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The isospin and spin dependence of the real part of the single-particle
potential of a X hyperon in nuclear matter, Vs, is investigated. The isospin,
spin, and spin-isospin dependent parts V;, V,;, and V,, of Vy are expressed
in terms of an effective YN interaction in nuclear matter. With suitable
approximations numerical results for V., V,, and V.. are obtained for four
models of the Nijmegen baryon-baryon interaction. A comparison with
recent (K ~,7%) experiments favors model F as a realistic representation
of the YN interaction.

PACS numbers: 21.80.-+a

1. Introduction

We want to investigate the single particle (s.p.) potential felt by a X
hyperon moving in nuclear matter composed of Z; protons with spin up, Z;
with spin down, Ny neutrons with spin up, and N with spin down. Instead
of Zy,Z,,Ny, N, we may use the following parameters to characterize the
composition of nuclear matter: the total number of nucleons A = Z; + Z| +
N;+ Ny, the proton or isospin excess parameter o, = (Z3+2; —Ny—N|)/A,
the spin excess parameter o, = (Z4+ Nty —Z — N|)/A, and the spin-isospin
excess parameter a,, = (Zy + N, — Z; — Ny)/A.

The s.p. potential of a ¥ hyperon with spin up/down moving with
momentum ky in nuclear matter, is in the linear approximation in the three
excess parameters:

V2$l(k2) =Vo(ks) + %OKTVT(/?Z) + %OéaVa(kZ) + %Oéarvar(kz)- (1)

Assuming charge-independence of the baryon-baryon interaction, we
have for the s.p. potential of the X~ and X° hyperons:

(2783)
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VET_/l (kZ‘) = VO(kZ) - %aTVT(kZ) + %aava(kﬂ) + %aUTVUT(kZ)’ (2)

Vo (kx) =Vo(ks) £ 100 Vo (ks). (3)
In principle V,, and V., depend on the angle between kyx and the spin
quantization axis, as is discussed in the case of the nucleon s.p. potential
in [1]. In the present paper this dependence on the direction on ky; is ignored,
because we consider the case of a pure central XN effective interaction, in
which this dependence does not appear.
Similarly as it was noticed first by Lane [2]| in the case of the nucleon
s.p. potential in nuclear matter with isospin excess, the s.p. potentials er ,

Vy,- , and VEo/ are averaged versions of a more fundamental formula:
/4 /4

Ve(ks) = Volks) + Vilks)tsT o)A+ Vy(ks)ssSa/A+ Ver(ks)Y JA, (4)

where ty is the X isospin (tx3 = £1,0 for XF, X%) and T4 is the nuclear
isospin, T4 = 224:1 t; [t; is the isospin of the i-th nucleon (¢;3 = % for
protons and —% for neutrons), Tag = (Z — N)/2], sx is the X spin, S4
is the nuclear spin, S4 = 224:1 8; [si is the spin of the i-th nucleon|, and
Y =450 (sis5) (tity).

Particularly important for the structure of X hypernuclear states is the so
called Lane potential V;. The existence of the only observed X' hypernuclear
bound state of 42He is strictly connected with a strong Lane potential V;
[3, 4].

In this paper, in Sec. 2, I present the calculation of V., V,, and V,,,
which starts from the effective X’N interaction in nuclear matter, . In
Sec.3, I present and discuss the results for V;, V,, and V., obtained with X
calculated in [5] in the low order Brueckner (LOB) theory for four models of
the Nijmegen baryon-baryon interaction. The present discussion is restricted
to the real X' potential — the imaginary part of K in the isospin % channel
(due to the YN — AN conversion) is ignored.

The present paper is an extension of Ref. [6] in which the Lane potential
V. has been discussed.

2. Expressions for V;, V,, and V,r

The derivation of the expressions for V,, V., and V., is similar. I shall
present the procedure more in detail only in the case of V.. In the remaining
cases of V, and V., I shall only outline the procedure.
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2.1. Ezpression for V;

While calculating V. we assume that
Qg = Qgr = 0. (5)

In this case nuclear matter becomes a two-component system characterized
by proton and neutron densities p, and p,, connected with the respective
proton and neutron Fermi momenta x,; and A, by:

kor = (3m2p) 3 = kp(1+ )3, A = (302p,) Y3 = kp(1 — ar)/3. (6)

where
kr = [37%p/2"%, p=pp+ pn. (7)
Egs (1), (2) and (3) take the simpler form:

Ves(ky) = Vo(kz) £ - Vo(ks), Vso(ks) = Vo(kx). (8)

Notice that the s.p. potential is now spin-independent, and we use the
notation Vy+ for Vy+ = Vzli, and Vo for VE(T) = VE?'

To derive the expression for V., we start from the definition of V., which
follows from Eq. (8):

Vr(kx) = 2[0Ve+ (kxn)/0ar]a.=o- (9)

The s.p. potential Vy+ depends on the two densities p, and p,, or
equivalently on the two Fermi momenta k, = kp(l + oeT)l/ 3 and A\, =
krp(1 — aT)l/ 3. This leads to the dependence of Vy+ on «,, which appears
in Eq. (9). To determine this dependence, let us write the expression for
Vy+ in terms of the YN (N = p or n for protons or neutrons) effective
interaction in our two-component nuclear matter, Kxyy (k- \;):

kn<Ka
Vor(ks) = Y (kskn|Ksy(kdr) ksky)
ko
kn<Aa
+ Z (kEkN|ICZ‘+n(KT>\T)|kaN)’ (10)
ko

where spins are suppressed in our notation.

To obtain the expression for V;, we have to calculate — according to
Eq. (9) — the derivative of Vx4 with respect to o, at a; = 0, taking into
account the dependence of k, and A; on «;, as given by Eq. (6).

The derivative consists of two additive parts.
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The first part comes from the dependence on . of the limits of the sums

in Eq. (10). Its contribution to V;, which we denote by VT(O), can be easily
calculated, and the result is:

dk
v£°><kz)=%A[ / N(ksz|/cz+p<kF)—/cz+n<kF)|ksz)] ,

47 fen =k p
(11)
where K2+p(n)(kp) :}C2+p(n)(l<&7— :kF, )\7— :kF) is defined for Z:N:A/Q.
The second part comes from the intrinsic dependence of X on s, and A-.
Its contribution to V., which we denote by VT(I), is:

Vi (k) = 3 S0 (R sk [(% - ai,)

{zcw(w) ¥ /cm(m)}] ksky). (12)

Kr :)\7— :kF

The most difficult part of V, = VT(O) —i—VT(I) is VT(I). Whereas VT(O) is expressed
by Kxn(kr), the effective XN interaction in nuclear matter with Z = N, to

determine VT(I) we should know Kxn(krAr), the effective XN interaction in
a two component nuclear matter with Z # N. A calculation of Kxn(kr A7)
starting from realistic X’N interaction would be very tedious and so far has
not been performed. On the other hand, results for the simpler effective
interaction Kyn(kg), obtained with the Brueckner theory, are available in
the literature. To be able to use the results obtained for Ky (kp) in our
theory of the Lane potential V,, we introduce the single density (or sin-
gle Fermi momentum) approximation, applied originally in the problem of
spin symmetry energy of liquid 3He [7], and later in the problem of the nu-
clear isospin [8] and spin [9, 1] symmetry energy. Namely, we introduce the
following simplifying assumptions:

ICZva(HT)‘T) ~ }C2+p(l<&7—), (13)

Ksin(brAr) = Ksip(Ar). (14)

Approximation (13) says that the effect of the proton excess on the X Tp
effective interaction in nuclear matter is determined primarily by the shift
in Fermi momentum of protons. This assumption seems to be physically
plausible and it corresponds exactly to the way in which the action of the
exclusion principle is altered by the proton excess. The motivation of ap-
proximation (14), which applies to the X *n interaction, is analogous.
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By applying approximations (13) and (14) in Eq. (12), we get the fol-
lowing approximate expression for VT(I):

kn<k
9 FNSEF

d
Vi(ks) ~ = > (kEkN|kF%{ic2+p(kF)—/c2+n(kF)}|k2kN). (15)
ky

Now, we introduce explicitly spins suppressed so far in our notation. We
denote by sm the total Y’N spin and its z-projection. Furthermore, let us
introduce the total XN isospin T' (= 3, 2). Egs (11) and (15) take the form
(with z = 7):

dk
VO (o) = éA[ / —N(kgkN|Ax(kp)|k:gkN)] S 16)
4 kn—kp
9 kn<kp d
VD (kg) ~ 5 > (kEkN|kF%Am(kF)|k2kN), (17)
N
where
A-(kp) = Z [’C(SmsTZ%; kp) — K(smT=1%:kr)|, (18)

where IC(smsT; kr) is the diagonal matrix element of the effective ¥’V inter-
action in the sm T representation in the case of Z4 = Z) = Ny = N = A/4.

We conclude this Subsection with an approximate expression for VT(O).
First, let us write the expression for Vj,

kn<kp
Volks) = = 5 (kakn| ST + 1) K(smaT; k) k)
T

6
sMes

— ZVO(Ta kZ) ) (19)
T

which follows from expression (10). Now, the approximate expression for
VT(O) 1S: ~

VO(ky) = VO (ks) = Vo(§, kx) — 2Vo (5, k) - (20)

To obtain this approximate relation between VT(O)(kg) and the parts

Vo(T, kx) of Vy(ks) produced by the effective interaction in the XN states

with isospin T, one approximates VT(O), Eq. (16), by its value averaged over
the nucleon momenta kpy in nuclear matter. That means, one introduces
on the right hand side of expression (16) the sum 4% /A, which leads

immediately to expression (20).
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2.2 Ezxpression for V,

Here we assume that a; = a,; = 0, and the resulting two-component
system is characterized by the densities p; and p| of spin up and spin down
nucleons, connected with the respective Fermi momenta x, and A,.

Egs (1), (2) and (3) take the form:

Vs, (ks) = Vo(ks) £ +a,V,(ks). (21)

The s.p. potential is now charge-independent, and we use the notation Vx, /
for VE;L/l = VZ{/i = VE?/J Eq. (21) implies that

Vo(kx) = 4[0Vx, (ks)/0as]a,=0- (22)

The s.p. potential Vi, is determined by:

kn<ko
Ve, (ks) = Z (kxkN|Ksyn, (Ko Ao )| EskN)
ky
kn<Ao
+ Z (kaN|KZTNl(Ka>\a)|kEkN)a (23)
ky

where isospins (i.e., charges) are suppressed in the notation.

By inserting expression (23) into Eq. (22) we get V, = v+ VU(I), with

dk
VO (ks) = A[/ T:(kEkNWZTNT(kF) - KZTNl(kF)“"ZkN)] :

kn=kp
(24)
Vil (k) = § SR (ksko | [(ai - %)
{ICZTNT (’@7)\0) + ’CETNL (K;(TAO') }:| |k2kN)7 (25)
h‘,g:)\a-:kp

where ’CETNT/l(kF) = ’CETNT/L(“U = kr,A\s = kp). Now we introduce the
single density approximation:

/CZTNT(KU)\J) ~ ’CETNT (KJ), (26)

Kxin, (Ko Ae) = Kx vy (Ag). (27)
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By applying approximations (26) and (27) in Eq. (25), we get the fol-
lowing approximate expression for VU(I):

4kN<kF d
V(T(I)(kg) ~ g Z <kEkN|kF%{KZTNT(kF) — KZTNl(kF)}“"ZkN) .
ky

(28)
After introducing explicitly isospins suppressed so far in our notation,

we get for Vg(o) and for the single density approximation of VU(I) expressions
(16) and (17) with

A, =N @Tr+1) [QIC(llT; kr) — K(10T; kr) — KC(00T; kp)]. (29)
T

The approximate expression for Vg(o), analogous to approximation (20)
is:

Vi (k) ~ VO (ks) = 42V (s =1ms =1, ksx)
—%(8:1’)%5:0,]62)—Vo(SZO,kz)], (30)

where Vy(smg, kx) is the part of Vj(kyx) produced by the effective interaction
in the YN spin state smg.

2.2. Ezpression for V,,

Here we assume that a; = a, = 0, and the resulting two-component
system is characterized by Zy = N and Z| = Ny, or by the correspond-
ing densities 27;/(2 and 27 /2 (where {2 is the volume of the system),
connected with the respective Fermi momenta k., and A,;.

Egs (1), (2) and (3) take the form:

V2+ (kZ‘) = Vb(kﬂ)i%am‘VaT(kZ)a

T/4
VET_/l(kE) = ‘/O(kZ) + %QJTVUT(kZ)a
o, (kx) = Volks), (31)

and we have

Vm—(kg) = 2[8V2;r (kg)/aam—]a(”:o. (32)
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The s.p. potential V1 is given by:
1

VE# (]{;2) = ZI;;]\;V<"'”~JT (kEkN“CE;rpT (Hm—)\m—) + }CE;rnl (HUTAUT”kEkN)

+ N (ksk | Ky, (Rorhor) + Kty (Rordor)lkskn).  (33)

Eqs (32) and (33) lead to V,, = V.9 + VD with

1 dk
(0) S SN
Vor (kg) = 214[/ 1 kzkn|Kpt, (kp) + Kyt (k)
Kty k) = K (ellkn)| o
kn<kp
2 0 0
(I) —_—— A
Vor' (k) = 5 > (kaN|k’F[<aHU 8>\g)
kx
{}Cg;rpT (K'[J'TAO'T) + ]CZ;L"l (K'm')\a’r)
+K g, (KgrAar) +ICE+HT(/<M)\M)}] ksky).  (35)
T T K/O'T:AO'T:kF

The single density approximation is assumed in the form:
’CE?_ZJT (K;(TTAO'T) ~ ICZ;_PT (HUT)a ’CErnl (K;(TTAO'T) ~ Kgrni (/{07’)7 (36)

ICZ;Lpl (/‘«?m—)\m’) ~ }CE;rpl (>\g'7')7 }CE;rnT (K,UTAUT) ~ ICZ;LHT ()\m—). (37)

With approximations (36) and (37), Eq. (35) becomes:

2 kN<kF d
Vg(i)(k’x) ~ 3 Z (kEkN|kF%{KE#—pT(kF) + }CE;rni(kF)
N
_ICZT*pl(kF) - }CEFrnT(kF)}“‘:EkN)- (38)

(

When we introduce the T'sm, representation, we get for Vgg) and for the
single density approximation of v expressions (16) and (17) with
Asr = 2K(113;kp) + K(105; kp) 4+ K(003; kr)
—2K(115; kp) — K(102;kp) — K(003; kF) . (39)
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The approximate expression for VU(S), analogous to approximations (20)
and (30) is

|
=~
=
w
|
—
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I
—
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|
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Z
|
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w
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—
3
W
Il
N
|
“F
Z
=
=

where Vi(smsT, kx) is the part of Vy(kyx) produced by the effective interac-
tion in the XN spin-isospin state sm T

TABLE 1

Different components (in MeV) of Vx (kx = 0) calculated at kr = 1.35 fm~! with
the YNG interaction obtained from the indicated models of the ¥ N interaction.

x| Model Vo VO @9 v oy

D -13.1 51.0
T F 23.5 674
SC -9.6 13.3
NSC -16.6 -26.3

(51.3) 41 551
(702) 131 80.4
(144) 177 310
(-25.8) -104 -36.7
D  -131 663 (562) 05 668
o F 235 683 (60.5) 40 723
SC  -96 191 (17.1) -158 3.3

(

(

(

(

(

NSC -16.6 -21.9 (-26.5) -18.6 -40.4
D -13.1  61.9
oT F 23.5 88.3
SC -9.6 50.6
NSC -16.6 63.8

) 21 639
) 73 956
521) 58 563
) 69 707

3. Results for the YNG interaction and discussion

In calculating Vi”, Eq. (16), and Vi), Eq. (17), I have used the YNG
effective X'N interaction of Yamamoto et al. [5]. It is a configuration space
representation of the G-matrix calculated in the LOB approximation from
the model D [10], model F [11], and the soft-core (SC) model [12] of the Ni-
jmegen baryon-baryon interaction. I use also the YNG interaction obtained
from the new soft-core (NSC) model of Rijken, Stoks, and Yamamoto [13].
In the case of V; all these YNG interactions have been applied and discussed
in [6].
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The results for V4, Vx(o), vx(o)’ and V, = x(o) + YN/}C(I) (for z = 7,0, and
oT), calculated at ky = 0 with the YNG interaction are shown in Table I.

The YNG interaction is constructed so that it simulates the G-matrix
in the ground states of the system of a X' hyperon in nuclear matter, and it
is best suited for the case of ky; = 0, presented in Table I. Calculation for
ks > 0 show that the dependence of V, (k) on kyx is weak [e.g., V;(kx =1
fm~1) differs from V; (ks = 0) by less than 2 %].

Because of the LOB approximation applied in [5] and [13], the accuracy
of our results may appear uncertain. In the LOB approximation pure kinetic
energies are used in the intermediate states of the G-matrix equation, and
the spectrum of these states has a gap at the Fermi momentum. As is well
known, this approximation seriously affects Vj (it shifts it towards more
positive values — see, e.g., [14]). However, V,, (z = 7,0,07) are determined
by differences between the X matrices, and one may hope that the LOB
approximation affects them to a much lesser degree, i.e., that V, is much
less sensitive than Vj to the choice of the spectrum of the intermediate states
in the G-matrix equation. This may be demonstrated for V; in the case of
the D model. For this model, the G-matrix calculation at kp = 1.35 fm~—!
performed with a continuous spectrum led to Vo = —36.2 MeV [15] which
differs essentially from the LOB value of —13.1 MeV in Table I. On the other

hand, the results of Ref. [15] lead to ‘71(0) = 60.5 MeV which is reasonably
close to the value of 51.3 MeV in Table 1.

In calculating Vm(l), we applied the single density approximation, Eqs
(13), (14), (26), (27), (36), (37). The single density approximation relies on
the plausible assumption, that the effect of nuclear matter on the interaction
between X' hyperon and nucleon with given spin and isospin is dominated
by the density of these nucleons. Unfortunately, we are not able to present
a quantitative estimate of the accuracy of this approximation. It should

be stressed however that in the important case of model F Vx(l) is only a

(0)

correction to V"’ equal 20 % for x =7, 6 % for x = 0, and 8 % for z = o7.
(In other cases the situation is different. E.g., in the case of the SC model
Vi is bigger than VT(O).)

The experimental information on on Vy comes mainly from the strange-
ness exchange reactions (K ~,m). Namely, the observed pion spectrum is
sensitive to the final state interaction of the produced 3’ hyperons with
the nuclear core (see, e.g., [16]). Recently the (K, 7) spectra have been
measured at BNL [17-20] (at px = 600 MeV/c) with an order of magni-
tude better statistics than reported in the early CERN experiments. In our
discussion, we shall restrict ourselves to the BNL results.

Let us start our discussion with V. Except for YNG(Model F), all the
remaining YNG interactions, when used in Eq. (19), give resulting negative
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values for Vj, i.e., Vp is attractive. The YNG(Model F) interaction on
the other hand leads to an repulsive Vj with Vy(kxy = 0) = 23.5 MeV.
Now the (K, 7t) spectrum observed in the BNL experiments on the “Be
target [17, 19] clearly indicates that the interaction of the produced X~
hyperon with the nuclear core is repulsive [16, 18]. The best agreement
with the measured 7 spectrum was obtained in [16] for V = 20 MeV. This
obviously favors model F as a realistic representation of the X IV interaction.
Let us notice that this conclusion is consistent with the analysis of the energy
levels of X~ atoms, which also indicates that the X-nucleus interaction is
repulsive [21].

When comparing our result for V, with experimental data, we restrict
ourselves to the Lane potential V., because this is the part of Vy, which is
particularly important for X' hypernuclear states, and which may be simply
related to the existing BNL data. In the following discussion I follow the
considerations presented in [6].

First of all, we shall discuss the BNL experiments on the °Be target
[17-19].

Let us start with the simpler case of the (K, 7) reaction in which only
one direct elementary strangeness exchange process K p — 77X~ occurs.
As mentioned before, the observed 7T spectrum implies that the interaction
of ¥~ with the nuclear core is repulsive, Vy- = 20 MeV [16].

The 7~ spectrum observed in the BNL (K ~, 77 ) experiments indicates
that the final state interaction of the X hyperon is less repulsive than in the
(K~, ") reaction or possibly even attractive [18]. Here, two elementary
processes may occur: (A) K™p — 7~ X%, and (B) K n — 7~ X% The
difference between the final state interaction in case (A) and that in the
(K, 77T) reaction is [see Eq. (8)]: AV = Vyy — Vs = o,V = —1V;
(Z =3, N =5 in the nuclear core in the final state). For the same difference
in case (B), we have AV = Vo — Vim = s,V = %AV(A) L If we use
for V. in the nuclear core our model F nuclear matter result from Table I, we
get AV ~ —20 MeV and AVB) ~ —10 MeV. This are sizable decreases
in the repulsion, required by the comparison of the 77 and 7~ BNL spectra.
This is an additional argument in favor of model F of the Nijmegen baryon-
baryon interaction, because the remaining Nijmegen models lead to a much
weaker Lane potential (in this respect the worst is model NSC which gives
a negative V7).

! Whereas the pion spectra in case (A) and in the (K~ ,n") reaction depend on the
s.p. states of the target protons, the pion spectrum in case (B) depends on the s.p.
states of the target neutrons. The effect of this difference requires a more detailed

investigation.
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Finally, let us mention the (K—, %) experiments at BNL on the ‘He
target [19, 20]. They confirmed the existence of of a bound state of % He,
originally reported in the *He(Stopped K —, 7~) reaction [22]. The existence
of this bound state was predicted by Harada et al. [3]. In their theoretical
description of this state, Harada and Akaishi [4] apply phenomenological ¥ N
interactions, in particular the interaction SAP-F simulating at low energies
the Nijmegen model F interaction. With this phenomenological interaction,
they calculate the X s.p. potential in the A = 3 nuclear core, which turns
out to have a strong Lane component V. which at the center of the nuclear
core is equal 78.7 MeV?2. This is close to the corresponding value of 80.4 MeV
in Table I, although the A = 3 system can hardly be considered as a piece
of nuclear matter.

Our general conclusion concerning Vj and V; is that among the Nijmegen
models of the baryon-baryon interaction only model F is compatible with
the BNL data?.

I conclude this paper with some remarks on the history of X hypernuclei.
Let me remind you that it is model F that has led to the binding energy of
the A hyperon in nuclear matter agreeing well with experiment thus solving
the so called overbinding problem [23]. Naturally, when we started work-
ing on the problem of X hyperons in nuclear matter, we originally applied
model F, and obtained a repulsive X' s.p. potential. At that time, however,
the CERN data on the strangeness exchange reactions seemed to reveal the
existence of narrow X hypernuclear states which suggested an attractive X’
s.p. potential. Consequently after discussions at the 1979 Jabtonna Hy-
pernuclear Conference, we switched to the earlier Nijmegen model D which
leads to an attractive X-nucleus potential [15]. Actually, till the recent BNL
experiments in which the narrow X states disappeared, everybody in the
field used interactions compatible with an attractive X-nucleus potential.
This was so because the CERN experimental results were accepted without
reservations in spite of their insufficient statistics.

This research was partly supported by Komitet Badan Naukowych under
Grant No. 2-P03B-048-12.

% The analogical value of V, suggested in [4] is 23.1 MeV, i.e., much less than our value
of 72.3 MeV in Table I. As far as the o7 term is concerned, it appears that the correct
operator is Y , Eq. (4), and not the operator (Sass)(T ats) suggested in [4].

% Our conclusion is compatible with recent studies of X Tp scattering at KEK [24].
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