Vol. 31 (2000) ACTA PHYSICA POLONICA B No 10-11

PHENOMENOLOGICAL ASPECTS OF CHIRAL
SYMMETRY IN LATTICE GAUGE THEORY*

ANTHONY W. THOMAS

Department of Physics and Mathematical Physics and
Special Research Centre for the Subatomic Structure of Matter
University of Adelaide, Australia 5005

e-mail: athomas@physics.adelaide.edu.au
(Received July 17, 2000)

The current limitations in computer speed mean that in order to com-
pare lattice QCD simulations of hadron structure with data one must ex-
trapolate from quark masses that are 5-10 times too large. In doing so it
is vital that the constraints of chiral symmetry are correctly incorporated.
We review some recent, exciting developments in our understanding of how
to make these extrapolations.
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1. Introduction

The SU(2) axial current, jiis, is conserved in QCD with massless u and
d quarks. As a consequence the axial charge, ¢, commutes with the QCD
Hamiltonian and one would expect a degenerate, opposite parity partner for
each hadron. The absence of such states in the physical world implies that
the vacuum must contain massless pseudoscalar mesons, known as Goldstone
bosons. That is, SU(2) chiral symmetry is dynamically broken [1].

As we move away from the massless limit the Gell Mann—Oakes—Renner
(GOR) relation tells us that

2 o m, (with  m =m, =mgq #0). (1)

K

Although this is, in principle, only guaranteed for quark masses, m, near
zero, lattice QCD calculations tell us that it holds over an enormous range,
as high as m; ~ 1 GeV. Rather than measuring the deviation from exact

chiral symmetry using m, which is scale dependent, we shall use m2.
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Current lattice calculations are typically restricted to pion masses larger
than 500 MeV, with some pioneering work reporting preliminary results as
low as 310 MeV. In order to compare these results with experimental data
on hadron properties it is necessary to extrapolate the calculations at large
pion masses to the physical value. In doing so it is crucial to respect the
constraints imposed by chiral symmetry in QCD. In particular, as we dis-
cuss below, the existence of Goldstone bosons necessarily leads to behaviour
which is not analytic in the quark mass. After reviewing the origin of this
non-analytic structure we specifically examine the recent development of a
method of extrapolation of hadron masses which respects the mathematical
properties while building in the correct physics at large quark mass. The
consequences of this for the sigma commutator are then reviewed. Following
this we turn to recent results for baryon electromagnetic properties, before
summarising.

2. Non-analytic behaviour

Spontaneous chiral symmetry breaking in QCD requires the existence
of Goldstone bosons whose masses vanish in the limit of zero quark mass
(the chiral limit). As a corollary to this, there must be contributions to
hadron properties from Goldstone boson loops. These loops have the unique
property that they give rise to terms in an expansion of most hadronic
properties as a function of quark mass which are not analytic. As a simple
example, consider the nucleon mass. The most important chiral corrections
to My come from the processes N -+ N7 — N (oyy) and N - Ar — N
(ona). We write My = M}ifare +onN +0ona. In the heavy baryon limit

one has
o0

R /dk k*u? (k)
1672 f2 k2 +m2 -

ONN =

(2)

0

Here u(k) is a natural high momentum cut-off which is the Fourier transform
of the source of the pion field (e.g. in the Cloudy Bag Model (CBM) it is
3j1(kR)/kR, with R the bag radius [3]). From the point of view of PCAC it
is natural to identify u(k) with the axial form-factor of the nucleon, a dipole
with mass parameter 1.02 + 0.08 GeV.

Quite independent of the form chosen for the ultra-violet cut-off, one
finds that oy is a non-analytic function of the quark mass. The non-
analytic piece of oy is independent of the form factor and gives

392

LNA A 3

o = — m
NN 3o f2

MY

~ 2. (3)
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This has a branch point, as a function of m, at m = 0. Such terms can only
arise from Goldstone boson loops.

3. Chiral extrapolations of lattice data

It is natural to ask how significant this non-analytic behaviour is in prac-
tice. If the pion mass is given in GeV, U]I\’%}IVA = —5.6m3 and at the physical
pion mass it is just —17 MeV. However, at only three times the physical
pion mass, m,; = 420 MeV, it is —460 MeV — half the mass of the nu-
cleon. If one’s aim is to extract physical nucleon properties from lattice
QCD calculations this is extremely important. The most sophisticated lat-
tice calculations with dynamical fermions are only just becoming feasible at
such low masses and to connect to the physical world one must extrapolate
from m, ~ 500 MeV to m,; = 140 MeV. Clearly one must have control of the
chiral behaviour.

Figure 1 shows recent lattice calculations of My as a function of m2 from
CP-PACS and UKQCD [4]. The dashed line indicates a fit which naively

respects the presence of a LNA term,
My = a+ fm3 +ym3, (4)

with «, 8 and « fitted to the data. While this gives a very good fit to the
data, the chiral coefficient 7 is only —0.761, compared with the value —5.60
required by chiral symmetry. If one insists that v be consistent with QCD
the best fit one can obtain with this form is the dash-dot curve. This is
clearly unacceptable.

An alternative suggested recently by Leinweber et al. [5]|, which also
involves just three parameters, is to evaluate oyny and oy with the same
ultra-violet form factor, with mass parameter A, and to fit My as

My = a+ BmZ 4+ onn(ma, A) + oxa(mag, A). (5)

Using a sharp cut-off (u(k) = 6(A — k)) these authors were able to obtain
analytic expressions for onyy and oy which reveal the correct LNA be-
haviour, and next to leading (NLNA) in the Arm case, ox A ~ m2 Inm,.
These expressions also reveal a branch point at m, = M — My, which is
important if one is extrapolating from large values of m, to the physical
value. The solid curve in Fig. 1 is a two parameter fit to the lattice data
using Eq. (5), but fixing A at a value suggested by CBM simulations to be
equivalent to the preferred 1 GeV dipole. A small increase in A is neces-
sary to fit the lowest mass data point, at m2 ~ 0.1 GeV?, but clearly one
can describe the data very well while preserving the exact LNA and NLNA
behaviour of QCD.



2532 A.W. THOMAS

2.2 \ \ !
- M, — 2 Parameter Fit

20 F————— M, — 3 Parameter Fit
M, — Preferred Fit -

Hadron Mass (GeV)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
m ¢ (GeV?)

Fig. 1. A comparison between phenomenological fitting functions for the mass of the
nucleon — from Ref. [5]. The two parameter fit corresponds to using Eq. (4) with
v set equal to the value known from yPT. The three parameter fit corresponds
to letting v vary as an unconstrained fit parameter. The solid line is the two
parameter fit based on the functional form of Eq. (5).

4. The sigma commutator

The analysis of the lattice data for My, incorporating the correct non-
analytic behaviour, can yield interesting new information concerning the
sigma commutator of the nucleon:

on = 3(N[Qis, [Qis, Hocp]lIN) = (N|m(au + dd)|N) . (6)

This is a direct measure of chiral SU(2) symmetry breaking in QCD, and
the widely accepted experimental value is 45 & 8 MeV [6]. (Although there
are recent suggestions that it might be as much as 20 MeV larger [7].) Using
the Feynman—Hellmann theorem one can also write

oMy _,OMy
oN = = .
N om T om2

(7)

Historically, lattice calculations have evaluated (N|(@u + dd)|N) at large
quark mass and extrapolated this scale dependent quantity to the “physical”
quark mass, which had to be determined in a separate calculation. The latest
result with dynamical fermions, o = 18+5 MeV [8], illustrates how difficult
this procedure is. On the other hand, if one has a fit to My as a function of
m, which is consistent with chiral symmetry, one can evaluate o directly
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using Eq. (7). Using Eq. (5) with a sharp cut-off yields o ~ 55 MeV, while a
dipole form gives o ~ 45 MeV [9]. The residual model dependence can only
be removed by more accurate lattice data at low m2. Nevertheless, the result
on € (45,55) MeV is in very good agreement with the data. In contrast, the
simple cubic fit, with v inconsistent with chiral constraints, gives ~ 30 MeV.
Until the experimental situation regarding oy improves, it is not possible to
draw definite conclusions regarding the strangeness content of the nucleon.
However, the fact that two-flavour QCD reproduces the current preferred
value should certainly stimulate some thought and a lot of work.

5. Baryon electromagnetic properties

It is a completely general consequence of quantum mechanics that the
long-range charge structure of the proton comes from its 7% cloud (p —
nnT), while for the neutron it comes from its 7~ cloud (n — pr~). However
it is not often realized that the LNA contribution to the nucleon charge
radius goes like Inm, and diverges as m — 0 [11]. This can never be
described by a constituent quark model. Figure 2 shows the latest data
from Mainz and Nikhef for the neutron electric form factor, in comparison
with CBM calculations for a confinement radius between 0.9 and 1.0 fm.
The long-range 7~ tail of the neutron plays a crucial role.
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Fig.2. Recent data for the neutron electric form factor in comparison with CBM
calculations for a confining radius around 0.95fm — from Ref. [10].

While there is only limited (and indeed quite old) lattice data for hadron
charge radii, recent experimental progress in the determination of hyperon
charge radii has led us to examine the extrapolation procedure for obtaining
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charge data from the lattice simulations [12|. Figure 3 shows the extrapo-
lation of the lattice data [13] for the charge radius of the proton. Clearly
the agreement with experiment is much better once the chiral log required
by chiral symmetry is correctly included, than if, for example, one simply
made a linear extrapolation in the quark mass (or m2). Full details of the
results for all the octet baryons may be found in Ref. [12].
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Fig.3. Fits to lattice results for the squared electric charge radius of the proton
— from Ref. [12]. Fits to the contributions from individual quark flavors are also
shown: the u-quark sector results are indicated by open triangles and the d-quark
sector results by open squares. Physical values predicted by the fits are indicated at
the physical pion mass, where the full circle denotes the result predicted from the
first extrapolation procedure and the full square denotes the baryon radius recon-
structed from the individual quark flavor extrapolations. (NB. The latter values
are actually so close as to be indistinguishable on the graph.) The experimental
value is denoted by an asterisk.

The situation for baryon magnetic moments is also very interesting. The
LNA contribution in this case arises from the diagram where the photon
couples to the pion loop. As this involves two pion propagators the expansion
of the proton and neutron moments is:

(n)

W) = b F i+ O(m?2). ®)

(n)

Here ug is the value in the chiral limit and the linear term in m, is

proportional to m%, a branch point at m = 0. The coefficient of the LNA
term is a = 4.4y GeV~!. At the physical pion mass this LNA contribution
is 0.6pn, which is almost a third of the neutron magnetic moment. No
constituent quark model can or should get better agreement with data than
this.
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Just as for My, the chiral behaviour of ,up(”) is vital to a correct extrap-
olation of lattice data. One can obtain a very satisfactory fit to some rather
old data, which happens to be the best available, using the simple Padé [14]:

pP™ = Mg(n) )
1+ ﬁmﬂ + Bm2
0

(9)

The data can only determine two parameters and Eq. (9) has just two
free parameters while guaranteeing the correct LNA behaviour as m, — 0
and the correct behaviour of HQET at large m2. The extrapolated values
of 4P and p" at the physical pion mass, 2.85 + 0.22uy and —1.90 £ 0.15u
are currently the best estimates from non-perturbative QCD [14]. For more
details of this fit we refer to Ref. [14], while the application of similar ideas
to other members of the nucleon octet we refer to Ref. [15]|, and for the
strangeness magnetic moment of the nucleon we refer to Ref. [16].

Incidentally, from the point of view of the naive quark model it is in-
teresting to plot the ratio of the proton to neutron magnetic moments as a
function of m2. The closeness of the experimental value to —3/2 is usually
taken as a major success. However, we see from Fig. 4 that it is in fact a
matter of luck! We stress that the large slope of the ratio near m2 = 0 is
model independent.
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Fig.4. Ratio of the proton to neutron magnetic moments as a function of m2
obtained from the Padé approximants in Eq. (9). We stress that the behaviour as
m2 — 0 is model independent.
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6. Conclusion

In the region of quark masses m > 60 MeV or so (m, greater than
typically 400-500 MeV) lattice QCD suggests that hadron properties are
smooth, slowly varying functions of something like a constituent quark mass,
M ~ My + cm (with ¢ ~ 1). Indeed, My ~ 3M, M, ., ~ 2M and magnetic
moments behave like 1/M. But as m decreases below this scale chiral sym-
metry leads to rapid, non-analytic variation, with sMy ~ m3/2, ug ~ m'/?
and 6 < r? >g~ Inm.

Chiral quark models like the cloudy bag provide a natural explanation of
this transition. The scale is basically set by the inverse size of the pion source
— the inverse of the bag radius in the bag model. As practical consequences
of this understanding we have shown:

e the best values of the proton and neutron magnetic moments from

QCD;
e the best value of the sigma commutator;
e improved values for the charge radii of the baryon octet;
e improved values for the magnetic moments of the hyperons.

In addition, although we did not have time to discuss it, this approach has
led to the best current value for the strangeness magnetic moment of the
proton from lattice QCD, G4, = —0.16 £ 0.18uy [16].

Clearly, while much has been achieved, even more remains to be done. It
is vital that lattice calculations with dynamical fermions are pushed to the
lowest possible quark masses, taking advantage of developments of improved
actions and so on. It is also vital to further develop our understanding of the
physics of chiral extrapolation by comparison with these new calculations, by
looking at new applications and by further comparison with chiral models.

It is a pleasure to thank my collaborators in this work, especially Emily
Hackett-Jones, Derek Leinweber, Dinghui Lu, Kazuo Tsushima and Stew-
art Wright for their part in the development of my understanding of this
fascinating problem. I would also like to thank Will Detmold for a care-
ful reading of the manuscript. This work was supported by the Australian
Research Council and the University of Adelaide.
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