STRONG DECAYS OF ρ RADIAL EXCITATIONS *

BURKHARD PICK

representing the Crystal Barrel Collaboration Institut für Strahlen- und Kernphysik der Universität Bonn Nußallee 14-16, 53115 Bonn, Germany

(Received July 13, 2000)

We have searched for ρ' decays in $\bar{p}N$ annihilation at rest. They may provide information on the nature of the ρ' states; are they hybrids or $q\bar{q}$ states? A comparison between data and theoretical calculations gives ambiguous results. Furthermore, we have found hints for a radial excitation of the $b_1(1235)$ at 1610 MeV.

PACS numbers: 13.25.Jx

1. Introduction

In 1987, evidence emerged that the 1600 MeV region actually contains two ρ -like resonances. This was the result of the analysis of e^+e^- annihilation into 2π and 4π [1]. In the following years, these analyses have been extended and new data have been included. In a review, Clegg and Donnachie confirmed the evidence for at least two ρ' states and claimed that the ρ 's cannot be part of nonets of pure $q\bar{q}$ states [2]. Mixing with additional states seems to be required.

These results were interpreted by Close and Page [4]: the $\rho(1450)$ decays favour a hybrid interpretation while the $\rho(1450)$ mass would suggest a 2^3S_1 $q\bar{q}$ state.

2. Theoretical calculations

Table I shows results of theoretical calculations on the ρ' decays. Using the ${}^{3}P_{0}$ model, the $2{}^{3}S_{1}$ and the $1{}^{3}D_{1}$ $q\bar{q}$ states show very characteristic differences in their couplings to the 4π final states. The $2{}^{3}S_{1}$ state couples

^{*} Presented at the Meson 2000, Sixth International Workshop on Production, Properties and Interaction of Mesons, Cracow, Poland, May 19–23, 2000.

very weakly to all of them whereas the 1^3D_1 state couples strongly to both πa_1 and πh_1 . Both states have moderately large couplings to $\pi \pi$ and $\pi \omega$.

Within the flux-tube model the suppression of πh_1 relative to πa_1 is a crucial test of a hybrid ρ' state. The decay into 2π is predicted to vanish.

TABLE I

Partial decay widths for ρ' states. A "-" denotes a decay not yet calculated.

Decay mode	$\pi\pi$	$\pi\omega$	πa_2	πa_1	πh_1	ρρ	$\pi^*\pi$	$ ho\sigma$	$K\overline{K}$
Calculated partial widths in the ${}^{3}P_{0}$ model [3]:									
$2^3S_1 ho(1465)$	74	122	0	3	1	0	-	-	35
$1^3 D_1 \rho(1700)$	48	35	2	134	124	0	14	-	36
$3^3 S_1 ho(1900)$	1	5	46	26	32	70	16	-	1
Calculated partial widths in the flux-tube model [4]:									
Hybrid $\rho(\sim 15)$	500) 0	5-10	~ 0	140	0	0	0	_	_

3. $\rho(1450)$ and $\rho(1700)$ decays observed by Crystal Barrel

In the following subsections different channels of $\bar{p}d$ -annihilation at rest into ρ' and a recoiling pion will be presented. For all these channels, a cut on the proton spectator momentum of 100 MeV ensures that the annihilation takes place on a quasi-free neutron.

3.1. $\bar{p}d \rightarrow \pi^- \pi^0 \pi^0 p_{\text{spectator}}$

Figure 1(a) shows the symmetrized Dalitz-plot for $\bar{p}d$ -annihilation into $\pi^-\pi^0\pi^0$ plus spectator proton [5]. The most prominent structures are vertical and horizontal bands due to the $\rho^-(770)$ decay into $\pi^-\pi^0$. In the diagonal, a band arises from the f_2 decaying into $\pi^0\pi^0$. Furthermore, a band-structure due to the $f_0(1500)$ also decaying into $\pi^0\pi^0$ is visible.

The description of the enhancement on the right upper side of the phase space requires a ρ' state at 1410 MeV. The high-mass region requires a 1780 MeV ρ' state.

3.2.
$$\bar{p}d \rightarrow K_S K^- \pi^0 p_{\text{spectator}} (K_S \rightarrow \pi^+ \pi^-)$$

The main structure in the Dalitz-plot (Fig. 1(b)) for $\bar{p}d \to K_S K^- \pi^0 p_{\text{spec}}$ are the crossing $K^*(892)$ bands. A good description of the data requires two ρ' states — the $\rho(1450)$ and the $\rho(1700)$.

Fig. 1. (a) $\bar{p}d \to \pi^- \pi^0 \pi^0 p_{\text{spec}}$: symmetrized Dalitz-plot; (b) $\bar{p}d \to K_S K^- \pi^0 p_{\text{spec}}$ $(K_S \to \pi^+ \pi^-)$: Dalitz-plot — a cut for slow K^- momenta has been applied due to problems in the Monte Carlo simulation for this kinematical region [6]; (c) $\bar{p}d \to \omega \pi^- \pi^0 p_{\text{spec}}$: invariant $\pi^+ \pi^- \pi^0$ mass.

3.3.
$$\bar{p}d \to \pi^+\pi^-\pi^-\pi^0\pi^0 p_{\text{spectator}}$$
 and $\bar{p}d \to \pi^-\pi^0\pi^0\pi^0\pi^0 p_{\text{spectato}}$

A simultaneous analysis of two different 5π final states from $\bar{p}d$ -annihilation at rest has been used to study the decays of both the $\rho(1450)$ and the $\rho(1700)$ into 4π [7]. Table II illustrates the decay rates of the ρ' states. The normalization does not include the $\pi\omega$ channel.

TABLE II

 ρ' decay rates normalized to all 4π decays without $\pi\omega$.

$\bar{p}n \to \rho(1450)\pi$	$\bar{p}n \to \rho(1700)\pi$				
$m = 1435 \mathrm{MeV}$ $\Gamma = 325 \mathrm{MeV}$	$m = 1700 \mathrm{MeV}$ $\Gamma = 235 \mathrm{MeV}$				
$a_{1}\pi$ π π $h_{1}\pi$ $\rho\rho$ 2π	$a_{1}\pi$				

3.4.
$$\bar{p}d \to \omega \pi^- \pi^0 p_{\text{spectator}} \quad (\omega \to \pi^+ \pi^- \pi^0)$$

An important channel for the study of the ρ' decays is $\bar{p}d$ -annihilation into $\omega \pi^- \pi^0 p_{\text{spec}}$. Since the ω decays into $\pi^+ \pi^- \pi^0$, this data is part of $\bar{p}d \to \pi^+ \pi^- \pi^- \pi^0 \pi^0 p_{\text{spec}}$ as shown in Fig. 1(c). Since the 5π background below the ω -signal is well known, a partial wave analysis for this channel can be performed.

A scan for one ρ' with fixed mass and width for every scan-point yields a clear optimum at 1760 MeV. A scan with two ρ' states, one with the fixed mass of 1700 MeV and the other one varied, shows no evidence of a coupling of $\rho(1450)$ to $\pi\omega$.

4. Comparison between theory and experimental results

The results will now be compared to the theoretical partial decay widths (in MeV) shown in Table I. The ratios of $2\pi : 4\pi : \pi\omega$ are listed in Table III.

The interpretation of the $\rho(1450)$ as a 2^3S_1 state is in conflict with data. The theoretical prediction demands a large coupling to $\pi\pi$ and $\pi\omega$ and small coupling to 4π . The hybrid interpretation needs a large decay width to πa_1 supported by data; but the $\pi\pi$ coupling is not small.

> 2π 4π $\pi\omega$ hvbrid 0 281 - 2 $2^{3}S_{1} \rho(1465)$ 1 0.051.7 $1^{3}D_{1}, \rho(1700)$ 1 5.70.7 $3^3S_1 \rho(1900)$ 1 1900.2 $\rho(1450)$ Crystal Barrel 3.8 ± 0.3 1 weak(?) $\rho(1700)$ Crystal Barrel 1 4.3 ± 0.2 seen

Comparison between theory and experimental results (preliminary).

TABLE III

The $\rho(1700)$ decays strongly to πa_1 like the hybrid or the 1^3D_1 state. The $\pi\pi$ decay and its mass prefer the 1^3D_1 interpretation.

Within the model predictions, the date are in conflict with a pure $q\overline{q}$ or hybrid interpretation. Mixing can occur and my possibly explain the observed decay rates. But then a third state in this mass region should be present.

5. Radial excitation of $b_1(1235)$ — the 2P $b_1(1600)$

A scan for a additional b_1 state yields a strong signal in $2 \ln(\mathcal{L})$ at a mass of 1610 MeV. Likely, this evidences a radial excitation of the $b_1(1235)$ ground state. Recent observations of $a'_1(1700)$ at CLEO, VES and E852 (BNL) [8] and $h_1(1600)$ at E852 [9] support the conjecture that the radial excitations have lower masses than expected.

REFERENCES

- [1] A. Donnachie, H. Mirzaie, Z. Phys. C33, 407 (1987).
- [2] A.B. Clegg, A. Donnachie, Z. Phys. C62, 155 (1994).
- [3] T. Barnes, F.E. Close, P.R. Page, E.S. Swason, Phys. Rev. D55, 4157 (1997).
- [4] F.E. Close, P.R. Page, Nucl. Phys. **B443**, 233 (1995).
- [5] A. Abele et al., Phys. Lett. **B391**, 191 (1997).
- [6] K. Wittmack, Messung der Reaktionen $\bar{p}n \rightarrow K_s K^- \pi^0$ und $\bar{p}n \rightarrow K_s K_s \pi^-$, thesis, Bonn 2000, in preparation.
- [7] Crystal Barrel Collaboration: to be published in Phys. Lett.
- [8] T. Barnes, Radial Excitation, Proc. of the Workshop on Hadron Spectroscopy, Frascati, March 8-12, 1999.
- [9] H. Willutzki, Acta Phys. Pol. **B31**, 2615 (2000)