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CASIMIR ENERGY OF THE NAMBU-GOTO STRING
WITH GAUSS-BONNET TERM AND POINT-LIKE
MASSES AT THE ENDS*
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We calculate the Casimir energy of the rotating Nambu-Goto string
with the Gauss-Bonnet term in the action and point-like masses at the ends.
This energy turns out to be negative for every values of the parameters of
the model.

PACS numbers: 11.25.Pm

It seems to exist a common belief that the construction of (even ap-
proximate) string representation of QCD could be crucial for understanding
non-perturbative properties of quantum chromodynamics, such as the na-
ture of the ground state or mechanism of confinement. The conjecture of
existence of such a description is supported by a number of facts [1,2], to
mention only the nature of the 1/N, expansion [3], success of the dual mod-
els in description of Regge phenomenology, area confinement law found in
the strong coupling lattice expansion [4] or the existence of flux-line solu-
tions in confining gauge theories [5,6] and the analytical results concerning
two-dimensional QCD [7]. The results obtained recently in the framework
of M theory are also very promising (see, for instance, [8]).

It is well known that the simplest, Nambu—Goto string model [9], when
treated as a quantum system, has many drawbacks [10,11] which include the
non-physical dimension of the space-time (D = 26) or tachion and unwanted
massless states in the spectrum. It is therefore reasonable to study mod-
ifications of the Nambu-Goto model, and among them the simplest ones,
which preserve the equations of motion for the interior of the string while
changing the boundary conditions imposed at the string ends.

* Work supported by the KBN grant 2 P03B 095 13.
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The model we investigate in this letter is defined through the action

functional
/dT/dO’ ’y—{— R Zmz/dﬂ/ (0:X)? (1)

Here 7y, with the dimension (mass)?, is the string tension, « is a dimensionless
parameter and g = detg,y is the determinant of the induced metric tensor
Gab = 0, X" X, (a,b=7,0). R, the inner curvature scalar, can be written
in the form

R= (g“”g“i g“dg”c> VoV X, V.V X,

where V, is a covariant (with respect to the induced metric gq) derivative.
This model belongs to the family of the string models studied for instance
in [12]. Partial analysis of classical solutions of the model specified by (1)
was performed in [13].

The inclusion of the Gauss—Bonnet term

T2 ™
SagB = /dT/dO’ vV—gR
T1 0

into the action (1) is a rather natural construction in the context of the effec-
tive QCD string. The QCD string action should contain — apart from the
X* fields — also infinitely many fields describing for instance the transverse
shape of the chromoelectric flux joining the color sources. In constructing
the effective string action, one integrates over such a fields and this pro-
cedure inevitably leads to emergence of the intrinsic curvature term in the
action functional. Of course, it is then only the first one out of the infinitely
many terms with the growing number of derivatives.

The worldsheet parametrization can be completely fixed by imposing the
manifestly Lorentz invariant conditions [10]:

(XX = 0, (2)
. 1

(XX =~ 3)
where the dot and the prime mean differentiation with respect to 7 and o
and ¢ is a parameter with the dimension of mass. The appearance of this
parameter can be traced back to the assumption, that o takes values in the

fixed interval [0, 7].
It can be shown (for details see [10,14,15]), that in this parametrization
every solution of the string equations of motion and boundary conditions,
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following from the action (1), corresponds to the solution of the complex
Liouville equation [16]: )

b — " =2¢%7, (4)
supplemented with the boundary conditions:

— an e?Re P

(
aaTRe@ = 0,
(5)
acos (Im@/2) = 0,
AIm @ = 0

bl

_1)imi% (eRedf‘/?)

, for o=0,7.

The correspondence is explicitly established through the relations:

& 1 F{ (1 + 0)F, (1 — o) (©)
e = 9
Fy(T40)— F (T—
q SlIl L(T U)Q R(T ‘7)]

XHM(r,0) = X{f(T—i—U)—i—Xﬁ(T—a), (7)
0
Zxl. = =2 (coshTm Fi, g, cosRe Fig, sinRe Fi, g, sinhTm Fig) ,
or LR = 3R] 7 : 7 :

(8)

where Fy, g are arbitrary complex functions which give single valued & sat-
isfying the boundary conditions (5).

A distinguished class of solutions of the Liouville equation (4) is com-
posed of static, 4.e. T-independent fields. They are of the form
5, N 1

- )

¢ q% cos? (Ao —d)’

where A and d satisfy the set of algebraic equations,

)\2
Z\gcos d— mlslndcos d—a— =0,
q
2
%cos‘l(ﬂ')\—d) — my sin(rA — d) cos?(rA — d) — % =0, (10)

following from the boundary conditions (5) for the Liouville field of the
form (9).

The Liouville field @y describes a straight string which rotates with a
constant angular velocity in some plane and by choosing a convenient refer-
ence frame we can write the string coordinates in a form

XH = 2 ()\T, cos AT sin(Ao — d),sin A7 sin(Ao — d), 0) . (11)
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Let us note, that in the presence of the inner curvature term in the
action (1) the velocities of the string ends,

dX? _
v = ‘m o = |Slnd|,
dX? _
vy = ‘m . = |sin(wA — d)]|, (12)

remain smaller than the the velocity of light even in the limit of vanishing
masses m; = 0.

For fixed values of the external parameters -y, « and m; — s this is in fact
a family of solutions, parameterized by the value of ¢q. By increasing ¢ we
increase the string length,

L= 32 [sm 5 + sin 5 , (13)

as well as its classical energy,

By — Tqy [1 4 Sin A cos(mA — 2d)

+mycosd+ mgcos(tA —d). (14)
A A

In order to calculate the Casimir energy of the rotating string we have
to find the frequencies of small oscillations around this configuration. If we

write
&(1,0) = Po(1,0) + P1(7,0), (15)

where @ is given by (9) and @ is assumed to be small, then from (4) we
get the equation

22

2Py — 2P + ————
T % 1—i_cos2()\a—d)

P =0, (16)

and (5) leads to the boundary conditions for the @4 field of the form
®,=0, Imoy®, =0 for o=0,m. (17)

General solution of the equation (16) satisfying the conditions (17) is
= 0
&y(1,0) = Z an cos (wpT + @) | =— + Atan(Ao — d) | cos(wnpo—0,), (18)
= oo

where

A
tand, = — tand,
Wn
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wy, are positive roots of the equation
D(w) = w?sinTw — \w [tand + tan(r\ — d)] cos Tw
—Mtandtan(r\ — d)sin7w =0, (19)

excluding wyg = A and a,, ¢, are arbitrary, real constants.
It is convenient to introduce the abbreviations

n = Atan(ntA —d), p= Atand,
what allows to rewrite
D(w) = (w* — pn) sinmw — (p + n)w cos Tw.

Using Eqs. (6)—(8) one checks that the Liouville field ¢ describes a set
of decoupled string oscillations with frequencies

Up = 2 Wn - (20)
q

The Casimir energy is defined as a (appropriately regularised and renor-

malized) sum
1
Ecas = (Z §Vn> . (21)
ren

n=1
We choose to work with the ¢ function regularization (let us stress, however,
that the final result is independent of the chosen regularization method —

for instance, the cut-off regularization gives the same ultimate formulae) and
define after [17]

Boas < %glg(l) (1°¢(=1+e) + (-1 4+ —¢)] , (22)

where, for Re s > 1,

() => v,* (23)
n=1

and the parameter p with dimension of mass is introduced to ensure that
the r.h.s. of the expression (22) has the dimension of energy for arbitrary
complex s. The physically interesting value s = —1 is obtained from (23)
through the analytic continuation.

Using the standard methods of contour integration in the complex plane

one writes
s L /A oF s d
gn V' =5 <q) /dzz - log D(z), (24)

1



2684 L. Hapasz

RIF-

Fig.1. The integration contours in the complex plane.

where the integration contour C; (Fig. 1) surrounds zeroes of the function
D excluding vy = )‘72.

The analicity of the function D(z) allows to deform the integration con-
tour Cy into Co and, after a straightforward calculation, one arrives at the
formula

B A 2 2
ECas = 5__ |:772 log ’7_2 + P2 log 8_2:|
fi i

2mq
A r oo |1 W=Py =1 _omy] _
*omq O/dy log [1 (y+p)(y+n) y] Moo B

where fi is also an arbitrary, but now dimensionless constant.

Following [18,19] we interpret terms in the first square bracket in Eq. (25)
as renormalising the classical string mass. This is also supported by the
expectation, that the Casimir energy should vanish for infinitely long strings,
while the discussed terms fail to satisfy this condition.

Our final expression for the Casimir energy thus reads

oo

_ A oo l1 - W=P) Y —=1) _omy] _
Ecas_%q /dylg[l (y+p)(y +n) B G

For every values of masses m1, mo and the parameters 7, a the Casimir
energy (26) is negative.



Casimir Energy of the Nambu—Goto String with Gauss—Bonnet Term ... 2685
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Fig.2. The Casimir energy versus string length for various values of masses and the
parameter a: @ = 0.2, m; = 0.1, my = 0.2 (solid line), a = 0.2, m; = 0.1, ms = 30
(dashed line) and o = 2,my = 0.1,my = 0.2 (dotted line). All dimensionful
quantities in the system of units v = 1.

For long strings (/7L — oo) formula (26) gives

This is different from the celebrated Liisher term [20],

T 1

L:___
= 12L°

but the reasons are obvious. First, Liisher term is derived for the string with
fixed ends and the oscillation frequencies equal

L TN

Vn ?
L

while in our, rotating string case we have

2n

Un (/YL — 00) = 7

Second, in considered model we have only planar oscillations and this gives
additional factor 1/2.
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