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IMPLEMENTATION OF THE RECOVERINGCORRECTIONS INTO THE INTERMITTENTDATA ANALYSISBeata ZiajaDepartment of Theoretial PhysisInstitute of Nulear PhysisRadzikowskiego 152, 31-342 Craow, Polande-mail: beataz�qd.ifj.edu.pl(Reeived July 29, 1999)The improved method of intermittent data analysis is proposed. Itexploits, in addition to the standard density moments, the information onthe bin�bin orrelations, observed in the data and expressed in terms of thedensity orrelators. The improving reovering orretions are implementedinto the data analysis in the form of the reursive algorithm, and tested inthe framework of multipliative asading models.PACS numbers: 12.38.MhThe �rst signals on possible intermittent behaviour in high-energy mul-tipartile prodution [1℄ were found in the data of the single event reordedby the JACEE ollaboration [2℄. The presene of large dynamial �utua-tions manifesting a saling behaviour was registered also afterwards in otheraelerator experiments [3℄. Many di�erent models [4℄ have been proposedsine to explain the power-law rise of the multipartile moments, desribedby the oe�ients alled the intermitteny exponents. Some of the modelssuggested that the observed saling may be the result of �nal state mul-tipartile asading [4℄, and the intermittent data represent the last stageof the asade. In this approah the main problem lies in the extrationof the information on the previous asade stages whih are in some wayenoded in the last stage data. The standard method of reovering the his-tory of the asade was proposed and applied originally to the JACEE eventdata. Sine that time it has beome a standard tool of multipartile dataanalysis [4℄, espeially in the event-by-event analysis [5,6℄. However, the the-oretial problem what is the interplay between the asade reovered in the(2737)



2738 B. Ziajastandard analysis and the true asade whih generated the data has beenstudied only reently [7,8℄. It ended up with the proposal of introduing thenew reovering orretions to the data analysis (see also [9℄).In this paper we would like to summarize the results on improvement ofthe standard data analysis ahieved by inluding the reovering orretions.Most of these results were derived in Ref. [8℄. In what follows we will on-entrate on the tehnique of implementing the reovering orretions intothe data analysis in the way whih may be useful for experiment.The reovering orretions aim to improve the method of reoveringthe history of the partile asade, also alled the rebinning [4℄. The stan-dard method reonstruts the asade from the last step data, representedby a sample of M numbers: x(n)i (i = 1; : : : ;M). They desribe e.g. thedistribution of partile density into bins. For simpliity assume M = 2n,where n denotes the number of asade steps. The reovered partile den-sity y(n�k)i in the ith bin at the (n � k)th asade step (k = 0; : : : ; n � 1)takes then the form: y(n�k)i = 12k 2k�1Xj=0 x(n)2k�i+j : (1)The intermitteny exponents are extrated from unnormalized reonstrut-ed density moments z(k)q; re: 1:z(k)q; re: = 12k 2k�1Xj=0 �y(k)j �q ; (2)assuming that z(k)q; re: manifests a power law behaviour:z(k)q; re: � 2k��0q ; (3)and the normalized intermitteny exponent �q; norm: = �0q,where �q; norm: := �q � q�1. The exponent �0q is estimated as a slope of thelinear �2��t applied to the points (k; log z(k)q; re:) (log x � log2 x).However, it was found and proved in [7, 8℄ that there exists a di�erenebetween the true density moments:z(k)q = 12k 2k�1Xi=0 �x(k)i �q (4)1 Atually, the fatorial moments are normally used (to redue the statistial noise)but this does not onern us here.



Implementation of the Reovering Corretions into : : : 2739and the reonstruted ones (3) whih in�uenes the estimation of intermit-teny exponents. This di�erene may be expressed in the form of orretingfator pq(k): z(n�k)q; re: = z(n�k)q � pq(k) ; (5)whih was alled the reovering orretion [8℄.The reovering orretions ontain information on the spei� proesswhih generated the true asade. In what follows we restrit ourselves to theorretions onsidered in the framework of multipliative random asadingmodels [10�12℄ whih are nowadays widely reognized in multipartile dataanalysis [4℄. Similarly as in [8℄, we onsider the multipliative models withpossible neighbour-node memory whih generate a uniform distribution ofpartile density into bins. In the multipliative asade the root of theasade is set equal 1: x(0)0 = 1. One generates the next stages of theasade reursively, following the sheme:x(k+1)2i := W1 � x(k)i ;x(k+1)2i+1 := W2 � x(k)i ; (6)where W1 and W2 are random variables of m model parameters aj, j =1; : : : ;m: W1 = aj with probability paj ;W2 = aj with probability paj ; (7)with normalized probability weights Pmj=1 paj = 1. The distribution ofpartile density will be uniform if the following ondition is ful�lled:p(W1 = ai;W2 = aj) = p(W1 = aj ;W2 = ai) ; (8)where p(W1 = ai;W2 = aj) denotes probability of hoosing in (6) W1 = aiand W2 = aj (i; j = 1; : : : ;m). Then unnormalized density moments z(k)qful�l the saling relation: z(k)q � 2k��q ; (9)and intermitteny exponents �q read:�q = log(aq1pa1 + : : :+ aqmpam) : (10)The popular models: ��, p�models [10, 12℄ and the (p + �)�model intro-dued in [8℄ are speial ases of multipliative rule (6).



2740 B. ZiajaIt was proved in [8℄ that for any multipliative proess whih obeys rules(6), (8) reovering orretions pq(k) ful�l the reurrene equation2:pq(k) = 12q qXj=0� qj � pj(k � 1)pq�j(k � 1)hW j1W q�j2 i (11)with the initial onditions: pq(0) = 1;p0(k) = 1 : (12)We introdue a notation: hW j1W l2i � kj;l : (13)Formula (11) implies that oe�ients kj;l are the only parameters of themultipliative model needed for alulating the value of pq(k). Furthermore,it is not di�ult to establish the values of kj;l from the model. For eitherj = 0 or l = 0 they equal: kj;0 = k0;j = 2�j ; (14)where �j 's are ordinary intermitteny exponents (9). To �nd the valueof kj;l for both j; l 6= 0 we use the unnormalized density orrelators(k)j;l [1, 4, 13℄: (k)j;l = 12k�1 2k�1�1Xi=0 �x(k)2i �j �x(k)2i+1�l : (15)The orrelators and the density moments ful�l the relation (see [8℄):(k)j;l = z(k�1)j+l � kj;l ; (16)whih an be also rewritten as:log (k)j;l = (k � 1)�j+l + log kj;l : (17)Both relations (16), (17) imply that we may derive kj;l in a straightforwardway by alulating orrelators and density moments from data, and applyingto them the standard �2��t.Applying the standard method to the orrelators at the previous as-ade stages, we would expet to �nd the similar di�erene between the re-onstruted orrelators and the true ones, as it was observed for the density2 A similar reurrene relation has been obtained in a di�erent ontext in [9℄.



Implementation of the Reovering Corretions into : : : 2741moments. It was proved in [8℄ that this di�erene may be expressed in termsof the same reovering orretion pq(k) (11) as for the density moments:(n�k)j;l; re: = (n�k)j;l pj+l(k) : (18)Now we have all tools needed for implementation of reovering orre-tions into the multipliative data analysis. To illustrate the problem wedesribe the improved estimation of intermitteny exponents of the seondrank. The reovering orretion of the seond rank derived from (11) reads:p2(k) = 14( p2(k � 1)k2;0 + p2(k � 1)k0;2 + 2p21(k � 1)k1;1 ) (19)with the initial ondition p2(0) = 1. It was proved in [8℄ that:p1(k) = 2k �1 = �z(n)1 � kn : (20)The parameters needed to alulate p2(k) are following: z(n)1 , �2 (f. (14))and k1;1. Derivation of z(n)1 is straightforward, and to estimate the valuesof �2 and k1;1 we propose the following reursive proedure. The primaryvalues of �2 and k1;1 may be obtained in the standard way from (3),(16). Wesubstitute them to formula (19) to derive the approximate form of orretionp2(k). Now, applying again the approximate form of p2(k) to equations(3), (16), one derives adjusted parameters �2 and k1;1 and ompares themwith the primary values. If the relative di�erene is large, one repeats thereursive adjusting till the parameters do not hange within a given auray.One may generalize the above sheme for the intermitteny exponentsof any rank. Following [8℄, below we present the implementation algorithmwhih reursively adjusts the primary parameters �q, kj;l (j + l = q, jl > 0)obtained after applying the standard method to the data:(INPUT) parameters �1; : : : ;�q�1, kj;l (j + l = 1; : : : ; q � 1) obtainedafter applying the implementation algorithm for q = 1; 2; : : : ; q � 1 step-by-step:(1) derive �0q, k0j;q�j (j = 1; : : : ; q � 1) from data, using the standardmethod i.e. reonstrut the asade using (1) and derive the parametersfrom relations: log z(k)q; re: = k � �0q + b ; (21)(k)j;l; re: = z(k�1)j+l; re: � k0j;l ; (22)where k = 1; : : : ; n (f. (3), (16)),



2742 B. Ziaja(2) derive �q; orr:, kj;q�j; orr: (j = 1; : : : ; q�1) in the following substeps:(2.0) alulate pq(k) from relation (f. (11)):pq(k) = 12q qXj=0� qj � pj(k � 1)pq�j(k � 1)kj;q�j ; (23)using �0q, k0j;q�j derived in step (1), and estimate �q; orr: from:log z(n�k)q; re: � log(pq(k)) = (n� k) � �q; orr: + b ; (24)(2.1 ) alulate pq(k) from (23) using �q; orr: (other parameters as after step(1)), and estimate k1;q�1; orr: from relation (f. (17), (23)):log (n�k)j;l; re: � log(pj+l(k)) = (n� k � 1)�j+l + log kj;l; orr:; (25): : : ,(2.q�1) alulate pq(k) from (23), using all previously derived parameters�q; orr:, kj;q�j; orr:, and estimate kq�1;1; orr: from (25),(3) ompare the values of �0q, k0j;q�j and �q; orr:, kj;q�j; orr: (j = 1; : : : ;q � 1). If the relative di�erene is large, assume:�0q := �q; orr: ;k0j;q�j := kj;q�j; orr:and repeat steps (2),(3) reursively until the relative di�erene between pa-rameters before and after step (2) is small enough. Then go to the output,assuming �q := �0q, kj;q�j := k0j;q�j:(OUTPUT) parameters �1; : : : ;�q; kj;l (j + l = 1; : : : ; q).Tehnial details and problems whih appear when applying the algo-rithm to data were disussed in detail in [8℄.We have performed numerial simulations of the ��, p� and (p+�)�mod-els [8℄ in order to test how the implementation algorithm works in pra-tie. We generated 10000 asades of the 10 step length for the �� and(p+�)�models, and one asade of the 10 step length for the p�model3 fortwo di�erent parameter sets separately.3 It an be proved that for a given parameter set the p�model generates always thesame values of the orrelators and density moments.



Implementation of the Reovering Corretions into : : : 2743Implementation algorithm analized the data of the last asade step.For eah event it estimated the value of normalized intermitteny exponents�2; norm:, �3; norm: (�i; norm: := �i� i ��1), using the standard method (step 1)with reovering orretions inluded (steps 2,3). The seleted results (forone set of parameters) are presented in Fig. 1 and in Tabs. I, II.
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() (d)Fig. 1. (a), (b) � Estimation of normalized intermitteny exponents �2; norm: and�3; norm: for ��model, using the standard method (dotted line), the improvedmethod with the implementation algorithm (thin solid line), and dediated �-orretions [8℄ (dashed line) ompared with the theoretial values (solid line),performed for one set of ��model parameters: a1 = 0:8, a2 = 1:1, p1 = 1=3;(), (d) � Estimation of normalized intermitteny exponents �2; norm: and �3; norm:for (p+�)�model, using the standard method (dotted line), the improved methodwith the implementation algorithm (thin solid line), ompared with the theo-retial values (solid line), performed for one set of (p + �)�model parameters:a2i = 1� a2i�1, p2i = p2i�1 for i = 1; : : : ; 10,a1 = 0:2, a3 = 0:5, a5 = 0:6, a7 = 0:3,a9 = 0:45,a11 = 0:25, a13 = 0:1, a15 = 0:15, a17 = 0:87, a19 = 0:66,2p1 = 0:05,2p3 = 0:15, 2p5 = 0:25, 2p7 = 0:40, 2p9 = 0:05,2p11 = 0:05, 2p13 = 0:02,2p15 = 0:02, 2p17 = 0:005, 2p19 = 0:005.



2744 B. Ziaja TABLE IEstimation of normalized intermitteny exponents �2; norm: and �3; norm: and theirdispersions for the �-model, using the standard method (seond olumn), the im-proved method with the implementation algorithm (third olumn), and dediated�- orretions [8℄ (fourth olumn), ompared with the theoretial values (�rst ol-umn), performed for one set of �-model parameters (f. Figs. 1(a), 1(b)).theor. standard algorithm �-orr.�2; norm: 0:0285 0:0251� 0:004 0:0246� 0:0033 0:0288� 0:004�3; norm: 0:0813 0:0757� 0:010 0:0727� 0:009 0:0798� 0:0111TABLE IIEstimation of normalized intermitteny exponents �2; norm: and �3; norm: and theirdispersions for the (p+�)-model, using the standard method (seond olumn), theimproved method with the implementation algorithm (third olumn), omparedwith the theoretial values (�rst olumn), performed for one set of (p + �)-modelparameters (f. Figs. 1(), 1(d)).theor. standard algorithm�2; norm: 0:177 0:170� 0:023 0:173� 0:029�3; norm: 0:478 0:438� 0:069 0:470� 0:092For the �-model the histograms of �2; norm:, �3; norm: obtained in thestandard method and the histograms with reovering orretions inludedare almost idential (see Figs. 1(a), 1(b) and Table I). In this ase the re-overing orretions an be implemented better when one applies diretlydediated �-model reovering orretion [8℄ i.e. if one substitutes oe�ientkj;q�j in (11) by the produt: kj;q�j = 2�j � 2�q�j .On the ontrary, the implementation algorithm works well for the (p+�)-model (see Figs. 1(), 1(d) and Table II). For the (p+�)-model the histogramwith the reovering orretions inluded approximates well the theoretialvalue of normalized intermitteny exponent. The histogram obtained byusing the standard method is moved slightly to the left in omparison to thehistogram with reovering orretions inluded.We have heked that for the p-model the theoretial values of normalizedintermitteny exponents are estimated perfetly by both standard methodand implementation algorithm [8℄.



Implementation of the Reovering Corretions into : : : 2745It should be also mentioned that the histograms generated by the im-plementation algorithm (reovering orretions) are symmetri, in ontrastto the standard ones, and their dispersions are of the same order as thosederived for the standard method (f. Tabs. I, II).To sum up we analyzed the estimation of intermitteny exponents fromthe data whih were generated by a multipliative random asading pro-ess. The following methods were applied: the standard method of asadereovering (1) and the improved method whih inluded reursively the re-overing orretions. The improved method was applied in the form of theimplementation algorithm. Numerial simulations have been performed tohek how both methods work in pratie. The onlusions may be summa-rized as follows:(a) standard method of estimation of intermitteny exponents does notapply for the whole lass of multipliative models: its auray dependson the spei� properties of the model and its parameters. The methoddoes not detet a onservation law if present in the model;(b) we propose an improved method of estimation of intermitteny ex-ponents. It exploits, in addition to the standard density (fatorial)moments, the information on the bin�bin orrelations, observed in thedata and expressed in terms of the density orrelators;() the method is formulated in the form of the reursive algorithm whih,starting from the parameters obtained from the density moments andorrelators, allows suessive improvements of the result;(d) the method was tested in MC simulations whih show that it is work-able and indeed brings the experimental estimates loser to their the-oretial values. Moreover, the improved distributions are symmetriwith approximately the same dispersions as the unorreted ones.I would like to thank Prof. A. Biaªas for reading the manusript andmany suggestions and omments and Dr. R. Janik for disussions. Thiswork was supported in part by Polish Government grant Projet (KBN)2P03B04214.
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