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The dipole fit to the proton form factor is extended impirically in a
three quark analysis of the electromagnetic form factors Gg and Gy. A
relativisitic three quark Dirac shell model wave function is used to describe
the quarks in the proton rest frame. Fits beyond the dipole to the elec-
tromagnetic form factors lead to the upper and lower components of the
shell model wave function, and eventually to a model determination of the
potentials acting on the quarks. Asymptotically the scalar potential is a
confining linear potential. Its slope allows one to estimate the flux tube
constant. A best fit of the electromagnetic form factors using the composite
three quark wave function yields similiar values for the flux tube constant.
The flux tube constant found is about one half the 0.9 GeV /fm found from
meson studies.

PACS numbers: 11.10.Lm

1. Introduction

The proton charge form factor and its relation to the quark quark inter-
action has been developed [1] in a three constituent quark one component
wave function, Schroedinger equation approach. There an analytic dipole
shape for the charge form factor was inverted to yield a one component
hyperradial composite wave function for the three quarks. This could be
further inverted to yield the hypercentral potential acting on the quarks.
The proton is modeled here as three low mass quarks bound into a (1/2F)3
configuration coupled to a J of 1/2. The Dirac equation is used to describe
the dynamics of such relativistic bound quarks, including both the upper
component, F', and lower component G of the wave function.

The Dirac magnetic moment of a bound quark depends on both compo-
nents of the wave function in a relativistic approach. In the k = —1, 1/2%
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state, the electric and magnetic form factors for such a single particle bound
in a (1/2%) level, are:

G = [ dolar)[F? + GPlar 1)

and
Gu = [-4M /q] /jl(qr)FGdr. (2)

With ¢ the lab frame momentum transfer, the magnetic moment is the ¢
going to zero limit of G. In the constituent quark Schroedinger aproach,
the lower component G was neglected in determining the charge form factor
Gg. The main point of this paper is to see how the lower component of
the Dirac wave function for bound quarks can be determined from analyzing
jointly the electric form factor, Gg and the magnetic form factor, Gy. If the
upper and lower components can both be determined, then the potentials
acting on the quarks in the Dirac equation dynamics can be determined.
From these components, the potential, and the flux tube constant can then
be estimated. Miller[2] has shown that the external potentials possible in
the Dirac equation that conserve parity, total angular momentum, and are
time reversal invariant are a radial component of a tensor, a scalar , and a
zeroth component of a vector potential. The tensor potential is assumed to
be zero.

It is possible to invert the Gy form factor in a manner very similiar
to the inversion[l] of Gg. The difficulty is that there are four independent
hyperradial components[3] to determine using the composite three quark
wave function in the three body Dirac equation approach, but only two re-
lations, Gg and Gy to determine them with. Hyperspherical coordinates
were used in references [3,4], and the three body Dirac equation was solved
in hypercentral approximation. The hypercentral approximation limits the
composite three quark wave function to a single configuration, the (1/21)3
for the proton. The composite three quark wave function has eight hyper-
radial components to be determined. For three identical particles, and with
each particle with the same set of quantum numbers, one expects the com-
ponents Ro, Rs, and Rs to be equal, and also for the components Ry, Rg,
and Ry to equal each other. Then the wave function has only four unknown
independent components, Ry, Ry, R4, and Rg. Rp is the component that
survives in the nonrelativistic limit. These components correspond to having
0, 1, 2, and 3 quark lower components present in the composite three quark
wave function. These composite components are determined by solving the
three body Dirac equation. They depend on the potentials acting, and do
not exhibit constant ratios.
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Alternatively, a shell model approach can be employed, which reduces
the number of independent wave function components to two. The shell
model wave function is then a product wave function,

D = 1 (71)1h2(72)P3(73) - (3)

The one quark wave function,; is to be a solution of the one body Dirac
equation, with scalar and vector potentials S and V:

(@-pi +[S+m]B)yr = [E = Vg, (4)

where @, § are the Dirac matrices. After angular integration, for the k = —1,
(1/2%) state, the equations for F' and G are:

dF/dr — F/r =[m+ S -V + E|G (5)

and
dG/dr + G/r =[m+ S+ V — E|F. (6)

Here each one quark wave function has the two radial components F,
and G. These components are normalized as

/[zﬂ + = 1. (7)

In this case, the two proton form factors lead to determining both the upper
and lower components of the one quark wave function.

A linear confining [5] two body potential, 8r;; was used by Ref. [1] to
describe the quark confinment in the proton. Instead of a two body potential,
here a three body flux tube potential is sought from the form factor analysis,
based on the ideas of QCD [6]. The flux tube potential [7] is Vaux = bL,
where L is the sum of the lengths from each of the quarks to a central
location. The central location is determined by minimizing L, for fixed quark
locations. b is called the flux tube constant. In a shell model approach, the
central location for the flux tube is taken as the origin, and the flux tube
potential for the shell model is Viyx = b(r1 + 19+ 73). The asymptotic slope
of any such determined scalar potential will provide an estimate for the flux
tube constant.

These form factors were viewed as rest frame form factors in Ref. [1],
as no distinction was made between the lab, rest, or Breit frames. Mitra
and Kumari [8] rewrote the relativistic form factor proposed by Licht and
Pagnamenta [9] in the form:

Fap(d®) = /H?ldeidei(s(fAi — T )P (Tpi) e ATy (7 4;), (8)
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p is the Breit frame momentum which equals ¢/2 in the equal mass case. This
relativistic form factor exhibits an acceptable asymptotic behavior [8,10-13]
of ¢>7?" as ¢° tends to infinity. The relativistic form factor takes into acount
the Lorentz contraction along the direction of momentum transfer, taken
as the z direction. Thus the spherical in the rest frame wave functions,
become flattened toward pancake shapes in the Breit frame. The relativistic
form factor is written in this way to emphasize the symmetric treatment of
the initial and final state wave functions and coordinates. For the elastic
scattering appropiate for the electromagnetic form factors, particle A equals
B. The number of quarks in the system, n, is three. The delta function
is regarded as a function of the mixed coordinates, (#4,#p), which is also
subject to the Lorentz transformation. This is the transformation from the
rest frame into the Breit frame. Taking the common direction of motion as
the z direction, the Lorentz transformations at time ¢ = 0 are expressed by:

zi B g 2 Ep ()
ZA; = ZB; =
At MA ) Bi MB )
where v u
EE&B =p’ + le g, and 2y, = —A + —B (10)
5 3 EA EB

For elastic scattering, M4 = Mp, but for inelastic reactions, the coordinates
are symmetically handled. Also, the relativistic form factor becomes:

MsMp
EA Ep

n—1
Fap — < ) Frest(4p27§) : (11)

Flegt 1s just the usual non-relativistic form factor, but evaluated at a reduced
momentum transfer. For the elastic scattering case, the 4p2fyz becomes k?

with
2

q
= 12
1+¢?/4M2”° (12)
k is the reduced momentum transfer in the rest frame, and ¢ is the momen-
tum transfer in the lab frame.

2. Dirac three quark shell model

The three quark Dirac shell model for the proton assumes the quarks
move independently about a common center of mass, located at the origin
in the rest frame of the proton. The model uses both the upper and lower
components of the Dirac equation wave function. The dipole fits to the
proton electric and magnetic form factors, Gg and Gy suggest the F' and G,



Fluz Tube Constant Determined from Proton Form Factor Analyses 2675

the upper and lower componet radial functions are r times an exponential
and r squared times an exponential. The dipole fit to the form factor is:

1
P e "

where a® = 0.71GeV? and ¢? is the squared momentum transfer to the
proton in (GeV)?. This form factor to a first approximation, describes all
the momentum dependencies of both Gy, and Gg, the current and charge
form factors [14,15] of the proton. An analytic expression for the electric
form factor is necessary for ease in the numerical evaluation of the bessel
inversions to determine F' and G. The electric form factor was fit by the
expression:

Gr(q)
D

o a2/(1+k?/ad)? + b2 (1 — k*/a})*
[1+ ¢%/4M2]? ’

=[1+4¢*/a”] (14)

where a? 4+ b% = 1. A best fit was obtained for a=0.75, a2=2.052 GeV?, and
for M;=0.632 GeV. The magnetic form factor was paramaterized as:

Gwm 5, oy 1+ ¢*/4M?
=C+]1 — 4 15
smoap ~ CHILAa e 1+ q2/a2P’ (15)
where . . .
LI 16
o2 4M? + o (16)

Added to G\ /2.793D is a correction term, C, beyond the dipole fit of [1 +
P /0?PCs/[1+ @ [4M2], where

(2k%/p%) — (k*/B%)

Cs = 024" o

(17)

and
15GeV?

2
= 18

B = T (l0/am?) (18)
This relativistic approach [8-10] taking into account Lorentz contraction

of the wave functions in the Breit frame, along the direction of momentum

transfer, is to take the electric or magnetic form factors as

1
G Q) = mGrest(k) . (19)
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It is possible to fit the magnetic moment in this shell model by using
the Dirac magnetic moment from the bound quarks, but not simultaneously
with fitting the electric and magnetic form factors for large momentum trans-
fer. Shown in Fig. 1 is a best fit in a chi squared sense for Gg/D and for
G\ /2.793D while varying M, and o as parameters. They are determined
to be 0.632 GeV and 1.42 GeV respectively. For comparison, the experimen-
tal proton form factors of Bosted et al. [16] are shown. The form factors
well reproduce the experimental data. The electric form factor drops below
the dipole fit by about 5 to 10 percent. The magnetic form factor rises above
the dipole fit by about 5 percent and then gradually falls below the dipole
for larger momentum transfer.
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Fig. 1. Best fit to Gg/D and G\ /2.793 D for the proton. The upper curve is the
magnetic form factor, the lower is the electric. D is the dipole fit to the form
factors.

The FG product is numerically determined by bessel inversion transfor-
mation of G/2.793 D. The sum of the squared components, F? + G2, is
determined from the bessel inversion of Gg/D. The F? and G? functions
determined in this way are shown in Fig. 2. The large component peaks at a
radius of about 2.5/GeV and the lower component is largest near the origin.
This behavior is explained by the attractive potentials acting in the Dirac
equation dynamics. The asymptotic phase of F//G is assumed negative, as is
usual. The scalar (S +m), and Vector parts of the Dirac equation, (V — E),
are then numerically determined, and shown in Fig. 3. Both the scalar and
vector potentials show an attractive coulombic shape for small radii. The
scalar potential asymptotically rises linearly. The lower curve is the vector
potential minus the energy F. If E is about 1 GeV, the vector potential
found asymptotically goes to zero. We assume the quark mass m is of order
0.010 GeV and is neglected. The scalar potential, S, determined is indeed
seen to asymptotically resemble a linear confining potential plus an attrac-
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Rin 1/GeV

Fig.2. F? and G?, the upper and lower component of the quark shell model wave
functions, determined by bessel transforms from the electromagnetic form factors.
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Fig. 3. Rest frame Scalar and Vector potentials deduced from the radial components
F, and G. The Scalar potential(upper curve) asymptotically resembles the linear
flux tube potential. The vertical scale is in GeV.

tive coulombic term. The slope of the asymptotically large part of the scalar
potential is 0.079 GeV?2. This shape is consistent with that from a flux tube
potential, allowing the identification of a flux tube constant b=0.40 GeV /fm.

3. Conclusions

Using the Mitra, Kumari, Stanley and Robson relativistic form factor
approach, the electric and magnetic form factors of the proton have been fit.
Using a Dirac shell model wave function to describe the three quarks in the
proton, the form factors can be inverted to provide F' and G, the upper and
lower components of the quark radial wave function. From these, a scalar
linear binding potential is deduced using the Dirac equation for a (1/27)
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state. The asymptotic slope of this potential yields a flux tube constant of
b = 0.40 GeV/fm. This analysis yields a confining potential slope about
one half the 0.9 GeV/fm [5] inferred from meson studies. The relativistic
approach including both the upper and lower components of the quark wave
functions can be fit to reproduce the shape of the charge distribution of the
proton, as evidenced by the reproduction of the form factors. The potentials
inferred resemble a linear confining potential plus a short ranged coulombic
attraction. These are comparable to a flux tube scalar confining potential
plus a one gluon exchange coulombic potential commonly used in Dirac
analyses of quark data.
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