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RENYI ENTROPIES IN MULTIPARTICLEPRODUCTION �A. Bialas and W. CzyzM. Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polandand Institute of Nu
lear Physi
s, Cra
ow, Polande-mail:bialas�thris
.if.uj.edu.pl(Re
eived O
tober 20, 2000)Renyi entropies are 
al
ulated for some multiparti
le systems. Argu-ments are presented that measurements of Renyi entropies as fun
tions ofthe average number of parti
les produ
ed in high energy 
ollisions 
arryimportant information on the produ
ed system.PACS numbers: 13.85.Hd, 65.50.+m1. Introdu
tionThe pro
ess of multiparti
le produ
tion in high-energy 
ollisions is a
omplex phenomenon whi
h 
an be des
ribed from di�erent points of view,given the large number of variables involved. Indeed, the full knowledgeof the produ
ed system requires information about the probability distribu-tion PN (q1; ::::; qN )dq1:::dqN , where N is the number of produ
ed parti
lesand qi are their 4-momenta. Su
h information is, 
learly, never available:neither theoreti
ally (ex
ept in some simple, unrealisti
 models) nor exper-imentally. It is therefore of great importan
e to investigate some averagedquantities whi
h 
an be pra
ti
ally measured and � at the same time �provide some well-de�ned (although admittedly non 
omplete) informationabout PN (q1; :::; qN ). Many su
h quantities (mostly the moments of kine-mati
 variables and of the multipli
ity distribution in di�erent phase-spa
eregions [1℄) were measured and studied in the past. Pra
ti
ally all our presentknowledge about multiparti
le produ
tion is based on these analyses.Re
ently, we have proposed [2�4℄ to investigate the so-
alled Renyi en-tropiesHl, l = 2; 3; 4::: whi
h were introdu
ed many years ago [5℄ as a tool for� Presented at the XL Cra
ow S
hool of Theoreti
al Physi
s, Zakopane, PolandJune 3�11, 2000. (2803)



2804 A. Bialas, W. Czyzstudies of the dynami
al systems1 and are 
losely related to the thermody-nami
 entropy of the system (the Shannon entropy [7℄). Their novel aspe
tis that they are not related to the moments of the kinemati
al variablesand/or multipli
ity distributions but rather to moments of the probabilitydistributions themselves [3℄. In order to understand better the physi
al sig-ni�
an
e of this new measurement, it seems useful to 
onsider in detail somesimpli�ed systems resembling those whi
h are en
ountered in the physi
s ofmultiparti
le produ
tion. This is the purpose of the present paper.After reviewing shortly the method of measurement (Se
tion 2) and thegeneral properties of Renyi entropies (Se
tion 3), we dis
uss the results forspe
i�
 examples. The ideal Bose gas (in
luding e�e
ts of Bose 
ondensa-tion) is reviewed in Se
tion 4 and 5, and a multiparti
le system exhibitinglong-range 
orrelations in momentum spa
e in Se
tion 6. Our 
on
lusionsare listed in the last se
tion.2. Measurement of Renyi entropiesAs shown in [3℄, Renyi entropies Hl for integer l = 2; 3; 4::: 
an bedetermined from the measurement of the �
oin
iden
e probabilities� Cl,l = 2; 3; 4:::, whi
h generalize the notion introdu
ed some time ago by Ma [8℄.The measurement of Cl 
an be performed in the following steps [4℄:(i) One has to dis
retize the momentum distribution by splitting the in-vestigated region of (momentum) phase-spa
e into a number of 
ells ofa given size2 �q. Denoting the number of 
ell byM , ea
h event is now
hara
terized by the set of integers (n1; :::; nM ) denoting the numberof parti
les in ea
h of the 
ells. The whole system is then des
ribed bythe probability distribution W (n1; :::; nM ) whi
h is -of 
ourse- triviallyrelated to PN (q1; ::::; qN ) introdu
ed in Se
tion 1.(ii) The measurement is performed by 
onsidering a 
ertain number N tot ofevents (ea
h 
hara
terized by a parti
ular set n1; :::; nM ) and 
ountinghow many of these sets are identi
al (i.e. how many of them 
oin
ide).The 
oin
iden
e probabilities are de�ned asCl = Nl=N totl ; (1)where N2 is the number of identi
al pairs of events, N3 is the numberof identi
al triples, et
. Correspondingly, N tot2 = N tot(N tot � 1) is thetotal number of pairs re
orded, N tot3 = N tot(N tot� 1)(N tot� 2) is thetotal number of triples, et
.1 For a re
ent review, see e.g. [6℄.2 For simpli
ity we 
onsider here all 
ells of the same size. This is not ne
essary, ingeneral.



Renyi Entropies in Multiparti
le Produ
tion 2805(iii) The Renyi entropies are de�ned asHl = 11� l logCl : (2)One sees that this measurement is 
on
eptually very simple. The 
at
his that, for realisti
 systems, the 
oin
iden
e probabilities are usually verysmall and thus one needs a rather large statisti
s (large N tot) to obtain asigni�
ant result [3, 9℄.3. Renyi entropies and multiparti
le produ
tionSome features of Renyi entropies (and 
oin
iden
e probabilities) seemvery attra
tive for des
ription of multiparti
le systems. Let us list some ofthem(i) It is not di�
ult to show that Cl's are moments of the distributionW (N1; :::; nM ). The relation is [3℄:Cl =Xni [W (n1; :::; nM )℄l = D[W (n1; :::; nM )℄l�1E : (3)It explains dire
tly the physi
al meaning of the 
oin
iden
e probabili-ties.(ii) The formula (3) gives de�nition of Cl whi
h 
an be used for any land is thus more general than that given by (1) (whi
h 
an be appliedonly for integer l). A
tually (3) was the original de�nition of Renyi [5℄.Unfortunately, there seems to be no simple way to measure Cl for non-integer l, ex
ept by determining �rst the probabilities W (n1; :::; nM )and then using dire
tly the formula (3). This method would, however,require a tremendous statisti
s and thus does not seem pra
ti
al -ex
ept for very small systems (small number of parti
les and/or smallnumber of bins [3, 9, 10℄).(iii) When Eq. (3) is inserted into (2) and 
ontinued analyti
ally to l = 1,one obtains relation to the Shannon entropy S:H1=S�Xni W (n1; : : : ; nM ) logW (n1; : : : ; nM )=hlogW (n1; : : : ; nM )i:(4)This feature is of 
ourse very important: by extrapolation to l = 1of the measured Renyi entropies for l = 2; 3; ::: one may obtain infor-mation on the fundamental quantity S 
hara
terizing the statisti
al



2806 A. Bialas, W. Czyzsystem in question. The problem is that the extrapolating pro
edureis of 
ourse not unique and thus brings an additional error to thismeasurement3.(iv) One sees from (1) that the 
oin
iden
e probabilities are mostly sensi-tive to event-by-event �u
tuations. They may thus be very useful asa quantitative measure of this important feature of the data.(v) The measurement requires, as a �rst step, a dis
retization of the systemin question. Consequently, the results depend on the way the systemis dis
retized (on the size of the 
ell �q, in parti
ular). A 
arefulinvestigation of this dependen
e may be very interesting and fruitfulfor understanding of the dynami
s4.4. The ideal Bose gasWe start with the simplest example of an ideal gas of identi
al bosonsat equilibrium.The probability of having n1 bosons with energy "1, n2 bosons withenergy "2,... is given byP (n1; n2; ::::nM ) = MYm=1 pm;nm ; (5)where pm;nm = (1� xm)[xm℄nm ; (6)is the probability to have nm bosons with energy "m andxm = e��("m��); � = 1T ; (7)where � = �(T ) is the 
hemi
al potential.From (5) and (3) we obtain for 
oin
iden
e probabilitiesCl = MYm=1 (1� xm)l1� xlm ; (8)and thus Hl = � MXm=1 log(1� xm) + 11� l MXm=1 log�1� xm1� xlm� : (9)3 For a more detailed dis
ussion, see [3℄.4 Su
h studies, proved very fruitful already, in a di�erent 
ontext [1, 11℄.



Renyi Entropies in Multiparti
le Produ
tion 2807In the limit of 
ontinuous spe
trum, the sums in this formula 
an be repla
edby the integrals:Hl = Z d3pd3x(2�)3 log �1� e��("��)�+ 11� l Z d3pd3x(2�)3 log 1� e��("��)1� e�l�("��)! :(10)In 
ase of the photon gas (" = jpj; � = 0), the integrals 
an be worked outwith the result [3℄ Hl = 14 �1 + 1l + 1l2 + 1l3�S : (11)Thus we 
on
lude that in the 
ase of photon gas the Renyi entropies aresimply proportional to the standard (Shannon) entropy of the system. Oneimportant 
onsequen
e is that Hl are all proportional to the average numberof parti
les (photons in this 
ase) in the system:Hl = 14 �1 + 1l + 1l2 + 1l3� 2�445�(3)N ; (12)where N � MXm=1 1Xnm=0nmpm;nm = MXm=1 xm1� xm : (13)Note that for photons Hl � S � N � (�)�3 , hen
e for low temperaturesthey all vanish with the same temperature dependen
e.For massive parti
les and/or for non-vanishing 
hemi
al potential it isnot possible, in general, to obtain simple analyti
 results. The ex
eption isthe limit of very low temperature T ! 0 whi
h we are going to 
onsider.First, we observe that in the limit T ! 0 we have � ! 1 and thuse�"m ! 1. Thus � sin
e in this limit all parti
les should reside on thelowest level � we 
an determine �(T ) by demanding that the lowest energylevel 
ontains � on the average � N parti
les. This meansN = 1e�("1��) � 1 ! x1 = e��("1��) = NN + 1 : (14)In
identally, from (6), we getp1;n1 = �1� NN + 1�� NN + 1�n1 ; (15)for the multipli
ity distribution in the lowest level. Using (14) and takinginto a

ount that no other state is o

upied, the Renyi entropies 
an be



2808 A. Bialas, W. Czyztrivially obtained from (9) with the resultHl = � log(1�x1)+ 11� l log�1� x11� xl1� = 1l � 1 log �(1 +N)l �N l� : (16)In the limit N !1 this givesHl � log(1 +N) + log ll � 1 : (17)One 
an easily verify that the formula (17) remains valid also in the limitl! 1 (i.e. for Shannon entropy).We thus 
on
lude that in the limit of very low temperatures and for adis
rete energy spe
tra the entropies of the (
ondensed) Bose gas reveal thelogarithmi
 dependen
e on the average multipli
ity instead of the propor-tionality to N shown in Eq. (12).However, when we are dealing with a 
ontinuous energy spe
trum a 
riti-
al temperature, T
, appears, and we loose the logarithmi
 dependen
e of Hlon N . To see this we employ the following relation (proven in Appendix A)valid for an ideal Bose gasHl(T ) = 1l � 1  �lS(T )� S�Tl ��+ "�N(T )Tl � �N �Tl �Tl #� "E(T )Tl � E �Tl �Tl #! : (18)(Note that this relation gives, 
orre
tly, H1 = S. Note also that the tem-perature dependen
e of � is nor s
aled down with l.)This relation is 
onvenient be
ause we 
an simply 
opy the well knowntextbook expressions for S(T ) and E(T ). For T < T
, we have � = 0 and(18) simpli�es. Be
ause and N is �nite and given, the se
ond bra
ket onthe r.h.s. of (18) disappears. Copying S(T ) and E(T ) from e.g. Fetter +Wale
ka [12℄ we obtainlS(T )� S�Tl � = gV4�2 kB�2mkB~2 � 32 � �52�� �52� 52T 32 �l � 1l 32 � ; (19)E(T )Tl � E �Tl �Tl = gV4�2 kB�2mkB~2 � 32 � �52�� �52�T 32 �l � 1l 32 � ; (20)and �nally Hl(T ) =  l 52 � 1l 52 � l 32 ! 25S(T ) : (21)
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le Produ
tion 2809Sin
e S(T ) � (N�N
), where N
 is the average number of Bosons in theground state, we have also Hl(T ) � (N �N
). Sin
e (at �xed temperature)N
 � N , we obtain again proportionality of all Renyi entropies (in
ludingthe Shannon entropy) to the total number of parti
les. Note, however, thatthis need not to be true if the number of parti
les is 
hanged by 
hangingthe temperature of the system.Let us see what happens when we have a spatially �nite system of Bosons,i.e. when we put it in a trap.5. Bose gas in a harmoni
 trapBose gas at low temperatures has re
ently been experimentally investi-gated in the so 
alled harmoni
 traps (
ompare e.g. [13℄, and review arti-
le [14℄). To dis
uss su
h a system we 
an use our formulae (5)�(9) repla
ing,for a spheri
ally symmetri
 trap,"m ! "nx;ny;nz = �nx + ny + nz + 32�~! ; (22)where ! determines the �nite size, a, of the trapa =r ~m! m�mass of one Boson : (23)As it turns out [14℄ the 
riti
al temperatures , T
, of the observed 
onden-sates are kBT �(20�200)~! (~! being of the order of a few nano-Kelvins).Thus kBT � ~! and it makes good sense to take the 
ontinuous limit of theos
illator spe
trum.All relevant formulae for N(T ) ; E(T ) ; S(T ) have been worked outin [14℄ for T < T
 (note that we have now � = 32~!):S(T ) = 4kB�kBT~! �3�(4) ; (24)and E(T ) = N 32~! + 3(~!)3 (kBT )4�(4) : (25)Inserting them into (18) we obtainHl(T ) = 14�1 + 1l + 1l2 + 1l3�4kB�kBT~! �3�(4) : (26)Thus Hl(T ) = 14�1 + 1l + 1l2 + 1l3�S(T ) : (27)



2810 A. Bialas, W. CzyzSo, we obtain again the relation (11) proven for photons. We also haveS(T ) � N �N
 (28)and thus the multipli
ity dependen
e is the same as in the 
ase of the un-
onstrained Bose gas (with 
ontinuous energies) dis
ussed in the previousse
tion.It would be interesting to investigate the system of Bosons at su
h lowtemperatures ( or in su
h small traps) that the system would be
ome dis
rete(and loose T
). Then we would have to satisfy: kBT � ~!. This would meanthat we would have to maintain temperatures < 10�1 nano-Kelvins in thepresently available traps. The other possibility would be to make the trapsmore than 10 times smaller. Is this possible? We do not know.6. Long range 
orrelationsThe se
ond example we want to 
onsider is the system 
hara
terizedby multipli
ity distribution whi
h reveals important long-range 
orrelations.Let us thus 
onsider a distribution of parti
les in M bins given byP (n1; :::; nM ) = Z dtF (t)e�Nt MYi=1�(t!i)nini! � ; (29)where N is the total (average) multipli
ity and !i is the average multipli
ityin the bin i. F (t) is the KNO fun
tion [15℄. As one sees, this is just asuperposition of 
onvolutions of Poisson distributions des
ribing the physi
swhere the total multipli
ity (summed over all bins) is distributed a

ordingto P (n) = Z dtF (t)e�Nt (tN)nn! (30)and there are no other 
orrelations of shorter range.Our problem is to 
al
ulate Cl, i.e.Cl = Xn1;:::;nM [P (n1; :::; nM )℄l: (31)To this end we put multipli
ities in all bins equal to ea
h other !i � ! =N=M and obtainCl = Z dt1F (t1):::dtlF (tl)e�N(t1+:::+tl) hGl �l!(t1:::tl)1=l�iM ; (32)where Gl(z) =Xn �zl �nl (n!)l : (33)
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le Produ
tion 2811One sees from this de�nition that at small z[Gl(z)℄M � 1 +M �zl �l : (34)This property allows us to determine the limit N �xed, M ! 1. In this
ase z ! 0 and the result isCl = �Z dtF (t)e�Nt�l (35)and thus Hl = l1� l log�Z dtF (t)e�Nt� : (36)For negative binomial distributionF (t) = kk� (k) tk�1e�kt (37)the integral 
an be evaluated and the result isHl = kll � 1 log�1 + Nk � : (38)This result is interesting for two reasons:(a) It shows that the limit M ! 1 does exist (ex
ept for the Shannonentropy, l = 1);(b) At large N it gives the entropies proportional to logN and not toN . This is 
ertainly the 
onsequen
e of long-range 
orrelations: Fork ! 1 we re
over proportionality to N (again no surprise, be
ausethis limit 
orresponds to F (t) = Æ(t�1), i.e. pure Poisson distributionwith no long-range 
orrelations 5.For �nite number of bins M , we were not able to �nd analyti
 results in
losed form. Instead, we have 
arried out the numeri
al analysis for l = 2and for negative binomial distribution (37). In this 
ase, after some algebra,we obtainC2 = � kk� (k)�2 Z dt1dt2(t1t2)k�1e�k(t1+t2)e�N(pt1�pt2)2 hĜ(2!pt1t2)iM ;(39)where5 The limit M ! 1 at �xed N implies that we are dealing here with a �linearized�Poisson distribution. For a regular Poisson distribution in one bin one gets, for largeN ,Hl = 12 log(2�N) + 12 log ll�1 (note a misprint in an analogous formula in [3℄).



2812 A. Bialas, W. CzyzĜ(z) = e�zI0(z) (40)and I0 is the Bessel fun
tion.The double integral in (39) 
an be redu
ed to a single one by an appro-priate 
hange of variables (see Appendix B). The result isC2 = � kk� (k)�2 4(2!)2k 1Z0 dxx2k�1e�wx[Ĝ(x)℄Me
xK0(
x): (41)w = k! = kMN ; 
 = M + w : (42)This formula was investigated numeri
ally for k = 1; 2; 4 and ! = 0:5; 4:0:the se
ond Renyi entropy, H2, behaves for large N like (logN). More pre-
isely, it rea
hes rather soon (N � 30�50) its asymptoti
 form (38)).We thus 
on
lude that in the presen
e of long-range 
orrelations in mo-mentum spa
e one expe
ts the Renyi entropies to follow the asymptoti
behaviour Hl � logN and that this limit is obtained rather soon, i.e. formoderately large multipli
ities.7. Summary and 
on
lusionsAs shown re
ently [3, 4℄, the Renyi entropies provide a novel tool forinvestigation of multiparti
le phenomena, parti
ularly well suited for study-ing of the event-by-event �u
tuations. Therefore, we found it interestingto investigate them for some idealized multiparti
le systems in order to ob-tain an insight into the qualitative behaviour one may expe
t when a
tualmeasurements shall be performed.In the present paper we present an evaluation of the Renyi entropies for(a) ideal Bose gas in the limit of both very high and very low temperatures,and(b) for a multiparti
le system 
hara
terized by strong long-range 
orre-lations. We have studied the dependen
e of Renyi entropies Hl onparti
le multipli
ity N and on the rank l.
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le Produ
tion 2813The results of this exer
ise 
an be summarized as follows.(i) If long-range 
orrelations are absent, the Renyi entropy is proportionalto N . Hl � N ; (43)If, however, the system reveals positive long-range 
orrelations, (43) isno longer valid and one obtains insteadHl � logN ; (44)at least for large enough N .In 
ase of Bose Gas in the limit of very high temperature (so that themasses and 
hemi
al potentials 
an be negle
ted, and N is determinedby T ) one obtains Renyi entropies simply proportional to the Shannonentropy. This implies also proportionality to the number of parti
les:Hl = 14 �1 + 1l + 1l2 + 1l3�S; S � N : (45)At low temperatures, the behaviour of the Bose gas depends 
ru-
ially on the nature of the energy spe
trum. If the spe
trum is dis
rete,the (positive) long-range 
orrelations appear when all parti
les fall tothe lowest energy state (the multipli
ity distribution 
orresponds tothe negative binomial one with k = 1). This is just the spe
ial 
aseof the system dis
ussed in Se
tion 6 (M = 1, as all momenta are thesame) and thus the entropy is proportional to the logarithm of thenumber of parti
les. The same is true for the Renyi entropies. More-over, in the limit of large N , the dependen
e of the Renyi entropies onthe rank is only marginal.For the 
ontinuous spe
trum the behaviour is di�erent, be
ause atthe 
riti
al temperature the number of bosons in the ground statevanishes. Thus no long-range 
orrelations are present. For the gas inan in�nite volume one obtains for T < T
Hl(T ) = � l 52 � 1l 52 � l 32 �25S(T ) (46)with S � N �N
 ; (47)where N
 is the number of parti
les in the ground state.



2814 A. Bialas, W. CzyzSimilar situation is obtained for bosons in a harmoni
 trap, ex
eptthat in this 
ase the dependen
e on rank is the same as that for veryhigh temperature i.e. given by (45).Sin
e for �xed temperature N
 � N , in this 
ase all Renyi entropiesare proportional to the average number of parti
les.We also 
onsidered a distribution of parti
les partly motivated bywhat is qualitatively known from the existing measurements and anal-ysis of multiparti
le produ
tion pro
esses [1℄. It exhibits positive long-range 
orrelations and no other 
orrelations of shorter range6. In this
ase one 
an study the dependen
e of Renyi entropies on both the binsize (i.e. dis
retization pro
edure) and on the total number of parti
les.Our analysis shows that in this 
ase Renyi entropies are proportionalto logN . For negative binomial distribution, in the limit of vanishingbin size one obtains a simple resultHl = kll � 1 log�1 + Nk � : (48)Numeri
al studies have shown that this result holds also for �nite binsize in a large interval of multipli
ities.

Fig. 1. Dependen
e of the Renyi entropies Hl on the rank l. Crosses: Photongas, Eq. (11). Triangles: Nonrelativisti
 Bose Gas at low temperature (
ontinuousspe
trum), Eq. (21). Cir
les: Asymptoti
 formula (38).6 In realisti
 systems the short-range 
orrelations are also present, so our analysis 
anat best be only a 
rude approximation.



Renyi Entropies in Multiparti
le Produ
tion 2815(ii) The analyti
 form of the dependen
e ofHl on the rank l di�ers markedlyfrom one system to another, as exhibited in Eqs. (45), (46) and (48).Numeri
al evaluation, however, shows that these di�eren
es are a
tu-ally not so great, as seen in the Fig. 1. Thus rather pre
ise measure-ments of Renyi entropies may be ne
essary to determine to whi
h 
lassthe investigated system belongs.A pra
ti
al 
on
lusion whi
h follows from this dis
ussion is that the de-penden
e of Renyi entropies on parti
le multipli
ity represents an importantfeature of a multiparti
le system. Proportionality to N indi
ates an equili-brated system with no strong long-range 
orrelations. On the other hand,for non-equilibrated systems and/or superposition of system with di�erentproperties, proportionality to logN seems to be a more natural behaviour.It would be very interesting to observe these di�eren
es in nature. One mayspe
ulate, e.g., that they should show up in 
omparison between nu
leon-nu
leon and the 
entral nu
leus-nu
leus 
ollisions (if equilibration of thesystem does indeed o

ur in the latter 
ase).This investigation was supported in part by the the Polish State Commit-tee for S
ienti�
 Resear
h(KBN) Grant No 2 P03B 086 14 and by SubsydiumFNP 1/99. Appendix ATo obtain (18) we observe that with the help of (5)�(8) we 
an writeHl = 11� l "l MXm=1 log(1� xm(T ))� MXm=1 log�1� xm�Tl ��# : (49)On the other hand the same formulae lead toS = � MXm=1 � log(1� xm) + xm1� xm log xm�= � MX log(1� xm)� �NT + ET : (50)Thus � MXm=1 log(1� xm(t)) = S(T ) + �N(T )T � E(T )T : (51)Employing (51) in (49) we obtain (18).



2816 A. Bialas, W. CzyzAppendix BTo 
al
ulate C given by (39) we perform the 
hange of variablesx = 2!pt1t2; y = !(pt1 �pt2)2 : (52)The Ja
obian is dt1dt2 = xdx2!2 dypy(y + 2x) (53)so that the integral (39) be
omesC2 = � kk� (k)�2 4(2!)2k 1Z0 dxx2k�1e�wx[Ĝ(x)℄M 1Z0 dypy(y + 2x)e�
y ; (54)where w and 
 are given by (42).The next point is to employ the formula (Gradstein, 3.364.3)1Z0 dypy(y + 2x)e�
y = e
xK0(
x) : (55)Using this we obtain (41) REFERENCES[1℄ For re
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