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eived September 4, 2000)New results (preliminary) are presented on studies of di�erent brokensymmetries su
h as 
hiral symmetry, SU(3) �avor, C and CP , obtainedwith the Crystal Ball multiphoton spe
trometer. We have data on ��p andK�p intera
tions to various neutral �nal states up to a beam momentumof 760 MeV/
. We also present results on di�erent neutral �-meson de
ays.Finally we show data on 2�0 produ
tion by 408 MeV/
 �� on 
omplexnu
lei to investigate nu
lear medium modi�
ations.PACS numbers: 13.60.Le, 13.75.�n, 11.30.�j1. Introdu
tionThe resear
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lear and parti
lephysi
s is isospin whi
h is the invarian
e of the strong intera
tions un-der the inter
hange of the up and down quarks. The quark mass 
annotbe measured dire
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ause of the spe
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2670 B.M.K. Nefkens, A.B. Starostinslavery�, only the quark mass di�eren
e is a measurable quantity. Thesole way for determining mu �md is by measuring isospin or 
harge-symmetry breaking [1℄.2. The natural extension of SU(2) is SU(3)-�avor symmetry whi
h isa
hieved by in
luding the strange quark. In QCD the strange quark ismu
h like a down quark, it has the same basi
 strong intera
tions, ex-
ept that it is somewhat heavier. Experimentally, ms�md ' 150 MeV.The only way to determine ms�md, is through sele
ted measurementsof SU(3)-�avor breaking.3. The dis
rete symmetries of P , C and T are broken by the weak in-tera
tions. A

ording to QCD, regions of far away galaxies. An uglyfeature of the Standard Model of ele
troweak intera
tions is the o

ur-ren
e of eviden
e for C and T invarian
e is skimpy [2, 3℄. There aresome important reasons for wanting better tests of C and T namelythe well established parti
le�antiparti
le asymmetry of the universeand the quark and lepton doublet�singlet asymmetry of the StandardModel. The universe is 
omprised predominantly of matter with littleantimatter, there is no eviden
e for 67 MeV gammas from matter�antimatter annihilation 
oming from the border regions of far awaygalaxies. An ugly feature of the Standard Model of ele
troweak inter-a
tions is the o

urren
e of the elementary fermions in three familiesof left-handed doublet and right-handed singlet sets of quarks and lep-tons.4. CP is a 
hallenging symmetry. It is known to be broken on a smalls
ale and so far has only been seen in the neutralK-meson system. Theorigin of CP violation appears to be an obs
ure phase in the C�K�Mmass matrix. It is parti
ularly di�
ult to study CP invarian
e exper-imentally in strong and ele
tromagneti
 intera
tions in whi
h there isno �avor 
hange.5. In modern nu
lear physi
s mu
h attention is paid to studies of 
hiralsymmetry, �S, whi
h is broken by the quarks mass and by the va
uum.The latter gives rise to the quark 
ondensate, h�q j qi ' �(230 MeV)3,it a

ounts for some 98% of the proton's rest mass. The broken �S ofordinary matter is expe
ted to be restored at high density and temper-ature. Currently one of the fashionable subje
ts is the onset of partial�S restoration at intermediate energy and density. This manifests it-self in nu
lear medium modi�
ation of the mass and width of mesonsand baryons and in the o

urren
e of parity doublets in the spe
trumof ex
ited nu
leons and hyperons.



New Results on Meson Physi
s with the Crystal Ball Dete
tor 2671The above broken symmetries, as well as others, may be investigatedexperimentally using the Crystal Ball for measuring the neutral �nal stateswhi
h are produ
ed in �� and K� intera
tions in hydrogen.2. The Crystal Ball dete
torThe Crystal Ball, CB, is a multiphoton spe
trometer with a nearly 4�geometri
al a

eptan
e. EM showers are measured with ex
ellent energyand angular resolutions [4℄. The CB is a sphere made of 672 separate NaI
rystals. There is a small 
avity in the 
enter and there is an entran
e andexit tunnel for the beam, see Fig. 1. The CB was originally built at SLAC,it has been moved to BNL where it is stationed at the AGS in a separated�� and K� beam with a maximum momentum of 760 MeV/
. A 10 
mliquid hydrogen target has been installed in the 
avity in the 
enter of theball. The target is surrounded by a veto-barrel s
intillator to insure thatneutral �nal states are measured.

Fig. 1. Geometry of the Crystal Ball. Not shown are the 10 
m long liquid hydrogentarget in the 
enter and the 1.2 m long veto barrel whi
h surround the target andva
uum pipe.



2672 B.M.K. Nefkens, A.B. Starostin3. The eta mesonThe �-meson has several useful features:1. The � is an eigenstate of the P , C and CP operators. This allows for
lean tests of P , C, CP invarian
e and even CPT .2. The de
ay width of the � is 1.1 KeV, this should be 
ompared tothe typi
al strong width of 150 MeV. Thus, � de
ays are �ve orders ofmagnitude more sensitive than 
omparable �, a0 and f0-meson de
ays.3. � ! 3� is forbidden by isospin, 
harge symmetry or G-parity invari-an
e. Thus it is a suitable 
andidate for determining mu �md.4. The � restmass is 547.3 MeV/
2. This is su�
iently large to allow manyuseful de
ay modes to o

ur for the investigation of various brokensymmetries.5. The � is the most massive of the eight pseudos
alar bosons asso
i-ated with spontaneously broken 
hiral symmetry, �S. The � is a goodprospe
t for investigating �S breaking and for 
hiral perturbation the-ory.6. The � belongs to the light pseudos
alar meson SU(3)-�avor nonet.This allows for �0 � � and for � � �0 mixing whi
h are important inevaluating SU(2)- and SU(3)-�avor breaking.7. The �N and �� s
attering lengths are large and the �-baryon intera
-tion is attra
tive. This has given rise to spe
ulations about the exis-ten
e of exoti
 nu
lear matter: eta-mesi
 nu
lei and hypernu
lei [5℄.8. The � has isospin zero whi
h allows it to play a spe
ial role in baryonspe
tros
opy. Consider K�p! Y � ! ��. The initial state has I = 0and 1. The � and � both are isos
alar parti
les, thus, the Y � interme-diate state must be a �� hyperon resonan
e.9. Some S-state baryons have a prominent � de
ay 
hannel whi
h is mu
hlarger that the � or K de
ay modes favored be
ause of the larger phasespa
e. The � 
an be used as a tra
er of these S-state baryons.10. The two largest � de
ay modes are � ! 2
, BR = 39.2% and � !3�0, BR = 32.2% this makes the Crystal Ball an espe
ially pra
ti
aldete
tor for studying � produ
tion.Note: The results shown in the next four 
hapters are preliminary.
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s with the Crystal Ball Dete
tor 26734. K�p! neutrals4.1. K�p! ��The �t(K�p ! ��) ex
itation fun
tion is shown in Fig. 2. The � isdete
ted by the 2
 de
ay mode and the � by �0n. The � mean life is0.26 nse
, the de
ay distan
e is 7.9 
m. The �� �nal state gives rise to atwo vertex �nal state. The intermediate state is the �(1670) S01 resonan
e.Up to 20 MeV/
 above threshold �t � p2� this is 
hara
teristi
 of S-waveprodu
tion. The bran
hing ratio for �(1670) ! �� is listed as 15� 35% [2℄.The � polarization is easily measured with the CB, it is small, see Fig. 3,
onsistent with S-wave produ
tion. One of the 
onsequen
es of SU(3)-�avorsymmetry is repli
ation. For instan
e the lambda o
tet states are the repli
asof the N� resonan
es, they have the same isospin/parity but are heavier byabout 135 MeV. The �(1670) S01 is the repli
a state of the N(1535) S11 andhas similar properties. The N(1535) S11 has a large � de
ay, BR ' 51%.To a

ount for this large bran
hing ratio, whi
h for reasons of phase spa
eshould be mu
h less than for �N , it has been suggested that the N(1535) isnot an ordinary three-quark state but a quasi-bound �K and �K state [6℄.Su
h quasi-bound states are not SU(3)-�avor symmetri
, there is then noobvious reason to expe
t that the �(1670) de
ays also by � emission withBR = 20�35%. Close to threshold � produ
tion is mainly S-wave leading to a�at angular distribution. Due to a small 
ontribution from some higher wavethe � angular distribution is not �at, it is bowl shaped, see Figs. 4(a), 4(b),for produ
tion by �� and K�; this is expe
ted from the repli
a nature.

Fig. 2. The �t(K�p! ��) ex
itationfun
tion measured with the CrystalBall. Fig. 3. � polarization in K�p! ��:
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(a) (b)

(c) (d)

Fig. 4. Angular distributions in eta threshold produ
tion. The top row are CrystalBall measurements, bottom left is from Ref. [7℄ and bottom right from Ref. [8℄.Note that a bowl shape angular distribution is not a required feature of �produ
tion. Observe the dome shape whi
h typi�es 
p! �p and pp! pp�,see Figs. 4(
), 4(d) [7, 8℄. 4.2. K�p! �0�An example of a strangeness transfer rea
tion, from meson to baryon,is provided by the rea
tion K�p ! �0�. The di�erential 
ross se
tion atpk = 720 MeV/
 is shown in Fig. 5. The data and those of the next tworea
tions were obtained by N . Phaisangittisakul as a by-produ
t of his the-sis on radiative K�p intera
tions. The full analysis of this 
hannel is underway at KSU, it is the thesis work of J. Olmsted. Typi
ally the data sampleswhi
h have been obtained in our Crystal Ball run are an order of magnitudebigger than in the older experiments [9℄. The ��0 �nal state is pure I = 1.There are several 
andidate intermediate states: the �(1660) P11, whi
h is athree-star state; the �(1670) D13, a four-star state, and the �(1690) bumps.
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Fig. 5. d�=d
(K�p ! ��0) at pk= 720 MeV/
. The solid dots arethe CB data, 6248 events. The open
ir
les are data by Armenteros et al.Ref. [9℄, 600 events. Fig. 6. � polarization in K�p! �0�at pk=750 MeV/
 measured with theCrystal Ball.A 
oupled 
hannel analysis in
luding all our measurements together with theexisting K� elasti
 s
attering and total 
ross se
tion data are required tosort out the 
ontributions of the di�erent �� states. The angular distribu-tion of the � polarization at pk =750 MeV/
 is shown in Fig. 6. The �polarization varies from +0:5 to �0:3. These data are helpful in the partialwave analysis to resolve the Minami ambiguity. This bothersome ambiguityis the 
onsequen
e of the invarian
e of the di�erential 
ross se
tion of pseu-dos
alar meson�nu
leon elasti
 s
attering rea
tions to the inter
hange of allodd and even parity partial waves of the same I and J .4.3. K�p! �0�0The �0 de
ays in 10�19 se
 into �
. The signature of the �0�0 �nal stateis a 5 
luster event whi
h forms uniquely two �0's with di�erent verti
es anda �ba
helor� photon with E
 = 74 MeV in the �0 
enter of mass. There are�ve 
onstraints available for the analysis. This is ample to obtain a 
leandata sample. Shown in Fig. 7 are the CB data for d�(K�p ! �0�0) atpk = 750 MeV/
; we have in
luded a sample of the older data by Armenteroset al. [9℄ obtained in a hydrogen bubble 
hamber for a 
omparison. The �0�0�nal state is also isospin sele
tive allowing only �� states, this explains thedi�eren
e between the shape of d� in �0� and �0�0 produ
tion.
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Fig. 7. d�=d
[K�p ! �0�0℄ atpk=750 MeV/
. The solid dots arethe CB data, 7150 events. The open
ir
les are the data of Armenteros etal. [9℄, �700 events. Fig. 8. d�=d
[K�p ! K0n℄ atpk=750 MeV/
. The solid dots arethe CB data, 4765 events. The open
ir
les are the data from Armenteroset al. [9℄, 730 events.4.4. K�p! K0nThe �nal state in K�p 
harge ex
hange is dete
ted in the CB as a four-
luster event, K0 ! K0s with BR=0:5 and K0s ! 2�0 with BR=0:31: TheK0s mean lifetime is 0.08 nse
, the de
ay distan
e is 2.7 
m. An exampleof the di�erential 
ross se
tions at pk = 750 MeV/
 is shown in Fig. 8.The 
harge ex
hange rea
tion involves two isospin amplitudes A0 and A1as follows: d�(K�p! K0n) � jA0 �A1j2, this 
ompli
ates the analysis asboth � and � states parti
ipate in the pro
ess. We expe
t a 
usp in K�p
harge ex
hange at the opening of the � 
hannel at pk = 723 Mev/
.4.5. K�p! �0�0�An interesting example of SU(3)-�avor repli
ation is seen in the Dalitzplots of �� p! �0�0 n andK�p! �0�0� shown Fig. 9 at 750 MeV/
 whi
hhave 
omparable kinemati
s. The ��p! �0�0n �nal state is 
hara
terizedby a strong 
lustering of the �0n invariant mass in the region of the �resonan
e, it is suggestive of the sequential rea
tions ��p! N� ! �0�!�0�0n. The �avor repli
a of this is K�p ! �� ! �0�0 ! �0�0�. The�(1385) is the de
uplet repli
a of the �(1232). The similarity between thetwo Dalitz plots is remarkable. The main di�eren
e is that the �(1385) has� = 36 MeV while the �(1232) has � = 120 MeV.
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Fig. 9. Dalitz plot for ��p ! �0�0n and K�p ! �0�0� at 750 MeV/
 measuredby the Crystal Ball. 5. �� indu
ed rea
tionsWith the Crystal Ball we measure all neutral �nal states at the sametime. Our �rst experiment used beams up to 760 MeV/
 �� in
ident on ahydrogen target. The neutral �nal state parti
les that we dete
t with goode�
ien
y are 
, 1�0, 2�0, 3�0; and �. The dete
tion e�
ien
y for neutronsabove 50 MeV is about 35%.5.1. ��p! 3�0 (not �)nAt intermediate and low energies pions are produ
ed by the de
ay ofnu
leon isobars and of � and � mesons. 3�0 produ
tion takes pla
e via��p ! N�. At our energies the N� is the D13(1520) and S11(1535) andthe intermediate de
ay is N� ! �0P11(1440) whi
h is followed by P11 !�0�(1230) or P11 ! �n where the � is a quasi-parti
le that is a spe
ialfeature of the strong S-wave ��� intera
tion. An advantage of measuring�0's is that the intermediate state �0 ! �0�0 is forbidden, this greatlysimpli�es the analysis of the 2�0 and even of 3�0 produ
tion rea
tions. TheCB is espe
ially suited to measuring three �0's. Our preliminary results aregiven in Table I. Previous results on 3�0 produ
tion [10,11℄ are a fa
tor 100and more higher, this is suggestive of � ! 3�0 
ontamination. Our 3�0 dataimply that BR[S11(1531) ! �0 P11(1440)℄ < 0:6% and BR[D13(1520) !�0P11℄ < 0:2% in agreement with the re
ent analysis of Manley [12℄.



2678 B.M.K. Nefkens, A.B. Starostin TABLE I�total(��p! 3�0n) (not �).p�� (MeV/
) �3�0tot (�b)653 2� 1665 3� 1675 4� 3691 7� 3704 13� 4716 9� 7750 27� 95.2. ��A! �0�0XConsiderable attention is 
urrently being given to the properties ofhadrons in the nu
lear medium [13,14℄. This is asso
iated with the problemof �The origin of mass� [15℄. QCD implies that a mere 2% of a nu
leon'smass resides in the 3 
urrent quarks while 98% is asso
iated with the quark
ondensate. The latter is a manifestation of the breaking of 
hiral symmetryby the va
uum. Of spe
ial interest are the properties of the � quasi-parti
lebe
ause it is 
onsidered to be the 
hiral partner of the �-meson. As su
h itis expe
ted to have a de
reasing mass when in
reasing the nu
lear density.A simple estimate shows a de
rease of 30% at ordinary nu
lear density. Wehave used the CB to measure the �0�0 invariant mass spe
trum produ
ed by�� on targets of CH2, CD2, C, Al and Cu. The results at p� = 408 MeV/
are shown in Fig. 5. The low in
ident momentum was 
hosen be
ause theoutgoing pions have a small momentum so we 
an ignore in �rst order the�0N �nal state intera
tions. We have also data at 750 MeV/
 [16℄ wherethe �nal state �N intera
tions are stronger. The gross feature of both datasets are qualitatively similar. Our results for the �0�0 invariant mass arevery di�erent from the �+�� data at 398 MeV/
 reported by the CHAOS
ollaboration [17, 18℄ whi
h shows a striking peak of 280 MeV in the �+��invariant mass, while our spe
tra are smooth. The latest development is anassertion [19℄ that these peaks are the 
onsequen
e of the pe
uliar restri
teda

eptan
e of the CHAOS dete
tor, however, no detailed Monte Carlo evalu-ation of the CHAOS a

eptan
e is available. In a re
ent report [20℄ CHAOShas proposed to use the ratio of the �+�� yields for di�erent targets toprobe medium modi�
ation. However, this is only meaningful for data thathas been 
orre
ted for the a

eptan
e of the dete
tor whi
h is known to varywith A be
ause of the di�eren
e in the binding energies of the nu
leons inthe di�erent 
omplex nu
lei.
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Fig. 10. Experimental results for the 2�0 invariant mass distributions for 408 MeV/
in
ident �� obtained for H, D, C, Al, and Cu targets, 
orre
ted for Crystal Balla

eptan
e. The verti
al s
ale is in arbitrary units. The solid lines show the resultsof 
al
ulations made by Rapp [21℄, and the dashed line is the predi
tion by Vi
enteVa
as [22℄. 6. Tests of CP and C invarian
e in � de
aysA

ording to the Standard Model of ele
troweak intera
tions the smallCP violation whi
h is seen in neutral kaon de
ay originates in a phase of theC�K�M mass matrix of the six quark �avors. Tests of CP invarian
e in �avor
onserving intera
tions are almost non existing. The de
ay mode � ! 4�0 isforbidden by CP and P invarian
e, and it is a �avor 
onserving intera
tion.It's 
hief drawba
k is the smallness of the available �nal-state phase spa
e.Experimentally this is a 
lean de
ay mode without serious ba
kground; eventhe potentially dangerous radiative de
ay, � ! 4�0
 is forbidden (by C-invarian
e). The experimental parti
ulars whi
h make � ! 4�0 su
h anattra
tive de
ay is the unique signature of 8 photons whi
h 
ombine in onlyone way into 4�0 whi
h 
ombine into �. The �'s are produ
ed in the rea
tion��p ! �n near threshold, they are nearly mono
hromati
 and emerge in avery forward 
one. This produ
tion type is referred to as �virtual tagging�.In a 2 week run at the AGS with the CB we obtained a supply of 3:0�107�'s.No 
andidate ful�lled our real event 
riteria. This results in the upper limitBR(� ! 4�0) � 6:9�10�7 at 90% CL. A 
omparison of this with the known



2680 B.M.K. Nefkens, A.B. Starostinwidth of the allowed de
ay f0(1500) ! 4�0 enables us to obtain an upperlimit for the CP -violating amplitude with respe
t to the CP -
onserving one:ACP =ACP � 2:3� 10�2, see Ref. [4℄.The de
ay � ! 3�0
 is forbidden by C invarian
e, it is an isove
torele
tromagneti
 intera
tion. We have obtained a body of 18.9 �106 well-de�ned � de
ays. We did not �nd a signal in our sample of 7 
luster eventsabove the ba
kground of � ! 3�0 events with a split-o�. This results in theupper limit at the 90% CL of BR(� ! 3�0
) � 7:0� 10�5. For 
omparisonnote that BR(� ! 3�0) = 32%. Our result implies that the C-violatingisove
tor amplitude is less than 3% of the C-
onserving amplitude, whi
hmakes this the most a

urate test of C in its 
ategory. After the dis
overyof CP violation in KL ! �+�� de
ay the possibility of a new intera
tion,a C-violating ele
tromagneti
 intera
tion of hadrons, was proposed. Bern-stein et al. [23℄ suggested a 
lear test, � ! �0�0
 de
ay. Thus far noupper limit for this has been reported be
ause a 4�-type dete
tor is needed.The sear
h is hampered by a large, intrinsi
 ba
kground whi
h 
omes from� ! 3�0 with a missing photon or overlapping 
lusters and from 2�0 pro-du
tion with a split-o� photon. We have used the same sample of � de
ayemployed above. No net signal was found above ba
kground. The upperlimit is BR(� ! 2�0
) � 4:2 � 10�4 at 90% CL. Note that the C-allowed
omparable de
ay for 
harged pions is BR(� ! �+��
) = 4.8%. The 
om-parison with the allowed strong de
ay �0 ! �+��
 whi
h has a width of1.5 MeV implies that the ratio of the C-violating to C-
onserving amplitudeis A6C=AC � 6 � 10�3. This is a test of an isos
alar and/or isotensor in-tera
tion. The latter is the exoti
 isotensor C- and T -violating intera
tionproposed originally by Sanda and Shaw [24℄.Our �nal test of C-invarian
e is a new upper limit on � ! 3
. Using oursample of 18.9 �106�'s we obtain BR(� ! 3
) � 4:5 � 10�5 at 95% CL.The existing upper limit [2℄ is 5:0 � 10�4 at 95% CL. The de
ay �0 ! 3
for whi
h the upper limit is 3:1 � 10�8 is not 
ompetitive as dis
ussed byP. Her
zeg [25℄. Note that the de
ay rate depends on the 12th power of themeson mass [25℄, thus the sensitivity of � ! 3
 = (m�=m�)12 � 3:0 � 107better than �0 ! 3
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