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Renyi entropies are calculated for some multiparticle systems. Argu-
ments are presented that measurements of Renyi entropies as functions of
the average number of particles produced in high energy collisions carry
important information on the produced system.
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1. Introduction

The process of multiparticle production in high-energy collisions is a
complex phenomenon which can be described from different points of view,
given the large number of variables involved. Indeed, the full knowledge
of the produced system requires information about the probability distribu-
tion Pn(q1, ..., qN)dq1...dgn, where N is the number of produced particles
and ¢; are their 4-momenta. Such information is, clearly, never available:
neither theoretically (except in some simple, unrealistic models) nor exper-
imentally. It is therefore of great importance to investigate some averaged
quantities which can be practically measured and — at the same time —
provide some well-defined (although admittedly non complete) information
about Pn(qi,...,qn). Many such quantities (mostly the moments of kine-
matic variables and of the multiplicity distribution in different phase-space
regions [1]) were measured and studied in the past. Practically all our present
knowledge about multiparticle production is based on these analyses.

Recently, we have proposed [2-4] to investigate the so-called Renyi en-
tropies H;, | = 2,3,4... which were introduced many years ago [5] as a tool for
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studies of the dynamical systems' and are closely related to the thermody-
namic entropy of the system (the Shannon entropy [7]). Their novel aspect
is that they are not related to the moments of the kinematical variables
and/or multiplicity distributions but rather to moments of the probability
distributions themselves [3]. In order to understand better the physical sig-
nificance of this new measurement, it seems useful to consider in detail some
simplified systems resembling those which are encountered in the physics of
multiparticle production. This is the purpose of the present paper.

After reviewing shortly the method of measurement (Section 2) and the
general properties of Renyi entropies (Section 3), we discuss the results for
specific examples. The ideal Bose gas (including effects of Bose condensa-
tion) is reviewed in Section 4 and 5, and a multiparticle system exhibiting
long-range correlations in momentum space in Section 6. Our conclusions
are listed in the last section.

2. Measurement of Renyi entropies

As shown in [3], Renyi entropies H; for integer [ = 2,3,4... can be
determined from the measurement of the “coincidence probabilities” Cf,
[ =2,3,4..., which generalize the notion introduced some time ago by Ma [8|.
The measurement of C; can be performed in the following steps [4]:

(i) One has to discretize the momentum distribution by splitting the in-
vestigated region of (momentum) phase-space into a number of cells of
a given size? Aq. Denoting the number of cell by M, each event is now
characterized by the set of integers (nq,...,nps) denoting the number
of particles in each of the cells. The whole system is then described by
the probability distribution W (nq, ...,nas) which is -of course- trivially
related to Pn(q1,....,qn) introduced in Section 1.

(71) The measurement is performed by considering a certain number N*°t of
events (each characterized by a particular set nq,...,nys) and counting
how many of these sets are identical (i.e. how many of them coincide).
The coincidence probabilities are defined as

O'l:]\]l/]\/vltot ) (1)

where Ny is the number of identical pairs of events, N3 is the number
of identical triples, etc. Correspondingly, Ni°t = N™t(N®t — 1) is the
total number of pairs recorded, N = NTt(NtOt — 1)(N°F — 2) is the
total number of triples, etc.

! For a recent review, see e.g. [6].
2 For simplicity we consider here all cells of the same size. This is not necessary, in
general.
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The Renyi entropies are defined as

Hl = log Cl . (2)

1-1

One sees that this measurement is conceptually very simple. The catch
is that, for realistic systems, the coincidence probabilities are usually very
small and thus one needs a rather large statistics (large N'°%) to obtain a
significant result [3,9].

3. Renyi entropies and multiparticle production

Some features of Renyi entropies (and coincidence probabilities) seem
very attractive for description of multiparticle systems. Let us list some of

them

(1)

(i)

(iii)

It is not difficult to show that C;’s are moments of the distribution
W (N, ...,nar). The relation is [3]:

Cr=S W (nt,ynar)] = <[W(n1, ...,nM)]l—1> . (3)

ng

It explains directly the physical meaning of the coincidence probabili-
ties.

The formula (3) gives definition of C; which can be used for any [
and is thus more general than that given by (1) (which can be applied
only for integer 1). Actually (3) was the original definition of Renyi [5].
Unfortunately, there seems to be no simple way to measure Cj for non-
integer [, except by determining first the probabilities W (nq,...,nar)
and then using directly the formula (3). This method would, however,
require a tremendous statistics and thus does not seem practical -
except for very small systems (small number of particles and/or small
number of bins [3,9,10]).

When Eq. (3) is inserted into (2) and continued analytically to [ = 1,
one obtains relation to the Shannon entropy S:

H1:SEZW(n1,...,nM)logW(nl, coosna) =({logW(ny,...,nn)).

n;

(4)
This feature is of course very important: by extrapolation to [ = 1
of the measured Renyi entropies for [ = 2,3, ... one may obtain infor-
mation on the fundamental quantity S characterizing the statistical
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system in question. The problem is that the extrapolating procedure
is of course not unique and thus brings an additional error to this
measurement?.

One sees from (1) that the coincidence probabilities are mostly sensi-
tive to event-by-event fluctuations. They may thus be very useful as
a quantitative measure of this important feature of the data.

The measurement requires, as a first step, a discretization of the system
in question. Consequently, the results depend on the way the system
is discretized (on the size of the cell Ag, in particular). A careful
investigation of this dependence may be very interesting and fruitful

for understanding of the dynamics?.

4. The ideal Bose gas

We start with the simplest example of an ideal gas of identical bosons
at equilibrium.

The probability of having mqy bosons with energy &1, ng bosons with
energy €9,... is given by

where

M

P(nl,nQ, nM) = H pmmm ) (5)
m=1

P = (1= zm)[zm]"™ (6)

is the probability to have n,, bosons with energy ¢, and

r = e A g ©

where p = p(T) is the chemical potential.
From (5) and (3) we obtain for coincidence probabilities

M
(1 —zp)
=1l 5—1- (8)
m=1 m

and thus

M 1 U 11—z
H =— log(1 — - | mo.
P (= )

m=1

% For a more detailed discussion, see [3].
4 Such studies, proved very fruitful already, in a different context [1,11].
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In the limit of continuous spectrum, the sums in this formula can be replaced
by the integrals:

d3pdix —B(e—p) 1 d3pdx 1—e Blem)
Hi _/ () %8 (1 —¢ >+ 1—1/ @mp 8\ 1= |
(10)

In case of the photon gas (¢ = |p|,u = 0), the integrals can be worked out
with the result [3]

4 oz

Thus we conclude that in the case of photon gas the Renyi entropies are
simply proportional to the standard (Shannon) entropy of the system. One
important consequence is that H; are all proportional to the average number
of particles (photons in this case) in the system:

1 1 1 1
Hl:—<1+—+—+—)S. (11)

1 1 1 1\ 2«
H=-(1+-4+=4+ =] ——N 12
! 4<+l+l2+l3)45<(3) : (12)
where
M o0 M 2
N = Z Z NmPm,nm = Z . _n; . (13)
m=1 1, =0 m=1 m

Note that for photons H; ~ S ~ N ~ (8)~3 | hence for low temperatures
they all vanish with the same temperature dependence.

For massive particles and/or for non-vanishing chemical potential it is
not possible, in general, to obtain simple analytic results. The exception is
the limit of very low temperature T' — 0 which we are going to consider.

First, we observe that in the limit " — 0 we have 8 — oo and thus
efem — oo. Thus — since in this limit all particles should reside on the
lowest level — we can determine (7)) by demanding that the lowest energy
level contains — on the average — N particles. This means

1
_ —eBler—p) — T
N eﬂ(m—u) 1 — I e Nl . (14)

Incidentally, from (6), we get

N N "
=(1- 15

for the multiplicity distribution in the lowest level. Using (14) and taking
into account that no other state is occupied, the Renyi entropies can be
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trivially obtained from (9) with the result

H; = —log(l—xz1)+

1_llog<1_x1) :l_1110g<(1+N)l—Nl) . (16)

1- mll
In the limit N — oo this gives

logl
-1

H) ~log(1+N) + (17)
One can easily verify that the formula (17) remains valid also in the limit
I — 1 (i.e. for Shannon entropy).

We thus conclude that in the limit of very low temperatures and for a
discrete energy spectra the entropies of the (condensed) Bose gas reveal the
logarithmic dependence on the average multiplicity instead of the propor-
tionality to N shown in Eq. (12).

However, when we are dealing with a continuous energy spectrum a criti-
cal temperature, T¢, appears, and we loose the logarithmic dependence of H
on N. To see this we employ the following relation (proven in Appendix A)
valid for an ideal Bose gas

[

£(1) ) | s)

(Note that this relation gives, correctly, H; = S. Note also that the tem-
perature dependence of p is nor scaled down with [.)

This relation is convenient because we can simply copy the well known
textbook expressions for S(T') and E(T'). For T' < Tc, we have p = 0 and
(18) simplifies. Because and N is finite and given, the second bracket on
the r.h.s. of (18) disappears. Copying S(T') and E(T) from e.g. Fetter +
Walecka [12] we obtain

TN _ gV, (2mks\® . (5\ ., (5\5.0(, 1
i) -5 (7) = P (Z52) ¢ (3) r(5) 574 (1= 5) - 9
T 3
7) gV, [(2mk\%, (5 5 1
7 ‘m’“}3< 2 ) <<5)F<5>T <l_ﬁ)’ 20

and finally
muq:<f:i>§ﬂn. (21)

uN(T)  pN (%)]

=
3
&

M)
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Since S(T') ~ (N —N.), where N, is the average number of Bosons in the
ground state, we have also H;(T) ~ (N — N¢). Since (at fixed temperature)
N, ~ N, we obtain again proportionality of all Renyi entropies (including
the Shannon entropy) to the total number of particles. Note, however, that
this need not to be true if the number of particles is changed by changing
the temperature of the system.

Let us see what happens when we have a spatially finite system of Bosons,
i.e. when we put it in a trap.

5. Bose gas in a harmonic trap

Bose gas at low temperatures has recently been experimentally investi-
gated in the so called harmonic traps (compare e.g. [13]|, and review arti-
cle [14]). To discuss such a system we can use our formulae (5)—(9) replacing,
for a spherically symmetric trap,

Em = Engnym: = <nm +ny+n, + %) hw , (22)

where w determines the finite size, a, of the trap

a= N m — mass of one Boson . (23)
mw
As it turns out [14] the critical temperatures , Tt, of the observed conden-
sates are kpT ~(20-200)Aw (hw being of the order of a few nano-Kelvins).
Thus kT > hw and it makes good sense to take the continuous limit of the
oscillator spectrum.
All relevant formulae for N(T'), E(T), S(T) have been worked out
in [14] for T < T, (note that we have now p = 3hw):

3 kpT\®
S(T) = 4k (E) (@, (24)
and 3 3

_ N 4

B(T) = N3 + G (hT)0(4) (25)
Inserting them into (18) we obtain
1 1 1 1 keT*

PTEEET (FENE UL PR A VIR

Thus

HZ(T):%<1+%+%2+%3)S(T). (27)
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So, we obtain again the relation (11) proven for photons. We also have
S(T) ~ N — N, (28)

and thus the multiplicity dependence is the same as in the case of the un-
constrained Bose gas (with continuous energies) discussed in the previous
section.

It would be interesting to investigate the system of Bosons at such low
temperatures ( or in such small traps) that the system would become discrete
(and loose T¢). Then we would have to satisfy: kT < fiw. This would mean
that we would have to maintain temperatures < 10~" nano-Kelvins in the
presently available traps. The other possibility would be to make the traps
more than 10 times smaller. Is this possible? We do not know.

6. Long range correlations

The second example we want to consider is the system characterized
by multiplicity distribution which reveals important long-range correlations.
Let us thus consider a distribution of particles in M bins given by

P(n1,.ynag) = /th —NtH<t“’Z ) (29)

where N is the total (average) multiplicity and w; is the average multiplicity
in the bin i. F(t) is the KNO function [15]. As one sees, this is just a
superposition of convolutions of Poisson distributions describing the physics
where the total multiplicity (summed over all bins) is distributed according
to

P(n) = / th(t)eNt% (30)

and there are no other correlations of shorter range.
Our problem is to calculate Cj, i.e.

Ci= > [P(na,..,ny)] (31)

To this end we put multiplicities in all bins equal to each other w; = w =
N/M and obtain

M
Cl = /dtlF(tl)...dtlF(tl)e_N(t1+“‘+tl) [Gl (lw(tl...tl)l/l)] s (32)

where

o) =3 (2)" oyt (33)

n
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One sees from this definition that at small 2

(G ~ 14+ M (%)l . (34)

This property allows us to determine the limit N fixed, M — oc. In this
case z — 0 and the result is

C = < / th(t)e_Nt>l (35)

11_ Jlog < / th(t)eNt) . (36)

For negative binomial distribution

and thus

H, =

kk
F(t) = ——tF e ™ 37
(0=t e (37
the integral can be evaluated and the result is
kl N
H, = 1 1+—.
= g (14 ) (39

This result is interesting for two reasons:

(a) It shows that the limit M — oo does exist (except for the Shannon
entropy, [ = 1);

(b) At large N it gives the entropies proportional to log N and not to
N. This is certainly the consequence of long-range correlations: For
k — oo we recover proportionality to N (again no surprise, because
this limit corresponds to F'(t) = §(¢t— 1), i.e. pure Poisson distribution
with no long-range correlations °.

For finite number of bins M, we were not able to find analytic results in
closed form. Instead, we have carried out the numerical analysis for [ = 2
and for negative binomial distribution (37). In this case, after some algebra,
we obtain

kk 2 N M
Co = <—F(k)) /dt1a’,152(151152)klek(tlthQ)eN(\/E\/E)2 [G(Qth1t2)] ’

(39)

where

® The limit M — oo at fixed N implies that we are dealing here with a “linearized”
Poisson distribution. For a regular Poisson distribution in one bin one gets, for large

N,H; = +log(2nN) + 11221 (note a misprint in an analogous formula in [3]).
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G(z) = e *Iy(2) (40)
and I is the Bessel function.

The double integral in (39) can be reduced to a single one by an appro-
priate change of variables (see Appendix B). The result is

ANE 7 .
= <%) (Qj)Qk /dm%lem[G(fﬂ)]MemKo(Qfﬂ)- (41)
0
k kM
w===—0  2=M+tuw. (42)

This formula was investigated numerically for £ = 1,2,4 and w = 0.5,4.0:
the second Renyi entropy, Hs, behaves for large N like (log N). More pre-
cisely, it reaches rather soon (N ~ 30-50) its asymptotic form (38)).

We thus conclude that in the presence of long-range correlations in mo-
mentum space one expects the Renyi entropies to follow the asymptotic
behaviour H; ~ log N and that this limit is obtained rather soon, i.e. for
moderately large multiplicities.

7. Summary and conclusions

As shown recently [3,4], the Renyi entropies provide a novel tool for
investigation of multiparticle phenomena, particularly well suited for study-
ing of the event-by-event fluctuations. Therefore, we found it interesting
to investigate them for some idealized multiparticle systems in order to ob-
tain an insight into the qualitative behaviour one may expect when actual
measurements shall be performed.

In the present paper we present an evaluation of the Renyi entropies for

(a) ideal Bose gas in the limit of both very high and very low temperatures,
and

(b) for a multiparticle system characterized by strong long-range corre-
lations. We have studied the dependence of Renyi entropies H; on
particle multiplicity N and on the rank /.
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The results of this exercise can be summarized as follows.

(i) If long-range correlations are absent, the Renyi entropy is proportional
to N.

H, ~ N, (43)

If, however, the system reveals positive long-range correlations, (43) is
no longer valid and one obtains instead

H; ~logN , (44)

at least for large enough N.

In case of Bose Gas in the limit of very high temperature (so that the
masses and chemical potentials can be neglected, and N is determined
by T') one obtains Renyi entropies simply proportional to the Shannon
entropy. This implies also proportionality to the number of particles:

1 1 1 1
HZ_Z<1+7+Z_2+Z_3)S’ S~N. (45)

At low temperatures, the behaviour of the Bose gas depends cru-
cially on the nature of the energy spectrum. If the spectrum is discrete,
the (positive) long-range correlations appear when all particles fall to
the lowest energy state (the multiplicity distribution corresponds to
the negative binomial one with & = 1). This is just the special case
of the system discussed in Section 6 (M = 1, as all momenta are the
same) and thus the entropy is proportional to the logarithm of the
number of particles. The same is true for the Renyi entropies. More-
over, in the limit of large IV, the dependence of the Renyi entropies on
the rank is only marginal.

For the continuous spectrum the behaviour is different, because at
the critical temperature the number of bosons in the ground state
vanishes. Thus no long-range correlations are present. For the gas in
an infinite volume one obtains for T' < T,

m(r) = (15— ) 351) (40

with
S~N-—N,, (47)

where N, is the number of particles in the ground state.
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Similar situation is obtained for bosons in a harmonic trap, except
that in this case the dependence on rank is the same as that for very
high temperature i.e. given by (45).

Since for fixed temperature N, ~ N, in this case all Renyi entropies
are proportional to the average number of particles.

We also considered a distribution of particles partly motivated by
what is qualitatively known from the existing measurements and anal-
ysis of multiparticle production processes [1]. It exhibits positive long-
range correlations and no other correlations of shorter range®. In this
case one can study the dependence of Renyi entropies on both the bin
size (i.e. discretization procedure) and on the total number of particles.
Our analysis shows that in this case Renyi entropies are proportional
to log N. For negative binomial distribution, in the limit of vanishing
bin size one obtains a simple result

kl N
H, = 1 1+—. 4
= o (14 ) (49

Numerical studies have shown that this result holds also for finite bin
size in a large interval of multiplicities.

HyMH o
1+

05

L 1 I 1
2 3 4 5 /

Dependence of the Renyi entropies H; on the rank [. Crosses: Photon

gas, Eq. (11). Triangles: Nonrelativistic Bose Gas at low temperature (continuous
spectrum), Eq. (21). Circles: Asymptotic formula (38).

6 In realistic systems the short-range correlations are also present, so our analysis can

at

best be only a crude approximation.
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(i) The analytic form of the dependence of H; on the rank [ differs markedly
from one system to another, as exhibited in Eqgs. (45), (46) and (48).
Numerical evaluation, however, shows that these differences are actu-
ally not so great, as seen in the Fig. 1. Thus rather precise measure-
ments of Renyi entropies may be necessary to determine to which class
the investigated system belongs.

A practical conclusion which follows from this discussion is that the de-
pendence of Renyi entropies on particle multiplicity represents an important
feature of a multiparticle system. Proportionality to NV indicates an equili-
brated system with no strong long-range correlations. On the other hand,
for non-equilibrated systems and/or superposition of system with different
properties, proportionality to log N seems to be a more natural behaviour.
It would be very interesting to observe these differences in nature. One may
speculate, e.g., that they should show up in comparison between nucleon-
nucleon and the central nucleus-nucleus collisions (if equilibration of the
system does indeed occur in the latter case).

This investigation was supported in part by the the Polish State Commit-
tee for Scientific Research(KBN) Grant No 2 P03B 086 14 and by Subsydium
FNP 1/99.

Appendix A

To obtain (18) we observe that with the help of (5)—(8) we can write

H = % [lmz]\i:llog(l — 2 (T)) — mﬁilog (1 — 2 G))] L)

On the other hand the same formulae lead to

M T
S = —mEZ:l [log(l —Tm) + . _n;m logxm]
- —Zlog(l—xm)—%—i-%- (50)
Thus o
— S log(1 — mm(#) = S(T) + ‘”\;fT) _ E;T) . (51)
m=1

Employing (51) in (49) we obtain (18).
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Appendix B

To calculate C given by (39) we perform the change of variables

T =2wVtity y=wt — \/5)2 . (52)
The Jacobian is i i
dtydty = 2% Y (53)

2w \fy(y + 2)
so that the integral (39) becomes

_ (K oy 7 %1 —w[ MOo dy -0
Co = <W) (2w)2k0/d$x e Y [G(z)] O/WG Y, (54)

where w and {2 are given by (42).
The next point is to employ the formula (Gradstein, 3.364.3)

e W ="K (Q1). 55
| s 0(20) (55)
0
Using this we obtain (41)
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