamiokande



2640 W. Królikowskiupper limit �m232 <� 0:01 eV2. On the other hand, the small predi
ted os
il-lation amplitude sin2 2�new � 0:02 would not be in 
on�i
t with the negativeresult of the CHOOZ long�baseline rea
tor experiment on ��e ! ��� os
illa-tions [7℄.In 
on
lusion, our expli
it model of lepton texture displays a number ofimportant features. (i) It 
orrelates 
orre
tly (with high pre
ision) the tauonmass with ele
tron and muon masses. (ii) It predi
ts (without parameters)the maximal mixing between muon and tauon neutrinos in the limit �(�) !0, 
onsistent with the observed de�
it of atmospheri
 ��'s. (iii) It failsto explain the observed de�
it of solar �e's. (iv) It predi
ts new �� ! �eos
illations with the amplitude 
onsistent with LSND experiment, but witha phase 
orresponding to the mass squared di�eren
e at least one order ofmagnitude smaller.In the framework of our model, the point (iii) may suggest that inNature there exists (at least) one sort, �(e)s , of sterile neutrinos (blind tothe Standard Model intera
tions), responsible for the observed de�
it of so-lar �e's through �e ! �(e)s os
illations dominating the survival probabilityP (�e ! �e) ' 1� P (�e ! �(e)s ) [8℄. In an extreme version of this pi
ture, itmight even happen that in Nature there would be two sorts, �(e)s and �(�)s ,of sterile neutrinos, where �(�)s would repla
e �� in explaining the observedde�
it of atmospheri
 ��'s by means of �� ! �(�)s os
illations that shoulddominate the survival probability P (�� ! ��) ' 1 � P (�� ! �(�)s ) [9℄. Inthis 
ase, the 
onstant �(�) for a
tive neutrinos might be even zero (however,very small �(�) would be still allowed). Su
h a model is dis
ussed in Se
tions5 and 6.For the author of the present paper the idea of existen
e of two sortsof sterile neutrinos is fairly appealing, sin
e two su
h spin�1/2 fermions,blind to all Standard Model intera
tions, do follow (besides three standardfamilies of a
tive leptons and quarks) [8℄ from the argument (i) mentioned inIntrodu
tion, based on the Kähler-like generalized Dira
 equations. Note inaddition that the �e ! �(e)s and �� ! �(�)s os
illations 
aused by appropriatemixings should be a natural 
onsequen
e of the spontaneous breaking ofele
troweak SU(2)�U(1) symmetry.In Se
tion 7, a possibility is 
onsidered that two extra neutrino massstates, whose existen
e is implied by two sterile neutrinos �(e)s and �(�)s ,
ause in the Standard Model framework some tiny neutrino instability andrelated damping of �e and �� os
illations.



Fermion Texture and Sterile Neutrinos 26413. Perspe
tives for uni�
ation with quarksIn this Se
tion, we try to apply to quarks the form of mass matrix whi
hwas worked out above for leptons. To this end, we 
onje
ture for threegenerations of up quarks u; 
; t and down quarks d; s; b the mass matri
es�M (u)�� � and �M (d)�� �, respe
tively, essentially of the form (1), where thelabel f = u; d denotes now up and down quarks. The only modi�
ationintrodu
ed is a new real 
onstant C(f) added to "(f) in the element M (f)33whi
h now reads M (f)33 = 24�(f)25 � 29 �624 + "(f) +C(f)� : (34)Sin
e for quarks the mass s
ales �(u) and �(d) are expe
ted to be evenmore important than the s
ale �(e) for 
harged leptons, we assume that theo�-diagonal elements of mass matri
es �M (u)�� � and �M (d)�� � 
an be 
onsid-ered as a small perturbation of their diagonal terms. Then, in the lowestperturbative order, we obtain the following mass formulaemu;d = �(u;d)29 "(u;d) �A(u;d) �(u;d)�(u;d)!2 ;m
;s = �(u;d)29 49 �80 + "(u;d)�+ �A(u;d) �B(u;d)� �(u;d)�(u;d)!2 ;mt;b = �(u;d)29 2425 �624 + "(u;d) + C(u;d)�+B(u;d) �(u;d)�(u;d)!2 ; (35)whereA(u;d) = �(u;d)29 36320� 5"(u;d) ; B(u;d) = �(u;d)29 1080031696 + 54C(u;d) + 29"(u;d) :(36)In Eqs. (35), the relative smallness of perturbating terms is more pronoun
eddue to extra fa
tors. In our dis
ussion, we will take for experimental quarkmasses the arithmeti
 means of their lower and upper limits quoted in theReview of Parti
le Physi
s [3℄ i.e.,mu = 3:3MeV ; m
 = 1:3GeV ; mt = 174GeV (37)and md = 6MeV ; ms = 120MeV ; mb = 4:3GeV : (38)



2642 W. KrólikowskiEliminating from the unperturbed terms in Eqs. (35) the 
onstants �(u;d)and "(u;d), we derive the 
orrelating formulae being 
ounterparts of Eqs. (2)for 
harged leptons:mt;b = 6125 (351m
;s � 136mu;d) + �(u;d)29 2425C(u;d)� 1125 �2922A(u;d) � 2231B(u;d)� �(u;d)�(u;d)!2 ;�(u;d) = 29320 (9m
;s � 4mu;d)� 29320 �5A(u;d) � 9B(u;d)� �(u;d)�(u;d)!2 ;"(u;d) = 29mu;d�(u;d) + 29�(u;d)A(u;d) �(u;d)�(u;d)!2 : (39)The unperturbed parts of these relations are:Æmt;b = 6125 (351m
;s � 136mu;d) + Æ�(u;d)29 2425 ÆC(u;d)= � 21:91:98 � GeV + Æ�(u;d)29 2425 ÆC(u;d) ;Æ�(u;d) = 29320 (9m
;s � 4mu;d) = � 106095:7 � MeV ;Æ"(u;d) = 29mu;dÆ�(u;d) = � 0:09041:82 � : (40)In the spirit of our perturbative approa
h, the �
oupling� 
onstant �(u;d)
an be put zero in all perturbing terms in Eqs. (35) and (39), ex
ept for�(u;d) 2 in the numerator of the fa
tor ��(u;d)=�(u;d)�2 that now be
omes��(u;d)= Æ�(u;d)�2. Then, A(u;d) and B(u;d) are repla
ed byÆA(u;d) = Æ�(u;d)29 36320 � 5 Æ"(u;d) ;ÆB(u;d) = Æ�(u;d)29 1080031696 + 54 ÆC(u;d) +29 Æ"(u;d) : (41)



Fermion Texture and Sterile Neutrinos 2643Note that the �rst Eq. (35) 
an be rewritten identi
ally as mu;d =Æ�(u;d) Æ"(u;d)=29 a

ording to the third Eq. (40).We shall be able to return to the dis
ussion of quark masses after theestimation of 
onstants �(u) and �(d) is made. Then, we shall determine theparameters C(u) and C(d) (as well as their unperturbed parts ÆC(u) and ÆC(d))playing here an essential role in providing large values for mt and mb.At present, we �nd the unitary matri
es �U (u;d)�� � that diagonalize themass matri
es �M (u;d)�� � a

ording to the relations U (u;d) yM (u;d)U (u;d) =diag(mu;d ; m
;s ; mt;b). In the lowest perturbative order, the result has theform (4) with the ne
essary repla
ement of labels:(e)! (u) or (d) ; �! 
 or s ; � ! t or b ; (42)respe
tively.Then, the elements V�� of the Cabibbo�Kobayashi�Maskawa matrixV = U (u) yU (d) 
an be 
al
ulated with the use of Eqs. (42) in the lowestperturbative order. Six resulting o��diagonal elements are:Vus = �V �
d = 229  �(d)ms ei'(d) � �(u)m
 ei'(u)! ;V
b = �V �ts = 8p329  �(d)mb ei'(d) � �(u)mt ei'(u)! ' 8p329 �(d)mb ei'(d) ;Vub ' �16p3841 �(u)�(d)m
mb ei('(u)+'(d)) ;Vtd ' 16p3841 �(d) 2msmb e�2i'(d) ; (43)where the indi
ated approximate steps were made due to the inequalitymt � mb and/or under the assumption that �(u)=m
 � �(d)=mb [
f. the
onje
ture (46)℄. All three diagonal elements are real and positive in a goodapproximation: Vud ' 1� 12 jVusj2 ;V
s ' 1� 12 jVusj2 � 12 jV
bj2 ;Vtb ' 1� 12 jV
bj2: (44)



2644 W. KrólikowskiIn fa
t, in the lowest perturbative order,arg Vud ' 4841 �(u)�(d)m
ms sin�'(u) � '(d)� 180Æ� ' � arg V
s; arg Vtb ' 0 ;(45)what gives arg Vud = 0:88Æ = � arg V
s, if the values (46), (49) and (52) areused.Taking as an input the experimental value jV
bj = 0:0395 � 0:0017 [3℄,we estimate from the se
ond Eq. (43) that�(d) ' 298p3 mb jV
bj = (355 � 15) MeV ; (46)where mb = 4:3 GeV. In order to estimate also �(u), we will tentatively
onje
ture the approximate proportion�(u) : �(d) ' Q(u) 2 : Q(d) 2 = 4 (47)to hold, where Q(u) = 2=3 and Q(d) = �1=3 are quark ele
tri
 
harges. Notethat in the 
ase of leptons we had �(�) : �(e) = 0:37 : (p180 � 106) =2:8 � 10�8 for the 
entral value of �(e) [
f. Eqs. (3) and (30)℄, what is
onsistent with the analogi
al approximate proportion�(�) : �(e) ' Q(�) 2 : Q(e) 2 = 0 ; (48)where Q(�) = 0 and Q(e) = �1 are lepton ele
tri
 
harges. Under the
onje
ture (47): �(u) ' (1420 � 60)MeV : (49)In this 
ase, from the se
ond and third Eq. (43) we obtain the predi
tionjVubj=jV
bj ' 229 �(u)m
 ' 0:0753 � 0:0032 ; (50)where m
 = 1:3 GeV. This is 
onsistent with the experimental �gurejVubj=jV
bj = 0:08 � 0:02 [3℄.Now, with the experimental value jVusj = 0:2196� 0:0023 [3℄ as anotherinput, we 
an 
al
ulate from the �rst Eq. (43) the phase di�eren
e '(u)�'(d).In fa
t, taking the absolute value of this equation, we get
os�'(u) � '(d)� = 18m
ms "1 + 16�msm
�2 � 8414 � m
�(d)�2 jVusj2# = �0:0301(51)



Fermion Texture and Sterile Neutrinos 2645with m
 = 1:3 GeV and ms = 120 MeV, if the proportion (47) is taken intoa

ount. Here, the 
entral values of �(d) and jVusj were used. Hen
e,'(u) � '(d) = 91:7Æ = �88:3Æ + 180Æ (52)so, this phase di�eren
e turns out to be near 90Æ. Then, 
al
ulating theargument of the �rst Eq. (43), we infer thattan�arg Vus � '(d)� = �4 msm
 sin �'(u) � '(d)�1� 4(ms=m
) 
os �'(u) � '(d)� = �0:365 ;(53)what gives arg Vus = �20:1Æ + '(d) : (54)The results (52) and (54) together with the formula (43) enable us toevaluate the rephasing-invariant CP-violating phasesarg (V �usV �
bVub) = 20:1Æ � 88:3Æ = �68:2Æ (55)and arg (V �
dV �tsVtd) = �20:1Æ; (56)whi
h turn out to be near to �70Æ and �20Æ, respe
tively (they are invariantunder quark rephasing equal for up and down quarks of the same genera-tion). Note that the sum of arguments (55) and (56) is always equal to'(u) � '(d) � 180Æ. Carrying out quark rephasing (equal for up and downquarks of the same generation), wherearg Vus ! 0 ; arg V
b ! 0 ; arg V
d ! 180Æ ; arg Vts ! 180Æ (57)and arg Vud, arg V
s, arg Vtb remain un
hanged, we 
on
lude from Eqs. (55)and (56) that arg Vub ! �68:2Æ ; arg Vtd ! �20:1Æ : (58)The sum of arguments (58) after rephasing (57) is always equal to'(u) � '(d) � 180Æ.Thus, in this quark phasing, we predi
t the following Cabibbo�Kobayashi�Maskawa matrix:(V��) = 0� 0:976 0:220 0:00297 e�i 68:2Æ�0:220 0:975 0:03950:00805 e�i 20:1Æ �0:0395 0:999 1A : (59)



2646 W. KrólikowskiHere, only jVusj and jV
bj [and quark masses ms ; m
 ; mb 
onsistent withthe mass matri
es �M (u)�� � and �M (d)�� �℄ are our inputs, while all other ma-trix elements V��, partly indu
ed by unitarity, are evaluated from the re-lations derived in this Se
tion from the Hermitian mass matri
es �M (u)�� �and �M (d)�� � [and the 
onje
tured proportion (47)℄. The independent pre-di
tions are jVubj and argVub. In Eq. (59), the small phases arising fromEqs. (45), arg Vud = 0:9Æ and arg V
s = �0:9Æ, are negle
ted (here, arg(VudV
sVtb) = 0).The above predi
tion of V�� implies the following values of Wolfensteinparameters [3℄:� = 0:2196 ; A = 0:819 ; � = 0:127 ; � = 0:319 (60)and of unitary�triangle angles:
 = ar
tan �� = � arg Vub = 68:2Æ ;� = ar
tan �1� � = � arg Vtd = 20:1Æ : (61)The predi
ted large value of 
 follows the present experimental tenden
y.If instead of the 
entral value jVusj = 0:2196 we take as the input therange jVusj = 0:2173 to 0.2219, we obtain from Eq. (51) '(u) � '(d) =89:8Æ to 93:6Æ (with jV
bj = 0:0395 giving �(d) = 355 MeV), what im-plies through Eq. (53) that arg Vus � '(d) = �20:3Æ to �19:8Æ. Then,after rephasing (57), argVub = �69:9Æ to � 66:6Æ and arg Vtd = �20:3Æ to�19:8Æ. In this 
ase, the Wolfenstein parameters are � = 0:2173 to 0.2219,A = 0:837 to 0.802, � = 0:119 to 0.135 and � = 0:325 to 0.312 (here,�p�2 + �2 = jVubj=jV
bj = 0:0753 is �xed). Thus, 
 = � arg Vub = 69:9Æ to66:6Æ and � = � arg Vtd = 20:3Æ to 19:8Æ.In 
ontrast, if the 
entral value jV
dj = 0:0395 (giving �(d) = 355 MeV) isrepla
ed by the input of the range V
d = 0:0378 to 0.0412 (
orresponding to�(d) = 340 to 370 MeV), we 
al
ulate from Eq. (51) that '(u)�'(d) = 97:3Æ to84:9Æ (with jVusj = 0:2196), what leads to argVus�'(d) = �19:3Æ to �20:9Æ.Hen
e, after rephasing (57), argVub = �63:4Æ to �74:6Æ and arg Vtd =�19:3Æ to� 20:9Æ. In this 
ase, the Wolfenstein parameters take the values� = 0:2196, A = 0:784 to 0.854, � = 0:149 to 0.0951 and � = 0:298 to 0.345.Thus, 
 = � arg Vub = 63:4Æ to 74:6Æ and � = � arg Vtd = 19:3Æ to 20:9Æ.Here, jVubj = 0:00273 to 0.00323 and jVtdj = 0:00738 to 0.00874.
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k to quark masses. From the third Eq. (35)we 
an evaluateC(u;d) = 29�(u;d) 2524 mt;b � 624� "(u;d) � 29�(u;d) 2524 B(u;d) �(u;d)�(u;d)!2 ; (62)what, in the framework of our perturbative approa
h, givesC(u;d) = ÆC(u;d) + 29Æ�(u;d) 2524 mt;b 29320 Æ�(u;d) �5 ÆA(u;d) �9 ÆB(u;d)�  �(u;d)Æ�(u;d)!2� 29Æ�(u;d) � ÆA(u;d) + ÆB(u;d)�  �(u;d)Æ�(u;d)!2 ; (63)where ÆC(u;d) = 29Æ�(u;d) 2524 mt;b � 624� Æ"(u;d)= � 4339733:2 � = � 4340733 � : (64)With the 
entral values of �(u) and �(d) as estimated in Eqs. (46) and (49)we �nd from Eqs. (41)ÆA(u;d)  �(u;d)Æ�(u;d)!2 = � 7:395:26 � MeV ; ÆB(u;d)  �(u;d)Æ�(u;d)!2 = � 2:666:88 � MeV ;(65)where Æ�(u;d)29  �(u;d)Æ�(u;d)!2 = � 65:645:4 � MeV : (66)We 
al
ulate from Eqs. (63) with the use of values (65) thatC(u;d) = � 4339 + 5:25733:2 � 49:5 � = � 4344683:7 � = � 4340684 � : (67)Similarly, from the se
ond Eq. (39), making use of the values (65), weobtain�(u;d) = � 1060 � 1:1895:7 + 3:23 � MeV = � 105998:9 � MeV = � 106098:9 � MeV :(68)



2648 W. KrólikowskiWe 
an easily 
he
k that, with the values (40) for Æ�(u;d) and Æ"(u;d) andthe value (64) for ÆC(u;d) determined as above from quark masses, the un-perturbed parts of mass formulae (35) reprodu
e 
orre
tly these masses. Infa
t, Æmu;d = Æ�(u;d)29 Æ"(u;d)= � 3:36 � MeV ;Æm
;s = Æ�(u;d)29 49 �80+ Æ"(u;d)� = � 1300120 � MeV ;Æmt;b = Æ�(u;d)29 2425 �624+ Æ"(u;d) + ÆC(u;d)� = � 1744:3 � GeV : (69)The same is true for the unperturbed part of the �rst 
orrelating formula(39). The � here omitted � 
orre
tions to Eqs. (69), arising from allperturbing terms in the mass formulae (35) (in
luding the 
orre
tions fromÆ�(u;d), Æ"(u;d) and ÆC(u;d)), are relatively small, viz.Æmu;d = � 3:7 � 10�3�2:0� 10�1 � MeV ; Æm
;s = � 9:5�3:8 � MeV ;Æmt;b = � 170�74 � MeV ; (70)respe
tively.We would like to stress that, in 
ontrast to the 
ase of 
harged leptons,where m� has been predi
ted from me and m�, in the 
ase of up and downquarks two extra parameters C(u) and C(d) appear ne
essarily to providelarge masses mt and mb (mu
h larger than m� ). They 
ause that mt (mb)
annot be predi
ted from mu and m
 (md and ms), till the new parametersare quantitatively understood.Note that a 
onje
ture about C(u) and C(d) might lead to a predi
tion forquark masses and so, introdu
e 
hanges in the �experimental� quark masses(37) and (38) a

epted here. The same is true for a 
onje
ture about '(u)and '(d).For instan
e, the 
onje
ture that the phase di�eren
e '(u)�'(d) is max-imal, '(u) � '(d) = 90Æ ; (71)



Fermion Texture and Sterile Neutrinos 2649leads through the �rst equality in Eq. (51) to the 
ondition1 + 16�msm
�2 � 8414 � ms�(d)�2 jVusj2 = 0 (72)predi
ting for s quark the massms = 118:7MeV = 119MeV (73)(with �(d) = 355 MeV), being only slightly lower than the value 120 MeVused previously. Here, m
 and mb are kept equal to 1.3 and 4.3 GeV, re-spe
tively (also masses of u ; d and t quarks are not 
hanged, while Æ�(d), Æ"(d)and ÆC(d) 
hange slightly). Then, from the �rst equality in Eq. (53)tan�arg Vus � '(d)� = �4 msm
 = �0:365 ; arg Vus = �20:1Æ + '(d): (74)After rephasing (57), this gives arg Vub+arg Vtd = '(u)�'(d)�180Æ = �90Æ,where arg Vub = �69:9Æ ; arg Vtd = �20:1Æ (75)i.e., pra
ti
ally �70Æ and�20Æ. All jV�� j remain un
hanged (with our inputsof jVusj = 0:2196 and jV
bj = 0:0395), ex
ept for jVtdj whi
h 
hanges slightly,be
oming jVtdj = 0:00814 : (76)Thus, in the Cabibbo�Kobayashi�Maskawa matrix predi
ted in Eq. (59),only jVtdj and the phases (75) show some 
hanges. The Wolfenstein param-eters are � = 0:118 ; � = 0:322 (77)and � and A un
hanged (here, the sum �2 + �2 = 0:118 is also un
hanged).Hen
e, 
 + � = 90Æ and � = 180Æ � 
 � � = 90Æ, where
 = ar
tan �� = � arg Vub = 69:9Æ ; � = ar
tan �1� � = � arg Vtd = 20:1Æ:(78)So, in the 
ase of 
onje
ture (71), the new restri
tive relation�� = 1� �� ; �2 + �2 = � (79)holds, implying the predi
tionjVtdj=jVubj =s(1� �)2 + �2�2 + �2 = �� = 2:74 ; (80)



2650 W. Królikowskidue to the de�nition of � and � from Vub and Vtd. It is in agreement withour �gures for jVtdj and jVubj. Then, the new relationship14m
ms = �(d)m
�(u)ms = �� (81)follows for quark masses m
, ms and Wolfenstein parameters �, �, in 
onse-quen
e of Eqs. (43) and the 
onje
tured proportion (47). Both its sides arereally equal for our values of m
, ms and �, �.Thus, summarizing, we 
annot predi
t quark masses without an addi-tional knowledge or 
onje
ture about the 
onstants �(u;d), "(u;d), C(u;d), �(u;d)and '(u;d) (in parti
ular, the 
onje
ture (71) predi
ting ms may be natural).However, we always des
ribe them 
orre
tly. If we des
ribe them jointlywith quark mixing parameters, we obtain two independent predi
tions ofjVubj and 
 = � arg Vub: the whole Cabibbo�Kobayashi�Maskawa matrix is
al
ulated from the inputs of jVusj and of jVubj [and of quark masses ms, m
and mb 
onsistent with the mass matri
es �M (u)�� � and �M (d)�� �℄.Con
luding this Se
tion, we 
an 
laim that our leptoni
 form of massmatrix works also in a promising way for up and down quarks. But, it turnsout that, in the framework of the leptoni
 form of mass matrix, the heaviestquarks, t and b, require an additional me
hanism in order to produ
e thebulk of their masses (here, it is represented by the large 
onstants C(u) andC(d)). Su
h a me
hanism, however, intervenes into the pro
ess of quarkmixing only through quark masses (pra
ti
ally mt and mb) and so, it doesnot modify for quarks the leptoni
 form of mixing me
hanism.4. A model of texture with two sterile neutrinosAssume that there are two sorts, �(e)s and �(�)s , of sterile neutrinos (blindto all Standard Model intera
tions and so, intera
ting only gravitation-ally). Conje
ture that their mixings with two a
tive neutrinos �e and ��,respe
tively, dominate all neutrino mixings. Thus, �ve �avor neutrino �elds,�� = �e, ��, �� , �(e)s , �(�)s , exist in this texture and mix a

ording to a neu-trino mass matrix M (�). This 
an be assumed 
onsistently in the following5� 5 form:M (�) = �M (�)�� � = 0BBBBBB� M (�)11 0 0 M (�)14 00 M (�)22 0 0 M (�)250 0 M (�)33 0 0M (�)41 0 0 0 00 M (�)52 0 0 0
1CCCCCCA (82)



Fermion Texture and Sterile Neutrinos 2651withM (�)�� = M (�)��� ,M (�)�� = jM (�)�� j andM (�)�� = jM (�)�� j exp �i'(�)� for � < �,where the diagonal elements M (�)11 , M (�)22 and M (�)33 are given in terms of �(�)and "(�) as in Eq. (1) (with f = �). Here, we put M (�)44 = 0 = M (�)55 andeven M (�)12 = 0 = M (�)23 , the latter implying �(�) = 0 due to Eq. (1) (withf = �). With su
h a spe
i�
 ansatz as (82), all neutrino mixings are 
ausedby the existen
e of sterile neutrinos responsible for the o�-diagonal matrixelements M (�)14 and M (�)25 .It is important to noti
e that, a

ording to the useful formula for ele
tri

harge, Q = IL3 + Y=2 with Y=2 = IR3 + (B � L)=2, sterile neutrinos 
an
arry no lepton number, L = 0. This may be a reason for M (�)44 = 0 = M (�)55 .On the other hand, the o�-diagonal matrix elements M (�)14 and M (�)25 , if nonzero, violate the lepton number 
onservation.The mass matrix of the form (82) leads to the following masses 
orre-sponding to �ve mass neutrino �elds �i = �1 ; �2 ; �3 ; �4 ; �5:m�1; �4 = M (�)112 �vuut M (�)112 !2 + jM (�)14 j2 ;m�3 = M (�)33 ;m�2; �5 = M (�)222 �vuut M (�)222 !2 + jM (�)25 j2 : (83)Note that in Eq. (82) we used for simpli
ity � = 1 ; 2 ; 3 ; 4 ; 5, whi
h 
on-vention, if used properly, does not introdu
e any serious 
onfusion withi = 1 ; 2 ; 3 ; 4 ; 5.The 
orresponding 5� 5 unitary matrix U (�), diagonalizing the neutrinomass matrix (82) a

ording to the relationU (�) yM (�) U (�) = diag(m�1 ; m�2 ; m�3 ; m�4 ; m�5) ;takes the formU (�) = �U (�)�i � =0BBBBBB� 1p1+X2 0 0 � Xp1+X2 ei'(�) 00 1p1+Y 2 0 0 � Yp1+Y 2 ei'(�)0 0 1 0 0Xp1+X2 e�i'(�) 0 0 1p1+X2 00 Yp1+Y 2 e�i'(�) 0 0 1p1+Y 2
1CCCCCCA ;(84)



2652 W. Królikowskiwhere X = m�1 �M (�)11jM (�)14 j = � M (�)112jM (�)14 j +vuut1 + M (�)112jM (�)14 j!2 ;Y = m�5 �M (�)22jM (�)25 j = � M (�)222jM (�)25 j +vuut1 + M (�)222jM (�)25 j!2 : (85)Note that always 0 < X � 1 and 0 < Y � 1.The �avor neutrino �elds �� are 
onne
ted to the mass neutrino �elds �ithrough the �ve�dimensional unitary transformation�� =Xi (V y)�i �i (86)with �V y��i = (V )�i� = V �i�, where V = (Vi�) denotes the lepton 5 � 5
ounterpart of Cabibbo�Kobayashi�Maskawa matrix:V = U (�)yU (e) ;U (e) = �U (e)�� � = 0� U (e)�� (�; � = 1; 2; 3) 00 Æ�� (�; � = 4; 5) 1A ; (87)where �U (e)�� (�; � = 1; 2; 3)� is the 
harged-lepton diagonalizing unitarymatrix given perturbatively in Eq. (4). If there �(e)=�(e) (jointly with itsnumeri
al 
oef�
ients) is negle
ted, then U (e) ' (Æ��) and so, we 
an put inEq. (86) V �i� = �V y��i = �U (e) yU (�)��i ' �U (�)��i = U (�)�i : (88)In our model, U (�)�i are given as in Eq. (84).5. Neutrino os
illations and their possible dampingHaving on
e found the extended Cabibbo�Kobayashi�Maskawa matrixV , we 
an 
al
ulate the probabilities P (�� ! ��) of neutrino os
illations�� ! �� (in the va
uum) i.e., the probabilities of (va
uum) os
illations ofthe �avor neutrino states j��i ! j��i, where j��i = �y�j0i andj��i =Xi j�iiVi� (89)



Fermion Texture and Sterile Neutrinos 2653with j�ii = �yi j0i. If allowing that, in general, not all mass neutrino statesj�ii are absolutely stable, thenj�i(t)i = e�i(H�i� )tj�ii = j�iie�i(Ei�i
i)t ; (90)where Ei =q~p 2 +m2�i ' j~pj+m2�i=2j~pj and 
i = (jm�i j=E) 
(0)i are neutrinoenergies and de
ay widths (with 
(0)i and E ' j~pj denoting the neutrino de
aywidths at rest and neutrino beam energy, respe
tively). Thus, generally,we obtain for neutrinos (in the va
uum) the following damped os
illationformulae:P (�� ! ��) = jh�� je�i(H�i� )tj��ij2 =Xj i Vj�V �j�V �i�Vi�ei(Ej�Ei)te�(
j+
i)t= Æ�� +Xj i Vj�V �j�V �i�Vi� hei(Ej�Ei)te�(
j+
i)t � 1i : (91)They are analogues of the formulae for K0 ! K0 and K0 ! K0 os
illations.Note that Eqs. (91) imply the probability sum rules in the nonunitarity formX� P (�� ! ��) =Xi jVi�j2e�2
it ; (92)in spite of the unitarity of V . Of 
ourse, the rhs of Eq. (92) is equal to1, if all (here involved) 
i are zero. In this 
ase, the damping in Eqs. (91)disappears and they be
ome the 
onventional neutrino os
illation formulae.The same is true for the next Eqs. (93).If the quarti
 produ
ts in Eqs. (91) are real (as it turns out to be in our
ase), we 
an rewrite these equations in the formP (�� ! ��) = Xj i Vj�V �j�V �i�Vi�e�(
j+
i)t� Xj>i Vj�V �j�V �i�Vi� sin2�Ej �Ei2 t� e�(
j+
i)t ; (93)where the �rst term is equal toÆ�� �Xj i Vj�V �j�V �i�Vi� h1� e�(
j+
i)ti : (94)Writing (Ej�Ei)t = �m2j iL=2E and (
j+
i)t = (jm�j j
(0)j + jm�i j
(0)i )L=Ewith�m2j i � m2�j�m2�i , E = j~pj and L = t, and then expressing the neutrino



2654 W. Królikowskimasses m�i and rest widths 
(0)i in eV, the experimental baseline L in kmand the neutrino beam energy in GeV, we 
an insertEj �Ei2 t ! 1:27�m2j iLE � xj � xi ;(
j + 
i)t ! 5:07(jm�j j
(0)j + jm�i j
(0)i )LE � yj + yi (95)in Eq. (91) and (93) (here, 
 = 1 = ~) 2.From Eqs. (93) with Vi� = U (�) ��i , we derive in the 
ase of our form(84) of U (�)�i the following damped os
illation formulae for a
tive neutrinos�e ; �� ; �� (in the va
uum):P (�e ! ��) = 0 = P (�� ! �e) ;P (�e ! �� ) = 0 = P (�� ! �e) ;P (�� ! �� ) = 0 = P (�� ! ��) ;P (�e ! �e) = �e�y1 +X2e�y41 +X2 �2 �� 2X1 +X2�2 sin2(x4 � x1)e�(y4+y1) ;P (�� ! ��) = �e�y2 + Y 2e�y51 + Y 2 �2 �� 2Y1 + Y 2�2 sin2(x5 � x2)e�(y5+y2) ;P (�� ! �� ) = e�2y3 (96)and those where, beside �e ; �� ; �� , the sterile neutrinos �(e)s ; �(�)s parti
i-pate expli
itly:P (�e ! �(e)s ) = �X(e�y1 � e�y4)1 +X2 �2 +� 2X1 +X2�2 sin2(x4 � x1)e�(y4+y1) ;P (�e ! �(�)s ) = 0 ;2 The insertion L = vt with v = j~pj=E ' 
 (
 = 1) is 
alled by Lipkin [10℄ the �righthandwaving� whi
h 
onverts the �gedanken os
illation experiment� in time into thereal os
illation experiment in spa
e. In the �rst experiment, a �avor neutrino is
reated by a weak-intera
tion sour
e (of size � L) in a momentum eigenstate j��; ~pibeing a superposition of a few energy eigenstates j�i; Eii (with Ei = p~p 2 +m2�i)des
ribing mass neutrinos evolving in time. Inversely, in the se
ond experiment, the�avor neutrino is emitted in an energy eigenstate j��; Ei given as a superposition of afew momentum eigenstates j�i; ~pii (with j~pij =pe2 �m2�i) des
ribing mass neutrinospropagating in spa
e (the requirement of 
oheren
e within this superposition leadsto the 
ondition j j~pij � j~pj j j � 1=sour
e size). In the �rst 
ase Ei�Ej ' �m2ij=2j~pj,while in the se
ond j~pij � j~pj j ' �m2ij=2E. Here, E ' 
j~pj (
 = 1). A �wronghandwaving� would be the insertion L = viti with vi = ~p=Ei.



Fermion Texture and Sterile Neutrinos 2655P (�� ! �(e)s ) = 0 ;P (�� ! �(�)s ) =�Y (e�y2 � e�y5)1 + Y 2 �2+� 2Y1 + Y 2�2sin2(x5 � x2)e�(y5+y2);P (�� ! �(e)s ) = 0 ;P (�� ! �(�)s ) = 0 : (97)The probabilities (96) and (97) satisfy the sum rules (92) whi
h now read :P (�e ! �e) + P (�e ! �(e)s ) = e�2y1 +X2e�2y41 +X2 ;P (�� ! ��) + P (�� ! �(�)s ) = e�2y2 + Y 2e�2y51 + Y 2 : (98)Note that damping in our neutrino os
illation formulae de
reases withgrowing neutrino energy E, be
ause yi = 5:07jm�i j
(0)i L=E de
reases. Thus,the larger ���neutrino energy is explored in ���neutrino experiments, thesmaller damping in�uen
e is exerted on P (�� ! ��), provided not all (in-volved) 
i are zero. Of 
ourse, the e�e
t of damping, if any, is expe
ted tobe very small. 6. A me
hanism of negligible dampingNow, we turn to the dis
ussion of a possible me
hanism of neutrinoinstability i.e., instability of mass neutrino states. To this end observe thatthe neutrino weak 
urrentJ (�) � = �eL
��eL + ��L
���L + ��L
���L ; (99)though it is diagonal in the a
tive neutrinos �e ; �� ; �� , is no longer diago-nal in the mass neutrinos �1 ; �2 ; �3 ; �4 ; �5, if the sterile neutrinos �(e)s ,�(�)s really exist. In fa
t, inserting in Eq. (99) the unitary transforma-tion (86), we obtain generally, beside �iL
��iL, some nondiagonal produ
ts�iL
��jL (i 6= j), sin
e only three of �ve produ
ts ��L
���L are originallypresent in Eq. (99).For instan
e, in the 
ase of our form (84) of U (�)�i , the unitary transfor-mation (86) with V �i� = U (�)�i gives



2656 W. Królikowski�e = 1p1 +X2 ��1 �X�4ei'(�)� ;�� = 1p1 + Y 2 ��2 � Y �5ei'(�)� ;�� = �3;�(e)s = 1p1 +X2 �X�1e�i'(�) + �4� ;�(�)s = 1p1 + Y 2 �Y �2e�i'(�) + �5� : (100)Thus, in our 
ase, the neutrino weak 
urrent (93) transits into the formJ (�) � = 11 +X2 h�1L
��1L +X2�4L
��4L�X ��1L
��4Le'(�) + �4L
��1Le�i'(�)� i+ �3L
��3L+ 11 + Y 2 h�2L
��2L + Y 2�5L
��5L�Y ��2L
��5Le'(�) + �5L
��2Le�i'(�)� i: (101)Sin
e in the Standard Model Lagrangian this neutrino weak 
urrent is
oupled to the Z boson [with the 
oupling 
onstant �g=(2 
os �W ) =�e=(2 sin �W 
os �W )℄, some neutrino de
ays of the type �i ! �j �k ��l with(i; j) = (1; 4) or (4; 1) and (2; 5) or (5; 2), and with similar (k; l),are Z-mediated, so that they 
an be real pro
esses if onlyjm�i j > jm�j j+ jm�k j+ jm�l j (here, ��l denotes an antiparti
le of �l).In the 
ase of our neutrino mass spe
trum (83), we get the inequalitiesm�1 > jm�4 j,m�2 > jm�5 j andm�2 > m�1 , where in the last relation we makeuse of M (�)22 > M (�)11 . Further, jm�5 j > m�1 , jm�5 j > jm�4 j, m�3 > m�2 andm�3 > jm�5 j, if Y �X > M (�)11 =jM (�)25 j, Y > X, Y < (M (�)33 �M (�)22 )=jM (�)25 jand Y < M (�)33 =jM (�)25 j, respe
tively. Thus, for Y � X > M (�)11 =jM (�)25 j andY < (M (�)33 �M (�)22 )=jM (�)25 j all these inequalities hold. In this 
ase, therefore,jm�4 j < m�1 < jm�5 j < m�2 < m�3 ; (102)showing that then jm�4 j is the lowest neutrino mass.We 
an see that for any virtual de
ay �1 ! �4 �k ��l we getm�1 � jm�4 j � jm�k j � jm�l j � m�1 � jm�4 j � 2jm�4 j= 2M (�)11 �qM (�) 211 + 4jM (�)14 j2= M (�)11 � 2jM (�)14 jX > or � 0 ; (103)



Fermion Texture and Sterile Neutrinos 2657depending on X < or � M (�)11 =2jM (�)14 j. This implies that, a priori, thede
ay width of �1 neutrino may be 
1 6= 0 or 
1 = 0, respe
tively. Sin
ejm�4 j < m�1 , no virtual de
ay �4 ! �1 �k ��l 
an be a real pro
ess, what leadsto 
4 = 0 for �4 neutrino.Similarly, for any virtual de
ay �2 ! �5 �k ��l, we obtainm�2�jm�5 j�jm�k j�jm�l j � m�2�jm�5 j�2jm�4 j= M (�)11 +M (�)22 �qM (�) 211 + 4jM (�)14 j2= M (�)22 �2jM (�)14 jX > 0 (104)if X < M (�)22 =2jM (�)14 j, where M (�)22 = (4=9)(80="(�) � 1)M (�)11 with "(�) < 1(
f. Eq. (1) with f = �). If true, this gives a nonzero de
ay width 
2 6= 0 for�2 neutrino. On the other hand, for �5 neutrino 
5 = 0, sin
e jm�5 j < m�2 .Anti
ipating that 
1 = 0 (or is extremely small) and putting 
3 = 
4 =
5 = 0, we obtain from Eqs. (96) and (97) the following neutrino os
illationformulae (possibly damped if 
2 6= 0):P (�e ! �e) = 1�� 2X1 +X2�2 sin2(x4 � x1) = 1� P (�e ! �(e)s ) ;P (�� ! ��) = �e�y2 + Y 21 + Y 2 �2 �� 2Y1 + Y 2�2 sin2(x5 � x2)= e�2y2 + Y 21 + Y 2 � P (�� ! �(�)s ) ;P (�� ! �� ) = 1 : (105)Here,x1 � x4 = 2:53 jM (�)14 jM (�)11 LE ; x2 � x5 = 2:53 jM (�)25 jM (�)22 LE : (106)From the neutrino mass spe
trum (83) and the de�nitions (85) of X andY , we 
an derive the useful equations expressing M (�)11 and jM (�)14 j throughX and �m214, as well as M (�)22 and jM (�)25 j through Y and �m225:M (�)11 = �1�X21 +X2�m214�1=2 ; jM (�)14 j = � X21�X4�m214�1=2 (107)as well asM (�)22 = �1� Y 21 + Y 2�m225�1=2 ; jM (�)25 j = � Y 21� Y 4�m225�1=2 : (108)



2658 W. KrólikowskiFurther, writing1 � � 2X1 +X2�2 � sin2 2�(e) ; 1 � � 2Y1 + Y 2�2 � sin2 2�(�) ; (109)we obtain 1 � X � tan �(e) ; 1 � Y � tan �(�) ; (110)where 0 � 2�(e) � �=2 and 0 � 2�(�) � �=2. We 
an see from Eqs. (108)that for a �xed �nite jM (�)25 j we get �m225 ! 0 as Y ! 1, ex
luding in thislimit the 
orresponding neutrino os
illations. On the other hand, if we insistin an argument to keep �m225 �xed and nonzero as Y ! 1, we formally havejM (�)25 j ! 1, implying m�2 !1 and jm�5 j ! 1. (In both 
ases M (�)22 ! 0as Y ! 1.) Analogi
al 
on
lusions follow from Eqs. (107) for jM (�)14 j and�m214 (and M (�)11 ) when X ! 1.The �rst Eq. (105) enables us to as
ribe the observed de�
it of solar �e'sto �e ! �(e)s os
illations. In fa
t, we 
an determine our parameters M (�)11and jM (�)14 j putting� 2X1 +X2�2 = sin2 2�solar � 0:75 ;�m214 = �m2solar � 6:5 � 10�11 eV2 ; (111)if the global va
uum �t to solar data [5℄ is 
hosen. Then, due to Eqs. (110)and (107) X = tan �solar � 1=p3 = 0:577 ;M (�)11 � 5:70 � 10�6 eV ;jM (�)14 j � 4:94 � 10�6 eV : (112)Here, we 
an see that M (�)11 =2jM (�)14 j = (1 � X2)=2X � 1=p3 � X. Thus,the 
ondition leading to 
1 = 0 is satis�ed on the edge [
f. Eq. (103)℄. Atthe same time, this shows that the 
ondition M (�)22 =2jM (�)14 j > X, providing
2 6= 0 in the se
ond Eq. (105), is ful�lled 
omfortably [
f. Eq. (104)℄.Damping in the se
ond Eq. (105) 
ompli
ates our dis
ussion, though it isnatural to expe
t that this formula allows us to as
ribe the observed de�
itof atmospheri
 ��'s to �� ! �(�)s os
illations. In fa
t, anti
ipating thatdamping in this 
ase is tiny [
f. Eq. (119)℄, we may write exp(�y2) ' 1� y2and, therefore,
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P (�� ! ��) ' 1�� 2Y1 + Y 2�2 sin2(x5 � x2)�y2� 2Y1 + Y 2�2 �12 � sin2(x5 � x2)� ; (113)where the 
oe�
ient at y2 in the 
orre
tion O(y2) is almost 
ompensated tozero. Thus, we 
an put approximately� 2Y1 + Y 2�2 ' sin2 2�atm � 0:82 to 1 ;�m225 ' �m2atm � (0:5 to 6)� 10�3 eV2 ; (114)where the re
ent data from Super-Kamiokande atmospheri
 neutrino exper-iment [4℄ is applied. Here, we will put, for instan
e, sin2 2�atm � 0:999 and�m2atm � 5� 10�3 eV2 as in Se
tion 3. Then,Y ' tan �atm � 0:969 ; M (�)22 � 0:126� 10�1 eV ; jM (�)25 j � 1:99� 10�1eV(115)due to Eqs (110) and (108).Making use of the estimations (112) and (115), we 
an evaluate "(�) and�(�) from Eq. (1) (with f = �),"(�) = 801 + 9M (�)22 =4M (�)11 � 1:61 � 10�2 ;�(�) = 29M (�)11"(�) � 1:03 � 10�2 eV ; (116)and then, the neutrino masses m�1 , m�4 , m�2 , m�5 and m�3 from Eqs. (83),m�1 � 8:55 � 10�6 eV ; m�4 � �2:85� 10�6 eV ;m�2 � 2:05 � 10�1 eV ; m�5 � �1:93� 10�1 eV (117)and m�3 = �(�)29 2425 �624 + "(�)� � 2:12 � 10�1 eV : (118)These masses satisfy 
onsistently the inequalities (102) and reprodu
e theexperimental values (101) and (114): �m214 � 6:5� 10�11 eV2 and �m225 �5� 10�3 eV2.Now, we 
an evaluate the total de
ay width at rest, 
(0)i , for a massneutrino �i de
aying through the Z�mediated pro
esses �i ! �j �k ��l, where



2660 W. Królikowskimi = Ej + Ek + El > mj +mk +ml with mn = jm�n j. In the 
ase of m2,m5 and m2 �m5 dominating over mk and ml (k; l = 1; 4), we obtain theapproximate formula
(0)2 = 14 G2F192�3 � Y1 + Y 2�2 (m2 �m5)4 (m2 + 2m5) ; (119)where the total de
ay width 
(0)2 is the sum of four partial de
ay widths for�2 ! �5 �k ��l with (k ; l) = (1 ; 4) ; (4 ; 1) ; (1 ; 1) ; (4 ; 4) whi
h are propor-tional to � Y1 + Y 2�2� X1 +X2�2; � Y1 + Y 2�2� X1 +X2�2;� Y1 + Y 2�2� 11 +X2�2; � Y1 + Y 2�2� X21 +X2�2;respe
tively, the sum of these weights being equal to Y 2=(1 + Y 2)2. In this
al
ulation, we used the Standard Model 
oupling of the neutrino weak 
ur-rent (101) to the Z boson [with the 
oupling 
onstant �g=(2 
os �W ), whereGF =p2 = g2=(8MW ) = g2=(8MZ 
os �W )℄, and 
onsidered the situationwhen (p2 � p5) � M2Z at the rest frame of de
aying �2: p2 = (m2 ; ~0). InEq. (119), the fa
tor 1/4 at the front is a 
onsequen
e of using the neutralweak 
urrent (rather than 
harged weak 
urrent), while Y 2=(1+Y 2)2 stemsfrom mixing of a
tive and sterile neutrinos.If Y , m2 and m5 are estimated as in Eqs. (115) and (117), then theformula (119) gives (with the Fermi 
onstant GF = 1:17� 10�5 GeV�2) theextremely small value 
(0)2 � 10�59 eV (120)
orresponding to the enormous lifetime �2 = 1=
(0)2 � 1043 se
 (as eV�1 =6:58�10�16 se
). This implies for the Super-Kamiokande atmospheri
 exper-iment that y2 = 5:07m2
(0)2 L=E � 10�55 withm2
(0)2 � 10�60, L � 1:3�104and E � 1 expressed in eV2, km and GeV, respe
tively. Thus, pra
ti
ally,y2 = 0 and so exp(�y2) = 1. If m2 = m�2 and m5 = jm�5 j grow by oneorder of magnitude (what is the 
ase when sin 2�atm rises to 0.9999 and so,Y to 0.990), then 
(0)2 be
omes not larger than � 10�54 eV and �2 notsmaller than � 1038 se
.Con
luding the last Se
tion, we 
an say that damping in neutrino os
il-lation formulae 
an be 
ompletely negle
ted, unless there are other sour
esof neutrino instability [11℄, more e�e
tive than the Z�mediated de
ays �i !
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onsidered in this paper. The last de
ays appear in the StandardModel framework if, additionally, there are sterile neutrinos mixing with thea
tive ones and so, breaking the elektroweak symmetry SU(2)�U(1). Ourdis
ussion shows that the neutrino de
ay widths 
i are zero for i = 1; 3; 4; 5and are 
ompletely negligible for i = 2. However, our damped os
illationformulae (93) [and their more spe
i�
 versions given in Eqs. (96) and (97)℄
an work for any sort of potential neutrino instability.AppendixMajorana sterile neutrinosThe �avor neutrinos, three a
tive �e ; �� ; �� and two sterile �(e)s , �(�)s ,
onsidered in Se
ts. 5, 6 and 7, lead to �ve mass neutrinos �1 ; �2 ; �3 ; �4 ; �5having pure Dira
 masses (also in previous Se
tions neutrinos had alwayspure Dira
 masses). Now, assume that there are solely three a
tive �avorneutrinos, but they possess the �Majorana� 2� 2 mass matri
es
M (�)� =  m(L)� m(D)�m(D)� m(R)� ! (� = e ; � ; �) ; (A.1)ea
h 
onsisting of one Dira
 and two Majorana masses, m(D)� and m(L;R)� ,respe
tively [12℄. The mass matri
es (A.1) imply the following mass term inthe Lagrangian:�Lmass = 12X� ��(a)� �(s)� � 
M (�)�  �(a)��(s)� ! ; (A.2)where�(a)� � ��L + (��L)
 ; �(s)� � ��R + (��R)
 (� = e ; � ; �) (A.3)are the Majorana �avor neutrinos, three a
tive �(a)� and three sterile �(s)� ,built up of 
hiral �elds ��L, (��L)
 = (��)
R and ��R, (��R)
 = (��)
Linvolved already in the Dira
 �avor neutrinos �� = ��L+ ��R and antineu-trinos �
� = (��L)
+(��R)
. These 
onventional Majorana sterile neutrinos�(s)� 
ontain, therefore, no extra neutrino degrees of freedom, in 
ontrast toour previous Dira
 sterile neutrinos �(e;�)s = �(e;�)sL +�(e;�)sR involving extra 
hi-ral �elds �(e;�)sL and �(e;�)sR . Of 
ourse, in 
ontrast to the Dira
, the Majorananeutrinos mix (maximally) the lepton number L.



2662 W. KrólikowskiIn the 
ase of �Majorana� mass matri
es (A.1), the overall neutrino massmatrix takes the 6� 6 form
M (�) = �Æ��
M (�)� � =  Æ��  m(L)� m(D)�m(D)� m(R)� !! : (A.4)In this �pure-Majorana� mass matrix there is no mixing between �avor neu-trinos from three lepton families � = e ; � ; � .Diagonalizing the �pure-Majorana� mass matrix (A.4), we obtain theneutrino massesmI; II� = m(L)� +m(R)�2 �vuut m(L)� �m(R)�2 !2 +m(D) 2�' m(L)� +m(R)�2 �m(D)� (A.5)
orresponding to six Majorana mass neutrinos�I� = 
os ���(a)� � sin ���(s)� ;�II� = sin ���(a)� + 
os ���(s)� ; (A.6)where
os �� = m(D)�rm(D) 2� + �mII� �m(R)� �2 ' 1p2  1� m(L)� �m(R)�4m(D)� ! ' 1p2 ;sin �� = mII� �m(R)�rm(D) 2� + �mII� �m(R)� �2 ' 1p2  1 + m(L)� �m(R)�4m(D)� ! ' 1p2(A.7)with �� ' �=4+�m(L)� �m(R)� � =4m(D)� ' �=4 (mI� may be negative). Here,the approximate equalities are valid in the 
ase of m(L)� ' m(R)� . If inaddition m(L)� ' m(R)� ' m(D)� , then Eqs. (A.5) give mI� ' 0 and mII� '2m(D)� . In 
ontrast, if m(L)� ' m(R)� � m(D)� , they imply mI; II� ' �m(D)�(this 
ase is known as the pseudo-Dira
 
ase). Note that in the 
ase ofm(L)� ' m(R)� the mass neutrinos �I� and �II� are in an obvious analogy to themesons KL = pK0 � qK0 and KS = qK0 + pK0, where q=p ' 1� 2~" ' 1 isa 
ounterpart of our tan �� ' 1� �m(R)� �m(L)� � =2m(D)� ' 1.



Fermion Texture and Sterile Neutrinos 2663Any model with m(L)� ' m(R)� , leading to the nearly maximal mix-ing �I; II� ' ��(a)� � �(s)� � =p2, is orthogonal to the popular see�saw modelwith m(L)� � m(D)� � m(R)� whi
h gives �I� ' �(a)� and �II� ' �(s)� . In fa
t, inthis 
ase we get from Eqs. (A.5) and (A.7)mI� ' �m(D) 2�m(R)� ' 0 ; mII� ' m(R)� + m(D) 2�m(R)� ' m(R)� (A.8)and 
os �� ' 1� 12  m(D)�m(R)� !2 ' 1 ; sin �� ' m(D)�m(R)� ' 0 : (A.9)In both 
ases, however, we may have very small mI�. Noti
e that the presentexperimental limit on the (still not observed) neutrinoless double � de
ay(violating the lepton number L) allows for m(L)e or m(D)2e =m(R)e of the mag-nitude not larger than 0.2 eV in the 
ase of m(L)e ' m(R)e or m(L)e � m(R)e ,respe
tively.With the use of the neutrino mass matrix (A.4) we get the �pure-Majorana�os
illation formulaeP ��(a)� ! �(s)� � = jh�(s)� je�iHtj�(a)� ij2 = Æ� � sin2 2�� sin2 �xII� � xI�� (A.10)andP ��(a)� ! �(a)� � = jh�(a)� je�iHtj�(a)� ij2 = Æ� � � P ��(a)� ! �(s)� � ; (A.11)where xI; II� = 1:27(mI; II� )2L=E with mI; II� , L and E expressed in eV, kmand GeV, respe
tively. Here, sin2 2�� ' 1 if m(L)� ' m(R)� .For a form of neutrino mass matrix more general than the �pure-Majorana�form (A.4), more general mass spe
trum and mixing appear. A fairly gen-eral mixing may be given by the following anti
ipated formulae for Majoranamass neutrinos:�I; IIi =X� U (�)�� i �I; II� =X� U (�)�� i ( 
os �� �(a)� � sin �� �(s)�sin �� �(a)� + 
os �� �(s)� (A.12)(with i = 1; 2; 3 and � = e ; � ; �). Here, U (�) = �U (�)� i � is a 3 � 3 familyunitary matrix diagonalizing a 3 � 3 neutrino family mass matrix M (�) =�M (�)�� � through the relation �U (�) yM (�)U (�)�ij = Æijmi [and U (e) = (Æ��)i.e., M (e) = diag (me;m�;m� ) and V = U (�) y = (U (�)��i )℄.



2664 W. KrólikowskiIf the Majorana mixing angle �� is taken as a universal � (what 
ertainlywould be the 
ase for �� = 45Æ 
orresponding to m(L)� = m(R)� ), then themixing (A.12) follows from the 6� 6 neutrino mass matrix
M (�) = �
M (�)�� � with 
M (�)�� =M (�)�� � �(L) �(D)�(D) �(R) � ; (A.13)all entries �(L) ; �(R) and �(D) being dimensionless. In fa
t, su
h a formleads to the 6� 6 unitary matrixbU (�) = �bU (�)� i � with bU (�)� i = U (�)� i � 
os � sin �� sin � 
os � � (A.14)whi
h diagonalizes 
M (�) a

ording to the relation�bU (�) y
M (�) bU (�)�ij = Æij � mIi 00 mIIi � ; (A.15)where mI; IIi = mi�I; IIwith �I; II = �(L)+�(R)2 �s��(L)��(R)2 �2+�(D) 2' �(L)+�(R)2 � �(D) (A.16)(i = 1; 2; 3) are neutrino masses. The approximate equality in Eq. (A.16)is valid for �(L) ' �(R). Note that the mass matrix (A.13) is the dire
tprodu
t of two matri
es (3 � 3 and 2 � 2) 
ontaining separately the fam-ily and �Majorana� degrees of freedom. Thus, also the spe
trum (A.16) ismultipli
ative.In the 
ase of neutrino mass matrix (A.13), the �pure-Majorana� os-
illation formulae (A.11) are extended to the form (if U (e)�� = Æ�� i.e.,Vi� = U (�)��i )P ��(a)� ! �(a)� � = jh�(a)� je�iHtj�(a)� ij2= Æ� � � sin2 2�Xi jU (�)� i j2jU (�)� i j2 sin2 �xIIi �xIi��4Xj>i U (�) �� j U (�)� j U (�)� i U (�) �� i �
os4 � sin2 �xIi�xIj�+ sin4 � sin2 �xIIj �xIIi �+
os2� sin2� �sin2 �xIIj �xIi�+ sin2 �xIj�xIIi ��	 (A.17)
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h holds when the quarti
 produ
ts of matrix elements U (�)� i are real. InEqs. (A.17), xI; II = 1:27(mI; IIi )2L=E. Here, sin2 2� ' 1 and 
os2 � ' 1=2 'sin2 � if �(L) ' �(R).The neutrino family mass matrix M (�) = �M (�)�� � may be assumed inthe form (1) (with f = �). Then, in the 
ase of small � = M (�)33 =jM (�)12 jand � = M (�)22 =jM (�)12 j, the family unitary matrix U (�) = �U (�)�i � is given inEqs. (9). In order to derive from the neutrino os
illation formulae (A.17)expli
it results, we put �(L) = �(R) �� �(M)�. In this 
ase, the neutrinomass matrix (A.13) has the form
M (�) = �
M (�)�� �with 
M (�)�� = M (�)�� � �(M) �(D)�(D) �(M) � ; (A.18)and the neutrino mass spe
trum givesmI; IIi = mi ��(M) � �(D)�, wheremi �m�i are determined as in Eqs. (5) implying m3 >� jm2j � m1 (m2 = �jm2j).With this mass spe
trum, the further dis
ussion depends on the ratioof �(M) and �(D). We will 
onsider two 
ases: (i) �(M) = �(D) or (ii)�(M) � �(D) (the pseudo-Dira
 
ase). We derive from Eqs. (A.17) and (9)the following neutrino os
illation formulae: in the 
ase (i)P ��(a)e ! �(a)e � = 1� 4849 sin2 1:274m21�(D) 2LE !� 972 � 492 ;P ��(a)� ! �(a)� � = 1� sin2 1:274m22�(D) 2LE ! ;P ��(a)� ! �(a)e � = 14 � 49 sin2 1:274(m23 �m22)�(D) 2LE ! (A.19)or, in the 
ase (ii)P ��(a)e ! �(a)e �= 1��4849�2 sin2 1:274m21�(M)�(D)LE !� 3874 � 492 ;P ��(a)� ! �(a)� �= 1� 12 sin2 1:274m22�(M)�(D)LE !� sin2 1:274(m23 �m22)�(D) 2LE ! ;



2666 W. KrólikowskiP ��(a)� ! �(a)e �= 149 sin2 1:274(m23�m22)�(D) 2LE !� 12 � 49 sin2 1:274m22�(M)�(D)LE ! ; (A.20)where the L's are three di�erent experimental baselines. In these equations,the negligible 
onstant terms 
ome out from terms 
ontaining sin2 of largephases averaged over many os
illation lengths determined by the leadingterms with sin2 of small phases. The phases in Eqs. (A.19) and (A.20) were
al
ulated in both 
ases from the relations(mI; IIj )2 � (mI; IIi )2 = m2j ��(M) � �(D)�2 �m2i ��(M) � �(D)�2 ;(mII; Ij )2 � (mI; IIi )2 = m2j ��(M) � �(D)�2 �m2i ��(M) � �(D)�2 ; (A.21)working for �(L) = �(R) �� �(M)�. Note that the se
ond and third Eq. (A.20)are not of the two-�avor form, in 
ontrast to the se
ond and third Eq. (A.19).Comparing two �rst os
illation formulae (A.19) with the results of solarand atmospheri
 neutrino experiments [
f. Eqs. (111) and (114)℄, respe
-tively, we get4849 $ sin2 2�sol � 0:75 ; 4m21�(D) 2 $ �m2sol � 6:5� 10�11 eV2 (A.22)and1$ sin2 2�atm � 0:82 to 1; 4m22�(D) 2 $ �m2atm � (0:5 to 6)� 10�3 eV2:(A.23)Hen
e, we obtain m1jm2j � (3:61 to 1:04) � 10�4 (A.24)and, due to Eqs. (5),� = (49)3=2 m1jm2j � (12:4 to 3:57) � 10�2; (A.25)while m23 � m22 = 14[(48=49)� + �℄jM (�)12 j2 � (1:80 to 0:52)jM (�)12 j2 with� = �=16:848. This estimation 
on�rms that � � M (�)33 =jM (�)12 j and � �M (�)22 =jM (�)12 j are small.In 
ontrast to solar and atmospheri
 results, the LSND result (
f. Ref. [6℄),say, sin2 2�LSND � 0:02 and �m2LSND � 0:5 eV2 
annot be explained in the
ase (i), sin
e in the third Eq. (A.19)



Fermion Texture and Sterile Neutrinos 26674(m23�m22)�(D) 2 � 4m22�(D) 2 � (0:5 to 6)�10�3 eV2 � �m2LSND (A.26)for the estimation (A.25) (m23'm22 ' 49jM (�)12 j).In the 
ase (ii), however, one may try to 
ompare the third Eq. (A.20)with the LSND result getting, say,149 $ sin2 2�LSND � 0:02 ;(m23 �m22)�(D) 2 $ �m2LSND � 0:5 eV2: (A.27)If in the 
ase (ii) the relation 4m22�(M)�(D) $ �m2atm analogi
al to (A.23)held approximately [
f. the se
ond Eq. (A.20)℄, the 
omparison with (A.27)would give 4m22�(M)(m23 �m22)�(D) = �m2atm�m2LSND � (0:1 to 1:2) � 10�2 (A.28)and �(M)�(D) = 114 �4849� + �� �m2atm�m2LSND � (9:2 to 2:6) � 10�3 �m2atm�m2LSND� (0:92 to 3:2)� 10�5 ; (A.29)sin
e m23 �m22m22 = 27 �4849� + �� (A.30)through Eqs. (5) (in making the estimation (A.29) the value (A.25) wasused, whi
h holds also in the 
ase (ii) if 4m21�(M)�(D) $ �m2sol). Thus, forthe value (A.29) of �(M)=�(D) the third Eq. (A.20) might be 
onsistent withthe LSND result.In 
on
lusion of this Appendix, we 
an say that a simple neutrino massmatrix (A.13), operating with three neutrinos �e ; �� ; �� only and beingmultipli
ative in �Majorana� and family degrees of freedom, is 
onsistent ina natural way with solar and atmospheri
 neutrino experiments, but notwith the LSND result (that still requires 
on�rmation). Su
h a 
onsisten
yof �Majorana� option does not di�er mu
h from that based on the neutrinomass matrix (82) in
luding two Dira
 sterile neutrinos �(e)s and �(�)s . These
on
lusions were drawn with the use of our family mass matrix (1) (withf = �), where the dominan
e of its o�-diagonal elements was 
onje
tured.The opposite 
onje
ture of dominan
e of its diagonal elements does not
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hange our 
on
lusions essentially. The nearly bimaximal mixing that ap-pears in the �(a)e ! �(a)e and �(a)� ! �(a)� os
illation formulae (A.19) is a
onsequen
e of maximal mixings of �(a)e with �(s)e and �(a)� with �(s)� , re-�e
ting the equality �(L) = �(R) and so, not holding in the see�saw model
orresponding to �(L) � �(D) � �(R).When dis
ussing the Majorana �avor neutrinos �(a)� and �(s)� (� = e; �; �),one presumes that the superpositions (A.3) de�ning formally these obje
tsare really 
oherent in pro
esses of ele
troweak intera
tions whi
h operate onlefthanded 
hiral �elds ��L = �(a)�L , ignoring their righthanded 
ounterparts��R = �(s)�R.The Dira
 part of mass term (A.2) and the kineti
 term P� ��i
 � ���
an be expressed by �� as well as �(a)� and �(s)� , viz.�L(D)mass =X� m(D)� ���� =X� m(D)� ��(s)� �(a)� + �(a)� �(s)� � (A.31)and, up to the full divergen
e i� �P� ��
��,Lkin =X� ��i
 � ��� = 12X� ��(a)� i
 � ��(a)� + �(s)� i
 � ��(s)� � : (A.32)Thus, the de
iding role in the 
oheren
e question is played by the Majoranapart of the mass term (A.2),�L(M)mass = 12X� �m(L)� �(a)� �(a)� +m(R)� �(s)� �(s)� �= 12X� nm(L)� h(��L)
��L + ��L (��L)
 i+m(R)� h(��R)
��R + ��R (��R)
io; (A.33)whi
h 
an be presented also in terms of Dira
 superpositions �� = ��L+��Rand �
� = (��L)
+(��R)
, but only ifm(L)� = m(R)� . Hen
e, ifm(L)� 6= m(R)� (oreven if m(L)� ' m(R)� only approximately), the 
oheren
e of Majorana super-positions �(a)� and �(s)� seems to be physi
ally preferred over the 
oheren
eof Dira
 superposition ��.
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