THE REACTION $\boldsymbol{\pi} \boldsymbol{N} \rightarrow \boldsymbol{\pi} \boldsymbol{\pi} \boldsymbol{N}$ IN THE FRAMEWORK OF A MESON EXCHANGE MODEL *

S. Schneider
Institut für Kernphysik, Forschungszentrum Jülich GmbH
52425 Jülich, Germany

(Received June 4, 2000)

We investigate the process $\pi N \rightarrow \pi \pi N$ in a coupled channel meson exchange model. Preliminary results for $\pi^{-} p \rightarrow \pi^{+} \pi^{-} n$ total cross sections and angular correlation functions are presented.

PACS numbers: 13.75.Gx, 13.30.-a, 25.80.Hp

1. Introduction

Pion induced two-pion production on the nucleon has been under both experimental and theoretical $[1,2]$ examination for many years. In particular one hopes to find the so-called "missing resonances", states which have been predicted by semi-relativistic quark model calculations [3] but have not yet been observed in πN-reactions. Most of the missing states are predicted to have small decay amplitudes to $\pi N[4]$ which makes it necessary to look for them in reactions other than πN scattering.

On the theoretical side, coupled channel meson exchange models including the $\eta N, \rho N, \sigma N$ and the $\pi \Delta$ channels have been successful in describing πN scattering in an energy range up to $1.9 \mathrm{GeV}[5]$. The intention of this work is to apply the model of Ref. [5] to the reaction $\pi N \rightarrow \pi \pi N$.

2. The model

As a first step to study the two-pion decay of nucleon resonances, we performed a calculation at tree level with resonance parameters and coupling constants derived from the full model of Ref. [5]. The processes included are shown in Fig. 1.

[^0]

Fig. 1. Tree level diagrams

In this model, σ - and ρ-exchange are understood to be an effective parameterization of a correlated pion pair in the scalar-isoscalar channel respectively the ρ-channel, which has been calculated microscopically in Ref. [6].

So far the Roper resonance is only included in diagrams of the type of 1 (d), where it makes a non-negligible contribution. But as we go to higher energies, we will also have to include the Roper resonance in diagrams 1(a) and 1 (c).

3. Results and discussion

Our preliminary results for the $\pi^{-} p \rightarrow \pi^{+} \pi^{-} n$ total cross sections are displayed in Fig. 2. Tree level t-channel ρ-exchange in processes 1(b) overestimates $\pi \pi$ scattering, therefore also the $\pi N \rightarrow \pi \pi N$ cross sections. So the explicit inclusion of unitarization effects has to be considered next.

Fig. 2. Total cross sections for $\pi^{-} p \rightarrow \pi^{+} \pi^{-} n$. The line labels 1a -1 d refer to the diagrams of Fig.1. "fig. 1 (I)" is calculated including all diagrams, in "fig. 1 (II)" t-channel ρ-exchange in 1d is omitted. Data are taken from Ref. [7].

Fig. 3. Angular correlation functions for $\pi^{-} p \rightarrow \pi^{+} \pi^{-} n$. The kinematics are fixed to $T_{\pi}^{\text {in }}=0.284 \mathrm{GeV}, k_{\pi^{+}}^{\text {lab }}=0.112 \mathrm{GeV}$ and $\theta_{\pi^{+}}^{\mathrm{cm}}=78^{\circ}$. The left-hand side shows the angular correlation function $W\left(\varphi_{\pi^{-}}^{\mathrm{cm}}\right)$ with $\theta_{\pi^{-}}^{\mathrm{cm}}$ fixed to 115°, the right-hand side shows $W\left(\theta_{\pi^{-}}^{\mathrm{cm}}\right)$ for $\varphi_{\pi^{-}}^{\mathrm{cm}}=175^{\circ}$. The data are from Ref. [8].

In Fig. 3 we show angular correlation functions W for the reaction channel $\pi^{-} p \rightarrow \pi^{+} \pi^{-} n$. The processes of Fig. 1(a) alone already reproduce the trend of the $W\left(\varphi_{\pi^{-}}\right)$data. By successive addition of the other processes one obtains a gradual improvement of the description for the $W\left(\varphi_{\pi^{-}}\right)$distribution as well as for $W\left(\theta_{\pi^{-}}\right)$. The results hardly depend on the inclusion of t-channel ρ-exchange in diagrams $1(\mathrm{~b})$.

Our meson exchange model is definitely successful in describing the $\pi^{-} p \rightarrow \pi^{+} \pi^{-} n$ data. Calculations for the other reaction channels are in process.

REFERENCES

[1] E. Oset, M.J. Vincente-Vacas, Nucl. Phys. A446, 584 (1985).
[2] N. Fettes, V. Bernard, U. Meissner, Nucl. Phys. A669, 269 (2000).
[3] S. Capstick, N. Isgur, Phys. Rev. D34, 2809 (1986).
[4] S. Capstick, W. Roberts, Phys. Rev. D47, 1994 (1993).
[5] O. Krehl, C. Hanhart, S. Krewald, J. Speth, Phys. Rev. C, (in print).
[6] D. Lohse, J.W. Durso, K. Holinde, J. Speth, Nucl. Phys. A516, 513 (1990); G. Jansen, B.C. Pearce, K. Holinde, J. Speth, Phys. Rev. D52, 2690 (1995).
[7] J.B. Lange et al., Phys. Rev. Lett. 80, 1597 (1998); G. Kernel et al., Phys. Lett. B216, 244 (1989); C.W. Bjork et al., Phys. Rev. Lett. 44, 62 (1980); I.M. Blair et al., Phys. Lett. B32, 528 (1970); Yu.A. Batsuov et al., Sov. J. Nucl. Phys. 1, 374 (1965); J. Deahl et al., Phys. Rev. 124, 1987 (1961).
[8] R. Müller et al., Phys. Rev. C48, 981 (1993).

[^0]: * Presented at the Meson 2000, Sixth International Workshop on Production, Properties and Interaction of Mesons, Cracow, Poland, May 19-23, 2000.

