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We study the influence of a high density behaviour of the nuclear sym-
metry energy on a kaon condensation in neutron stars. We find that
the symmetry energy typical for several realistic nuclear potentials, which
decreases at high densities, inhibits kaon condensation for weaker kaon—
nucleon couplings at any density. There exists a threshold coupling above
which the kaon condensate forms at densities exceeding some critical value.
This is in contrast to the case of rising symmetry energy, as e.g. for rel-
ativistic mean field models, when the kaon condensate can form for any
coupling at a sufficiently high density. Properties of the condensate are
also different in both cases.

PACS numbers: 21.65.+f, 97.60.Jd

1. Introduction

The possibility that a charged kaon condensate is present in the ground
state of dense baryon matter has been suggested by Kaplan and Nelson
[1]. The presence of a kaon condensate would strongly affect astrophysically
important properties of dense matter in neutron stars [2]. For example,
the proton abundance of neutron star matter could increase, exceeding the
direct URCA threshold. This would strongly accelerate cooling of neutron
stars. Also, the formation of metastable neutron stars could be allowed, as
the equation of state of hot matter with trapped neutrinos would stiffen,
supporting larger maximum mass than the cold one [2]. Metastable neutron
stars with masses exceeding the maximum mass for the cold equation of
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state would collapse to black holes after the neutron star matter becomes
transparent to neutrinos.

The formation of a kaon condensate is expected because of the presence
of strongly attractive interactions between kaons and nucleons, mainly from
the so-called sigma term, XXV, These interactions lower the kaon effective
mass at higher densities leading to the condensation of kaons above a critical
density, Nkaon, Which is estimated in Ref. [1] to be ~ 3ng, where ny = 0.16
fm~3 is the nuclear saturation density.

To study the possibility of a kaon condensation in neutron stars one
should account for the S-equilibrium of the neutron star matter which re-
quires that kaon and electron chemical potentials are equal, pp- = pe,
where the electron chemical potential is given by a difference of proton and
neutron chemical potentials, p, = up — pn. This formula shows that also
nucleon—nucleon interactions, which determine both pp and py, are of cru-
cial importance for the existence of a kaon condensation in neutron stars.
Thorsson, Prakash and Lattimer [3] have studied the role of nuclear inter-
actions in a kaon-condensed neutron star matter using simple parametriza-
tions of nuclear forces. However, parametrizations used in Ref. [3] are rather
similar as far as the corresponding nuclear symmetry energy, Esym(ng), is
concerned. For all models in Ref. [3], Esym(np) monotonically increases
with increasing baryon density np. This behaviour at high densities differs
considerably from that corresponding to several realistic phenomenological
interactions, such as e.g. UV14 + TNI [4], or AV14 + UVII [4], for which
the symmetry energy actually saturates and then decreases at high densities.
In our paper we study consequences of this kind of behaviour of the nuclear
symmetry energy for the formation of a kaon condensate in neutron stars.

The electron chemical potential, e, and the proton abundance in the
neutron star matter are very sensitive to the nuclear symmetry energy at
high densities [5]. Thus, also the critical density for kaon condensation,
Nikaon, depends on Egym(np). The latter quantity is subject to large uncer-
tainties at higher densities [5]. As indicated above, different models which fit
the saturation properties of nuclear matter give rather incompatible predic-
tions of the symmetry energy at high densities. We find that this uncertainty
affects strongly the critical density of the kaon condensation. In particular,
for the symmetry energy which decreases at high densities, as e.g. for the
UV14 + TNI interactions, the kaon condensation is inhibited, at least for
weaker kaon—nucleon couplings. This is in contrast to the case of monoton-
ically increasing symmetry energy when the kaon condensate can form for
any value of the kaon—nucleon coupling at a sufficiently high density.

In the next section we describe the model of the kaon condensate which
includes realistic nucleon—nucleon interactions. In Sect. 3 we discuss the high
density behaviour of the nuclear symmetry energy. Main results concerning
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the dependence of the condensate properties on the symmetry energy are
presented in Sect. 4.

2. The kaon condensate in neutron stars

The Kaplan and Nelson model [1] of the kaon condensate employs an
SU(3)xSU(3) chiral Lagrangian, obtained in the chiral perturbation the-
ory, which involves octets of pseudoscalar mesons and baryons. Brown,
Kubodera and Rho [6] have shown that interactions leading to the kaon
condensation in the Kaplan and Nelson model are dominated by the s-wave
kaon—nucleon coupling. Contributions due to remaining interactions are less
important and we neglect them here.

When only the s-wave kaon—nucleon interactions are relevant, the kaon
condensate is spatially uniform and its time dependence is (K~) =
v exp(—ipug-t) [7], where vg is the amplitude of the mean K~-field. For
such a condensate the effective Kaplan—Nelson Lagrangian in the sector in-
cluding only nucleons and kaons, that is relevant to the neutron star matter,
reads [3]:

2 0 0 0
Lgny = f?ug sin? 0 —2m?2 f? sin’ E—i—nTn (u sin’ 5—(20&2 +4a3)m sin? 5)

0 0
—i—pr(Qu sin’ 5 (2a1 + 2as + 4az)m sin® 5) + Ly . (1)

Here yu = pg - is the kaon chemical potential, # = v/2vg/f is the “chiral
angle”, where f = 93 MeV is the pion decay constant, and Ly is the free
nucleon Lagrangian. The parameters, a1, ag, and a3 are coefficients of the
interaction terms in the original Kaplan—Nelson Lagrangian which provide
splitting of the masses in the baryon octet [1], and m; is the strange quark
mass.

The effective Lagrangian (1) contains three effective kaon-nucleon cou-
pling parameters, a;ms, asms, and azms (our notation follows that of
Ref. [3]). The first two are determined by fitting the strange baryon masses
[3]. In the following we adopt the values ayms; = —67 MeV and aom, = 134
MeV from Ref. [3]. The third parameter, azms, is related to the kaon—
nucleon sigma term,

1
SEN = —g (a1 +2az + daz)m, (2)
which is poorly known and thus the value of agmy is subject to a considerable
uncertainty. We use here values in the range —134 MeV > agmg > —310
MeV which correspond to the sigma term in the range 170 MeV < KN <
520 MeV [3].
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The Lagrangian (1) describes only the kaon—nucleon interactions in the
condensate. To account for nucleon—nucleon interactions, which are crucial
in a dense nucleon matter in neutron stars, we use realistic models of the
nucleon matter [4]. The energy density of the neutron star matter with the
kaon condensate is composed of three contributions,

Ens = EKN T EN + €lep s (3)

where ey is the energy of the kaon condensate described by the Lagrangian
(1), en includes both the nucleon-nucleon interaction contribution and the
nucleon Fermi energy, and g is the electron and muon contribution.

The energy per particle, ey/np, obtained in variational many-body
calculations with realistic nucleon—nucleon interactions, can be written as
a function of the baryon number density, np, and the proton fraction,
x =np/npg, in the form [§]

E(TLB,I) :TF(nB,ZE)+V0(nB)+(1 —2I)2V2(’I7JB), (4)

where Tr(np,z) is the Fermi-gas energy, and Vy(ng) and Va(npg) are the
interaction energy contributions.

The energy density of the neutron star matter with the kaon condensate
including nucleon—nucleon interactions reads

5ns(n37$7/1a9) = TF(nB,iU)nB—F’I’LBVb(nB)

0 2
+np(L - 22)*Va(np) + 2micfsin’ 5 + f% sin®
0
+(2a1myx + 2a9m, + 4azm,)np sin 3 +ec+eu, (5)

where the electron Fermi sea contribution is
4
W
o= —=. 6
=L (6)

Muons are present only when the electron chemical potential, i, exceeds the
muon rest mass, u > m,. The energy density of the muon Fermi sea is

4 pPr,
e:mf(—), ™)
I W \m,,
with

F) = 55 ((y+2y°) V1 +y? — arsinhy). (8)

The above formulae allow us to determine the critical density of kaon
condensation and to study properties of the neutron star matter with a
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developed kaon condensate. We obtain the ground state parameters, the
proton fraction, x, the kaon chemical potential, u, the kaon condensate
amplitude, 0, and the energy density, €,5, as functions of the baryon number
density, ng, by optimization of the thermodynamical potential € = eg,5 —
p(ng + ne +ny —np) which reads

E(np, 7, 1,0) = Tp(npg,z)ng +npVo(ng) +np(l — 22)*Va(np)
2 0 0
—fg% sin® 6 4 2m?% f? sin 2 + pnpzr — pnp(l + z) sin’ 2
0
+(2a1msx + 2a9ms + 4azms)np sin? 3 +Ec+ €. (9)

This thermodynamical potential is related to the (Landau and Lifshitz) po-
tential, 2/V = ¢ — Yun; = € — uynp, where puy is the neutron chemical
potential.

The critical density, niaon, is defined as a density at which the condensate
amplitude starts to deviate from zero. Our procedure provides the chiral
angle of the condensate as a function of density, #(ng). The value of nyaon
is thus found from the condition 6(nyaen) = 0.

3. The nuclear symmetry energy at high densities

The nucleon—nucleon interaction energy is parametrized in Eq. (4) in
terms of the isoscalar and isovector contributions, Vy(ng) and Va(np). As
one can notice, at a given baryon density, np, the interaction energy density
corresponding to the isoscalar part, ngVy(npg) in Eq. (9), is constant and
thus it does not play any role in the optimization of the potential £ which
determines the kaon condensate parameters. It is the isovector contribution,
Va(np), which is crucial for the onset of the condensation. This component
is directly related to the nuclear symmetry energy which expressed in terms
of Va(np) reads

Esym(nB) = 8TF (nBa %) + VQ(nB) . (10)

As we already mentioned, the high density behaviour of Fgyr,(np) is not
well known at present. Different model calculations give incompatible ex-
trapolations away from the empirically determined value at ng, Esym(no) =
31+ 4 MeV [9]. In some approaches [5], Esym(npg) is a monotonically in-
creasing function of the baryon number density, whereas other models [5]
predict Fgym(np) to saturate and then decrease at high densities. Physi-
cally, in the former case the energy of pure neutron matter is always higher
than the energy of symmetric nuclear matter, while in the latter one pure
neutron matter becomes eventually the ground state of dense baryon matter.
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This difference has profound consequences for neutron star matter. Here we
study how it influences the onset of the kaon condensation.
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Fig. 1. The nuclear symmetry energy as a function of density for indicated models
of nuclear interactions. The curve E; corresponds to a linear parametrization of
Ref. [3].

In Fig. 1 we show the symmetry energy corresponding to three different
models of nucleon matter which we use in our calculations. The curve la-
belled E) corresponds to a linear parametrization used in Ref. [3]. It fits the
empirical value, Egym(no), and then extrapolates linearly to higher densities.
Such a linear dependence of the symmetry energy on density is typical for
relativistic mean field models of nucleon matter [5]. Other curves in Fig. 1
show the symmetry energy from Ref. [4] obtained in variational many-body
calculations with realistic two-body nucleon—nucleon potentials and three-
body interactions. The curves labelled UV14 + TNI and AV14 + UVII
correspond to the Urbana v14 two-body potential with the TNI three-body
term [4] and the Argonne v14 potential with the UVII three-body interaction
[4], respectively. As one can notice, realistic models predict that the sym-
metry energy saturates and then decreases with increasing baryon density.
This behaviour is markedly different from that of the curve Fjy.

4. The critical density and properties of the kaon-condensed
neutron star matter

In this section we present results for three models of the nuclear sym-
metry energy shown in Fig. 1. Particularly interesting is the corresponding
critical density, Nyaon. To best illustrate the influence of the symmetry en-
ergy on Ny,on we use a different definition of the critical density which states
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that nyaon is the lowest density for which the energy of the lowest state of
K~ in the neutron star matter, w_, becomes equal to the electron chemical
potential,

wo =p. (11)

At higher densities, m > Naon, kaons form a Bose—Einstein condensate of
finite amplitude. This definition of the critical density is equivalent to that
given at the end of Sect. 2.

The lowest kaon energy in the nucleon medium reads:

1
1 n 1/2
+(16f4"25'(1 + )"+ mi + ﬁ(zalx +2as + 4a3)ms> .(12)

The energy w_ decreases with baryon number density, Figs 2 and 3. The
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Fig.2. The lowest kaon energy in the nucleon matter, w_, (solid curves) and the
electron chemical potential, u, (dashed curve) for the UV14+TNI interactions.
Curves labelled a, b, and ¢ correspond to the coupling parameter azms of —310
MeV, —230 MeV, and —134 MeV, respectively.

condition (11) can be satisfied only at a sufficiently high density provided
the electron chemical potential does not decrease too fast. In Fig. 2 we
show the lowest kaon energy, w_, for three values of the coupling parameter
aszmg, and for the electron chemical potential, u, corresponding to the UV14
+ TNI interactions. The electron chemical potential is rather low, it has a
maximum at n = 3ny and then decreases to zero at a density of about
6n, where electron and proton densities vanish. The critical condition (11)
can be satisfied only for the coupling values at least as strong as in case
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(b), agms < —230 MeV. For weaker coupling the w_ curve does not cross
the chemical potential and the critical condition (11) can never be satisfied.
Hence, in the case of the symmetry energy of the UV14 + TNI potential
there exists a threshold value of the kaon—nucleon coupling parameter, agm,
below which there exists no kaon condensation in the neutron star matter.

600

[MeV]

Fig.3. The same as in Fig. 2, for the F; symmetry energy

Such a threshold does not exist in Fig. 3 where we show the kaon en-
ergy w— and the electron chemical potential for the symmetry energy FEj.
Since the electron chemical potential monotonically increases with density,
the critical condition (11) can be satisfied for any value of the coupling pa-
rameter agm, at a sufficiently high density. Critical densities corresponding
to indicated values of agm; in Fig. 2 differ by a factor of about two.

Values of the critical density can also be read off from Fig. 4 and Fig. 5,
where we show the amplitude of the condensate, 6, as a function of density,
for the UV14 4+ TNI and AV14 + UVII interactions, respectively. In both
figures, results corresponding to the symmetry energy FE; are also shown.
The values of nyaon found from Fig. 2 and Fig. 3 coincide with those from
Fig. 4. It is also interesting to compare how the angle 6 varies with density.
In Fig. 4, for the UV14 4+ TNI model the amplitude grows very fast with
density for densities above the critical one. It reaches a maximum when
the proton fraction becomes x = 1, and decreases at higher densities. A
similar behaviour is displayed in Fig. 5 for the AV14 + UVII interactions
for the strongest coupling (solid curve a). This is in contrast to the Ej
case, when the condensate amplitude monotonically grows with density for
all indicated values of the coupling parameters. In Fig. 6 the proton
fraction of the neutron star matter with the kaon condensate is shown. One
can notice that for the UV14 + TNI interactions the kaon-condensed phase
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Fig.4. The condensate amplitude as a function of density for the UV 14 + TNI
interactions, solid curves, and for the symmetry energy E;, dashed curves. The
coupling parameters corresponding to labels a and b are the same as in Fig. 2
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Fig.5. The same as in Fig. 4 for the AV14 + UVII interactions.

contains only protons. Neutrons are fully converted into protons at densities
only slightly exceeding the critical value. This behaviour is similar for all
coupling parameters stronger than the threshold value azms = —230 MeV.
In Fig. 7, where the same is shown for the AV14 + UVII interaction, one
can notice that for the strongest coupling the proton fraction also reaches
unity at high densities. For interactions with the symmetry energy F; the
proton fraction at high densities tends to an asymptotic value z = 0.6, for

all kaon—nucleon couplings.
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UV14+TNi

Fig.6. The proton fraction of the neutron star matter with a kaon condensate for
the UV14 + TNI interactions and for the symmetry energy E;. The curves a and
b correspond to values of the coupling parameter given in Fig. 2
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Fig.7. The same as in Fig. 4 for the AV14 + UVII interactions. The curves a and
c correspond to values of the coupling parameter given in Fig. 2

5. Discussion

The above results show that the critical density of kaon condensation
in neutron stars is rather sensitive to the high density behaviour of the
nuclear symmetry energy. For some realistic equations of state, such as
the UV14 + TNI one, the existence of the condensate is even forbidden if
the kaon—nucleon interaction is not strong enough. Also, properties of the
neutron star matter with developed condensate are sensitive to the symmetry
energy. One can notice in Fig. 4 and Fig. 5 that the condensate amplitude,
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measured by the angle 6, behaves in a quite different way for considered
models of nucleon—nucleon interactions. In particular, the kaon condensate
weakens at high densities for the UV14 + TNI interactions, Fig. 4.

For astrophysical applications, the proton fraction of the neutron star
matter plays an important role. The influence of the symmetry energy on the
proton abundance in the kaon—condensed phase is rather strong, as shown
in Fig. 6 and Fig. 7. In fact, the proton abundance at higher densities
is determined entirely by the nuclear symmetry energy. The kaon—nucleon
coupling parameter, agmg, affects the proton fraction only at densities close
to the critical value. The role of the symmetry energy is most spectacular
for the UV14 + TNI interactions for which neutrons are fully converted into
protons, Fig. 6.

Let us remark finally that recent claims [10] that all modern phase equiv-
alent potentials which fit accurately the n—n and n—p scattering data yield
a symmetry energy which increases with density, are unjustified. For the
Argonne potential AV'18 authors of Ref. [10] find increasing Egym(np). Cal-
culations reported in Ref. [11] show that the symmetry energy corresponding
to this potential saturates and then decreases at high densities in a similar
way as found by Wiringa, Fiks and Fabrocini [4] for Urbana UV14 and Ar-
gonne AV14 potentials. Premature conclusions of Ref. [10] stem from the
use of the lowest order Brueckner approach which is inadequate at high den-
sities. Hence the uncertainty as to the high density behaviour of the nuclear
symmetry energy is still present. For astrophysical applications, both de-
creasing and increasing symmetry energy should be used in order to assess
the role of this uncertainty.
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