
Vol. 30 (1999) ACTA PHYSICA POLONICA B No 9
ON THE `NONUNIVERSAL' CONDUCTANCEOF AN ALMOST IDEAL QUANTUM WIREPetr �eba,Nu
lear Physi
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h A
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ien
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h Republi
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 Kralove, Cze
h Republi
Karol �y
zkowski, and Jakub ZakrzewskiInstytut Fizyki Mariana Smolu
howskiego, Uniwersytet Jagiello«skiul. Reymonta 4, 30-059 Kraków, Poland(Re
eived May 25, 1999)High quality quantum wires 
ondu
tan
e measurements have revealedan unexpe
ted feature: the quantization step of the 
ondu
tan
e is appar-ently system dependent. We show that even a single impurity (modelledby a short range potential) in a wire leads to enhan
ed ba
ks
attering anda�e
ts the 
ondu
tan
e steps. We 
onstru
t a random matrix model whi
hshows similar behaviour with the size of 
ondu
tan
e step dependent on asingle parameter.PACS numbers: 72.20.Dp, 05.45.+b, 72.10.Bg.1. Introdu
tionThe 
ondu
tan
e of mesos
opi
 devi
es, the so 
alled quantum dots orquantum wires, exhibits a number of universal features su
h as the quan-tization of the average 
ondu
tan
e or the magnitude of the 
ondu
tan
e�u
tuations. For the ideal one-dimensional (1D) quantum wire the d
 
on-du
tan
e G is quantized in units of G0 = 2e2=h (the fa
tor 2 is due toele
tron spin) [1℄, G = G0M1 with M1 being equal to the number of trans-verse modes supported by the wire. Thus the dimensionless 
ondu
tan
eg = G=G0 
hanges by integer steps when M1 in
reases.Similarly, the integer 
ondu
tan
e steps are predi
ted when the idealwire is 
oupled 
oherently to broad leads [2℄. Additionally, one expe
ts insu
h a situation an appearan
e of resonant stru
tures at the beginning ofea
h step at low temperatures. For higher temperatures, due to e�e
tive(2797)
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zkowski, J. Zakrzewskiaveraging, the sharp resonant stru
tures disappear and 
ondu
tan
e stepsbe
ome smooth [2℄. The presen
e of strong disorder destroys the steps,leading to the so 
alled universal 
ondu
tan
e �u
tuations [3℄ with varian
eof the order of G0. Let us mention also that if transition from wire to leadsis not sharp but smooth, the 
ondu
tan
e steps are not a�e
ted as followsfrom [4℄.On the other hand, re
ent experiments, 
arried out on high quality wires
oupled to broad leads [5℄ revealed smaller quantization steps of the height
 < 1, with 
 varying from sample to sample and rea
hing 0.86 at lowtemperatures. This result is in apparent 
ontradi
tion with the predi
tionsof [2℄ mentioned above. No 
lear explanation of the experimental results isavailable, as far as we know. In [5℄ three di�erent theoreti
al possibilities forthe explanation of the data are dis
ussed. The di�
ulties with the standardrandom matrix theory (RMT) approa
h and the Luttinger liquid theory [6℄are emphasized. The authors give their own explanation in terms of the
ompetition between the s
attering from 2D into the edge modes. It has beenpointed out [5, 7℄ that su
h a behaviour may be an eviden
e of a 
oherentba
ks
attering between the 1D wire and the 2D leads. In su
h a 
ase the
ondu
tan
e be
omes G = G0T where T is a M1-dependent transmission
oe�
ient. Still it is not 
lear how the dimensional argument 
omes intoplay in view of Szafer and Stone result [2℄ � the ba
ks
attering from theinterfa
e between a narrow wire and the broader lead in the ideal 
ase doesnot lower the 
ondu
tan
e steps. On the other hand the lowering of the
ondu
tan
e steps may be also 
onsidered as an eviden
e for the importan
eof ele
tron�ele
tron intera
tions [5℄.The purpose of this work is to show that the experimental results maybe reprodu
ed by an assumption of a weak residual disorder (e.g. due todefe
ts in the almost ideal wire). Su
h model is proposed and analyzed inSe
tion 2. We do not 
laim, that the e�e
t dis
ussed is the sole sour
e of theunusual 
ondu
tan
e steps observed in [5℄. Rather we would like to pointout that any additional (in respe
t to ideal pure system [2℄) ba
ks
atteringin the narrow wire (not ne
essarily on the interfa
e between wire and leads)may de
rease the size of 
ondu
tan
e steps. This point of view is supportedby results 
oming from an appropriate model based on random matri
es andpresented in Se
tions 3 and 4. We summarize our �ndings in Se
tion 5.2. Condu
tan
e quantization in `non-ideal' wireWe want to dis
uss the e�e
ts due to impurities, so we 
onsider a verysimple model of a wire � a strip of length, L (in x dire
tion) and the widthW with W � L (
ompare Fig. 1). The Diri
hlet boundary 
onditions areassumed for the ele
tron wavefun
tions on horizontal strip boundaries at
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e : : : 2799y = 0 and y = W (hard walls). The 
orresponding S
hrödinger equationreads (in e = ~ = m = 1 units)(k2x2 + k2y2 + P (x; y) + Fy) (x; y) = E (x; y); (1)where E is the energy of the ele
tron travelling along the strip and P (x; y)is the additional potential (e.g. the disk impurity introdu
ed below) a
tingin the wire region 0 < x < L only. By 
hanging E we may 
hange thenumber of open 
hannels, M1. Alternatively, to reprodu
e more 
loselyan experimental situation [5℄, we �x the energy, E, but we add a stati
ele
tri
 �eld a
ross the strip. By in
reasing its amplitude F , we 
an de
reasethe number of open 
hannels M1 due to the presen
e of potential a
rossthe strip, V = Fy. To see this, realize, that outside of the perturbationregion (whereW = 0) the S
hrödinger equation separates into the s
atteringmotion in x dire
tion and the bound motion in y 
oordinate. The latter
orresponds either to square well (for F = 0) or to the triangular well (in thepresen
e of the ele
tri
 �eld). The ele
tron entering (leaving) the intera
tionregion has its energy split into �translational energy� 
orresponding to thex 
oordinate motion and the �transverse� quantized motion. For a giventotal energy E only a �nite number M1 of transverse motion levels area

essible. These M1 possibilities de�nes, of 
ourse, the number of open
hannels. The dimensionless 
ondu
tan
e g = G=G0 is 
al
ulated from the
xL

W

x 0

y

0
y

0Fig. 1. Model wire 
onsidered in this se
tion of length L and width W � L. Wedis
uss the 
ondu
tan
e of su
h a quasi-1D wire in the presen
e of an impuritymodelled by a disk s
atterer pla
ed at a random position (x0; y0).Landauer formula [8℄ (see also [9, 10℄)g = Tr(tty); (2)where t is the transmission matrix through the `sample' relating the in
omingand the outgoing solutions [a
tually a submatrix of the full S matrix, see
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zkowski, J. ZakrzewskiEq. (5) below℄. The impurity is introdu
ed by pla
ing inside the strip adisk potential of radius R at some random position (x0; y0). The potentialinside the disk region is assumed to be equal to a positive 
onstant V0 withV0 greater than the energy E of the in
oming ele
tron, i.e., P (x; y) = V0for (x� x0)2 + (y � y0)2 < R2 and P (x; y) = 0 elsewhere. The S
hrödingerequation (1) is then solved using the �nite element method and the resultis averaged over several realizations of the position of the impurity in thestrip. The width W of the strip is set to 1: W = 1. Fig. 2a 
ompares the
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Fig. 2. Panel (a) displays mean dimensionless 
ondu
tan
e, g, as a fun
tion ofthe applied voltage V. The 
ase without impurity is plotted by full line. Brokenline displays the 
ondu
tan
e for the system with one impurity of radius 0.05 anddotted line 
orresponds to the 
ase with one impurity having radius 0.1. Panel (b)
ompares the 
ondu
tan
e of the system without impurity (full line) with that forthe system with one impurity of the radius 0.05, but multiplied by a fa
tor 1.12(broken line)
ondu
tan
e as a fun
tion of the applied voltage for the ideal strip and forthe strip with a single impurity and two di�erent ranges R. Observe that thepresen
e of the impurity does not destroy the 
ondu
tan
e steps; they arelowered and be
ome less sharp. This e�e
t is quite dramati
 if more then one
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omparison of details of the steps with andwithout the impurity, we multiply the 
ondu
tan
e in the presen
e of theimpurity for R = 0:05 by a fa
tor 1.12 so as the lowest step is approximatelyequal to unity. The result (Fig. 2b) show that with in
reasing number ofopen 
hannels the steps, in the presen
e of the impurity, be
ome larger andless sharp, in full agreement with experimental results [5℄.It is worth stressing that the ele
tron transport through the strip is onlyweakly a�e
ted by a single s
attering 
enter of the size mu
h smaller that thewidth of the strip, W . The perturbation makes the pro
ess not fully ballisti
and the ba
ks
attering leads to lowering of the 
ondu
tan
e steps. We are,however, in quite a di�erent regime than those in the typi
al �ballisti
�
haoti
 
avity, where multiple s
attering events dominate. In the latter 
asethe average 
ondu
tan
e is roughly halved in 
omparison to the maximalallowed value (proportional to number of open 
hannels, M1). For example,for the average 
ondu
tan
e of a quantum dot 
oupled to the outside worldby two leads ea
h of whi
h supports M1 open 
hannels one obtains [11℄g = M212M1 � 1 + 2=� ; (3)where � = 1 for time reversal invariant systems and � = 2 when this sym-metry is broken strongly.For disordered systems (in
luding the example just above) the rapidprogress in the understanding of the ele
tron transport has been obtainedwithin the random matrix theory (RMT) approa
h, re
ently reviewed indetail by Beenakker [10℄. In the next Se
tion we show that by a slight modi-�
ation of this approa
h we 
an also a

ount for the noninteger 
ondu
tan
esteps. 3. RMT Heidelberg-like approa
hWe 
onsider a standard Heidelberg s
attering matrix approa
h [12, 13℄expressing the s
attering matrix S asS = 1� 2�iW y(EF �H + i�WW y)�1W; (4)where H is the internal Hamiltonian of the system represented by a matrixof rank N while W is a N �M matrix representing the 
oupling betweenthe N internal states and M s
attering 
hannels in the leads. Assuming twoidenti
al leads one gets M = 2M1.In the appli
ation to a 
haoti
 
avity s
attering one assumes that thenumber of internal states, N , around the Fermi energy, EF , is mu
h largerthan M . Taking typi
al RMT assumptions about the statisti
al properties
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zkowski, J. Zakrzewskiof H and W one may then derive a number of predi
tions 
on
erning thestatisti
al properties of S and of the measurable observables. As shownby Brouwer [14℄, su
h an approa
h is equivalent (for M � N), to mak-ing RMT assumptions 
on
erning dire
tly the unitary S matrix itself. Forexample, if H pertains to the Gaussian Orthogonal Ensemble (GOE) andW are 
omposed of real random ve
tors (the situation appropriate for timereversal invariant systems), then the M �M matrix S belongs to the 
or-responding 
ir
ular orthogonal ensemble of unitary matri
es (COE) in thelimit N !1. Similarly, if time reversal symmetry is broken and H pertainsto Gaussian Unitary Ensemble (GUE), the 
orresponding S matrix showsstatisti
al properties typi
al for the Cir
ular Unitary Ensemble (CUE).It is thus justi�able to derive transport properties by making statisti-
al predi
tions for S matri
es themselves. Su
h an approa
h yields, e.g.,Eq. (3). The advantage of the former, Heidelberg approa
h is that it allowsalso to 
al
ulate energy dependent quantities su
h as 
orrelators or time de-lays, while the dire
t RMT approa
h to S matri
es says nothing about thedependen
e on the s
attering energy, EF .Consider now the experimental system of [5℄. The 1D almost ideal wirepla
ed between two 2D leads takes the pla
e of the internal s
attering systemin the Heidelberg approa
h with N being now the number of states in theinternal wire around EF or the number `internal 
hannels'. Note that reallythe Hamiltonian des
ribing the internal wire supports an in�nite number ofstates. Most of them do not 
ontribute to 
ondu
tan
e being vanishinglysmall (evanes
ent) on the left or right side of the 1D wire. The importantN �states� are the N s
attering 
hannels through the 1D wire if it were
oupled in
oherently to leads. So N 
an be even only. Moreover there isno ground to assume that the internal matrix H pertains to GOE (the wireis almost ideal). We shall show below that the 
ondu
tan
e steps are notvery sensitive to the detailed statisti
al properties of H. Sin
e the leads areassumed to be two dimensional, M = 2M1 should be mu
h larger than N .Note that the limit N � M is the opposite to that taken in the standardtransport theory [10℄.The stru
ture of the S matrix, Eq.(4), indi
ates that N out of M ofits eigenphases may be nontrivial and di�erent from 0 (i.e. the remainingM�N eigenvalues of S are equal to unity). This is due to the fa
t that thepart 
oupling the 
hannels to the internal states has at most the rank N .Representing S by re�e
tion and transition matri
esS = � r tt0 r0� (5)and using s
aling arguments one realizes that the dimensionless 
ondu
tan
eg, Eq. (2), may depend only on one parameter 
 = N=M . Further we shall
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t that the average 
ondu
tan
e in
reases in steps when N 
hanges.The size of the steps may depend on 
.To test this qualitative pi
ture we have simulated the 
ondu
tan
e of thesystem by averaging the transmission obtained over several random realiza-tions ofH andW . In all the simulations EF = 0 while we have varied N ,M ,as well as assumed di�erent statisti
al properties of H. Spe
i�
ally, we shallassume either GOE 
ase or the situation when the eigenvalues of H are un-
orrelated. The latter 
ase we shall 
all the Poissonian ensemble (PE) sin
ethe nearest neighbour statisti
s takes then a Poissonian form. The N �M
oupling matrix W is 
omposed of N mutually orthonormal random ve
torsof length M . The average is obtained by taking 1000 di�erent realizationsof a given system. Fig. 3(a) shows the average transmission (dimensionless
ondu
tan
e) obtained keeping a �xed value of 
 = N=M and in
reasing Nby two. Observe that regardless of the properties of the internal matrix Hthe qualitative behaviour of the 
ondu
tan
e is quite similar, it in
reases insteps smaller than unity, the value of the step being dependent on 
 and toa mu
h lesser extend on the statisti
al properties of H. Panel (b) shows thebehaviour of the system while keeping �xed the number of `internal 
hannels'N and in
reasing M . Observe that the 
ondu
tan
e steps a
tually de
reasewith M forM large. It is the number of `internal 
hannels', N , whi
h limitsthe 
ondu
tan
e value. The dependen
e on M is mu
h weaker and indi
atesthat for larger M the ba
ks
attering plays a larger role leading to de
reaseof the 
ondu
tan
e steps.
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Fig. 3. Panel (a) displays mean dimensionless 
ondu
tan
e g = G=G0 evaluatedas a fun
tion of the number of internal states N for 
 = 0:5 (thi
k lines) and0.3 (thin lines). The full line 
orresponds to the Poissonian 
ase, broken linesrepresent results obtained for GOE. Panel (b) shows g as a fun
tion of the numberof 
hannels M with N �xed to 20. Thi
k (thin) line 
orresponds to GOE (PE)
ase, respe
tively.
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zkowski, J. ZakrzewskiFig. 3 shows already that the experimental observations of [5℄ may be atleast qualitatively explained by the simple RMT model. To exemplify thispoint further we have assumed that the density of states 
hanges a

ordingto a triangular potential well (as in the experiment) when the applied volt-age is varied. After 
hoosing the free parameter in the model, i.e., 
, the
ondu
tan
e dependen
e on the applied voltage reprodu
es fairly a

uratelythe Fig. 2 of [5℄ (see Fig. 4).
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Fig. 4. Dependen
e of the dimensionless mean 
ondu
tan
e on the applied voltageV . Filled dots 
onne
ted by the line (to guide the eye) represent the results obtainedin our model 
al
ulations with Poissonian internal matrix. The number of the
hannelsM and internal states N depends on the voltage V asM = [[(a�3:7=V )℄℄;N = [[�3:7=V ℄℄ with a = 8:8. Here [[x℄℄ represents even integer number being most
lose to x. Diamonds 
orrespond to the experimental results obtained in [5℄.Let us point out that the results obtained are very weakly dependenton the statisti
al properties of the internal Hamiltonian H. For a givenvalue of 
, the 
ondu
tan
e quantization step, observed when N is varied,in
reases slightly as the statisti
al properties of H 
hange from PE (� = 0)to GOE (� = 1) or the pi
ket fen
e spe
trum 
orresponding to the levelsrepulsion parameter � !1. The quantization step size remains pra
ti
allyuna�e
ted (within the statisti
al signi�
an
e of our data) if we 
onsider the
ase of broken time reversal symmetry, i.e., with H belonging to GUE.Typi
ally for the RMT approa
h, our simple model 
annot a

ount forthe 
hanges of the 
ondu
tan
e steps with the temperature, T . Su
h tem-perature 
hanges are indi
ators of the importan
e of the ele
tron�ele
tron(e�e) intera
tions [5℄. It seems thus quite intuitive to blame this intera
tionalso for the non-integer 
ondu
tan
e steps. In this respe
t the fa
t that ourmodel, being a single parti
le approa
h, also yields 
 dependent 
ondu
tan
e
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e : : : 2805steps is quite surprising. Apparently, the step size 
an be re
onstru
ted fromRMT, i.e. a single parti
le approa
h (where at least a part of e�e intera
tionmay be in prin
iple in
luded via Hartree or mean �eld approa
h). On theother hand, as shown in the previous se
tion, the lowering of the steps isalso obtained by a single ele
tron model with impurity for whi
h the RMTmodel presented should be appropriate.4. RMT approa
h to S matrixA

epting that the model presented yields reasonable predi
tions 
on-
erning the 
ondu
tan
e steps one 
an ask whether in the studied, N �M
ase similar predi
tions may be obtained using RMT assumptions dire
tlyfor the S matrix. Naturally, the standard approa
h [10℄ has to be modi�edsin
e the S matrix, must have M �N unity eigenvalues.We are thus going to mimi
 the s
attering matrix by a M �M unitarymatrix S = U 0BBBBBBB� 1 0 0 0 � � � 00 . . . 0 � � � � � � ...0 0 1 � � � � � � ...0 � � � 0 ei'1 0 0� � � � � � 0 0 . . . ...0 � � � 0 0 � � � ei'N
1CCCCCCCAU y: (6)The diagonal matrix of eigenvalues D 
onsists ofM�N unit eigenvaluesand N eigenvalues exp(i'i). The nontrivial eigenphases 'i are distributeda

ording to the joint probability distributionP�('1;���;'N ) � NYk<l sin�[('k � 'l)=2℄;
hara
terized by the level repulsion parameter � 2 [0;1℄. Random unitaryrotation matrix U is drawn uniformly with respe
t to the Haar measure onM dimensional unitary spa
e and pertains to CUE. Su
h an assumption
on
erning U is 
orre
t for a broken time-reversal invarian
e, the situationnot realized in the experiment [5℄. It is known, however, from the stan-dard RMT of s
attering (in the M � N limit) that the dependen
e of the
ondu
tan
e on the symmetry is relatively small for disordered wires andappears only on the level of weak lo
alization 
orre
tions [10℄ through theeigenphases repulsion parameter �. Thus the results obtained should onlyweakly depend on detailed properties of U . This assumption is even morejusti�ed by the numeri
al results, mentioned above, that revealed that the
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ondu
tan
e step is not sensitive to the 
hange from GOE to GUEwithin the Heidelberg model.The total 
ondu
tivity in the system is given by a sum of the individualtransmission 
oe�
ients g = MXl=M=2+1 M=2Xm=1 jSlmj2: (7)There exist M2=4 elements of the matrix S, 
ontributing to the total
ondu
tan
e. Ea
h element of this sum 
an be written asSlm = NXk=1U�klUkm(ei'k � 1);with l 6= m. The double average 

jSlmj2�U�D, over N random phasesof the diagonal matrix D and over random rotation matrix U , 
onsists ofN diagonal and N(N � 1) o�-diagonal terms. The averages over unitarymatri
es U distributed a

ording to the Haar measure are known [15℄. Forea
h diagonal term Qd := hjU�klj2jUkmj2i = 1M(M + 1) ; (8)while o�-diagonal elements 
ontribute asQo� := hRe[U�k1lU�k2lUk1mUk2m℄i = � 1M(M2 � 1) : (9)The average 
ondu
tivity is thus given byg = M24 (NPdQd +N(N � 1)Po�Qo�); (10)where Pd and Po� denote prefa
tors 
orresponding to the averages over thephases '. For N diagonal terms this average does not depend on the ensem-ble and gives the prefa
tor Pd = 
j1� ei'j2�� = 2 for any value of �. Forthe o�-diagonal terms the average over un
orrelated phases of the Poissonensemble (� = 0) gives Po� = 
�1� ei'1� �1� ei'2���=0 = 1. Summing allterms together we obtain the average 
ondu
tan
e for the Poissonian 
asegP = MN4(M2 � 1) (2M �N � 1) : (11)
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e : : : 2807For N = 2 the phase averages are simple for any distribution of phases
hara
terized by the level repulsion parameter �. O�-diagonal elements
arry a fa
tor o

urring from the phase averagePo� = 
Re �1� ei'1� �1� ei'2��� = 1 + f2;where f2 = 2�Z0 
os sin�  2 d 2�Z0 sin�  2 d = � �� + 2 : (12)Sin
e their 
ontribution Qo� is negative, in
reasing parameter � in
reasesthe average 
ondu
tan
e a

ording tog� = M24 (2PdQd + 2(1 + f2)Qo�) = M2 (M2 � 1) �2M � 3 + �� + 2� ; (13)whi
h in the limiting 
ase of equidistant phases (� ! 1) redu
es to g1 =M=(M + 1):In a similar way one obtains the phase average for o�-diagonal elementsfor N = 3. Sin
e in this 
ase the average f3 reads
f3 = 2�Z0 0� �Z0 
os sin�  2 sin� ���  2 � d 1A sin� �2 d�2�Z0 0� �Z0 sin�  2 sin� ���  2 � d 1A sin� �2 d�= � �2� + 2 (14)one gets an expli
it formulag� = M24 (3PdQd+6(1+f3)Qo�) = 3M2 (M2 � 1) �M � 2 + �2(� + 1)� : (15)Performing an average over the phases ' for arbitrary � be
omes moredi�
ult for larger N , but one may 
ompute the average over the phases in
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ase of the most rigid, 
rystalline spe
trum (� ! 1). Makinguse of the identityNXk=1 NXj=k+1(1 + 
os((k � j)2�=N) = N2=2�Nwe obtain the average over the phases for o��diagonal elements Po� = 1 �1=(N � 1), what substituted into (10) yields the mean 
ondu
tivitygC = MN4 (M2 � 1) (2M �N) : (16)Observe that the dependen
e of the 
ondu
tivity on the distribution ofthe phases f'kg is weak and vanish in the limit of large N (with M >> Npreserved). Results for distribution typi
al of COE and CUE (with � = 1and � = 2) should lie between the two limits. We have veri�ed this assertionby performing numeri
al 
al
ulations. Random unitary matri
es, pertainingto COE or CUE, where generated a

ording to the algorithm presentedin [16℄.Using the above formulae one may 
al
ulate the 
ondu
tan
e steps for�xed 
 = N=M . In the limit of large N , the step 
 (when N in
reases bytwo) is equal to 
P = 1 � 1=
 for the Poissonian 
ase and 
C = 1 � 1=2
for the 
rystalline spe
trum. Clearly, also the model 
onstru
ted to mimi
the S matrix dire
tly is 
apable to yield the predi
tion for the 
ondu
tan
estep size smaller than unity. Finally let us mention that while both the
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Fig. 5. The mean 
ondu
tan
e obtained for 
 = 0:3 in the Poissonian 
ase is plottedas a fun
tion of N (full line) and 
ompared with the Eq. (11) (
rosses).
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hes, the Heidelberg method (presented in the previous se
tion) andthe dire
t modelling of the S matrix properties yield similar predi
tions forN � M , i.e. give 
ondu
tan
e steps smaller than unity, the models seemnot to be equivalent (as it is in the opposite 
ase ofM � N � see [14℄). Forexample, assuming in the former approa
h that the internal H pertains toGOE does not assure that the nontrivial eigenphases of the S matrix obey theappropriate COE statisti
s (as we have 
he
ked numeri
ally). Still, as shownin Fig. 5, for N �M and �xed 
 both models yield quite similar predi
tionfor the average 
ondu
tan
e (and thus the size of the quantization steps).This robustness of the nonuniversal step size to the details of the randommodel assumed suggests strongly that the phenomenon is quite general ando

urs whenever the number of open 
hannels M ex
eeds the number ofinternal states. 5. Summary and 
on
lusionsWe have shown that a single impurity pla
ed inside the wire may sig-ni�
antly lower the 
ondu
tan
e step size, 
, from its unity value for anideal wire. This results has been obtained in a 
ontinuous, solvable model
onsisting of a 
ir
ular disk pla
ed inside the otherwise ideal wire (modelledby a 2D strip). This results is supported by model Random Matrix Theory
al
ulations, both using the Heidelberg approa
h and the dire
t assump-tions on the S matrix ensemble. The lowering of the 
ondu
tan
e steps doesnot depend on the details of the model, the only requirement being thatthe number of internal states, N , is mu
h smaller than the number of open
hannels, M .The RMT model proposed may be appli
able also to other situations.Consider a 
haoti
 quantum dot (with many thousands of levels) 
oupled bytwo almost ideal 1D leads to the broad 
onne
tors. Provided the 
oheren
elength ex
eeds the length of 1D leads we expe
t 
oherent ba
ks
atteringon the border between the leads and the 
onne
tors. Then the number oforiginal 
hannels in the 1D leads determines the number of extended states,N , in the system: quantum dot + leads. This number may be quite small.All other levels of the quantum dot remain lo
alized and do not 
ontributeto the 
ondu
tan
e. As the number of 
hannels in the 
onne
tors, M , islarge, the situation N � M is re
overed. Then even small impurity in theleads may lower the 
ondu
tan
e steps in the system. Let us also mention arelated study by Bas
ones et al. [17℄, in whi
h another random matrix modelwas used to des
ribe the 
ondu
tivity in a system 
onsisting of a narrow ne
k
oupled to two wide ideal leads.
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