PION AND KAON VECTOR FORM FACTORS*

J.E. Palomar, E. Oset
Departamento de Física Teórica e IFIC
Centro Mixto Universidad de Valencia-CSIC
46100 Burjassot (Valencia), Spain
and J.A. Oller
Forschungszentrum Jülich, Institut für Kernphysik (Theorie)
D-52425 Jülich, Germany

(Received July 3, 2000)

The pion and kaon coupled-channel vector form factors are described by making use of the resonance chiral Lagrangian results together with a suitable unitarization method in order to take care of the final state interactions. A very good reproduction of experimental data is accomplished for the vector form factors up to $\sqrt{s} \leq 1.2 \mathrm{GeV}$ and for the $\pi \pi P$-wave phase shifts up to $\sqrt{s} \leq 1.5 \mathrm{GeV}$.

PACS numbers: 13.75.Lb, 11.55.Fv, 11.80.Et, 12.39.Fe

1. Unitarization

Using an appropriate unitarization method we take into account the final state interaction corrections to the tree level amplitudes calculated from the lowest order $\chi \mathrm{PT}[1]$ and from the inclusion of explicit resonance fields in a chiral symmetry fashion as given in Ref. [2]. A similar procedure has already been used in the scalar sector to describe the scalar form factor associated with the strange-change scalar current $\bar{u} s$ in Ref. [3]. Starting from the unitarity of the S-matrix and the introduction of the electromagnetic meson form factor $F_{M M^{\prime}}(s)$:

$$
\begin{equation*}
\langle\gamma(q)| T\left|M(p) M^{\prime}\left(p^{\prime}\right)\right\rangle=e \varepsilon_{\mu}\left(p-p^{\prime}\right)^{\mu} F_{M M^{\prime}}(s) \tag{1}
\end{equation*}
$$

[^0]with $q^{2}=s, e$ the modulus of the electron charge and ε_{μ} the photon polarization vector, we arrive at the expression:
\[

$$
\begin{equation*}
\operatorname{Im} F_{M M^{\prime}}(s)=\sum_{\alpha} F_{\alpha}^{*}(s) \frac{p_{\alpha}(s)}{8 \pi \sqrt{s}} \theta\left(s-4 m_{\alpha}^{2}\right) p_{\alpha}(s) \frac{T(s)_{\alpha, M M^{\prime}}}{p_{M M^{\prime}}(s)} \tag{2}
\end{equation*}
$$

\]

where $\theta(x)$ is the usual Heaviside function. On the other hand $p_{M M^{\prime}}(s)$ and $p_{\alpha}(s)$ are respectively the moduli of the three momenta of the mesons in the final and intermediate meson states, and we sum over intermediate two-meson states.

We will work in the isospin limit, with $|\pi \pi\rangle$ and $|K \bar{K}\rangle$ states (and the ρ resonance) in the $I=1$ channel and only the $|K \bar{K}\rangle$ state (and the ω and ϕ resonances) in the $I=0$ channel. Using a matrix notation, the P-wave amplitudes $T^{I}(s)$ can be written as [4]:

$$
\begin{equation*}
T^{I}=\left[1+K^{I}(s) g(s)\right]^{-1} K^{I}(s) \tag{3}
\end{equation*}
$$

where $K_{i j}^{I}(s)$ are the tree level amplitudes derived from the lowest order $\chi \mathrm{PT}$ plus corresponding to the transition $i \rightarrow j$. From Eqs. (2) and (3) it follows, after some algebra, that $F^{I}(s)$ can be written as:

$$
\begin{equation*}
F^{I}(s)=\left[1+\widetilde{Q}(s)^{-1} K^{I}(s) \widetilde{Q}(s) g^{I}(s)\right]^{-1} R^{I}(s) \tag{4}
\end{equation*}
$$

where $\widetilde{Q}_{i j}(s)=p_{i}(s) \delta_{i j}$ and $K^{I}(s)$ is the matrix collecting the tree level amplitudes between definite $\pi \pi$ and $K \bar{K}$ isospin states. $F^{I}(s)$ is the column matrix $F^{I}(s)_{i}=F_{i}^{I}(s), R^{I}(s)$ is a vector made up by functions without any cut and $g^{I}(s)$ is the diagonal matrix given by the loop with two meson propagators:

$$
\begin{equation*}
g_{i}^{I}(s)=\frac{1}{16 \pi^{2}}\left[-2+d_{i}^{I}+\sigma_{i}(s) \log \frac{\sigma_{i}(s)+1}{\sigma_{i}(s)-1}\right] \tag{5}
\end{equation*}
$$

where $\sigma_{i}(s)=\sqrt{1-4 m_{i}^{2} / s}$. We will label pions with 1 and kaons with 2 in the $I=1$ case. In the $I=0$ case we only have kaons.

In the large N_{c} limit loop physics is supressed and then

$$
F^{I}(s)=R_{N_{c} \text { leading }}(s)=F_{t}^{I}(s)
$$

where $F_{t}^{I}(s)$ is the tree level form factor ${ }^{1}$. This allows us to write:

$$
\begin{equation*}
F^{I}(s)=\left[1+\widetilde{Q}(s)^{-1} K^{I}(s) \widetilde{Q}(s) g^{I}(s)\right]^{-1}\left[F_{t}^{I}(s)+R_{\text {subleading }}^{I}(s)\right] \tag{6}
\end{equation*}
$$

[^1]with $R_{\text {subleading }}^{I}(s)$ being of $\mathcal{O}\left(N_{c}^{-1}\right)$. If we require that the vector form factor from Eq. (6) vanishes for $s \rightarrow \infty$ as is suggested by the experiments, we find that the subleading part of $R^{I}(s)$, which at first can be an arbitrary polynomial (the poles coming from the resonances are in the leading part $\left.F_{t}^{I}(s)\right)$, must be a constant. In order to fix the constants $R_{\text {subleading }}^{I}(s)$ and $d_{i}^{I}(s)$ of $g_{i}^{I}(s)$ we match our results with those of one loop $\chi \mathrm{PT}$. We take $R_{\text {subleading }}^{I=1}(s)=0$ in order to constrain further our approach. This can be done since we can match our results with one loop χ PT by choosing appropriate values for $d_{1}^{I=1}$ and $d_{2}^{I=1}$. The values of the other constants given by the matching are:
\[

$$
\begin{align*}
d_{1}^{I=1} & =\frac{m_{K}^{2}}{m_{K}^{2}-m_{\pi}^{2}}\left(\log \frac{m_{\pi}^{2}}{\mu^{2}}+\frac{1}{2} \log \frac{m_{K}^{2}}{\mu^{2}}+\frac{1}{2}\right) \\
d_{2}^{I=1} & =\frac{-2 m_{\pi}^{2}}{m_{K}^{2}-m_{\pi}^{2}}\left(\log \frac{m_{\pi}^{2}}{\mu^{2}}+\frac{1}{2} \log \frac{m_{K}^{2}}{\mu^{2}}+\frac{1}{2}\right) \\
d^{I=0} & =\frac{1}{3}+\log \frac{m_{K}^{2}}{\mu^{2}}, \\
R_{\text {subleading }}^{I=0} & =-\frac{m_{K}^{2}}{16 \sqrt{2} \pi^{2} f^{2}}\left(\frac{1}{3}+\log \frac{m_{K}^{2}}{\mu^{2}}\right) \tag{7}
\end{align*}
$$
\]

The bare masses of the resonances (which appear in the tree level quantities) are fixed by the requirements that the moduli of the $\pi \pi I=1$ and $K \bar{K}$ $I=0 P$-wave amplitudes have a maximum for $\sqrt{s}=M_{\rho}^{\text {physical }} \mathrm{MeV}$ and for $\sqrt{s}=M_{\phi}^{\text {physical }} \mathrm{MeV}$, respectively. For the mass of the ω we take directly 782 MeV since there are no experimental data in the region of the ω and its contributions to other physical regions do not depend on such fine details since the ω is very narrow. On the other hand, the coupling of the vector resonances [2] to mesons and photons are described by two real parameters G_{V} and F_{V} respectively. We use their experimental value, $G_{V}=53 \mathrm{MeV}$ (from a study of the pion electromagnetic radii [1]) and $F_{V}=154 \mathrm{MeV}$ (from the observed decay rate $\left.\Gamma\left(\rho^{0} \rightarrow e^{+} e^{-}\right)[2]\right)$.

2. Results and conclusions

As can be seen in Fig. 1, we can describe in a very precise way the vector pion form factor and the P-wave $\pi \pi$ phase shifts up to about $s=1.44 \mathrm{GeV}^{2}$ (even for higher energies in the case of phase shifts).

For values of \sqrt{s} higher than 1.2 GeV new effects appear: 1) the presence of more massive resonances, $\rho^{\prime}, \omega^{\prime}, \phi^{\prime} \ldots 2$) the effect due to multiparticle

Fig. 1. W is defined as \sqrt{s} for $s>0$ and as $-\sqrt{-s}$ for $s<0$. (a) $\pi^{+} \pi^{-}$vector form factor. (b) $\pi \pi P$-wave phase shifts. Both are compared with several experimental data.

Fig. 2. W is defined as \sqrt{s} for $s>0$ and as $-\sqrt{-s}$ for $s<0$. From left to right and top to bottom: (a) Vector pion form factor. The dashed-dotted line represents one loop χ PT Ref. [1] and the dashed one the two loop χ PT result Ref. [5]. (b) $K^{+} K^{-}$form factor. The meaning of the lines is the same as before. (c) Vector pion form factor in the ρ region. Data from tau decay. (d) $K^{+} K^{-}$form factor. All the results are compared with data.
states, e.g. $4 \pi, \omega \pi \ldots$ which are non negligible. In Fig. 2, we compare our results with those of $\chi \mathrm{PT}$. We can see that the resummation of our scheme leads to a much better agreement with the two loop $\chi \mathrm{PT}$ pion vector form factor than with the one loop one. The resonance regions are also well reproduced.

REFERENCES

[1] J. Gasser, H. Leutwyler, Nucl. Phys. B250, 465 (1985).
[2] G. Ecker, J. Gasser, H. Leutwyler, A. Pich, E. de Rafael, Phys. Lett. B223, 425 (1989); G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. 21, 311 (1989).
[3] M. Jamin, J.A. Oller, A. Pich, in preparation.
[4] J.A. Oller, E. Oset, Phys. Rev. D60, 074023 (1999).
[5] J. Bijnens, G. Colangelo, P. Talavera, J. High Energy Phys. 014, 9805 (1998).

[^0]: * Presented at the Meson 2000, Sixth International Workshop on Production, Properties and Interaction of Mesons, Cracow, Poland, May 19-23, 2000.

[^1]: ${ }^{1}$ We evaluate the tree level form factors and scattering amplitudes using the lowest order χ PT Lagrangian [1] plus the chiral resonance Lagrangian [2].

