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ON THE `NONUNIVERSAL' CONDUCTANCEOF AN ALMOST IDEAL QUANTUM WIREPetr �eba,Nulear Physis Institute, Czeh Aademy of Sienes250 68 Reº near Prague, Czeh RepubliPedagogial University, Hrade Kralove, Czeh RepubliKarol �yzkowski, and Jakub ZakrzewskiInstytut Fizyki Mariana Smoluhowskiego, Uniwersytet Jagiello«skiul. Reymonta 4, 30-059 Kraków, Poland(Reeived May 25, 1999)High quality quantum wires ondutane measurements have revealedan unexpeted feature: the quantization step of the ondutane is appar-ently system dependent. We show that even a single impurity (modelledby a short range potential) in a wire leads to enhaned baksattering anda�ets the ondutane steps. We onstrut a random matrix model whihshows similar behaviour with the size of ondutane step dependent on asingle parameter.PACS numbers: 72.20.Dp, 05.45.+b, 72.10.Bg.1. IntrodutionThe ondutane of mesosopi devies, the so alled quantum dots orquantum wires, exhibits a number of universal features suh as the quan-tization of the average ondutane or the magnitude of the ondutane�utuations. For the ideal one-dimensional (1D) quantum wire the d on-dutane G is quantized in units of G0 = 2e2=h (the fator 2 is due toeletron spin) [1℄, G = G0M1 with M1 being equal to the number of trans-verse modes supported by the wire. Thus the dimensionless ondutaneg = G=G0 hanges by integer steps when M1 inreases.Similarly, the integer ondutane steps are predited when the idealwire is oupled oherently to broad leads [2℄. Additionally, one expets insuh a situation an appearane of resonant strutures at the beginning ofeah step at low temperatures. For higher temperatures, due to e�etive(2797)



2798 P. �eba, K. �yzkowski, J. Zakrzewskiaveraging, the sharp resonant strutures disappear and ondutane stepsbeome smooth [2℄. The presene of strong disorder destroys the steps,leading to the so alled universal ondutane �utuations [3℄ with varianeof the order of G0. Let us mention also that if transition from wire to leadsis not sharp but smooth, the ondutane steps are not a�eted as followsfrom [4℄.On the other hand, reent experiments, arried out on high quality wiresoupled to broad leads [5℄ revealed smaller quantization steps of the height < 1, with  varying from sample to sample and reahing 0.86 at lowtemperatures. This result is in apparent ontradition with the preditionsof [2℄ mentioned above. No lear explanation of the experimental results isavailable, as far as we know. In [5℄ three di�erent theoretial possibilities forthe explanation of the data are disussed. The di�ulties with the standardrandom matrix theory (RMT) approah and the Luttinger liquid theory [6℄are emphasized. The authors give their own explanation in terms of theompetition between the sattering from 2D into the edge modes. It has beenpointed out [5, 7℄ that suh a behaviour may be an evidene of a oherentbaksattering between the 1D wire and the 2D leads. In suh a ase theondutane beomes G = G0T where T is a M1-dependent transmissionoe�ient. Still it is not lear how the dimensional argument omes intoplay in view of Szafer and Stone result [2℄ � the baksattering from theinterfae between a narrow wire and the broader lead in the ideal ase doesnot lower the ondutane steps. On the other hand the lowering of theondutane steps may be also onsidered as an evidene for the importaneof eletron�eletron interations [5℄.The purpose of this work is to show that the experimental results maybe reprodued by an assumption of a weak residual disorder (e.g. due todefets in the almost ideal wire). Suh model is proposed and analyzed inSetion 2. We do not laim, that the e�et disussed is the sole soure of theunusual ondutane steps observed in [5℄. Rather we would like to pointout that any additional (in respet to ideal pure system [2℄) baksatteringin the narrow wire (not neessarily on the interfae between wire and leads)may derease the size of ondutane steps. This point of view is supportedby results oming from an appropriate model based on random matries andpresented in Setions 3 and 4. We summarize our �ndings in Setion 5.2. Condutane quantization in `non-ideal' wireWe want to disuss the e�ets due to impurities, so we onsider a verysimple model of a wire � a strip of length, L (in x diretion) and the widthW with W � L (ompare Fig. 1). The Dirihlet boundary onditions areassumed for the eletron wavefuntions on horizontal strip boundaries at



On the `Nonuniversal' Condutane : : : 2799y = 0 and y = W (hard walls). The orresponding Shrödinger equationreads (in e = ~ = m = 1 units)(k2x2 + k2y2 + P (x; y) + Fy) (x; y) = E (x; y); (1)where E is the energy of the eletron travelling along the strip and P (x; y)is the additional potential (e.g. the disk impurity introdued below) atingin the wire region 0 < x < L only. By hanging E we may hange thenumber of open hannels, M1. Alternatively, to reprodue more loselyan experimental situation [5℄, we �x the energy, E, but we add a statieletri �eld aross the strip. By inreasing its amplitude F , we an dereasethe number of open hannels M1 due to the presene of potential arossthe strip, V = Fy. To see this, realize, that outside of the perturbationregion (whereW = 0) the Shrödinger equation separates into the satteringmotion in x diretion and the bound motion in y oordinate. The latterorresponds either to square well (for F = 0) or to the triangular well (in thepresene of the eletri �eld). The eletron entering (leaving) the interationregion has its energy split into �translational energy� orresponding to thex oordinate motion and the �transverse� quantized motion. For a giventotal energy E only a �nite number M1 of transverse motion levels areaessible. These M1 possibilities de�nes, of ourse, the number of openhannels. The dimensionless ondutane g = G=G0 is alulated from the
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0Fig. 1. Model wire onsidered in this setion of length L and width W � L. Wedisuss the ondutane of suh a quasi-1D wire in the presene of an impuritymodelled by a disk satterer plaed at a random position (x0; y0).Landauer formula [8℄ (see also [9, 10℄)g = Tr(tty); (2)where t is the transmission matrix through the `sample' relating the inomingand the outgoing solutions [atually a submatrix of the full S matrix, see



2800 P. �eba, K. �yzkowski, J. ZakrzewskiEq. (5) below℄. The impurity is introdued by plaing inside the strip adisk potential of radius R at some random position (x0; y0). The potentialinside the disk region is assumed to be equal to a positive onstant V0 withV0 greater than the energy E of the inoming eletron, i.e., P (x; y) = V0for (x� x0)2 + (y � y0)2 < R2 and P (x; y) = 0 elsewhere. The Shrödingerequation (1) is then solved using the �nite element method and the resultis averaged over several realizations of the position of the impurity in thestrip. The width W of the strip is set to 1: W = 1. Fig. 2a ompares the
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Fig. 2. Panel (a) displays mean dimensionless ondutane, g, as a funtion ofthe applied voltage V. The ase without impurity is plotted by full line. Brokenline displays the ondutane for the system with one impurity of radius 0.05 anddotted line orresponds to the ase with one impurity having radius 0.1. Panel (b)ompares the ondutane of the system without impurity (full line) with that forthe system with one impurity of the radius 0.05, but multiplied by a fator 1.12(broken line)ondutane as a funtion of the applied voltage for the ideal strip and forthe strip with a single impurity and two di�erent ranges R. Observe that thepresene of the impurity does not destroy the ondutane steps; they arelowered and beome less sharp. This e�et is quite dramati if more then one



On the `Nonuniversal' Condutane : : : 2801impurity is present. For a better omparison of details of the steps with andwithout the impurity, we multiply the ondutane in the presene of theimpurity for R = 0:05 by a fator 1.12 so as the lowest step is approximatelyequal to unity. The result (Fig. 2b) show that with inreasing number ofopen hannels the steps, in the presene of the impurity, beome larger andless sharp, in full agreement with experimental results [5℄.It is worth stressing that the eletron transport through the strip is onlyweakly a�eted by a single sattering enter of the size muh smaller that thewidth of the strip, W . The perturbation makes the proess not fully ballistiand the baksattering leads to lowering of the ondutane steps. We are,however, in quite a di�erent regime than those in the typial �ballisti�haoti avity, where multiple sattering events dominate. In the latter asethe average ondutane is roughly halved in omparison to the maximalallowed value (proportional to number of open hannels, M1). For example,for the average ondutane of a quantum dot oupled to the outside worldby two leads eah of whih supports M1 open hannels one obtains [11℄g = M212M1 � 1 + 2=� ; (3)where � = 1 for time reversal invariant systems and � = 2 when this sym-metry is broken strongly.For disordered systems (inluding the example just above) the rapidprogress in the understanding of the eletron transport has been obtainedwithin the random matrix theory (RMT) approah, reently reviewed indetail by Beenakker [10℄. In the next Setion we show that by a slight modi-�ation of this approah we an also aount for the noninteger ondutanesteps. 3. RMT Heidelberg-like approahWe onsider a standard Heidelberg sattering matrix approah [12, 13℄expressing the sattering matrix S asS = 1� 2�iW y(EF �H + i�WW y)�1W; (4)where H is the internal Hamiltonian of the system represented by a matrixof rank N while W is a N �M matrix representing the oupling betweenthe N internal states and M sattering hannels in the leads. Assuming twoidential leads one gets M = 2M1.In the appliation to a haoti avity sattering one assumes that thenumber of internal states, N , around the Fermi energy, EF , is muh largerthan M . Taking typial RMT assumptions about the statistial properties



2802 P. �eba, K. �yzkowski, J. Zakrzewskiof H and W one may then derive a number of preditions onerning thestatistial properties of S and of the measurable observables. As shownby Brouwer [14℄, suh an approah is equivalent (for M � N), to mak-ing RMT assumptions onerning diretly the unitary S matrix itself. Forexample, if H pertains to the Gaussian Orthogonal Ensemble (GOE) andW are omposed of real random vetors (the situation appropriate for timereversal invariant systems), then the M �M matrix S belongs to the or-responding irular orthogonal ensemble of unitary matries (COE) in thelimit N !1. Similarly, if time reversal symmetry is broken and H pertainsto Gaussian Unitary Ensemble (GUE), the orresponding S matrix showsstatistial properties typial for the Cirular Unitary Ensemble (CUE).It is thus justi�able to derive transport properties by making statisti-al preditions for S matries themselves. Suh an approah yields, e.g.,Eq. (3). The advantage of the former, Heidelberg approah is that it allowsalso to alulate energy dependent quantities suh as orrelators or time de-lays, while the diret RMT approah to S matries says nothing about thedependene on the sattering energy, EF .Consider now the experimental system of [5℄. The 1D almost ideal wireplaed between two 2D leads takes the plae of the internal sattering systemin the Heidelberg approah with N being now the number of states in theinternal wire around EF or the number `internal hannels'. Note that reallythe Hamiltonian desribing the internal wire supports an in�nite number ofstates. Most of them do not ontribute to ondutane being vanishinglysmall (evanesent) on the left or right side of the 1D wire. The importantN �states� are the N sattering hannels through the 1D wire if it wereoupled inoherently to leads. So N an be even only. Moreover there isno ground to assume that the internal matrix H pertains to GOE (the wireis almost ideal). We shall show below that the ondutane steps are notvery sensitive to the detailed statistial properties of H. Sine the leads areassumed to be two dimensional, M = 2M1 should be muh larger than N .Note that the limit N � M is the opposite to that taken in the standardtransport theory [10℄.The struture of the S matrix, Eq.(4), indiates that N out of M ofits eigenphases may be nontrivial and di�erent from 0 (i.e. the remainingM�N eigenvalues of S are equal to unity). This is due to the fat that thepart oupling the hannels to the internal states has at most the rank N .Representing S by re�etion and transition matriesS = � r tt0 r0� (5)and using saling arguments one realizes that the dimensionless ondutaneg, Eq. (2), may depend only on one parameter  = N=M . Further we shall



On the `Nonuniversal' Condutane : : : 2803expet that the average ondutane inreases in steps when N hanges.The size of the steps may depend on .To test this qualitative piture we have simulated the ondutane of thesystem by averaging the transmission obtained over several random realiza-tions ofH andW . In all the simulations EF = 0 while we have varied N ,M ,as well as assumed di�erent statistial properties of H. Spei�ally, we shallassume either GOE ase or the situation when the eigenvalues of H are un-orrelated. The latter ase we shall all the Poissonian ensemble (PE) sinethe nearest neighbour statistis takes then a Poissonian form. The N �Moupling matrix W is omposed of N mutually orthonormal random vetorsof length M . The average is obtained by taking 1000 di�erent realizationsof a given system. Fig. 3(a) shows the average transmission (dimensionlessondutane) obtained keeping a �xed value of  = N=M and inreasing Nby two. Observe that regardless of the properties of the internal matrix Hthe qualitative behaviour of the ondutane is quite similar, it inreases insteps smaller than unity, the value of the step being dependent on  and toa muh lesser extend on the statistial properties of H. Panel (b) shows thebehaviour of the system while keeping �xed the number of `internal hannels'N and inreasing M . Observe that the ondutane steps atually dereasewith M forM large. It is the number of `internal hannels', N , whih limitsthe ondutane value. The dependene on M is muh weaker and indiatesthat for larger M the baksattering plays a larger role leading to dereaseof the ondutane steps.
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Fig. 3. Panel (a) displays mean dimensionless ondutane g = G=G0 evaluatedas a funtion of the number of internal states N for  = 0:5 (thik lines) and0.3 (thin lines). The full line orresponds to the Poissonian ase, broken linesrepresent results obtained for GOE. Panel (b) shows g as a funtion of the numberof hannels M with N �xed to 20. Thik (thin) line orresponds to GOE (PE)ase, respetively.



2804 P. �eba, K. �yzkowski, J. ZakrzewskiFig. 3 shows already that the experimental observations of [5℄ may be atleast qualitatively explained by the simple RMT model. To exemplify thispoint further we have assumed that the density of states hanges aordingto a triangular potential well (as in the experiment) when the applied volt-age is varied. After hoosing the free parameter in the model, i.e., , theondutane dependene on the applied voltage reprodues fairly auratelythe Fig. 2 of [5℄ (see Fig. 4).
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Fig. 4. Dependene of the dimensionless mean ondutane on the applied voltageV . Filled dots onneted by the line (to guide the eye) represent the results obtainedin our model alulations with Poissonian internal matrix. The number of thehannelsM and internal states N depends on the voltage V asM = [[(a�3:7=V )℄℄;N = [[�3:7=V ℄℄ with a = 8:8. Here [[x℄℄ represents even integer number being mostlose to x. Diamonds orrespond to the experimental results obtained in [5℄.Let us point out that the results obtained are very weakly dependenton the statistial properties of the internal Hamiltonian H. For a givenvalue of , the ondutane quantization step, observed when N is varied,inreases slightly as the statistial properties of H hange from PE (� = 0)to GOE (� = 1) or the piket fene spetrum orresponding to the levelsrepulsion parameter � !1. The quantization step size remains pratiallyuna�eted (within the statistial signi�ane of our data) if we onsider thease of broken time reversal symmetry, i.e., with H belonging to GUE.Typially for the RMT approah, our simple model annot aount forthe hanges of the ondutane steps with the temperature, T . Suh tem-perature hanges are indiators of the importane of the eletron�eletron(e�e) interations [5℄. It seems thus quite intuitive to blame this interationalso for the non-integer ondutane steps. In this respet the fat that ourmodel, being a single partile approah, also yields  dependent ondutane



On the `Nonuniversal' Condutane : : : 2805steps is quite surprising. Apparently, the step size an be reonstruted fromRMT, i.e. a single partile approah (where at least a part of e�e interationmay be in priniple inluded via Hartree or mean �eld approah). On theother hand, as shown in the previous setion, the lowering of the steps isalso obtained by a single eletron model with impurity for whih the RMTmodel presented should be appropriate.4. RMT approah to S matrixAepting that the model presented yields reasonable preditions on-erning the ondutane steps one an ask whether in the studied, N �Mase similar preditions may be obtained using RMT assumptions diretlyfor the S matrix. Naturally, the standard approah [10℄ has to be modi�edsine the S matrix, must have M �N unity eigenvalues.We are thus going to mimi the sattering matrix by a M �M unitarymatrix S = U 0BBBBBBB� 1 0 0 0 � � � 00 . . . 0 � � � � � � ...0 0 1 � � � � � � ...0 � � � 0 ei'1 0 0� � � � � � 0 0 . . . ...0 � � � 0 0 � � � ei'N
1CCCCCCCAU y: (6)The diagonal matrix of eigenvalues D onsists ofM�N unit eigenvaluesand N eigenvalues exp(i'i). The nontrivial eigenphases 'i are distributedaording to the joint probability distributionP�('1;���;'N ) � NYk<l sin�[('k � 'l)=2℄;haraterized by the level repulsion parameter � 2 [0;1℄. Random unitaryrotation matrix U is drawn uniformly with respet to the Haar measure onM dimensional unitary spae and pertains to CUE. Suh an assumptiononerning U is orret for a broken time-reversal invariane, the situationnot realized in the experiment [5℄. It is known, however, from the stan-dard RMT of sattering (in the M � N limit) that the dependene of theondutane on the symmetry is relatively small for disordered wires andappears only on the level of weak loalization orretions [10℄ through theeigenphases repulsion parameter �. Thus the results obtained should onlyweakly depend on detailed properties of U . This assumption is even morejusti�ed by the numerial results, mentioned above, that revealed that the



2806 P. �eba, K. �yzkowski, J. Zakrzewskisize of ondutane step is not sensitive to the hange from GOE to GUEwithin the Heidelberg model.The total ondutivity in the system is given by a sum of the individualtransmission oe�ients g = MXl=M=2+1 M=2Xm=1 jSlmj2: (7)There exist M2=4 elements of the matrix S, ontributing to the totalondutane. Eah element of this sum an be written asSlm = NXk=1U�klUkm(ei'k � 1);with l 6= m. The double average 

jSlmj2�U�D, over N random phasesof the diagonal matrix D and over random rotation matrix U , onsists ofN diagonal and N(N � 1) o�-diagonal terms. The averages over unitarymatries U distributed aording to the Haar measure are known [15℄. Foreah diagonal term Qd := hjU�klj2jUkmj2i = 1M(M + 1) ; (8)while o�-diagonal elements ontribute asQo� := hRe[U�k1lU�k2lUk1mUk2m℄i = � 1M(M2 � 1) : (9)The average ondutivity is thus given byg = M24 (NPdQd +N(N � 1)Po�Qo�); (10)where Pd and Po� denote prefators orresponding to the averages over thephases '. For N diagonal terms this average does not depend on the ensem-ble and gives the prefator Pd = 
j1� ei'j2�� = 2 for any value of �. Forthe o�-diagonal terms the average over unorrelated phases of the Poissonensemble (� = 0) gives Po� = 
�1� ei'1� �1� ei'2���=0 = 1. Summing allterms together we obtain the average ondutane for the Poissonian asegP = MN4(M2 � 1) (2M �N � 1) : (11)



On the `Nonuniversal' Condutane : : : 2807For N = 2 the phase averages are simple for any distribution of phasesharaterized by the level repulsion parameter �. O�-diagonal elementsarry a fator ourring from the phase averagePo� = 
Re �1� ei'1� �1� ei'2��� = 1 + f2;where f2 = 2�Z0 os sin�  2 d 2�Z0 sin�  2 d = � �� + 2 : (12)Sine their ontribution Qo� is negative, inreasing parameter � inreasesthe average ondutane aording tog� = M24 (2PdQd + 2(1 + f2)Qo�) = M2 (M2 � 1) �2M � 3 + �� + 2� ; (13)whih in the limiting ase of equidistant phases (� ! 1) redues to g1 =M=(M + 1):In a similar way one obtains the phase average for o�-diagonal elementsfor N = 3. Sine in this ase the average f3 reads
f3 = 2�Z0 0� �Z0 os sin�  2 sin� ���  2 � d 1A sin� �2 d�2�Z0 0� �Z0 sin�  2 sin� ���  2 � d 1A sin� �2 d�= � �2� + 2 (14)one gets an expliit formulag� = M24 (3PdQd+6(1+f3)Qo�) = 3M2 (M2 � 1) �M � 2 + �2(� + 1)� : (15)Performing an average over the phases ' for arbitrary � beomes moredi�ult for larger N , but one may ompute the average over the phases in



2808 P. �eba, K. �yzkowski, J. Zakrzewskithe limiting ase of the most rigid, rystalline spetrum (� ! 1). Makinguse of the identityNXk=1 NXj=k+1(1 + os((k � j)2�=N) = N2=2�Nwe obtain the average over the phases for o��diagonal elements Po� = 1 �1=(N � 1), what substituted into (10) yields the mean ondutivitygC = MN4 (M2 � 1) (2M �N) : (16)Observe that the dependene of the ondutivity on the distribution ofthe phases f'kg is weak and vanish in the limit of large N (with M >> Npreserved). Results for distribution typial of COE and CUE (with � = 1and � = 2) should lie between the two limits. We have veri�ed this assertionby performing numerial alulations. Random unitary matries, pertainingto COE or CUE, where generated aording to the algorithm presentedin [16℄.Using the above formulae one may alulate the ondutane steps for�xed  = N=M . In the limit of large N , the step  (when N inreases bytwo) is equal to P = 1 � 1= for the Poissonian ase and C = 1 � 1=2for the rystalline spetrum. Clearly, also the model onstruted to mimithe S matrix diretly is apable to yield the predition for the ondutanestep size smaller than unity. Finally let us mention that while both the
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Fig. 5. The mean ondutane obtained for  = 0:3 in the Poissonian ase is plottedas a funtion of N (full line) and ompared with the Eq. (11) (rosses).



On the `Nonuniversal' Condutane : : : 2809approahes, the Heidelberg method (presented in the previous setion) andthe diret modelling of the S matrix properties yield similar preditions forN � M , i.e. give ondutane steps smaller than unity, the models seemnot to be equivalent (as it is in the opposite ase ofM � N � see [14℄). Forexample, assuming in the former approah that the internal H pertains toGOE does not assure that the nontrivial eigenphases of the S matrix obey theappropriate COE statistis (as we have heked numerially). Still, as shownin Fig. 5, for N �M and �xed  both models yield quite similar preditionfor the average ondutane (and thus the size of the quantization steps).This robustness of the nonuniversal step size to the details of the randommodel assumed suggests strongly that the phenomenon is quite general andours whenever the number of open hannels M exeeds the number ofinternal states. 5. Summary and onlusionsWe have shown that a single impurity plaed inside the wire may sig-ni�antly lower the ondutane step size, , from its unity value for anideal wire. This results has been obtained in a ontinuous, solvable modelonsisting of a irular disk plaed inside the otherwise ideal wire (modelledby a 2D strip). This results is supported by model Random Matrix Theoryalulations, both using the Heidelberg approah and the diret assump-tions on the S matrix ensemble. The lowering of the ondutane steps doesnot depend on the details of the model, the only requirement being thatthe number of internal states, N , is muh smaller than the number of openhannels, M .The RMT model proposed may be appliable also to other situations.Consider a haoti quantum dot (with many thousands of levels) oupled bytwo almost ideal 1D leads to the broad onnetors. Provided the oherenelength exeeds the length of 1D leads we expet oherent baksatteringon the border between the leads and the onnetors. Then the number oforiginal hannels in the 1D leads determines the number of extended states,N , in the system: quantum dot + leads. This number may be quite small.All other levels of the quantum dot remain loalized and do not ontributeto the ondutane. As the number of hannels in the onnetors, M , islarge, the situation N � M is reovered. Then even small impurity in theleads may lower the ondutane steps in the system. Let us also mention arelated study by Basones et al. [17℄, in whih another random matrix modelwas used to desribe the ondutivity in a system onsisting of a narrow nekoupled to two wide ideal leads.
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