THE ρ MESON IN A NUCLEAR MEDIUM*

D. Cabrera, E. Oset and M.J. Vicente-Vacas
Departamento de Física Teórica e IFIC Centro Mixto Universidad de Valencia-CSIC 46100 Burjassot (Valencia), Spain

(Received June 20, 2000)
In this work, propagation properties of the ρ meson in symmetric nuclear matter are studied. We make use of a coupled channel unitary approach to meson-meson scattering, calculated from the lowest order Chiral Perturbation Theory ($\chi \mathrm{PT}$) lagrangian including explicit resonance fields. Low energy chiral constraints are considered by matching our expressions to those of one loop $\chi \mathrm{PT}$. To account for the medium corrections, the ρ couples to $\pi \pi$ and $K \bar{K}$ pairs which are properly renormalized in the nuclear medium.

PACS numbers: 14.40.Aq, 14.40.Cs, 13.75.Lb

1. Description of the model

We study the ρ propagation properties by obtaining the $\pi \pi$ and $K \bar{K}$ scattering amplitudes in the $I=1$ channel. Our states in the isospin basis are

$$
\begin{align*}
|\pi \pi\rangle & =\frac{1}{2}\left|\pi^{+} \pi^{-}-\pi^{-} \pi^{+}\right\rangle \\
|K \bar{K}\rangle & =\frac{1}{\sqrt{2}}\left|K^{+} K^{-}-K^{0} \bar{K}^{0}\right\rangle \tag{1}
\end{align*}
$$

Tree level amplitudes are obtained from the lowest order χ PT and explicit resonance field lagrangians of Refs. [1, 2]. We collect this amplitudes in a $2 \times 2 K$ matrix whose elements are

$$
\begin{aligned}
& K_{11}(s)=\frac{1}{3} \frac{p_{1}^{2}}{f^{2}}\left[1+\frac{2 G_{V}^{2}}{f^{2}} \frac{s}{M_{\rho}^{2}-s}\right] \\
& K_{12}(s)=\frac{\sqrt{2}}{3} \frac{p_{1} p_{2}}{f^{2}}\left[1+\frac{2 G_{V}^{2}}{f^{2}} \frac{s}{M_{\rho}^{2}-s}\right]
\end{aligned}
$$

[^0]\[

$$
\begin{align*}
K_{21}(s) & =K_{12}(s), \\
K_{22}(s) & =\frac{2}{3} \frac{p_{2}^{2}}{f^{2}}\left[1+\frac{2 G_{V}^{2}}{f^{2}} \frac{s}{M_{\rho}^{2}-s}\right] \tag{2}
\end{align*}
$$
\]

with the labels 1 for $K \bar{K}$ and 2 for $\pi \pi$ states. In equation (2) G_{V} is the strength of the pseudoscalar-vector resonance vertex, f the pion decay constant in the chiral limit, s the squared invariant mass, M_{ρ} the bare mass of the ρ meson and $p_{i}=\sqrt{s / 4-m_{i}^{2}}$.

The final expression of the T matrix is obtained following the N/D method, which was adapted to the context of chiral theory in Ref. [3]. It reads

$$
\begin{equation*}
T(s)=[I+K(s) g(s)]^{-1} K(s), \tag{3}
\end{equation*}
$$

where $g(s)$ is a diagonal matrix given by the loop of two mesons. In dimensional regularization it reads

$$
\begin{equation*}
g_{i}(s)=\frac{1}{16 \pi^{2}}\left[-2+d_{i}+\sigma_{i}(s) \log \frac{\sigma_{i}(s)+1}{\sigma_{i}(s)-1}\right], \tag{4}
\end{equation*}
$$

where the subindex i refers to the corresponding two meson state and $\sigma_{i}(s)=$ $\sqrt{1-4 m_{i}^{2} / s}$ with m_{i} the mass of the particles in the state i. At this stage (vacuum case), the model has proved to be successful in describing $\pi \pi P$ wave phase shifts and π, K electromagnetic vector form factors [4] up to $\sqrt{s} \lesssim 1.2 \mathrm{GeV}$. The d_{i} constants contain the information of low energy chiral constraints. They are obtained by matching the expressions of the form factors calculated in this approach with those of one-loop χ PT.

In our calculation, in which $g(s)$ is modified in the nuclear medium, we use cut-off regularization. The $g_{i}(s)$ function with a cut-off in the threemomentum of the particles in the loop can be found in Appendix A of Ref. [5]. By comparing the expressions in both schemes we can get the equivalent $q_{i}^{\max }$ in order to keep the information of the d_{i} constants.

Medium corrections are incorporated in the selfenergies of the mesons in the loops. All the graphs in Fig. 1 are considered. In addition to the single $p-h$ bubble we have to account for the medium modifications of the $\rho M M^{\prime}$ vertex via the $\rho M N$ contact term requested by the gauge invariance of the theory.

The pion selfenergy is written as usual in terms of the Lindhard functions. Both $N-h$ and $\Delta-h$ excitations are included. Short range correlations are also accounted for with the Landau-Migdal parameter g^{\prime}, set to 0.7 . The final expression is

+ lower line

Fig. 1. Medium correction graphs: double solid line represents the ρ resonance, dashed lines are π, K mesons in the loop and single solid lines are reserved for particle-hole excitations.

$$
\begin{equation*}
\Pi_{\pi}(q, \rho)=\vec{q}^{2} \frac{\left(\frac{D+F}{2 f}\right)^{2} U(q, \rho)}{1-\left(\frac{D+F}{2 f}\right)^{2} g^{\prime} U(q, \rho)} \tag{5}
\end{equation*}
$$

where $U=U_{N}+U_{\Delta}$, the ordinary Lindhard function for $p-h, \Delta-h$ excitations [6].

The \bar{K} selfenergy has both S-wave and P-wave contributions. The S wave piece is obtained from a self-consistent calculation with coupled channels $(\bar{K} N, \pi \Sigma, \pi \Lambda, \eta \Sigma, \eta \Lambda, K \Xi)$ in which both meson and baryon selfenergies in the medium have been considered. The P-wave piece includes $\Lambda-h$, $\Sigma-h$ and $\Sigma^{*}(1385)-h$ excitations. The whole \bar{K} selfenergy is borrowed from Ref. [7].

At low energies the K system interacts with nucleons only by S-wave elastic scattering. We use the expression for the selfenergy from Ref. [8, 9],

$$
\begin{equation*}
\Pi_{K}(\rho) \simeq 0.13 m_{K}^{2} \frac{\rho}{\rho_{0}}\left(\mathrm{MeV}^{2}\right) \tag{6}
\end{equation*}
$$

2. Results and discussion

We have plotted in Fig. 2 the real and imaginary parts of T_{22} for several densities. As can be seen, the resonance broadens significantly as density is increased, its width being around 350 MeV at $\rho=\rho_{0}$. The zero of the real part experiences a downward shift which amounts to $100-150 \mathrm{MeV}$ at normal density.

Another interesting result comes from the comparison between coupled and decoupled cases. This is done by setting $K_{12}(s)$ to zero, what automatically makes the T matrix diagonal. We have found very small differences in T_{22} when calculating in these two cases. This tells us that in our model the $K \bar{K}$ system has almost no influence on the $\pi \pi \rightarrow \pi \pi$ channel even at normal nuclear density.

Fig. 2. Real (a) and imaginary (b) parts of the amplitude $T_{\pi \pi \rightarrow \pi \pi}$. The curves are as follows: Solid line, zero density; long dashed line, $\rho=\rho_{0} / 16$; short dashed line, $\rho=\rho_{0} / 2$; dotted line, normal nuclear density. \sqrt{s} is the invariant mass of the meson pair.

REFERENCES

[1] J. Gasser, H. Leutwyler, Nucl. Phys. B250, 465, 517, 539 (1985).
[2] G. Ecker, J. Gasser, H. Leutwyler, A. Pich, E. de Rafael, Phys. Lett. B223, 425 (1989); G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B321, 311 (1989).
[3] J.A. Oller, E. Oset, Phys. Rev. D60, 074023 (1999).
[4] J.E. Palomar, J.A. Oller, E. Oset, Acta Phys. Pol. B31, 2495 (2000).
[5] J.A. Oller, E. Oset, J.R. Peláez, Phys. Rev. D59, 074001 (1999).
[6] H.C. Chiang, E. Oset, M.J. Vicente-Vacas, Nucl. Phys. A644, 77 (1998).
[7] A. Ramos, E. Oset, Nucl. Phys. A671, 481 (2000).
[8] A. Ramos, E. Oset, Nucl. Phys. A635, 99 (1998).
[9] T. Waas, N. Kaiser, W. Weise, Phys. Lett. B365, 12 (1996).

[^0]: * Presented at the Meson 2000, Sixth International Workshop on Production, Properties and Interaction of Mesons, Cracow, Poland, May 19-23, 2000.

