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RENYI ENTROPIES IN MULTIPARTICLEPRODUCTION �A. Bialas and W. CzyzM. Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polandand Institute of Nulear Physis, Craow, Polande-mail:bialas�thris.if.uj.edu.pl(Reeived Otober 20, 2000)Renyi entropies are alulated for some multipartile systems. Argu-ments are presented that measurements of Renyi entropies as funtions ofthe average number of partiles produed in high energy ollisions arryimportant information on the produed system.PACS numbers: 13.85.Hd, 65.50.+m1. IntrodutionThe proess of multipartile prodution in high-energy ollisions is aomplex phenomenon whih an be desribed from di�erent points of view,given the large number of variables involved. Indeed, the full knowledgeof the produed system requires information about the probability distribu-tion PN (q1; ::::; qN )dq1:::dqN , where N is the number of produed partilesand qi are their 4-momenta. Suh information is, learly, never available:neither theoretially (exept in some simple, unrealisti models) nor exper-imentally. It is therefore of great importane to investigate some averagedquantities whih an be pratially measured and � at the same time �provide some well-de�ned (although admittedly non omplete) informationabout PN (q1; :::; qN ). Many suh quantities (mostly the moments of kine-mati variables and of the multipliity distribution in di�erent phase-spaeregions [1℄) were measured and studied in the past. Pratially all our presentknowledge about multipartile prodution is based on these analyses.Reently, we have proposed [2�4℄ to investigate the so-alled Renyi en-tropiesHl, l = 2; 3; 4::: whih were introdued many years ago [5℄ as a tool for� Presented at the XL Craow Shool of Theoretial Physis, Zakopane, PolandJune 3�11, 2000. (2803)



2804 A. Bialas, W. Czyzstudies of the dynamial systems1 and are losely related to the thermody-nami entropy of the system (the Shannon entropy [7℄). Their novel aspetis that they are not related to the moments of the kinematial variablesand/or multipliity distributions but rather to moments of the probabilitydistributions themselves [3℄. In order to understand better the physial sig-ni�ane of this new measurement, it seems useful to onsider in detail somesimpli�ed systems resembling those whih are enountered in the physis ofmultipartile prodution. This is the purpose of the present paper.After reviewing shortly the method of measurement (Setion 2) and thegeneral properties of Renyi entropies (Setion 3), we disuss the results forspei� examples. The ideal Bose gas (inluding e�ets of Bose ondensa-tion) is reviewed in Setion 4 and 5, and a multipartile system exhibitinglong-range orrelations in momentum spae in Setion 6. Our onlusionsare listed in the last setion.2. Measurement of Renyi entropiesAs shown in [3℄, Renyi entropies Hl for integer l = 2; 3; 4::: an bedetermined from the measurement of the �oinidene probabilities� Cl,l = 2; 3; 4:::, whih generalize the notion introdued some time ago by Ma [8℄.The measurement of Cl an be performed in the following steps [4℄:(i) One has to disretize the momentum distribution by splitting the in-vestigated region of (momentum) phase-spae into a number of ells ofa given size2 �q. Denoting the number of ell byM , eah event is nowharaterized by the set of integers (n1; :::; nM ) denoting the numberof partiles in eah of the ells. The whole system is then desribed bythe probability distribution W (n1; :::; nM ) whih is -of ourse- triviallyrelated to PN (q1; ::::; qN ) introdued in Setion 1.(ii) The measurement is performed by onsidering a ertain number N tot ofevents (eah haraterized by a partiular set n1; :::; nM ) and ountinghow many of these sets are idential (i.e. how many of them oinide).The oinidene probabilities are de�ned asCl = Nl=N totl ; (1)where N2 is the number of idential pairs of events, N3 is the numberof idential triples, et. Correspondingly, N tot2 = N tot(N tot � 1) is thetotal number of pairs reorded, N tot3 = N tot(N tot� 1)(N tot� 2) is thetotal number of triples, et.1 For a reent review, see e.g. [6℄.2 For simpliity we onsider here all ells of the same size. This is not neessary, ingeneral.



Renyi Entropies in Multipartile Prodution 2805(iii) The Renyi entropies are de�ned asHl = 11� l logCl : (2)One sees that this measurement is oneptually very simple. The athis that, for realisti systems, the oinidene probabilities are usually verysmall and thus one needs a rather large statistis (large N tot) to obtain asigni�ant result [3, 9℄.3. Renyi entropies and multipartile produtionSome features of Renyi entropies (and oinidene probabilities) seemvery attrative for desription of multipartile systems. Let us list some ofthem(i) It is not di�ult to show that Cl's are moments of the distributionW (N1; :::; nM ). The relation is [3℄:Cl =Xni [W (n1; :::; nM )℄l = D[W (n1; :::; nM )℄l�1E : (3)It explains diretly the physial meaning of the oinidene probabili-ties.(ii) The formula (3) gives de�nition of Cl whih an be used for any land is thus more general than that given by (1) (whih an be appliedonly for integer l). Atually (3) was the original de�nition of Renyi [5℄.Unfortunately, there seems to be no simple way to measure Cl for non-integer l, exept by determining �rst the probabilities W (n1; :::; nM )and then using diretly the formula (3). This method would, however,require a tremendous statistis and thus does not seem pratial -exept for very small systems (small number of partiles and/or smallnumber of bins [3, 9, 10℄).(iii) When Eq. (3) is inserted into (2) and ontinued analytially to l = 1,one obtains relation to the Shannon entropy S:H1=S�Xni W (n1; : : : ; nM ) logW (n1; : : : ; nM )=hlogW (n1; : : : ; nM )i:(4)This feature is of ourse very important: by extrapolation to l = 1of the measured Renyi entropies for l = 2; 3; ::: one may obtain infor-mation on the fundamental quantity S haraterizing the statistial



2806 A. Bialas, W. Czyzsystem in question. The problem is that the extrapolating proedureis of ourse not unique and thus brings an additional error to thismeasurement3.(iv) One sees from (1) that the oinidene probabilities are mostly sensi-tive to event-by-event �utuations. They may thus be very useful asa quantitative measure of this important feature of the data.(v) The measurement requires, as a �rst step, a disretization of the systemin question. Consequently, the results depend on the way the systemis disretized (on the size of the ell �q, in partiular). A arefulinvestigation of this dependene may be very interesting and fruitfulfor understanding of the dynamis4.4. The ideal Bose gasWe start with the simplest example of an ideal gas of idential bosonsat equilibrium.The probability of having n1 bosons with energy "1, n2 bosons withenergy "2,... is given byP (n1; n2; ::::nM ) = MYm=1 pm;nm ; (5)where pm;nm = (1� xm)[xm℄nm ; (6)is the probability to have nm bosons with energy "m andxm = e��("m��); � = 1T ; (7)where � = �(T ) is the hemial potential.From (5) and (3) we obtain for oinidene probabilitiesCl = MYm=1 (1� xm)l1� xlm ; (8)and thus Hl = � MXm=1 log(1� xm) + 11� l MXm=1 log�1� xm1� xlm� : (9)3 For a more detailed disussion, see [3℄.4 Suh studies, proved very fruitful already, in a di�erent ontext [1, 11℄.



Renyi Entropies in Multipartile Prodution 2807In the limit of ontinuous spetrum, the sums in this formula an be replaedby the integrals:Hl = Z d3pd3x(2�)3 log �1� e��("��)�+ 11� l Z d3pd3x(2�)3 log 1� e��("��)1� e�l�("��)! :(10)In ase of the photon gas (" = jpj; � = 0), the integrals an be worked outwith the result [3℄ Hl = 14 �1 + 1l + 1l2 + 1l3�S : (11)Thus we onlude that in the ase of photon gas the Renyi entropies aresimply proportional to the standard (Shannon) entropy of the system. Oneimportant onsequene is that Hl are all proportional to the average numberof partiles (photons in this ase) in the system:Hl = 14 �1 + 1l + 1l2 + 1l3� 2�445�(3)N ; (12)where N � MXm=1 1Xnm=0nmpm;nm = MXm=1 xm1� xm : (13)Note that for photons Hl � S � N � (�)�3 , hene for low temperaturesthey all vanish with the same temperature dependene.For massive partiles and/or for non-vanishing hemial potential it isnot possible, in general, to obtain simple analyti results. The exeption isthe limit of very low temperature T ! 0 whih we are going to onsider.First, we observe that in the limit T ! 0 we have � ! 1 and thuse�"m ! 1. Thus � sine in this limit all partiles should reside on thelowest level � we an determine �(T ) by demanding that the lowest energylevel ontains � on the average � N partiles. This meansN = 1e�("1��) � 1 ! x1 = e��("1��) = NN + 1 : (14)Inidentally, from (6), we getp1;n1 = �1� NN + 1�� NN + 1�n1 ; (15)for the multipliity distribution in the lowest level. Using (14) and takinginto aount that no other state is oupied, the Renyi entropies an be



2808 A. Bialas, W. Czyztrivially obtained from (9) with the resultHl = � log(1�x1)+ 11� l log�1� x11� xl1� = 1l � 1 log �(1 +N)l �N l� : (16)In the limit N !1 this givesHl � log(1 +N) + log ll � 1 : (17)One an easily verify that the formula (17) remains valid also in the limitl! 1 (i.e. for Shannon entropy).We thus onlude that in the limit of very low temperatures and for adisrete energy spetra the entropies of the (ondensed) Bose gas reveal thelogarithmi dependene on the average multipliity instead of the propor-tionality to N shown in Eq. (12).However, when we are dealing with a ontinuous energy spetrum a riti-al temperature, T, appears, and we loose the logarithmi dependene of Hlon N . To see this we employ the following relation (proven in Appendix A)valid for an ideal Bose gasHl(T ) = 1l � 1  �lS(T )� S�Tl ��+ "�N(T )Tl � �N �Tl �Tl #� "E(T )Tl � E �Tl �Tl #! : (18)(Note that this relation gives, orretly, H1 = S. Note also that the tem-perature dependene of � is nor saled down with l.)This relation is onvenient beause we an simply opy the well knowntextbook expressions for S(T ) and E(T ). For T < T, we have � = 0 and(18) simpli�es. Beause and N is �nite and given, the seond braket onthe r.h.s. of (18) disappears. Copying S(T ) and E(T ) from e.g. Fetter +Waleka [12℄ we obtainlS(T )� S�Tl � = gV4�2 kB�2mkB~2 � 32 � �52�� �52� 52T 32 �l � 1l 32 � ; (19)E(T )Tl � E �Tl �Tl = gV4�2 kB�2mkB~2 � 32 � �52�� �52�T 32 �l � 1l 32 � ; (20)and �nally Hl(T ) =  l 52 � 1l 52 � l 32 ! 25S(T ) : (21)



Renyi Entropies in Multipartile Prodution 2809Sine S(T ) � (N�N), where N is the average number of Bosons in theground state, we have also Hl(T ) � (N �N). Sine (at �xed temperature)N � N , we obtain again proportionality of all Renyi entropies (inludingthe Shannon entropy) to the total number of partiles. Note, however, thatthis need not to be true if the number of partiles is hanged by hangingthe temperature of the system.Let us see what happens when we have a spatially �nite system of Bosons,i.e. when we put it in a trap.5. Bose gas in a harmoni trapBose gas at low temperatures has reently been experimentally investi-gated in the so alled harmoni traps (ompare e.g. [13℄, and review arti-le [14℄). To disuss suh a system we an use our formulae (5)�(9) replaing,for a spherially symmetri trap,"m ! "nx;ny;nz = �nx + ny + nz + 32�~! ; (22)where ! determines the �nite size, a, of the trapa =r ~m! m�mass of one Boson : (23)As it turns out [14℄ the ritial temperatures , T, of the observed onden-sates are kBT �(20�200)~! (~! being of the order of a few nano-Kelvins).Thus kBT � ~! and it makes good sense to take the ontinuous limit of theosillator spetrum.All relevant formulae for N(T ) ; E(T ) ; S(T ) have been worked outin [14℄ for T < T (note that we have now � = 32~!):S(T ) = 4kB�kBT~! �3�(4) ; (24)and E(T ) = N 32~! + 3(~!)3 (kBT )4�(4) : (25)Inserting them into (18) we obtainHl(T ) = 14�1 + 1l + 1l2 + 1l3�4kB�kBT~! �3�(4) : (26)Thus Hl(T ) = 14�1 + 1l + 1l2 + 1l3�S(T ) : (27)



2810 A. Bialas, W. CzyzSo, we obtain again the relation (11) proven for photons. We also haveS(T ) � N �N (28)and thus the multipliity dependene is the same as in the ase of the un-onstrained Bose gas (with ontinuous energies) disussed in the previoussetion.It would be interesting to investigate the system of Bosons at suh lowtemperatures ( or in suh small traps) that the system would beome disrete(and loose T). Then we would have to satisfy: kBT � ~!. This would meanthat we would have to maintain temperatures < 10�1 nano-Kelvins in thepresently available traps. The other possibility would be to make the trapsmore than 10 times smaller. Is this possible? We do not know.6. Long range orrelationsThe seond example we want to onsider is the system haraterizedby multipliity distribution whih reveals important long-range orrelations.Let us thus onsider a distribution of partiles in M bins given byP (n1; :::; nM ) = Z dtF (t)e�Nt MYi=1�(t!i)nini! � ; (29)where N is the total (average) multipliity and !i is the average multipliityin the bin i. F (t) is the KNO funtion [15℄. As one sees, this is just asuperposition of onvolutions of Poisson distributions desribing the physiswhere the total multipliity (summed over all bins) is distributed aordingto P (n) = Z dtF (t)e�Nt (tN)nn! (30)and there are no other orrelations of shorter range.Our problem is to alulate Cl, i.e.Cl = Xn1;:::;nM [P (n1; :::; nM )℄l: (31)To this end we put multipliities in all bins equal to eah other !i � ! =N=M and obtainCl = Z dt1F (t1):::dtlF (tl)e�N(t1+:::+tl) hGl �l!(t1:::tl)1=l�iM ; (32)where Gl(z) =Xn �zl �nl (n!)l : (33)



Renyi Entropies in Multipartile Prodution 2811One sees from this de�nition that at small z[Gl(z)℄M � 1 +M �zl �l : (34)This property allows us to determine the limit N �xed, M ! 1. In thisase z ! 0 and the result isCl = �Z dtF (t)e�Nt�l (35)and thus Hl = l1� l log�Z dtF (t)e�Nt� : (36)For negative binomial distributionF (t) = kk� (k) tk�1e�kt (37)the integral an be evaluated and the result isHl = kll � 1 log�1 + Nk � : (38)This result is interesting for two reasons:(a) It shows that the limit M ! 1 does exist (exept for the Shannonentropy, l = 1);(b) At large N it gives the entropies proportional to logN and not toN . This is ertainly the onsequene of long-range orrelations: Fork ! 1 we reover proportionality to N (again no surprise, beausethis limit orresponds to F (t) = Æ(t�1), i.e. pure Poisson distributionwith no long-range orrelations 5.For �nite number of bins M , we were not able to �nd analyti results inlosed form. Instead, we have arried out the numerial analysis for l = 2and for negative binomial distribution (37). In this ase, after some algebra,we obtainC2 = � kk� (k)�2 Z dt1dt2(t1t2)k�1e�k(t1+t2)e�N(pt1�pt2)2 hĜ(2!pt1t2)iM ;(39)where5 The limit M ! 1 at �xed N implies that we are dealing here with a �linearized�Poisson distribution. For a regular Poisson distribution in one bin one gets, for largeN ,Hl = 12 log(2�N) + 12 log ll�1 (note a misprint in an analogous formula in [3℄).



2812 A. Bialas, W. CzyzĜ(z) = e�zI0(z) (40)and I0 is the Bessel funtion.The double integral in (39) an be redued to a single one by an appro-priate hange of variables (see Appendix B). The result isC2 = � kk� (k)�2 4(2!)2k 1Z0 dxx2k�1e�wx[Ĝ(x)℄Me
xK0(
x): (41)w = k! = kMN ; 
 = M + w : (42)This formula was investigated numerially for k = 1; 2; 4 and ! = 0:5; 4:0:the seond Renyi entropy, H2, behaves for large N like (logN). More pre-isely, it reahes rather soon (N � 30�50) its asymptoti form (38)).We thus onlude that in the presene of long-range orrelations in mo-mentum spae one expets the Renyi entropies to follow the asymptotibehaviour Hl � logN and that this limit is obtained rather soon, i.e. formoderately large multipliities.7. Summary and onlusionsAs shown reently [3, 4℄, the Renyi entropies provide a novel tool forinvestigation of multipartile phenomena, partiularly well suited for study-ing of the event-by-event �utuations. Therefore, we found it interestingto investigate them for some idealized multipartile systems in order to ob-tain an insight into the qualitative behaviour one may expet when atualmeasurements shall be performed.In the present paper we present an evaluation of the Renyi entropies for(a) ideal Bose gas in the limit of both very high and very low temperatures,and(b) for a multipartile system haraterized by strong long-range orre-lations. We have studied the dependene of Renyi entropies Hl onpartile multipliity N and on the rank l.



Renyi Entropies in Multipartile Prodution 2813The results of this exerise an be summarized as follows.(i) If long-range orrelations are absent, the Renyi entropy is proportionalto N . Hl � N ; (43)If, however, the system reveals positive long-range orrelations, (43) isno longer valid and one obtains insteadHl � logN ; (44)at least for large enough N .In ase of Bose Gas in the limit of very high temperature (so that themasses and hemial potentials an be negleted, and N is determinedby T ) one obtains Renyi entropies simply proportional to the Shannonentropy. This implies also proportionality to the number of partiles:Hl = 14 �1 + 1l + 1l2 + 1l3�S; S � N : (45)At low temperatures, the behaviour of the Bose gas depends ru-ially on the nature of the energy spetrum. If the spetrum is disrete,the (positive) long-range orrelations appear when all partiles fall tothe lowest energy state (the multipliity distribution orresponds tothe negative binomial one with k = 1). This is just the speial aseof the system disussed in Setion 6 (M = 1, as all momenta are thesame) and thus the entropy is proportional to the logarithm of thenumber of partiles. The same is true for the Renyi entropies. More-over, in the limit of large N , the dependene of the Renyi entropies onthe rank is only marginal.For the ontinuous spetrum the behaviour is di�erent, beause atthe ritial temperature the number of bosons in the ground statevanishes. Thus no long-range orrelations are present. For the gas inan in�nite volume one obtains for T < THl(T ) = � l 52 � 1l 52 � l 32 �25S(T ) (46)with S � N �N ; (47)where N is the number of partiles in the ground state.



2814 A. Bialas, W. CzyzSimilar situation is obtained for bosons in a harmoni trap, exeptthat in this ase the dependene on rank is the same as that for veryhigh temperature i.e. given by (45).Sine for �xed temperature N � N , in this ase all Renyi entropiesare proportional to the average number of partiles.We also onsidered a distribution of partiles partly motivated bywhat is qualitatively known from the existing measurements and anal-ysis of multipartile prodution proesses [1℄. It exhibits positive long-range orrelations and no other orrelations of shorter range6. In thisase one an study the dependene of Renyi entropies on both the binsize (i.e. disretization proedure) and on the total number of partiles.Our analysis shows that in this ase Renyi entropies are proportionalto logN . For negative binomial distribution, in the limit of vanishingbin size one obtains a simple resultHl = kll � 1 log�1 + Nk � : (48)Numerial studies have shown that this result holds also for �nite binsize in a large interval of multipliities.

Fig. 1. Dependene of the Renyi entropies Hl on the rank l. Crosses: Photongas, Eq. (11). Triangles: Nonrelativisti Bose Gas at low temperature (ontinuousspetrum), Eq. (21). Cirles: Asymptoti formula (38).6 In realisti systems the short-range orrelations are also present, so our analysis anat best be only a rude approximation.



Renyi Entropies in Multipartile Prodution 2815(ii) The analyti form of the dependene ofHl on the rank l di�ers markedlyfrom one system to another, as exhibited in Eqs. (45), (46) and (48).Numerial evaluation, however, shows that these di�erenes are atu-ally not so great, as seen in the Fig. 1. Thus rather preise measure-ments of Renyi entropies may be neessary to determine to whih lassthe investigated system belongs.A pratial onlusion whih follows from this disussion is that the de-pendene of Renyi entropies on partile multipliity represents an importantfeature of a multipartile system. Proportionality to N indiates an equili-brated system with no strong long-range orrelations. On the other hand,for non-equilibrated systems and/or superposition of system with di�erentproperties, proportionality to logN seems to be a more natural behaviour.It would be very interesting to observe these di�erenes in nature. One mayspeulate, e.g., that they should show up in omparison between nuleon-nuleon and the entral nuleus-nuleus ollisions (if equilibration of thesystem does indeed our in the latter ase).This investigation was supported in part by the the Polish State Commit-tee for Sienti� Researh(KBN) Grant No 2 P03B 086 14 and by SubsydiumFNP 1/99. Appendix ATo obtain (18) we observe that with the help of (5)�(8) we an writeHl = 11� l "l MXm=1 log(1� xm(T ))� MXm=1 log�1� xm�Tl ��# : (49)On the other hand the same formulae lead toS = � MXm=1 � log(1� xm) + xm1� xm log xm�= � MX log(1� xm)� �NT + ET : (50)Thus � MXm=1 log(1� xm(t)) = S(T ) + �N(T )T � E(T )T : (51)Employing (51) in (49) we obtain (18).



2816 A. Bialas, W. CzyzAppendix BTo alulate C given by (39) we perform the hange of variablesx = 2!pt1t2; y = !(pt1 �pt2)2 : (52)The Jaobian is dt1dt2 = xdx2!2 dypy(y + 2x) (53)so that the integral (39) beomesC2 = � kk� (k)�2 4(2!)2k 1Z0 dxx2k�1e�wx[Ĝ(x)℄M 1Z0 dypy(y + 2x)e�
y ; (54)where w and 
 are given by (42).The next point is to employ the formula (Gradstein, 3.364.3)1Z0 dypy(y + 2x)e�
y = e
xK0(
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