PION AND KAON VECTOR FORM FACTORS*

J.E. PALOMAR, E. OSET

Departamento de Física Teórica e IFIC Centro Mixto Universidad de Valencia-CSIC 46100 Burjassot (Valencia), Spain

AND J.A. OLLER

Forschungszentrum Jülich, Institut für Kernphysik (Theorie) D-52425 Jülich, Germany

(Received July 3, 2000)

The pion and kaon coupled-channel vector form factors are described by making use of the resonance chiral Lagrangian results together with a suitable unitarization method in order to take care of the final state interactions. A very good reproduction of experimental data is accomplished for the vector form factors up to $\sqrt{s} \leq 1.2$ GeV and for the $\pi\pi$ *P*-wave phase shifts up to $\sqrt{s} \leq 1.5$ GeV.

PACS numbers: 13.75.Lb, 11.55.Fv, 11.80.Et, 12.39.Fe

1. Unitarization

Using an appropriate unitarization method we take into account the final state interaction corrections to the tree level amplitudes calculated from the lowest order χ PT [1] and from the inclusion of explicit resonance fields in a chiral symmetry fashion as given in Ref. [2]. A similar procedure has already been used in the scalar sector to describe the scalar form factor associated with the strange-change scalar current $\overline{u}s$ in Ref. [3]. Starting from the unitarity of the *S*-matrix and the introduction of the electromagnetic meson form factor $F_{MM'}(s)$:

$$\langle \gamma(q)|T|M(p)M'(p')\rangle = e\varepsilon_{\mu}(p-p')^{\mu}F_{MM'}(s)$$
(1)

^{*} Presented at the Meson 2000, Sixth International Workshop on Production, Properties and Interaction of Mesons, Cracow, Poland, May 19–23, 2000.

with $q^2 = s$, e the modulus of the electron charge and ε_{μ} the photon polarization vector, we arrive at the expression:

$$\operatorname{Im} F_{MM'}(s) = \sum_{\alpha} F_{\alpha}^{*}(s) \, \frac{p_{\alpha}(s)}{8\pi\sqrt{s}} \, \theta(s - 4m_{\alpha}^{2}) \, p_{\alpha}(s) \frac{T(s)_{\alpha, MM'}}{p_{MM'}(s)} \,, \qquad (2)$$

where $\theta(x)$ is the usual Heaviside function. On the other hand $p_{MM'}(s)$ and $p_{\alpha}(s)$ are respectively the moduli of the three momenta of the mesons in the final and intermediate meson states, and we sum over intermediate two-meson states.

We will work in the isospin limit, with $|\pi\pi\rangle$ and $|K\bar{K}\rangle$ states (and the ρ resonance) in the I = 1 channel and only the $|K\bar{K}\rangle$ state (and the ω and ϕ resonances) in the I = 0 channel. Using a matrix notation, the *P*-wave amplitudes $T^{I}(s)$ can be written as [4]:

$$T^{I} = \left[1 + K^{I}(s) g(s)\right]^{-1} K^{I}(s), \qquad (3)$$

where $K_{ij}^{I}(s)$ are the tree level amplitudes derived from the lowest order χ PT plus corresponding to the transition $i \to j$. From Eqs. (2) and (3) it follows, after some algebra, that $F^{I}(s)$ can be written as:

$$F^{I}(s) = \left[1 + \widetilde{Q}(s)^{-1} K^{I}(s) \widetilde{Q}(s) g^{I}(s)\right]^{-1} R^{I}(s), \qquad (4)$$

where $\widetilde{Q}_{ij}(s) = p_i(s)\delta_{ij}$ and $K^I(s)$ is the matrix collecting the tree level amplitudes between definite $\pi\pi$ and $K\bar{K}$ isospin states. $F^I(s)$ is the column matrix $F^I(s)_i = F^I_i(s)$, $R^I(s)$ is a vector made up by functions without any cut and $g^I(s)$ is the diagonal matrix given by the loop with two meson propagators:

$$g_i^I(s) = \frac{1}{16\pi^2} \left[-2 + d_i^I + \sigma_i(s) \log \frac{\sigma_i(s) + 1}{\sigma_i(s) - 1} \right],$$
(5)

where $\sigma_i(s) = \sqrt{1 - 4m_i^2/s}$. We will label pions with 1 and kaons with 2 in the I = 1 case. In the I = 0 case we only have kaons.

In the large N_c limit loop physics is supressed and then

$$F^{I}(s) = R_{N_{c} \text{leading}}(s) = F_{t}^{I}(s),$$

where $F_t^I(s)$ is the tree level form factor¹. This allows us to write:

$$F^{I}(s) = \left[1 + \widetilde{Q}(s)^{-1} K^{I}(s) \widetilde{Q}(s) g^{I}(s)\right]^{-1} \left[F^{I}_{t}(s) + R^{I}_{\text{subleading}}(s)\right]$$
(6)

¹ We evaluate the tree level form factors and scattering amplitudes using the lowest order χ PT Lagrangian [1] plus the chiral resonance Lagrangian [2].

with $R_{\text{subleading}}^{I}(s)$ being of $\mathcal{O}(N_{c}^{-1})$. If we require that the vector form factor from Eq. (6) vanishes for $s \to \infty$ as is suggested by the experiments, we find that the subleading part of $R^{I}(s)$, which at first can be an arbitrary polynomial (the poles coming from the resonances are in the leading part $F_{t}^{I}(s)$), must be a constant. In order to fix the constants $R_{\text{subleading}}^{I}(s)$ and $d_{i}^{I}(s)$ of $g_{i}^{I}(s)$ we match our results with those of one loop χ PT. We take $R_{\text{subleading}}^{I=1}(s) = 0$ in order to constrain further our approach. This can be done since we can match our results with one loop χ PT by choosing appropriate values for $d_{1}^{I=1}$ and $d_{2}^{I=1}$. The values of the other constants given by the matching are:

$$d_{1}^{I=1} = \frac{m_{K}^{2}}{m_{K}^{2} - m_{\pi}^{2}} \left(\log \frac{m_{\pi}^{2}}{\mu^{2}} + \frac{1}{2} \log \frac{m_{K}^{2}}{\mu^{2}} + \frac{1}{2} \right),$$

$$d_{2}^{I=1} = \frac{-2 m_{\pi}^{2}}{m_{K}^{2} - m_{\pi}^{2}} \left(\log \frac{m_{\pi}^{2}}{\mu^{2}} + \frac{1}{2} \log \frac{m_{K}^{2}}{\mu^{2}} + \frac{1}{2} \right),$$

$$d^{I=0} = \frac{1}{3} + \log \frac{m_{K}^{2}}{\mu^{2}},$$

$$R_{\text{subleading}}^{I=0} = -\frac{m_{K}^{2}}{16\sqrt{2} \pi^{2} f^{2}} \left(\frac{1}{3} + \log \frac{m_{K}^{2}}{\mu^{2}} \right).$$
(7)

The bare masses of the resonances (which appear in the tree level quantities) are fixed by the requirements that the moduli of the $\pi\pi$ I = 1 and $K\overline{K}$ I=0 *P*-wave amplitudes have a maximum for $\sqrt{s} = M_{\rho}^{\text{physical}}$ MeV and for $\sqrt{s} = M_{\phi}^{\text{physical}}$ MeV, respectively. For the mass of the ω we take directly 782 MeV since there are no experimental data in the region of the ω and its contributions to other physical regions do not depend on such fine details since the ω is very narrow. On the other hand, the coupling of the vector resonances [2] to mesons and photons are described by two real parameters G_V and F_V respectively. We use their experimental value, $G_V=53$ MeV (from a study of the pion electromagnetic radii [1]) and $F_V=154$ MeV (from the observed decay rate $\Gamma(\rho^0 \to e^+e^-)$ [2]).

2. Results and conclusions

As can be seen in Fig. 1, we can describe in a very precise way the vector pion form factor and the *P*-wave $\pi\pi$ phase shifts up to about s = 1.44 GeV² (even for higher energies in the case of phase shifts).

For values of \sqrt{s} higher than 1.2 GeV new effects appear: 1) the presence of more massive resonances, ρ' , ω' , ϕ' ... 2) the effect due to multiparticle

Fig. 1. W is defined as \sqrt{s} for s > 0 and as $-\sqrt{-s}$ for s < 0. (a) $\pi^+\pi^-$ vector form factor. (b) $\pi\pi$ P-wave phase shifts. Both are compared with several experimental data.

Fig. 2. W is defined as \sqrt{s} for s > 0 and as $-\sqrt{-s}$ for s < 0. From left to right and top to bottom: (a) Vector pion form factor. The dashed-dotted line represents one loop χ PT Ref. [1] and the dashed one the two loop χ PT result Ref. [5]. (b) K^+K^- form factor. The meaning of the lines is the same as before. (c) Vector pion form factor in the ρ region. Data from tau decay. (d) K^+K^- form factor. All the results are compared with data.

states, e.g. 4π , $\omega \pi$... which are non negligible. In Fig. 2, we compare our results with those of χ PT. We can see that the resummation of our scheme leads to a much better agreement with the two loop χ PT pion vector form factor than with the one loop one. The resonance regions are also well reproduced.

REFERENCES

- [1] J. Gasser, H. Leutwyler, Nucl. Phys. **B250**, 465 (1985).
- [2] G. Ecker, J. Gasser, H. Leutwyler, A. Pich, E. de Rafael, *Phys. Lett.* B223, 425 (1989); G. Ecker, J. Gasser, A. Pich, E. de Rafael, *Nucl. Phys.* 21, 311 (1989).
- [3] M. Jamin, J.A. Oller, A. Pich, in preparation.
- [4] J.A. Oller, E. Oset, *Phys. Rev.* **D60**, 074023 (1999).
- [5] J. Bijnens, G. Colangelo, P. Talavera, J. High Energy Phys. 014, 9805 (1998).