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IMPLEMENTATION OF THE RECOVERINGCORRECTIONS INTO THE INTERMITTENTDATA ANALYSISBeata ZiajaDepartment of Theoreti
al Physi
sInstitute of Nu
lear Physi
sRadzikowskiego 152, 31-342 Cra
ow, Polande-mail: beataz�q
d.ifj.edu.pl(Re
eived July 29, 1999)The improved method of intermittent data analysis is proposed. Itexploits, in addition to the standard density moments, the information onthe bin�bin 
orrelations, observed in the data and expressed in terms of thedensity 
orrelators. The improving re
overing 
orre
tions are implementedinto the data analysis in the form of the re
ursive algorithm, and tested inthe framework of multipli
ative 
as
ading models.PACS numbers: 12.38.MhThe �rst signals on possible intermittent behaviour in high-energy mul-tiparti
le produ
tion [1℄ were found in the data of the single event re
ordedby the JACEE 
ollaboration [2℄. The presen
e of large dynami
al �u
tua-tions manifesting a s
aling behaviour was registered also afterwards in othera

elerator experiments [3℄. Many di�erent models [4℄ have been proposedsin
e to explain the power-law rise of the multiparti
le moments, des
ribedby the 
oe�
ients 
alled the intermitten
y exponents. Some of the modelssuggested that the observed s
aling may be the result of �nal state mul-tiparti
le 
as
ading [4℄, and the intermittent data represent the last stageof the 
as
ade. In this approa
h the main problem lies in the extra
tionof the information on the previous 
as
ade stages whi
h are in some wayen
oded in the last stage data. The standard method of re
overing the his-tory of the 
as
ade was proposed and applied originally to the JACEE eventdata. Sin
e that time it has be
ome a standard tool of multiparti
le dataanalysis [4℄, espe
ially in the event-by-event analysis [5,6℄. However, the the-oreti
al problem what is the interplay between the 
as
ade re
overed in the(2737)



2738 B. Ziajastandard analysis and the true 
as
ade whi
h generated the data has beenstudied only re
ently [7,8℄. It ended up with the proposal of introdu
ing thenew re
overing 
orre
tions to the data analysis (see also [9℄).In this paper we would like to summarize the results on improvement ofthe standard data analysis a
hieved by in
luding the re
overing 
orre
tions.Most of these results were derived in Ref. [8℄. In what follows we will 
on-
entrate on the te
hnique of implementing the re
overing 
orre
tions intothe data analysis in the way whi
h may be useful for experiment.The re
overing 
orre
tions aim to improve the method of re
overingthe history of the parti
le 
as
ade, also 
alled the rebinning [4℄. The stan-dard method re
onstru
ts the 
as
ade from the last step data, representedby a sample of M numbers: x(n)i (i = 1; : : : ;M). They des
ribe e.g. thedistribution of parti
le density into bins. For simpli
ity assume M = 2n,where n denotes the number of 
as
ade steps. The re
overed parti
le den-sity y(n�k)i in the ith bin at the (n � k)th 
as
ade step (k = 0; : : : ; n � 1)takes then the form: y(n�k)i = 12k 2k�1Xj=0 x(n)2k�i+j : (1)The intermitten
y exponents are extra
ted from unnormalized re
onstru
t-ed density moments z(k)q; re
: 1:z(k)q; re
: = 12k 2k�1Xj=0 �y(k)j �q ; (2)assuming that z(k)q; re
: manifests a power law behaviour:z(k)q; re
: � 2k��0q ; (3)and the normalized intermitten
y exponent �q; norm: = �0q,where �q; norm: := �q � q�1. The exponent �0q is estimated as a slope of thelinear �2��t applied to the points (k; log z(k)q; re
:) (log x � log2 x).However, it was found and proved in [7, 8℄ that there exists a di�eren
ebetween the true density moments:z(k)q = 12k 2k�1Xi=0 �x(k)i �q (4)1 A
tually, the fa
torial moments are normally used (to redu
e the statisti
al noise)but this does not 
on
ern us here.



Implementation of the Re
overing Corre
tions into : : : 2739and the re
onstru
ted ones (3) whi
h in�uen
es the estimation of intermit-ten
y exponents. This di�eren
e may be expressed in the form of 
orre
tingfa
tor pq(k): z(n�k)q; re
: = z(n�k)q � pq(k) ; (5)whi
h was 
alled the re
overing 
orre
tion [8℄.The re
overing 
orre
tions 
ontain information on the spe
i�
 pro
esswhi
h generated the true 
as
ade. In what follows we restri
t ourselves to the
orre
tions 
onsidered in the framework of multipli
ative random 
as
adingmodels [10�12℄ whi
h are nowadays widely re
ognized in multiparti
le dataanalysis [4℄. Similarly as in [8℄, we 
onsider the multipli
ative models withpossible neighbour-node memory whi
h generate a uniform distribution ofparti
le density into bins. In the multipli
ative 
as
ade the root of the
as
ade is set equal 1: x(0)0 = 1. One generates the next stages of the
as
ade re
ursively, following the s
heme:x(k+1)2i := W1 � x(k)i ;x(k+1)2i+1 := W2 � x(k)i ; (6)where W1 and W2 are random variables of m model parameters aj, j =1; : : : ;m: W1 = aj with probability paj ;W2 = aj with probability paj ; (7)with normalized probability weights Pmj=1 paj = 1. The distribution ofparti
le density will be uniform if the following 
ondition is ful�lled:p(W1 = ai;W2 = aj) = p(W1 = aj ;W2 = ai) ; (8)where p(W1 = ai;W2 = aj) denotes probability of 
hoosing in (6) W1 = aiand W2 = aj (i; j = 1; : : : ;m). Then unnormalized density moments z(k)qful�l the s
aling relation: z(k)q � 2k��q ; (9)and intermitten
y exponents �q read:�q = log(aq1pa1 + : : :+ aqmpam) : (10)The popular models: ��, p�models [10, 12℄ and the (p + �)�model intro-du
ed in [8℄ are spe
ial 
ases of multipli
ative rule (6).



2740 B. ZiajaIt was proved in [8℄ that for any multipli
ative pro
ess whi
h obeys rules(6), (8) re
overing 
orre
tions pq(k) ful�l the re
urren
e equation2:pq(k) = 12q qXj=0� qj � pj(k � 1)pq�j(k � 1)hW j1W q�j2 i (11)with the initial 
onditions: pq(0) = 1;p0(k) = 1 : (12)We introdu
e a notation: hW j1W l2i � kj;l : (13)Formula (11) implies that 
oe�
ients kj;l are the only parameters of themultipli
ative model needed for 
al
ulating the value of pq(k). Furthermore,it is not di�
ult to establish the values of kj;l from the model. For eitherj = 0 or l = 0 they equal: kj;0 = k0;j = 2�j ; (14)where �j 's are ordinary intermitten
y exponents (9). To �nd the valueof kj;l for both j; l 6= 0 we use the unnormalized density 
orrelators
(k)j;l [1, 4, 13℄: 
(k)j;l = 12k�1 2k�1�1Xi=0 �x(k)2i �j �x(k)2i+1�l : (15)The 
orrelators and the density moments ful�l the relation (see [8℄):
(k)j;l = z(k�1)j+l � kj;l ; (16)whi
h 
an be also rewritten as:log 
(k)j;l = (k � 1)�j+l + log kj;l : (17)Both relations (16), (17) imply that we may derive kj;l in a straightforwardway by 
al
ulating 
orrelators and density moments from data, and applyingto them the standard �2��t.Applying the standard method to the 
orrelators at the previous 
as-
ade stages, we would expe
t to �nd the similar di�eren
e between the re-
onstru
ted 
orrelators and the true ones, as it was observed for the density2 A similar re
urren
e relation has been obtained in a di�erent 
ontext in [9℄.



Implementation of the Re
overing Corre
tions into : : : 2741moments. It was proved in [8℄ that this di�eren
e may be expressed in termsof the same re
overing 
orre
tion pq(k) (11) as for the density moments:
(n�k)j;l; re
: = 
(n�k)j;l pj+l(k) : (18)Now we have all tools needed for implementation of re
overing 
orre
-tions into the multipli
ative data analysis. To illustrate the problem wedes
ribe the improved estimation of intermitten
y exponents of the se
ondrank. The re
overing 
orre
tion of the se
ond rank derived from (11) reads:p2(k) = 14( p2(k � 1)k2;0 + p2(k � 1)k0;2 + 2p21(k � 1)k1;1 ) (19)with the initial 
ondition p2(0) = 1. It was proved in [8℄ that:p1(k) = 2k �1 = �z(n)1 � kn : (20)The parameters needed to 
al
ulate p2(k) are following: z(n)1 , �2 (
f. (14))and k1;1. Derivation of z(n)1 is straightforward, and to estimate the valuesof �2 and k1;1 we propose the following re
ursive pro
edure. The primaryvalues of �2 and k1;1 may be obtained in the standard way from (3),(16). Wesubstitute them to formula (19) to derive the approximate form of 
orre
tionp2(k). Now, applying again the approximate form of p2(k) to equations(3), (16), one derives adjusted parameters �2 and k1;1 and 
ompares themwith the primary values. If the relative di�eren
e is large, one repeats there
ursive adjusting till the parameters do not 
hange within a given a

ura
y.One may generalize the above s
heme for the intermitten
y exponentsof any rank. Following [8℄, below we present the implementation algorithmwhi
h re
ursively adjusts the primary parameters �q, kj;l (j + l = q, jl > 0)obtained after applying the standard method to the data:(INPUT) parameters �1; : : : ;�q�1, kj;l (j + l = 1; : : : ; q � 1) obtainedafter applying the implementation algorithm for q = 1; 2; : : : ; q � 1 step-by-step:(1) derive �0q, k0j;q�j (j = 1; : : : ; q � 1) from data, using the standardmethod i.e. re
onstru
t the 
as
ade using (1) and derive the parametersfrom relations: log z(k)q; re
: = k � �0q + b ; (21)
(k)j;l; re
: = z(k�1)j+l; re
: � k0j;l ; (22)where k = 1; : : : ; n (
f. (3), (16)),



2742 B. Ziaja(2) derive �q; 
orr:, kj;q�j; 
orr: (j = 1; : : : ; q�1) in the following substeps:(2.0) 
al
ulate pq(k) from relation (
f. (11)):pq(k) = 12q qXj=0� qj � pj(k � 1)pq�j(k � 1)kj;q�j ; (23)using �0q, k0j;q�j derived in step (1), and estimate �q; 
orr: from:log z(n�k)q; re
: � log(pq(k)) = (n� k) � �q; 
orr: + b ; (24)(2.1 ) 
al
ulate pq(k) from (23) using �q; 
orr: (other parameters as after step(1)), and estimate k1;q�1; 
orr: from relation (
f. (17), (23)):log 
(n�k)j;l; re
: � log(pj+l(k)) = (n� k � 1)�j+l + log kj;l; 
orr:; (25): : : ,(2.q�1) 
al
ulate pq(k) from (23), using all previously derived parameters�q; 
orr:, kj;q�j; 
orr:, and estimate kq�1;1; 
orr: from (25),(3) 
ompare the values of �0q, k0j;q�j and �q; 
orr:, kj;q�j; 
orr: (j = 1; : : : ;q � 1). If the relative di�eren
e is large, assume:�0q := �q; 
orr: ;k0j;q�j := kj;q�j; 
orr:and repeat steps (2),(3) re
ursively until the relative di�eren
e between pa-rameters before and after step (2) is small enough. Then go to the output,assuming �q := �0q, kj;q�j := k0j;q�j:(OUTPUT) parameters �1; : : : ;�q; kj;l (j + l = 1; : : : ; q).Te
hni
al details and problems whi
h appear when applying the algo-rithm to data were dis
ussed in detail in [8℄.We have performed numeri
al simulations of the ��, p� and (p+�)�mod-els [8℄ in order to test how the implementation algorithm works in pra
-ti
e. We generated 10000 
as
ades of the 10 step length for the �� and(p+�)�models, and one 
as
ade of the 10 step length for the p�model3 fortwo di�erent parameter sets separately.3 It 
an be proved that for a given parameter set the p�model generates always thesame values of the 
orrelators and density moments.



Implementation of the Re
overing Corre
tions into : : : 2743Implementation algorithm analized the data of the last 
as
ade step.For ea
h event it estimated the value of normalized intermitten
y exponents�2; norm:, �3; norm: (�i; norm: := �i� i ��1), using the standard method (step 1)with re
overing 
orre
tions in
luded (steps 2,3). The sele
ted results (forone set of parameters) are presented in Fig. 1 and in Tabs. I, II.
0

20

40

60

80

100

120

140

160

180

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

hi
st

og
ra

m

φ2

α-model

0

10

20

30

40

50

60

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

hi
st

og
ra

m

φ3

α-model

(a) (b)
0

2

4

6

8

10

12

14

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

hi
st

og
ra

m

φ2

(p+α)-model

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1 1.2 1.4

hi
st

og
ra

m

φ3

(p+α)-model

(
) (d)Fig. 1. (a), (b) � Estimation of normalized intermitten
y exponents �2; norm: and�3; norm: for ��model, using the standard method (dotted line), the improvedmethod with the implementation algorithm (thin solid line), and dedi
ated �-
orre
tions [8℄ (dashed line) 
ompared with the theoreti
al values (solid line),performed for one set of ��model parameters: a1 = 0:8, a2 = 1:1, p1 = 1=3;(
), (d) � Estimation of normalized intermitten
y exponents �2; norm: and �3; norm:for (p+�)�model, using the standard method (dotted line), the improved methodwith the implementation algorithm (thin solid line), 
ompared with the theo-reti
al values (solid line), performed for one set of (p + �)�model parameters:a2i = 1� a2i�1, p2i = p2i�1 for i = 1; : : : ; 10,a1 = 0:2, a3 = 0:5, a5 = 0:6, a7 = 0:3,a9 = 0:45,a11 = 0:25, a13 = 0:1, a15 = 0:15, a17 = 0:87, a19 = 0:66,2p1 = 0:05,2p3 = 0:15, 2p5 = 0:25, 2p7 = 0:40, 2p9 = 0:05,2p11 = 0:05, 2p13 = 0:02,2p15 = 0:02, 2p17 = 0:005, 2p19 = 0:005.



2744 B. Ziaja TABLE IEstimation of normalized intermitten
y exponents �2; norm: and �3; norm: and theirdispersions for the �-model, using the standard method (se
ond 
olumn), the im-proved method with the implementation algorithm (third 
olumn), and dedi
ated�- 
orre
tions [8℄ (fourth 
olumn), 
ompared with the theoreti
al values (�rst 
ol-umn), performed for one set of �-model parameters (
f. Figs. 1(a), 1(b)).theor. standard algorithm �-
orr.�2; norm: 0:0285 0:0251� 0:004 0:0246� 0:0033 0:0288� 0:004�3; norm: 0:0813 0:0757� 0:010 0:0727� 0:009 0:0798� 0:0111TABLE IIEstimation of normalized intermitten
y exponents �2; norm: and �3; norm: and theirdispersions for the (p+�)-model, using the standard method (se
ond 
olumn), theimproved method with the implementation algorithm (third 
olumn), 
omparedwith the theoreti
al values (�rst 
olumn), performed for one set of (p + �)-modelparameters (
f. Figs. 1(
), 1(d)).theor. standard algorithm�2; norm: 0:177 0:170� 0:023 0:173� 0:029�3; norm: 0:478 0:438� 0:069 0:470� 0:092For the �-model the histograms of �2; norm:, �3; norm: obtained in thestandard method and the histograms with re
overing 
orre
tions in
ludedare almost identi
al (see Figs. 1(a), 1(b) and Table I). In this 
ase the re-
overing 
orre
tions 
an be implemented better when one applies dire
tlydedi
ated �-model re
overing 
orre
tion [8℄ i.e. if one substitutes 
oe�
ientkj;q�j in (11) by the produ
t: kj;q�j = 2�j � 2�q�j .On the 
ontrary, the implementation algorithm works well for the (p+�)-model (see Figs. 1(
), 1(d) and Table II). For the (p+�)-model the histogramwith the re
overing 
orre
tions in
luded approximates well the theoreti
alvalue of normalized intermitten
y exponent. The histogram obtained byusing the standard method is moved slightly to the left in 
omparison to thehistogram with re
overing 
orre
tions in
luded.We have 
he
ked that for the p-model the theoreti
al values of normalizedintermitten
y exponents are estimated perfe
tly by both standard methodand implementation algorithm [8℄.



Implementation of the Re
overing Corre
tions into : : : 2745It should be also mentioned that the histograms generated by the im-plementation algorithm (re
overing 
orre
tions) are symmetri
, in 
ontrastto the standard ones, and their dispersions are of the same order as thosederived for the standard method (
f. Tabs. I, II).To sum up we analyzed the estimation of intermitten
y exponents fromthe data whi
h were generated by a multipli
ative random 
as
ading pro-
ess. The following methods were applied: the standard method of 
as
adere
overing (1) and the improved method whi
h in
luded re
ursively the re-
overing 
orre
tions. The improved method was applied in the form of theimplementation algorithm. Numeri
al simulations have been performed to
he
k how both methods work in pra
ti
e. The 
on
lusions may be summa-rized as follows:(a) standard method of estimation of intermitten
y exponents does notapply for the whole 
lass of multipli
ative models: its a

ura
y dependson the spe
i�
 properties of the model and its parameters. The methoddoes not dete
t a 
onservation law if present in the model;(b) we propose an improved method of estimation of intermitten
y ex-ponents. It exploits, in addition to the standard density (fa
torial)moments, the information on the bin�bin 
orrelations, observed in thedata and expressed in terms of the density 
orrelators;(
) the method is formulated in the form of the re
ursive algorithm whi
h,starting from the parameters obtained from the density moments and
orrelators, allows su

essive improvements of the result;(d) the method was tested in MC simulations whi
h show that it is work-able and indeed brings the experimental estimates 
loser to their the-oreti
al values. Moreover, the improved distributions are symmetri
with approximately the same dispersions as the un
orre
ted ones.I would like to thank Prof. A. Biaªas for reading the manus
ript andmany suggestions and 
omments and Dr. R. Janik for dis
ussions. Thiswork was supported in part by Polish Government grant Proje
t (KBN)2P03B04214.
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