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This presentation discusses some recent developments in our under-
standing of the lightest quark—antiquark excitations, both of the condensed
QCD vacuum and in a nuclear medium. We focus on two selected topics:
the thermodynamics of the chiral condensate and in-medium s-wave in-
teractions of pions with special emphasis on the recently observed deeply
bound pionic atom states.

PACS numbers: 12.38.—t, 24.85.+p

1. Prelude: symmetries and symmetry breaking patterns in QCD

The QCD ground state, or vacuum, is characterized by the presence of
a strong condensate (gq) of scalar quark—antiquark pairs (the chiral conden-
sate) which represents the order parameter for spontaneous chiral symmetry
breaking in QCD. The light hadrons are quasi-particle excitations of this con-
densed ground state. Pions and kaons are of special importance in this con-
text, as they are identified with the pseudoscalar Goldstone bosons of spon-
taneously broken chiral symmetry; their masses would vanish in the limit
of massless u-, d- and s-quarks. The pion decay constant, f; =~ 92.4 MeV,
determines the chiral scale 4w f; ~ 1 GeV (refered to as the “chiral gap”)
which governs the low-mass hadron spectrum. For example, the lightest
vector mesons (p,w) can be interpreted as the lowest resonant ¢g “dipole”
excitations of the QCD vacuum. Current algebra combined with QCD finite
energy sum rules [1,2]| connects their masses directly with the chiral gap,
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in leading order.
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The deviation of the physical pion mass, m, ~ 0.14 GeV, from zero re-
flects weak explicit chiral symmetry breaking by the small masses of
u- and d-quarks, m,, 4 < 10 MeV. The larger kaon mass (mx =~ 0.5 GeV)
shows the stronger explicit symmetry breaking caused by the mass of the
strange quark, mg ~ 0.15 GeV. Spontaneous and explicit chiral symmetry
breaking imply the PCAC or Gell-Mann, Oakes, Renner (GOR) relation,

mzfz = =3 (my + ma)(@u + dd) , (2)

to leading order in the quark masses my, g .

One of the basic issues in strong interaction physics is to explore the
QCD phase diagram as it evolves with increasing temperature and /or baryon
chemical potential. A key element in this discussion is the chiral transition
from the Nambu-Goldstone realization of chiral symmetry (with non-zero
condensate (Gq)) to the “restored” Wigner-Weyl realization in which the
chiral condensate vanishes. In QCD, chiral restoration is probably linked to
the transition between composite hadrons and deconfined quarks and gluons.

Chiral perturbation theory [3] determines the (weak) leading tempera-
ture dependence of the condensate for Ny massless quark flavours as

Ghr ., Ni-1/T? 72
[ (1212%)(”@)””6)- 3)

Lattice QCD [4] locates the critical temperature for the chiral transition
at T, ~(150-200) MeV. The leading dependence of (gg) on baryon density
p at zero temperature is controled by the pion—nucleon sigma term, oy ~
0.5 GeV:

<Q7Q>p ON
Whp oy~ IN_ 0 (4)
(a9)o m2 f2

indicating a rapidly decreasing magnitude of the chiral condensate in cold
compressed nuclear matter [5].

The GOR relation (1) continues to hold [6] in matter at finite temper-
ature T' < T, and at finite density, when reduced to a statement about the
time component, Ay, of the axial current A,. We denote the in-medium pion
decay constant related the thermal matrix element (7|Ao|), by fi(p,T).
One finds

9 @)t e (5)

*2
my

20, T) = -

to leading order in the average quark mass m, = 1/2 (m, + mq), where
(qq)p,r stands for the T- and p-dependent condensate, (uu + dd),r. The
“melting” of the condensate by heat or compression therefore translates
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primarily into an in-medium change of the decay constant of the pion, given
that its mass, m}, is not much affected by the medium because of its Gold-
stone boson nature.

The fact that the “chiral gap”, 4nf*(p,T), decreases when thermody-
namic conditions change toward chiral restoration, should also imply char-
acteristic observable changes in the low-energy, s-wave dynamics of pions in
matter, and in the meson mass spectrum.

The emphasis in this presentation will be on two selected topics of cur-
rent interest. First we study the thermodynamics of the chiral condensate,
(Gq)p,r- Then we discuss cold matter under moderate conditions and exam-
ine the influence of a density-dependent pion decay constant, f*(p), on the
recently observed deeply bound pionic atomic states in Pb.

2. Thermodynamics of the chiral condensate
2.1. Basics

Suppose we are given a chiral effective Lagrangian, Leg, with Goldstone
bosons (pions) coupled to baryons (nucleons). Let Z be the partition func-
tion derived from this theory, and p the baryon chemical potential. The
pressure as a function of y and T is

P(u,T) = %an , (6)

where V is the volume. Note that the Hamiltonian which determines Z
depends on the pion mass m, or equivalently, on the quark mass m, through
the GOR relation (2). Given the equation of state P(u,T), a variant of the
Hellmann-Feynman theorem (with the quark mass treated formally as an

adiabatic parameter) leads to the following expression for the density and
temperature dependent chiral condensate:

dP(p,T)

dm,

(q9)p 7 = (Gq)o — ; (7)

where the baryon density is p = dP/0u. Using the GOR relation (1), one
can rewrite (7) as:

1 dP(u, T

o Lt —2#
(@q)o fz dmz

(For further details see e. g. [7].) The task is therefore to investigate how

the equation of state, at given temperature and baryon chemical potential,
changes when varying the squared pion mass (or the quark mass).

(8)
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Note that for a system of nucleons (mass M) interacting with pions, the

total derivative of the pressure with respect to m?2 reduces to

dP(p,T) _ OP(p,T) on
dm2  Om2 m2

:OS(M7T) ) (9)

with the scalar density pg=—0P/0M and the sigma term oy =my0M /Om,.

2.2. Model

Consider now the following effective Lagrangian as an approximation to
the hadronic phase of QCD:

Lag=Ln+Lr+Lin+LNnN. (10)

The free nucleon Lagrangian is Ly = N(iy-p — M)N, where M is the
nucleon mass in vacuum. The pion sector with inclusion of 77 interactions
is described by the non-linear sigma model plus the standard pion mass

term:
2

Lr= ZW tr[0,U0"U "] + mass term , (11)

with U = exp[iT - 7/ fz]. The chiral pion—nucleon coupling to leading order
in pion momentum is

_ 1 -
Lon = TA Ny 7N - 047 — — Ny, 7N - 7 x "7 . (12)
2fx Afz
The short-distance dynamics is absorbed in NN contact terms,
Gs , - Gy,
Lyy = —TS(NN)2 + TV(N%N)Q T (13)

with the coupling strength parameters G'sy fixed by the ground state prop-
erties of normal nuclear matter. What we have in mind in the first step is
a variant of relativistic mean field theory combined with “soft” pion fluctu-
ations treated within the framework of chiral perturbation theory.

We have used two-loop thermal field theory to perform a self-consistent
calculation of P(u,T) and then deduced the chiral condensate as a function
of temperature and baryon density using Eq. (8). This calculation [8] gener-
ates temperature dependent mean fields for the nucleons at the same time as
it treats thermal pion fluctuations with inclusion of leading 77 interactions.
The pressure equation takes the form:

Gs ,

* * * * G
P(MaT):PN(MaMaT)+PW(M7M7T)+7Vp2_7:057 (14)
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with nucleon and pion contributions Py r, respectively, depending on the
effective nucleon mass
M* =M — Gsps (15)

and the shifted baryon chemical potential

p=p—Gyp. (16)
The baryon and scalar densities are determined as
0
= o (PN + Pr), ps = M (Py + Pr) . (17)

The whole set of equations (14)—(17) is then solved self-consistently.

2.8. Quark condensate at finite T and p

We return now to Eq. (8) and evaluate the variation of the chiral conden-
sate with temperature and density. The dependence of P(u,T') on the pion
mass is explicit in the thermal pion Green function and implicit through the
nucleon mass, using Eq. (9). The result for (gq),r is shown in Fig 1. One
notes that the temperature dependence at p = 0 is quite similar to the result
of lattice QCD [4] and close to the one found in chiral perturbation theory [3].
The critical temperature in the present calculation is 7T, ~ 180 MeV.

Fig. 1. Dependence of the chiral condensates (Gq),r on temperature T' and baryon
density p, calculated [8] in two-loop thermal field theory with the effective La-
grangian (10)—(13).

At T = 0 we have m;((Gq), — (Gq)0) = onps. At low baryon density
where pg =~ p the linear behaviour as in Eq. (4) is recovered. Naive ex-
trapolation of this linear density dependence with oy ~ 45 MeV would find
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the condensate dropping to zero at about three times nuclear matter den-
sity po =~ 0.17 fm 3. However the scalar density ps becomes significantly
smaller than p at high density, so that (Gq), still keeps almost half of (gg)o
at p = 3pg. For densities up to pg, however, the linear behaviour (4) turns
out to be a good approximation. Pionic fluctuations, though not of great
overall importance at T' = 0, help to maintain this simple linear dependence.

Our calculations are presently extended to the three-loop level, so we
will see whether the picture, Fig 1, is going to persist (see also Ref. [9]). Up
to this point we can conclude that the magnitude of the quark condensate
at p ~ pg is reduced by about one third from its vacuum value, so that this
tendency toward “chiral restoration” should have observable consequences
already in normal nuclear systems.

3. Pionic s-waves in the nuclear medium

The investigation of pion—nucleus interactions has a long history [10,11].
The reasons for revisiting this topic are two-fold: first, the recent observa-
tion of deeply bound pionic atom states in Pb isotopes [12] has sharpened
the quantitative constraints on the local (s-wave) part of the pion—nuclear
optical potential, and secondly, there is renewed interest in the theoretical
foundations of this optical potential from the point of view of chiral dy-
namics [13]. In the present context we concentrate primarily on this latter
point.

Pions as Goldstone bosons interact weakly at low momentum. Their
s-wave interactions with nucleons in leading order are determined by the
pion decay constant f,; as the relevant scale of spontaneously broken chi-
ral symmetry. In the nuclear medium, this scale changes, and the obvious
question is whether accurate data, such as those from deeply bound pionic
atoms, are a sensitive measure for the expected density dependence of f.

3.1. Chiral pion—nuclear dynamics

The spectrum of pionic modes with energy w and momentum ¢ in nuclear
matter at density p is determined by solutions of the wave equation

[w? = G* —m2 — I(w,Gp)] ¢=0, (18)

where the self-energy IT is often expressed in terms of the optical potential
U as II = 2wU. For pions “at rest” relative to the surrounding matter, it
is convenient to introduce an in-medium effective mass [13] by mi2(p) =
w?(@ = 0;p) = m2 + ReIl(w = m%,§ = 0;p). The mass shift in matter is
then a measure of the underlying s-wave pion—nuclear interactions.
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Consider now a low-energy 7~ interacting with matter at low proton and
neutron densities p, , . To leading order in these densities,

1T =2wU = =T (7" p)pp — T(7" n)pn , (19)

where T' denotes the 7N T-matrix (at threshold, its relation to the corre-
sponding scattering length is T(q = 0) = 47 (1 + m,/M)a).

The low-energy behaviour of T is ruled by theorems based on chiral sym-
metry. Consider the isospin even and odd amplitudes, T(*) = 1/2[T' (7 p) +
T (7 n)]. The Tomozawa—Weinberg theorem gives

w

0) = 27 (20)

to leading order in w. In next-to-leading order an attractive scalar term
proportional to on/f2 combines with a repulsive term of order w? so as
to reproduce the observed very small isospin-averaged scattering length,
alt) = (=0.003 £ 0.002) fm. For the case of T(7), chiral perturbation the-
ory gives corrections of order w® which close the 15 % gap between the
lowest order result (20) and the empirical isospin-odd scattering length,
al™) = (0.128 + 0.002) fm. (See Ref. [14] for a recent analysis of 7N scat-
tering lengths.) In the actual calculations we use the threshold amplitudes
T =0 and TC) = my/2f2(1 + 0.066 m2 /f2), compatible with the em-
pirical scattering lengths.

To leading chiral order and in the low-density limit, the 7~ self-energy
is simply 2wU (7~) = T)(p, — pp), with T(=) given by (20). For a 7+ the
isospin-odd part of the amplitude changes sign, so that the primary medium
effect is a splitting of the 77 and 7~ masses in asymmetric nuclear matter:

Am(r*) = U(nt) = +22_Pn. (21)
Af2
In isospin-symmetric matter there is no shift of the pion mass to this order.
Clearly, systems with a large neutron excess are of special interest here.
The s-wave pion—nucleus optical potential involves more than just the
amplitudes in leading order. Double scattering terms are known to be im-
portant, and absorptive corrections of order p? must be added [10,11]. The
s-wave in-medium self-energy for a 7~ becomes

11(§=0) = =Ty 0y + pu) = Tug (0 = pu) = 4xBop® . (22)

where Ty includes double scattering effects. With 7+ = 0 one finds [10,11]
in the Fermi gas approximation:

(+) _ _ 3PP (-2 (=) _ (= 3pF
T _—4—7T2T( Yooy =1 )<1—@T< )>, (23)
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where pr is the nuclear Fermi momentum. Note that, with T7(+) = 0, the

leading term in Te(;fr ) now involves the squared isospin-odd amplitude pro-

portional to f=*. In Te(f) the double scattering correction (about —10% at
pr ~ 2m,) is often ignored, but we prefer to take it into account!. The
p’-term has a complex, phenomenological constant By. Its imaginary part
is fitted to reproduce pion absorption rates.

Apart from the Byp? term, the s-wave 7~ potential at w = m, and for

a given N/Z ratio n = py/p, becomes

4/3 -1 1/3
U(q=0)=8 Mev<ﬁ) +44 Mev<”—)ﬁ 1-0.1 <ﬁ) , (24)
£0 n+1/ po Po

which gives about 16 MeV of repulsion at p = py and n = 1.5, the N/Z
ratio characteristic of the Pb region. From the analysis of pionic atom
data it is known that this repulsion is too weak by about a factor of two.
It has been common practice to choose the phenomenological ReBy such
that the missing repulsion is accounted for. This requires a large negative
ReBy for which there is little theoretical foundation. In fact, the two-body
mechanisms which are held responsible for ReBy should also be present in
the deuteron. But the real part of the 7~ d scattering length is perfectly well
reproduced just by the single and double scattering terms already present
in Tom, suggesting ReBy ~ 0. We should look for an alternative way to
generate the “missing repulsion”.

3.2. In-medium chiral condensate and p dependent pion decay constant

The considerations in the previous section were based on the chiral low-
energy theorem (20), expressed in terms of the vacuum pion decay constant.
In other words: our reference point for the chiral expansion (in powers of
the pion energy or momentum) has so far been the minimum of the vacuum
effective potential derived from the chiral Lagrangian, the one that applies
at density p = 0. However, the nuclear medium defines a new vacuum, with
the minimum of the effective potential shifted such that the magnitude of the
chiral condensate (Gq) is reduced (see Section 2). Following the in-medium
GOR relation (5) for the #ime component of the axial current, we have
(@9),/{qq)o = f2(p)/ f2 (assuming at this stage no change of the Goldstone
boson mass). The shift of the vacuum therefore implies a density dependent
pion decay constant,

£2(0) = f2 - ;—Np (25)

to leading order in the baryon density.

! In the literature the notations Te(;) =4n(1 4 m./M)bE and Te(f;) ~T) =
—47(1 4+ m,/M)b; are frequently used.
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While the minimum of the effective potential is shifted at p > 0, the
chiral low-energy theorem (20) for 7N scattering still holds, but now with
respect to the new vacuum with its reduced condensate and reduced pion
decay constant f}(p). The isospin-odd in-medium 7N amplitude becomes

T = 2 26

to leading chiral order, while the isospin-even amplitude still has T = 0.
Chiral perturbation theory should now be expanded around the new, shifted
vacuum, with the chiral gap replaced by 4xf(p) wherever it appears.
With Eq. (25), this immediately implies that the s-wave optical potential
(22), with fr replaced by fZ, will be substantially more repulsive than the
one given by Eq. (24). In fact, this potential becomes about twice as large
at p = po and n = 1.5 when replacing fr by f*(po) ~ 0.82f, according to
Eq. (25). We will now investigate the consequences of this assertion for the
understanding of deeply bound pionic atom states in heavy nuclei.

3.3. Deeply bound pionic states

The existence of narrow 1s and 2p states in heavy pionic atoms results
from a subtle balance between the attractive Coulomb potential and the
repulsive s-wave optical potential [15]. The net attraction is localized at
and beyond the nuclear surface. Under these special conditions the overlap
of the pion densities with the nuclear density distribution is sufficiently small
so that the absorptive width is reduced and the deeply bound states have
a chance to be observed as narrow structures. This is the case in the GSI
measurements of 1s and 2p pionic states in 207Pb [12] and, most recently, in
205Ph, using the (d, *He) reaction for their production.

We have performed detailed calculations for pionic 1s and 2p states in Pb
and other isotopes [16]. The aim is to explore, in particular, the sensitivity
of the widths of these states with respect to the density dependence of the
pion decay constant as it enters in the chiral s-wave potential (22). We have
combined this s-wave potential, treated in the local density approximation,
with the time-honoured non-local p-wave potential which systematically re-
produces the binding energies and widths of the higher-lying pionic atom
states previously measured in stopped 7~ experiments [11,17].

Our results for pionic 2°7Pb are shown in Fig 2. The points denoted
“fz” are obtained using the vacuum value of the pion decay constant in
T(-) as it enters the s-wave optical potential (22), (23). We have used
ReBy = 0 in our “standard” set and Im By ~ 0.06m_* following [11,17].
The neutron radius is taken about 3% larger than the proton radius in the

(r) (r)

local densities pp,” and pp, ’. Clearly, the “vacuum f;” scenario is quite far off
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6 6.5 17 7.5
B[MeV] 1s

Fig.2. Binding energy B and width I' of 1s and 2p pionic atom states in 297

Pb. Points (fr) are obtained [16] using the chiral s-wave optical potential (22, 23)
with vacuum pion decay constant (f, = 92.4 MeV) and ReBy = 0. Dark ellipses
(fr) are results [16] when replacing fr by the in-medium decay constant (25) with
on = (45 + 8) MeV. Light shaded areas: empirical range of B, I" from Ref. [12].

the lightly shaded areas which give the range of 1s and 2p binding energies
and widths as deduced from the 28Pb (d,? He)?*"Ph, data [12]. The missing
s-wave repulsion can of course be generated by simply adjusting ReBy. This
would require a large negative value, ReBy ~ —0.07m_*, which would be
at odds with theoretical many-body calculations [18], though within large
uncertainties [19]. It would also be at odds with the 7= -deuteron scattering
length as mentioned earlier. On the other hand, replacing the vacuum pion
decay constant in T(-) by f*(p) as given by Eq. (25), with p treated as local
density distribution, the missing repulsion in the s-wave optical potential
is easily supplied. The calculated results are shown by the dark ellipses in
Fig 2. The data are now well reproduced using ReBgy = 0.

Our predictions for the case of pionic 2°°Pb are shown in Fig 3 together
with recent (preliminary) data [20]. This is a particularly interesting exam-
ple because here the 1s state has been found as a well isolated peak in the
(d,? He) spectrum.

4. Concluding remarks and perspectives

The results in Section 3 clearly demonstrate that detailed high preci-
sion studies of deeply bound pionic atoms do provide strong additional con-
straints on the s-wave pion—nucleus optical potential, especially when these
studies are carried systematically through isotopic chains of neutron-rich
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205ph, fr ]

-3

6 6.5 T
B[MeV] 1s

Fig. 3. Same as Fig 2, for pionic 1s and 2p states in 2°° Pb. Theoretical predictions

[16] are compared with preliminary data (light shaded ellipses) [20].

nuclei. We have taken the position here that the repulsion in the s-wave
pion—nuclear interaction required to generate narrow ls and 2p states, is
naturally linked to the density dependence of the pion decay constant which
in turn reflects the change of the QCD vacuum structure in dense matter.

We note that the isospin even and odd terms in the s-wave optical po-
tential for a 7~ are both repulsive, whereas for a 7T, the odd part changes
sign and becomes attractive. For nuclei with N/Z ~ 1.5 it turns out that
the even and odd terms almost cancel, leaving a very small in-medium mass
shift to the #7. This appears to be compatible with the analysis of 7T
electroproduction on 3He leading to >H in the final state [21].

We have omitted a variety of other interesting topics related to chiral
dynamics in a nuclear medium, such as the splitting of K™ and K~ masses
which may have already been observed in high-energy heavy ion collisions
at GSI. It is likely that the symmetry breaking pattern starting from the
relatively weak 77 /7~ mass splitting in asymmetric nuclear matter proceeds
via the K/K system to the splitting of D¥ and D~ masses in matter which
offers the unique opportunity to investigate the in-medium dynamics of a
single light quark attached to a heavy spectator quark.

The author would like to thank to N. Kaiser, R. Leisibach, M. Flaskamp
and Th. Schwarz whose work has contributed substantially to this paper.
Thanks are also due to P. Kienle, H. Gilg and T. Yamazaki for many fruitful
discussions.
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