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High quality quantum wires conductance measurements have revealed
an unexpected feature: the quantization step of the conductance is appar-
ently system dependent. We show that even a single impurity (modelled
by a short range potential) in a wire leads to enhanced backscattering and
affects the conductance steps. We construct a random matrix model which
shows similar behaviour with the size of conductance step dependent on a
single parameter.

PACS numbers: 72.20.Dp, 05.45.+b, 72.10.Bg.

1. Introduction

The conductance of mesoscopic devices, the so called quantum dots or
quantum wires, exhibits a number of universal features such as the quan-
tization of the average conductance or the magnitude of the conductance
fluctuations. For the ideal one-dimensional (1D) quantum wire the dc con-
ductance G is quantized in units of Gy = 2e?/h (the factor 2 is due to
electron spin) [1], G = GoM; with M; being equal to the number of trans-
verse modes supported by the wire. Thus the dimensionless conductance
g = G /Gy changes by integer steps when M increases.

Similarly, the integer conductance steps are predicted when the ideal
wire is coupled coherently to broad leads [2]. Additionally, one expects in
such a situation an appearance of resonant structures at the beginning of
each step at low temperatures. For higher temperatures, due to effective

(2797)



2798 P. SEBA, K. ZYCZKOWSKI, J. ZAKRZEWSKI

averaging, the sharp resonant structures disappear and conductance steps
become smooth [2]. The presence of strong disorder destroys the steps,
leading to the so called universal conductance fluctuations [3] with variance
of the order of GGy. Let us mention also that if transition from wire to leads
is not sharp but smooth, the conductance steps are not affected as follows
from [4].

On the other hand, recent experiments, carried out on high quality wires
coupled to broad leads [5] revealed smaller quantization steps of the height
v < 1, with 4 varying from sample to sample and reaching 0.86 at low
temperatures. This result is in apparent contradiction with the predictions
of [2] mentioned above. No clear explanation of the experimental results is
available, as far as we know. In [5] three different theoretical possibilities for
the explanation of the data are discussed. The difficulties with the standard
random matrix theory (RMT) approach and the Luttinger liquid theory [6]
are emphasized. The authors give their own explanation in terms of the
competition between the scattering from 2D into the edge modes. It has been
pointed out [5,7] that such a behaviour may be an evidence of a coherent
backscattering between the 1D wire and the 2D leads. In such a case the
conductance becomes G = GyT where T is a M;-dependent transmission
coefficient. Still it is not clear how the dimensional argument comes into
play in view of Szafer and Stone result [2] — the backscattering from the
interface between a narrow wire and the broader lead in the ideal case does
not lower the conductance steps. On the other hand the lowering of the
conductance steps may be also considered as an evidence for the importance
of electron—electron interactions [5].

The purpose of this work is to show that the experimental results may
be reproduced by an assumption of a weak residual disorder (e.g. due to
defects in the almost ideal wire). Such model is proposed and analyzed in
Section 2. We do not claim, that the effect discussed is the sole source of the
unusual conductance steps observed in [5]. Rather we would like to point
out that any additional (in respect to ideal pure system [2]) backscattering
in the narrow wire (not necessarily on the interface between wire and leads)
may decrease the size of conductance steps. This point of view is supported
by results coming from an appropriate model based on random matrices and
presented in Sections 3 and 4. We summarize our findings in Section 5.

2. Conductance quantization in ‘non-ideal’ wire

We want to discuss the effects due to impurities, so we consider a very
simple model of a wire — a strip of length, L (in x direction) and the width
W with W <« L (compare Fig. 1). The Dirichlet boundary conditions are
assumed for the electron wavefunctions on horizontal strip boundaries at
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y = 0 and y = W (hard walls). The corresponding Schrédinger equation
reads (in e = i = m = 1 units)

Kk
{f%—?y—kP(x,y)%—Fy}?/J(Iay):E¢(I’y)’ (1)

where FE is the energy of the electron travelling along the strip and P(z,y)
is the additional potential (e.g. the disk impurity introduced below) acting
in the wire region 0 < = < L only. By changing E we may change the
number of open channels, M;. Alternatively, to reproduce more closely
an experimental situation [5], we fix the energy, F, but we add a static
electric field across the strip. By increasing its amplitude F', we can decrease
the number of open channels M; due to the presence of potential across
the strip, V' = Fy. To see this, realize, that outside of the perturbation
region (where W = 0) the Schrodinger equation separates into the scattering
motion in x direction and the bound motion in y coordinate. The latter
corresponds either to square well (for F' = 0) or to the triangular well (in the
presence of the electric field). The electron entering (leaving) the interaction
region has its energy split into “translational energy” corresponding to the
z coordinate motion and the “transverse” quantized motion. For a given
total energy FE only a finite number M; of transverse motion levels are
accessible. These M; possibilities defines, of course, the number of open
channels. The dimensionless conductance ¢ = G/G) is calculated from the
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Fig.1. Model wire considered in this section of length L and width W <« L. We
discuss the conductance of such a quasi-1D wire in the presence of an impurity
modelled by a disk scatterer placed at a random position (zg, yo).

Landauer formula [8] (see also [9,10])
g = Te(¢t"), (2)

where t is the transmission matrix through the ‘sample’ relating the incoming
and the outgoing solutions [actually a submatrix of the full S matrix, see
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Eq. (5) below]. The impurity is introduced by placing inside the strip a
disk potential of radius R at some random position (xg,yo). The potential
inside the disk region is assumed to be equal to a positive constant Vy with
Vo greater than the energy E of the incoming electron, i.e., P(x,y) = Vo
for (z — z0)? + (y — y0)? < R? and P(z,y) = 0 elsewhere. The Schrodinger
equation (1) is then solved using the finite element method and the result
is averaged over several realizations of the position of the impurity in the
strip. The width W of the strip is set to 1: W = 1. Fig. 2a compares the
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Fig.2. Panel (a) displays mean dimensionless conductance, g, as a function of
the applied voltage V. The case without impurity is plotted by full line. Broken
line displays the conductance for the system with one impurity of radius 0.05 and
dotted line corresponds to the case with one impurity having radius 0.1. Panel (b)
compares the conductance of the system without impurity (full line) with that for
the system with one impurity of the radius 0.05, but multiplied by a factor 1.12
(broken line)

conductance as a function of the applied voltage for the ideal strip and for
the strip with a single impurity and two different ranges R. Observe that the
presence of the impurity does not destroy the conductance steps; they are
lowered and become less sharp. This effect is quite dramatic if more then one
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impurity is present. For a better comparison of details of the steps with and
without the impurity, we multiply the conductance in the presence of the
impurity for R = 0.05 by a factor 1.12 so as the lowest step is approximately
equal to unity. The result (Fig. 2b) show that with increasing number of
open channels the steps, in the presence of the impurity, become larger and
less sharp, in full agreement with experimental results [5].

It is worth stressing that the electron transport through the strip is only
weakly affected by a single scattering center of the size much smaller that the
width of the strip, W. The perturbation makes the process not fully ballistic
and the backscattering leads to lowering of the conductance steps. We are,
however, in quite a different regime than those in the typical “ballistic”
chaotic cavity, where multiple scattering events dominate. In the latter case
the average conductance is roughly halved in comparison to the maximal
allowed value (proportional to number of open channels, M7). For example,
for the average conductance of a quantum dot coupled to the outside world
by two leads each of which supports M; open channels one obtains [11]

M

T 2M, —1+2/8 3)

g

where § = 1 for time reversal invariant systems and 8 = 2 when this sym-
metry is broken strongly.

For disordered systems (including the example just above) the rapid
progress in the understanding of the electron transport has been obtained
within the random matrix theory (RMT) approach, recently reviewed in
detail by Beenakker [10]. In the next Section we show that by a slight modi-
fication of this approach we can also account for the noninteger conductance
steps.

3. RMT Heidelberg-like approach

We consider a standard Heidelberg scattering matrix approach [12,13]
expressing the scattering matrix S as

S=1-2niWH(Ep — H+inWW")~'W, (4)

where H is the internal Hamiltonian of the system represented by a matrix
of rank N while W is a N x M matrix representing the coupling between
the N internal states and M scattering channels in the leads. Assuming two
identical leads one gets M = 2M;.

In the application to a chaotic cavity scattering one assumes that the
number of internal states, N, around the Fermi energy, Er, is much larger
than M. Taking typical RMT assumptions about the statistical properties
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of H and W one may then derive a number of predictions concerning the
statistical properties of S and of the measurable observables. As shown
by Brouwer [14], such an approach is equivalent (for M < N), to mak-
ing RMT assumptions concerning directly the unitary S matrix itself. For
example, if H pertains to the Gaussian Orthogonal Ensemble (GOE) and
W are composed of real random vectors (the situation appropriate for time
reversal invariant systems), then the M x M matrix S belongs to the cor-
responding circular orthogonal ensemble of unitary matrices (COE) in the
limit N — oc. Similarly, if time reversal symmetry is broken and H pertains
to Gaussian Unitary Ensemble (GUE), the corresponding S matrix shows
statistical properties typical for the Circular Unitary Ensemble (CUE).

It is thus justifiable to derive transport properties by making statisti-
cal predictions for S matrices themselves. Such an approach yields, e.g.,
Eq. (3). The advantage of the former, Heidelberg approach is that it allows
also to calculate energy dependent quantities such as correlators or time de-
lays, while the direct RMT approach to S matrices says nothing about the
dependence on the scattering energy, Er.

Consider now the experimental system of [5]. The 1D almost ideal wire
placed between two 2D leads takes the place of the internal scattering system
in the Heidelberg approach with N being now the number of states in the
internal wire around Ef or the number ‘internal channels’. Note that really
the Hamiltonian describing the internal wire supports an infinite number of
states. Most of them do not contribute to conductance being vanishingly
small (evanescent) on the left or right side of the 1D wire. The important
N “states” are the N scattering channels through the 1D wire if it were
coupled incoherently to leads. So N can be even only. Moreover there is
no ground to assume that the internal matrix H pertains to GOE (the wire
is almost ideal). We shall show below that the conductance steps are not
very sensitive to the detailed statistical properties of H. Since the leads are
assumed to be two dimensional, M = 2M; should be much larger than N.
Note that the limit N < M is the opposite to that taken in the standard
transport theory [10].

The structure of the S matrix, Eq.(4), indicates that N out of M of
its eigenphases may be nontrivial and different from 0 (i.e. the remaining
M-N eigenvalues of S are equal to unity). This is due to the fact that the
part coupling the channels to the internal states has at most the rank N.
Representing S by reflection and transition matrices

s=(n 1) 9

and using scaling arguments one realizes that the dimensionless conductance
g, Eq. (2), may depend only on one parameter ¢ = N/M. Further we shall
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expect that the average conductance increases in steps when N changes.
The size of the steps may depend on c.

To test this qualitative picture we have simulated the conductance of the
system by averaging the transmission obtained over several random realiza-
tions of H and W. In all the simulations Er = 0 while we have varied N, M,
as well as assumed different statistical properties of H. Specifically, we shall
assume either GOE case or the situation when the eigenvalues of H are un-
correlated. The latter case we shall call the Poissonian ensemble (PE) since
the nearest neighbour statistics takes then a Poissonian form. The N x M
coupling matrix W is composed of N mutually orthonormal random vectors
of length M. The average is obtained by taking 1000 different realizations
of a given system. Fig. 3(a) shows the average transmission (dimensionless
conductance) obtained keeping a fixed value of ¢ = N/M and increasing N
by two. Observe that regardless of the properties of the internal matrix H
the qualitative behaviour of the conductance is quite similar, it increases in
steps smaller than unity, the value of the step being dependent on ¢ and to
a much lesser extend on the statistical properties of H. Panel (b) shows the
behaviour of the system while keeping fixed the number of ‘internal channels’
N and increasing M. Observe that the conductance steps actually decrease
with M for M large. It is the number of ‘internal channels’, N, which limits
the conductance value. The dependence on M is much weaker and indicates
that for larger M the backscattering plays a larger role leading to decrease
of the conductance steps.
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Fig.3. Panel (a) displays mean dimensionless conductance ¢ = G/Gy evaluated
as a function of the number of internal states N for ¢ = 0.5 (thick lines) and
0.3 (thin lines). The full line corresponds to the Poissonian case, broken lines
represent results obtained for GOE. Panel (b) shows g as a function of the number
of channels M with N fixed to 20. Thick (thin) line corresponds to GOE (PE)
case, respectively.
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Fig. 3 shows already that the experimental observations of [5] may be at
least qualitatively explained by the simple RMT model. To exemplify this
point further we have assumed that the density of states changes according
to a triangular potential well (as in the experiment) when the applied volt-
age is varied. After choosing the free parameter in the model, i.e., ¢, the
conductance dependence on the applied voltage reproduces fairly accurately
the Fig. 2 of [5] (see Fig. 4).

6

5 L

-25 -2.0 -15 -1.0 -0.5
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Fig.4. Dependence of the dimensionless mean conductance on the applied voltage
V. Filled dots connected by the line (to guide the eye) represent the results obtained
in our model calculations with Poissonian internal matrix. The number of the
channels M and internal states N depends on the voltage V as M = [[(a—3.7/V)]];
N = [[-3.7/V]] with a = 8.8. Here [[z]] represents even integer number being most
close to z. Diamonds correspond to the experimental results obtained in [5].

Let us point out that the results obtained are very weakly dependent
on the statistical properties of the internal Hamiltonian H. For a given
value of ¢, the conductance quantization step, observed when N is varied,
increases slightly as the statistical properties of H change from PE (8 = 0)
to GOE (8 = 1) or the picket fence spectrum corresponding to the levels
repulsion parameter § — oo. The quantization step size remains practically
unaffected (within the statistical significance of our data) if we consider the
case of broken time reversal symmetry, i.e., with H belonging to GUE.

Typically for the RMT approach, our simple model cannot account for
the changes of the conductance steps with the temperature, T'. Such tem-
perature changes are indicators of the importance of the electron—electron
(e—e) interactions [5]. It seems thus quite intuitive to blame this interaction
also for the non-integer conductance steps. In this respect the fact that our
model, being a single particle approach, also yields ¢ dependent conductance
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steps is quite surprising. Apparently, the step size can be reconstructed from
RMT, i.e. asingle particle approach (where at least a part of e-e interaction
may be in principle included via Hartree or mean field approach). On the
other hand, as shown in the previous section, the lowering of the steps is
also obtained by a single electron model with impurity for which the RMT
model presented should be appropriate.

4. RMT approach to S matrix

Accepting that the model presented yields reasonable predictions con-
cerning the conductance steps one can ask whether in the studied, N < M
case similar predictions may be obtained using RMT assumptions directly
for the S matrix. Naturally, the standard approach [10] has to be modified
since the S matrix, must have M — N unity eigenvalues.

We are thus going to mimic the scattering matrix by a M x M unitary
matrix

1 0 0 0 - 0
0 .0

s=pyf| Y 01 Ut (6)
0 0 e 0 0
0 0 :
0 0 0 ... eien

The diagonal matrix of eigenvalues D consists of M — N unit eigenvalues
and N eigenvalues exp(ip;). The nontrivial eigenphases ¢; are distributed
according to the joint probability distribution

N
Ps(1,-on) ~ [ ] sin’[(r — @1)/2,
k<l

characterized by the level repulsion parameter 5 € [0, 00]. Random unitary
rotation matrix U is drawn uniformly with respect to the Haar measure on
M dimensional unitary space and pertains to CUE. Such an assumption
concerning U is correct for a broken time-reversal invariance, the situation
not realized in the experiment [5]. It is known, however, from the stan-
dard RMT of scattering (in the M < N limit) that the dependence of the
conductance on the symmetry is relatively small for disordered wires and
appears only on the level of weak localization corrections [10] through the
eigenphases repulsion parameter S. Thus the results obtained should only
weakly depend on detailed properties of U. This assumption is even more
justified by the numerical results, mentioned above, that revealed that the
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size of conductance step is not sensitive to the change from GOE to GUE
within the Heidelberg model.

The total conductivity in the system is given by a sum of the individual
transmission coefficients

M M/2
g= > > ISl (7)

There exist M?2/4 elements of the matrix S, contributing to the total
conductance. Each element of this sum can be written as

N

Sim =Y _ UpiUkm (" — 1),
k=1

with I # m. The double average <<|Slm|2>U>D’ over N random phases
of the diagonal matrix D and over random rotation matrix U, consists of
N diagonal and N(N — 1) off-diagonal terms. The averages over unitary
matrices U distributed according to the Haar measure are known [15]. For
each diagonal term

Qu = (VA Uenl®) = 373757 ©
while off-diagonal elements contribute as
Quit = (RelU U Visnllion)) = = 33— )
The average conductivity is thus given by
M2
9=~ (NPiQa+ N(N = 1) Poi Qo). (10)

where P; and P,g denote prefactors corresponding to the averages over the
phases ¢. For N diagonal terms this average does not depend on the ensem-
ble and gives the prefactor Py = (|1 — e'#|?) g =2 for any value of 3. For
the off-diagonal terms the average over uncorrelated phases of the Poisson
ensemble (3 = 0) gives Pog = ((1 — ™) (1 — eiW2)>ﬂ:0 = 1. Summing all
terms together we obtain the average conductance for the Poissonian case

MN

m(2M—N—1). (11)

gp =



On the ‘Nonuniversal’ Conductance . .. 2807

For N = 2 the phase averages are simple for any distribution of phases
characterized by the level repulsion parameter 5. Off-diagonal elements
carry a factor occurring from the phase average

P = (Re (1 — ™) (1 - ei‘p2)>5 =1+ fo,

where ,
/cosqﬁsinﬁ %dq/;
=y -5t (12)
/ sin® %cﬁﬁ

0

Since their contribution Q. is negative, increasing parameter [ increases
the average conductance according to

2 M
98 = A:l[ (2P4Qa + 2(1 + f2)Qot) = 20— 1) <2M—3+ %) , (13)

which in the limiting case of equidistant phases (8 — 00) reduces to goo =
M/(M +1).

In a similar way one obtains the phase average for off-diagonal elements
for N = 3. Since in this case the average f3 reads

2 ¢
/ /cosd)smﬂ% sin <¢ ¢) dy sin® %dqﬁ
s = s
/ /sinﬁg sin <¢ ¢) dv sin® %dqﬁ
0 \o
_ _wi : (14)

one gets an explicit formula

2
g5 — MT(3Pde+6(1+f3)Qofr) = % <M s ﬁ) 1)

Performing an average over the phases ¢ for arbitrary 5 becomes more
difficult for larger N, but one may compute the average over the phases in
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the limiting case of the most rigid, crystalline spectrum ( — oo). Making
use of the identity

N N
ST 3 (1 +cos((k — j)2n/N) = N?/2 —= N

k=1j=k+1

we obtain the average over the phases for off-diagonal elements Pog = 1 —
1/(N — 1), what substituted into (10) yields the mean conductivity

MN

0= (2M — N). (16)

gc =

Observe that the dependence of the conductivity on the distribution of
the phases {¢y} is weak and vanish in the limit of large N (with M >> N
preserved). Results for distribution typical of COE and CUE (with g =1
and = 2) should lie between the two limits. We have verified this assertion
by performing numerical calculations. Random unitary matrices, pertaining
to COE or CUE, where generated according to the algorithm presented
in [16].

Using the above formulae one may calculate the conductance steps for
fixed ¢ = N/M. In the limit of large N, the step v (when N increases by
two) is equal to yp = 1 — 1/c for the Poissonian case and y¢ = 1 — 1/2¢
for the crystalline spectrum. Clearly, also the model constructed to mimic
the S matrix directly is capable to yield the prediction for the conductance
step size smaller than unity. Finally let us mention that while both the

15
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Fig. 5. The mean conductance obtained for ¢ = 0.3 in the Poissonian case is plotted
as a function of N (full line) and compared with the Eq. (11) (crosses).
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approaches, the Heidelberg method (presented in the previous section) and
the direct modelling of the S matrix properties yield similar predictions for
N <« M, i.e. give conductance steps smaller than unity, the models seem
not to be equivalent (as it is in the opposite case of M < N — see [14]). For
example, assuming in the former approach that the internal H pertains to
GOE does not assure that the nontrivial eigenphases of the S matrix obey the
appropriate COE statistics (as we have checked numerically). Still, as shown
in Fig. 5, for N <« M and fixed ¢ both models yield quite similar prediction
for the average conductance (and thus the size of the quantization steps).
This robustness of the nonuniversal step size to the details of the random
model assumed suggests strongly that the phenomenon is quite general and
occurs whenever the number of open channels M exceeds the number of
internal states.

5. Summary and conclusions

We have shown that a single impurity placed inside the wire may sig-
nificantly lower the conductance step size, -y, from its unity value for an
ideal wire. This results has been obtained in a continuous, solvable model
consisting of a circular disk placed inside the otherwise ideal wire (modelled
by a 2D strip). This results is supported by model Random Matrix Theory
calculations, both using the Heidelberg approach and the direct assump-
tions on the S matrix ensemble. The lowering of the conductance steps does
not depend on the details of the model, the only requirement being that
the number of internal states, IV, is much smaller than the number of open
channels, M.

The RMT model proposed may be applicable also to other situations.
Consider a chaotic quantum dot (with many thousands of levels) coupled by
two almost ideal 1D leads to the broad connectors. Provided the coherence
length exceeds the length of 1D leads we expect coherent backscattering
on the border between the leads and the connectors. Then the number of
original channels in the 1D leads determines the number of extended states,
N, in the system: quantum dot + leads. This number may be quite small.
All other levels of the quantum dot remain localized and do not contribute
to the conductance. As the number of channels in the connectors, M, is
large, the situation N <« M is recovered. Then even small impurity in the
leads may lower the conductance steps in the system. Let us also mention a
related study by Bascones et al. [17], in which another random matrix model
was used to describe the conductivity in a system consisting of a narrow neck
coupled to two wide ideal leads.
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