PRODUCTION OF $\boldsymbol{\pi}^{\boldsymbol{0}}, \boldsymbol{\eta}, \boldsymbol{\omega}$ AND EXOTIC LOW MASS MESONS IN N-N SCATTERING *

B. Tatischeff ${ }^{\text {a }}$, J. Yonnet ${ }^{\text {a }}$, M.P. Rekalo ${ }^{\text {a,b }} \ddagger$, M. Boivin ${ }^{\text {c }}$ M.P. Comets ${ }^{\text {a }}$, P. Courtat ${ }^{\text {a }}$, R. Gacougnolle ${ }^{\text {a }}$, Y. Le Bornec ${ }^{\text {a }}$ E. Loireleux ${ }^{\text {a }}$, F. Reide ${ }^{\text {a }}$, and N. Willis ${ }^{\text {a }}$
${ }^{a}$ Institut de Physique Nucléaire, CNRS/IN2P3, 91406 Orsay Cedex, France
${ }^{\mathrm{b}}$ Middle East Technical University, Physics Department, Ankara 06531, Turkey
${ }^{\text {c }}$ Lab. National Saturne, CNRS/IN2P3, 91191 Gif-sur-Yvette Cedex, France

(Received July 20, 2000)
The differential cross sections of light meson production: $X=\pi^{0}, \eta$ and ω were measured in $\vec{p} p \rightarrow p p X$ reaction. A theoretical analysis based on s-channel contributions in 2^{+}and 1^{-}intermediate states was performed. Narrow peaks were looked for between η and ω meson masses, and were extracted at $588,608,647,681$ and 700 MeV . The evidence for their existence is discussed in accordance with the corresponding number of standard deviations (SD).

PACS numbers: $13.85 . \mathrm{Hd}, 13.85 . \mathrm{Ni}, 14.40 . \mathrm{Cs}, 25.10 .+\mathrm{s}$

Light mesons: π^{0}, η, and ω were produced in $\vec{p} p \rightarrow p p X$ reactions at $T_{p}=1.52,1.805,2.1 \mathrm{GeV}$ (from 0° up to 17° lab.) at Saturne Spes3 beam line. The corresponding cross sections and analyzing powers were observed in the missing mass M_{X}. Both protons were observed in the same detection. Cross sections were obtained using a simulation code to allow corrections. They were normalized by $\left(\Delta p_{p 1} \Delta p_{p 2}\right)$ which vary with M_{X}, acceptances, and incident flux. Their extraction was performed, using polynomials for background and gaussians for peaks. The detection and data processing were already described [1].

Data were compared to theoretical curves calculated with s-channel graphs, taking into account $J^{P}=1^{-}$and 2^{+}intermediate states.

[^0]Both experimental and calculated data were shared into two parts, depending on the two proton invariant mass: (a) small $M_{p p}-2 M_{p},{ }^{1} S_{0}$ state and (b) all $M_{p p}$ events.

The complete results will be published elsewhere. We only illustrate here our results with a few examples. Fig. 1 (left) shows the cross section for $p p \rightarrow p p \eta$ production at 1520 MeV . Full (dashed) curve corresponds to events without cuts on the invariant mass of the two proton final state $M_{p p}$ (with the following cuts: $M_{p p} \geq 2 M_{p}+5 \mathrm{MeV}$). In case of ${ }^{1} S_{0}\left(M_{p p}\right)$ state $\left(2 M_{p} \leq M_{p p} \leq 2 M_{p}+5 \mathrm{MeV}\right.$ selection), it was not possible to extract any cross section, in agreement with our model. The angular dependance is described by the following equation:

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}{ }_{\eta}=A\left(1+\cos ^{2} \vartheta\right)+B\left(\cos ^{2} \vartheta-\frac{1}{3}\right)^{2} \tag{1}
\end{equation*}
$$

where B / A is the ratio of 2^{+}over 1^{-}intermediate states, and is close to 2 ± 1 at $T_{p}=1.52 \mathrm{GeV}$, in agreement with the result of the study of $\vec{p} p \rightarrow \Delta^{++} \Delta^{0}$ reaction at the same energy [2]. Fig. 1 (right) shows the cross section for $p p \rightarrow p p \omega$ production at 2100 MeV . Dashed (full) curve corresponds to events without cuts on the invariant mass of the two proton final state $M_{p p}$ (with the following cuts: $2 M_{p} \leq M_{p p} \leq 2 M_{p}+5 \mathrm{MeV}$).

Fig. 1.
Several narrow structures were extracted in the mass range $560 \leq M_{X} \leq$ 750 MeV . Indeed the data do show narrow structures at $588,608,647,681$ and 700 MeV which were not identified in previous works. Fig. 2 (left) shows a selection of some results. These data correspond to 9° lab., and in addition to η meson peak, they show several narrow structures, from top to bottom:
(a) $T_{p}=1805 \mathrm{MeV}$, forward c.m. angles, and structures at $M=588 \mathrm{MeV}$ $(\mathrm{SD}=4)$ and $M=647 \mathrm{MeV}(\mathrm{SD}=4.6)$, where SD is the number of standard deviations;
(b) $T_{p}=2100 \mathrm{MeV}$, backward c.m. angles, and structures at $M=588$ and 608 MeV ;
(c) $T_{p}=2100 \mathrm{MeV}$, forward c.m. angles, ${ }^{1} S_{0}$ cuts for $M_{p p}$, and structures at $M=647$ and 753 MeV .

These masses were compared with success, to values obtained using the following two parameter phenomenological mass formula [3] for two quark clusters:

$$
\begin{equation*}
M=M_{0}+M_{1}\left[i_{1}\left(i_{1}+1\right)+i_{2}\left(i_{2}+1\right)+\left(\frac{1}{3}\right) s_{1}\left(s_{1}+1\right)+\left(\frac{1}{3}\right) s_{2}\left(s_{2}+1\right)\right] \tag{2}
\end{equation*}
$$

This comparison is shown in Fig. 2 (right) for the values: $M_{1}=30$ (27) MeV and $M_{0}=310$ (357) MeV for $q^{3}-\bar{q}^{3}\left(q^{4}-\bar{q}^{4}\right)$ clusters respectively. Due to large degenerascy involve by equation (2), another value for M_{0} $\left(M_{0}=519 \mathrm{MeV}\right)$, allow to get the same level scheme between 627 and 753 MeV in case of $\left(q^{4}-\bar{q}^{4}\right)$ clusters. The formula allows to predict possible spins and isospins for these possible spin and isospin values will levels. For different M_{0}, the be different. An enhancement at $M_{\pi^{+} \pi^{-}}=759 \mathrm{MeV}$ was already observed [4] in the $n p \rightarrow n p \pi^{+} \pi^{-}$reaction at Dubna. A state at $M=749 \pm 30 \mathrm{MeV}(\Gamma=32 \pm 17 \mathrm{MeV})$ was extracted from the triple pion effective mass of the $\pi^{-} A \rightarrow \pi^{+} \pi^{-} \pi^{-} A$ reaction [5]. A state called $\sigma(750) 00^{++}, M=744 \pm 5 \mathrm{MeV}, \Gamma=77 \pm 22 \mathrm{MeV}$ was extracted from the $\pi^{-} p \rightarrow \pi^{-} \pi^{+} n$ reaction [6].

REFERENCES

[1] B. Tatischeff et al., Phys. Rev. C59, 1878 (1999).
[2] J. Yonnet et al., Nucl. Phys. A637, 63 (1998).
[3] P.J. Mulders, A.T. Aerts, J.J. de Swart, Phys. Rev. D21, 2653 (1980).
[4] Yu.A. Troyan et al., JINR Rapid Communications, No. 5 [91-98], 1998, p. 33.
[5] Yu. Ivanshin et al., Nuovo Cimento A107, 2885 (1994).
[6] I.G. Alekseev et al., Phys. At. Nucl. 61, 174 (1998).

[^0]: * Presented at the Meson 2000, Sixth International Workshop on Production, Properties and Interaction of Mesons, Cracow, Poland, May 19-23, 2000.
 ${ }^{\dagger}$ e-mail: tati@ipno.in2p3.fr
 ${ }^{\ddagger}$ Permanent adress: National Science Center; KFTI, Kharkov 310108, Ukraine

