
Vol. 30 (1999) ACTA PHYSICA POLONICA B No 9
CASIMIR ENERGY OF THE NAMBU�GOTO STRINGWITH GAUSS�BONNET TERM AND POINT-LIKEMASSES AT THE ENDS�Leszek HadaszInstitute of Physis, Jagellonian UniversityReymonta 4, 30-059 Craow, Polande-mail: hadasz�thris.if.uj.edu.pl(Reeived April 30, 1999)We alulate the Casimir energy of the rotating Nambu-Goto stringwith the Gauss-Bonnet term in the ation and point-like masses at the ends.This energy turns out to be negative for every values of the parameters ofthe model.PACS numbers: 11.25.PmIt seems to exist a ommon belief that the onstrution of (even ap-proximate) string representation of QCD ould be ruial for understandingnon-perturbative properties of quantum hromodynamis, suh as the na-ture of the ground state or mehanism of on�nement. The onjeture ofexistene of suh a desription is supported by a number of fats [1, 2℄, tomention only the nature of the 1=N expansion [3℄, suess of the dual mod-els in desription of Regge phenomenology, area on�nement law found inthe strong oupling lattie expansion [4℄ or the existene of �ux-line solu-tions in on�ning gauge theories [5, 6℄ and the analytial results onerningtwo-dimensional QCD [7℄. The results obtained reently in the frameworkof M theory are also very promising (see, for instane, [8℄).It is well known that the simplest, Nambu�Goto string model [9℄, whentreated as a quantum system, has many drawbaks [10,11℄ whih inlude thenon-physial dimension of the spae-time (D = 26) or tahion and unwantedmassless states in the spetrum. It is therefore reasonable to study mod-i�ations of the Nambu�Goto model, and among them the simplest ones,whih preserve the equations of motion for the interior of the string whilehanging the boundary onditions imposed at the string ends.� Work supported by the KBN grant 2 P03B 095 13.(2679)



2680 L. HadaszThe model we investigate in this letter is de�ned through the ationfuntionalS = � �2Z�1 d� �Z0 d� p�g � + �2R�� 2Xi=1 mi �2Z�1 d�q(��X)2 : (1)Here ; with the dimension (mass)2; is the string tension, � is a dimensionlessparameter and g = detgab is the determinant of the indued metri tensorgab = �aX��bX� (a; b = �; �). R; the inner urvature salar, an be writtenin the form R = �gabgd � gadgb�rarbX�rrX� ;where ra is a ovariant (with respet to the indued metri gab) derivative.This model belongs to the family of the string models studied for instanein [12℄. Partial analysis of lassial solutions of the model spei�ed by (1)was performed in [13℄.The inlusion of the Gauss�Bonnet termSGB = �2Z�1 d� �Z0 d� p�g Rinto the ation (1) is a rather natural onstrution in the ontext of the e�e-tive QCD string. The QCD string ation should ontain � apart from theX� �elds � also in�nitely many �elds desribing for instane the transverseshape of the hromoeletri �ux joining the olor soures. In onstrutingthe e�etive string ation, one integrates over suh a �elds and this pro-edure inevitably leads to emergene of the intrinsi urvature term in theation funtional. Of ourse, it is then only the �rst one out of the in�nitelymany terms with the growing number of derivatives.The worldsheet parametrization an be ompletely �xed by imposing themanifestly Lorentz invariant onditions [10℄:( _X �X 0)2 = 0 ; (2)( �X � _X 0)2 = �14q2 ; (3)where the dot and the prime mean di�erentiation with respet to � and �and q is a parameter with the dimension of mass. The appearane of thisparameter an be traed bak to the assumption, that � takes values in the�xed interval [0; �℄:It an be shown (for details see [10,14,15℄), that in this parametrizationevery solution of the string equations of motion and boundary onditions,



Casimir Energy of the Nambu�Goto String with Gauss�Bonnet Term : : : 2681following from the ation (1), orresponds to the solution of the omplexLiouville equation [16℄: ��� �00 = 2q2e� ; (4)supplemented with the boundary onditions:8>>>>><>>>>>:  � �q2e2Re� = (�1)imi ��� �eRe�=2� ;� ���Re� = 0 ;� os (Im�=2) = 0 ;��� Im� = 0 ; for � = 0; � : (5)The orrespondene is expliitly established through the relations:e� = � 1q2 F 0L(� + �)F 0R(� � �)sin2 hFL(�+�)�FR(���)2 i ; (6)X�(�; �) = X�L(� + �) +X�R(� � �) ; (7)��� X�L;R = q2jF 0L;Rj (osh ImFL;R; os ReFL;R; sinReFL;R; sinh ImFL;R) ;(8)where FL;R are arbitrary omplex funtions whih give single valued � sat-isfying the boundary onditions (5).A distinguished lass of solutions of the Liouville equation (4) is om-posed of stati, i.e. � -independent �elds. They are of the forme�0 = ��2q2 1os2 (�� � d) ; (9)where � and d satisfy the set of algebrai equations,q�2 os4 d�m1 sind os2 d� ��2q = 0 ;q�2 os4(��� d)�m1 sin(��� d) os2(��� d)� ��2q = 0 ; (10)following from the boundary onditions (5) for the Liouville �eld of theform (9).The Liouville �eld �0 desribes a straight string whih rotates with aonstant angular veloity in some plane and by hoosing a onvenient refer-ene frame we an write the string oordinates in a formX� = q�2���; os �� sin(�� � d); sin�� sin(�� � d); 0� : (11)



2682 L. HadaszLet us note, that in the presene of the inner urvature term in theation (1) the veloities of the string ends,v1 = ���� dXidX0 �����=0 = j sindj;v2 = ���� dXidX0 �����=� = j sin(��� d)j ; (12)remain smaller than the the veloity of light even in the limit of vanishingmasses mi = 0:For �xed values of the external parameters ; � and mi� s this is in fata family of solutions, parameterized by the value of q: By inreasing q weinrease the string length,L = 2q�2 �sin2 d2 + sin2���� d2 �� ; (13)as well as its lassial energy,E0 = �q� �1 + sin�� os(��� 2d)�� �+m1 os d+m2 os(��� d) : (14)In order to alulate the Casimir energy of the rotating string we haveto �nd the frequenies of small osillations around this on�guration. If wewrite �(�; �) = �0(�; �) + �1(�; �) ; (15)where �0 is given by (9) and �1 is assumed to be small, then from (4) weget the equation �2��1 � �2��1 + 2�2os2(�� � d)�1 = 0 ; (16)and (5) leads to the boundary onditions for the �1 �eld of the form�1 = 0; Im ���1 = 0 for � = 0; �: (17)General solution of the equation (16) satisfying the onditions (17) is�1(�; �) = 1Xn=1 an os (!n� + �n) � ��� + � tan(�� � d)� os(!n��Æn) ; (18)where tan Æn = �!n tan d ;



Casimir Energy of the Nambu�Goto String with Gauss�Bonnet Term : : : 2683!n are positive roots of the equationD(!) � !2 sin�! � �! [tan d+ tan(��� d)℄ os �!��2 tan d tan(��� d) sin�! = 0 ; (19)exluding !0 = � and an; �n are arbitrary, real onstants.It is onvenient to introdue the abbreviations� = � tan(��� d); � = � tan d ;what allows to rewriteD(!) = �!2 � ��� sin�! � (�+ �)! os �! :Using Eqs. (6)�(8) one heks that the Liouville �eld �1 desribes a setof deoupled string osillations with frequenies�n = �q !n : (20)The Casimir energy is de�ned as a (appropriately regularised and renor-malized) sum ECas =  1Xn=1 12�n!ren : (21)We hoose to work with the � funtion regularization (let us stress, however,that the �nal result is independent of the hosen regularization method �for instane, the ut-o� regularization gives the same ultimate formulae) andde�ne after [17℄~ECas def= 14 lim"!0 ��"�(�1 + ") + ��"�(�1 +�")� ; (22)where, for Re s > 1; �(s) = 1Xn=1 ��sn (23)and the parameter � with dimension of mass is introdued to ensure thatthe r.h.s. of the expression (22) has the dimension of energy for arbitraryomplex s: The physially interesting value s = �1 is obtained from (23)through the analyti ontinuation.Using the standard methods of ontour integration in the omplex planeone writes Xn ��sn = 12�i ��q��s ZC1 dzz�s ddz logD(z) ; (24)
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Fig. 1. The integration ontours in the omplex plane.where the integration ontour C1 (Fig. 1) surrounds zeroes of the funtionD exluding �0 = �2q :The analiity of the funtion D(z) allows to deform the integration on-tour C1 into C2 and, after a straightforward alulation, one arrives at theformula ~ECas = �2�q ��2 log �2~�2 + �2 log �2~�2 �+ �2�q 8<: 1Z0 dy log �1� (y � �)(y � �)(y + �)(y + �)e�2�y�� �9=; ; (25)where ~� is also an arbitrary, but now dimensionless onstant.Following [18,19℄ we interpret terms in the �rst square braket in Eq. (25)as renormalising the lassial string mass. This is also supported by theexpetation, that the Casimir energy should vanish for in�nitely long strings,while the disussed terms fail to satisfy this ondition.Our �nal expression for the Casimir energy thus readsECas = �2�q 8<: 1Z0 dy log �1� (y � �)(y � �)(y + �)(y + �)e�2�y�� �9=; : (26)For every values of masses m1;m2 and the parameters ; � the Casimirenergy (26) is negative.
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Fig. 2. The Casimir energy versus string length for various values of masses and theparameter � : � = 0:2;m1 = 0:1;m2 = 0:2 (solid line), � = 0:2;m1 = 0:1;m2 = 30(dashed line) and � = 2;m1 = 0:1;m2 = 0:2 (dotted line). All dimensionfulquantities in the system of units  = 1:For long strings (pL!1) formula (26) givesECas = � 112 1L + o �L�1� :This is di�erent from the elebrated Lüsher term [20℄,ELC = � �12 1L ;but the reasons are obvious. First, Lüsher term is derived for the string with�xed ends and the osillation frequenies equal�Ln = �nL ;while in our, rotating string ase we have�n(pL!1) = 2nL :Seond, in onsidered model we have only planar osillations and this givesadditional fator 1/2.
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