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1. Introduction

Bose-Einstein correlations among the momenta of identical particles pro-
duced in a high energy multiple particle production process yield information
about the structure of the source of hadrons in the process. This has been
pointed out in the very first paper on these correlations [1]. In a recent
Physics Report issue [2] Wiedemann and Heinz write: Two-particle cor-
relations provide the only known way to obtain directly information about
the space-time structure of the source from the measured particle momenta.
Thus the problem of extracting as well as possible the information about
the source from the measured correlations is of great importance. It is, how-
ever, not an easy problem. One of the founders of this field of research,
Goldhaber wrote in 1990 [3]: What is clear is that we have been working
on this effect for thirty years. What is not as clear is that we have come
much closer to a precise understanding of the effect. It is unlikely that the
progress made during the last ten years would make G. Goldhaber give a
much more optimistic view.
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There is a great variety of multiple particle production processes. In
order to illustrate this point we will describe two well-known cases. In
an electron—positon annihilation at high energy, at first usually a quark—
antiquark pair is produced. These partons radiate gluons. The gluons radi-
ate further gluons, or go over into quark—antiquark pairs. After some steps
of this cascade, in a process known as hadronization and not well under-
stood, the partons combine into colour-neutral hadrons. The hadrons are
collimated into two narrow jets pointing in opposite directions along the
same straight line. A splitting of the jets into more jets is also possible.
There is an alternative way of looking at this process. The first generation
quark and antiquark are the ends of a colour string. As they fly away the
string stretches. After some time the string breaks. At the breaking point
a quark antiquark pair is formed, so that each of the pieces of the string
is again a string with a quark at one end and an antiquark at the other.
The string pieces break again and finally short strings appear, which go over
into hadrons. It is natural to expect that there is a time scale 7 for the
hadronization process. Since, however, the system is highly relativistic, it
is necessary to specify in which frame this time should be measured. We
choose the centre-of-mass frame and assume that 7 is the longitudinal proper
time at the creation of the hadron defined by

T=V1 22, (1)

where t is the centre-or-mass time, when the hadron was created, and z is the
corresponding coordinate measured along the jet direction (the transverse
dimensions are less important). An estimate of the velocity of the hadron
is z/t. These formulae have an interesting implication. Hadron production
begins at ¢t = 7 and first slow particles close to the interaction point are
produced (|z| small). Only later and further from the interaction point (both
t and |z| large) do the fast hadrons appear. This production mechanism is
known as the inside-outside-cascade [4].

A very different multiple particle production process are the central
heavy-nucleus—heavy-nucleus collisions, known also as central heavy ion col-
lisions. Here the usual picture is that of two spheres Lorentz-contracted
into coaxial discs — we consider the centre-of-mass system — penetrating
through each other. When the discs fly apart, many strings are simultane-
ously stretched in a tube with a transverse radius of the order of the radii
of the colliding nuclei. For heavy nuclei and high energies the strings are so
numerous that they merge, e.g. into a quark gluon plasma. Then another
poorly understood process, known as freeze out, converts the plasma (or
whatever is the intermediate state) into hadrons.

There are many obvious questions to ask. What is the transverse radius
of the tubular (?) region, where the hadrons are created? One would expect



Physics from Bose—FEinstein Correlations in High Energy ... 2821

about one fermi or less for eTe™ annihilations and several fermi for heavy
ion collisions. What is the formation time ¢, which elapses between the
moment of collision and the moment, when the last hadron is produced
directly? What is the time At between the direct production of the first
hadron and of the last? There are also many model dependent questions. In
thermodynamical models one asks about the temperature, in hydrodynamic
models about the velocity of the collective flow etc.

Let us review now the main results of the famous GGLP paper [1|. Even
if one does not quite share G. Goldhaber’s opinion quoted above, this is
certainly a very important paper and some familiarity with its content is
necessary for any discussion of the Bose—Einstein correlations in multiparti-
cle production processes.

2. The GGLP contribution

Consider two 77-s with momenta p; and p, produced at r; and ry. If

the pions were distinguishable, the probability amplitude to observe them
both at » would be a product of the single particle contributions:

Apis(r) = expligy +ip, - (r1 — r)] expliga + ipy - (ro — 7)]. (2)

In each of the square brackets, ¢; is the phase acquired by the particle at
birth and the other term is the phase accumulated while propagating from r;
to r with momentum p;. Since, however, the two pions are identical bosons,
it is mandatory to symmetrize the amplitude and a more realistic formula is

Avna(r) = % expli(d1 + ba) +i(p1 — p) - 7]
X [expli(py - 71 + Py 7)) + expli(py -2 + Py )] . (3)

Physically this means that we have added coherently the contribution
corresponding to the possibility that the two pions have exchanged their
birth points. Classically for different momenta and given birth points, if
before the exchange the two pions can reach the point 7, then in general
after the exchange they must miss it. One should keep in mind, however,
that the distance between the points r1 and 79 is of the order of a fermi,
while the distance between either of them and the point » is of the order
of a meter. Classically this would not help, but quantum-mechanically in
this situation the probability of reaching r by both pions is in the two
cases the same for all practical purposes. For comparison with experiment
the result should be averaged over all the possible pairs of points ry,rs.
By averaging the amplitude (3) nothing interesting is obtained. Therefore,
GGLP assumed that one should average the square of the absolute value
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of the amplitude (3). Physically this means that the contributions from all
the pairs of points r1, 79 add incoherently. Then the probability of finding
a pair of pions with momenta p;, p, is

([Aunal?) =1+ (coslg - (r1 = r2)]), (4)

where ¢ = p; — p, and the Dirac brackets (...) denote averaging, with a
suitable weight, over all the pairs of points r1,79. Using as an example a
Gaussian weight function

p(ri,m2) = (20R?) "% exp[—(r{ +r3)/(2R?)] (5)
where R is a constant with the dimension of length, GGLP found
{[Avnal®) = 1+ exp[-¢°R?]. (6)

The parameter R can be interpreted as the radius of the sphere, where
the pions are produced. Thus, finding R from a fit to the experimental data
yields the size of the hadronization region. Note that formulae qualitatively
similar to (6) hold for a broad class of weight functions. For g = 0 the
cosine being averaged equals one whatever are the points 1 and ro. Thus
the right hand side of (6) for g = 0 must be equal two. For large values of
q?, the cosine is a rapidly oscillating function of the difference 71 — ro. For
smooth weight functions, therefore, its average is very small and the right
hand side of (6) equals approximately one. If the weight function contains
only one parameter with the dimension of length, let us denote it R, the
width of the region in g? over which the right hand side of (6) drops from
the value 2 to, say, 1.5 must be proportional to R~2 for purely dimensional
reasons. Thus it is not difficult to improve over the Gaussian Ansatz. There
is a problem, however.

It is certainly not true that the probability of producing two identical
pions with momenta p; and p, depends only on the momentum difference
q. GGLP could have tried to save the theory by introducing some more
complicated weight functions, which would depend also on the momenta.
They found, however, a much simpler and more brilliant solution. Note
that in the model the squared modulus of the amplitude for distinguishable
particles is a constant. Thus one may claim that the right hand side of (6)
is not the two-particle probability distribution, but the ratio

p(P1,P2) 7)

Co(p1,p2) = .
(1 2) PDis(PhPQ)

Here p(p;,p,y) is the experimentally observed two-particle distribution and
ppis(P1, Po) is the distribution, which would be observed, if the identical
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pions were distinguishable, i.e. if the Bose-Einstein symmetrization were
switched off. Of course the numerator of this expression cannot be measured,
which has led to much discussion as described in the following section. This
is the famous normalization problem. GGLP chose again a very simple
solution. They substituted for ppis the distribution of 7+, 7~ pairs, where
of course symmetrization does not occur. The experimental results for the
ratio Cy could be fitted reasonably well with formula (6) and thus both the
apparent attraction in momentum space among pions of the same charge
got explained and an estimate of the radius R was given.

Let us mention one more fruitful idea from the GGLP paper. The right-
hand side of formula (6) depends on the Lorentz frame, where the momenta
are measured. Choosing the rest frame of the pair, where the energies of the
two pions are equal, we can rewrite the result in a covariant form:

Ca(p1,py) = 1 + exp[Q*R7], (8)

where Q? is the square of the four-vector p; — ps .

3. Normalization

The problem of finding the best denominator for the function Cy has
attracted much attention. Theorists often suggest to replace ppis(p1, p2) by
the product of single particle distributions p1(p;)p1(py). With this choice,
the function Cs becomes the familiar, standard two-particle correlation func-
tion. Moreover, in many models terms cancel between the numerator and
the denominator making the formula simpler. One may also notice that
a two-particle density is normalized to (n(n — 1)), while the single parti-
cle distribution is normalized to (n). Thus a better choice of the denom-
inator might be to multiply the product of single particle distributions by
(n(n—1))/(n)%. The advantages and disadvantages of using this factor have
been recently discussed in [5]. Since it does not depend on ¢2, usually it does
not have much effect on the parameters of the source found from fits. The
identification of Cy with the standard correlation function, in spite of its ad-
vantages, is not very popular with experimentalists. In order to explain the
reason let us consider the following simple example. Consider a high-energy
reaction, where the two initial particles go over into two well collimated
jets. By momentum conservation the two jets must be back to back in their
centre-of-mass system. Let us assume that the orientation of their common
axis can point with equal probability in any direction — is isotropic. Then
the single particle distribution of momentum is also isotropic. On the other
hand the opening angle between the momenta of two particles is either small,
when the two particles are extracted from the same jet, or close to 7 if the
two particles are from different jets. Thus the correlation function exhibits
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a very large peak for @ ~ 0. This peak has, of course, nothing to do with
Bose—Einstein correlations. Experimentalists would prefer a definition of Cs,
where the forward peak reflects Bose-Einstein correlations and nothing else,
because this makes the interpretation much easier. Sometimes a compromise
is chosen. For instance in e*e™ annihilations, where the situation is similar
to that from our example, the z-axis is often chosen along the jet axis and
not along a direction fixed in the laboratory frame. With this choice the
single particle distribution becomes also strongly peaked for small angles 0
and in the correlation function the bumps due to the two-jet structure of
the events are largely eliminated.

The most popular choices, however, are improvements over the choice of
GGLP. For instance one uses “mixed” samples, where ppjs is the distribution
of pairs of 7" -ses, but with each 7T taken from a different event. Sometimes
Monte Carlo generated samples are used, with Monte Carlo generators which
do not include Bose—Einstein correlations. This procedure is not very safe,
because such generators contain a number of free parameters, which are
fitted to the data, where the Bose—Einstein correlations are present. One
also uses ratios of functions C9 obtained from the data to functions Cy
obtained according to the same prescription from Monte Carlo. The wide
variety of methods of calculating the denominator of the function Cs is one
of the reasons, why the comparison of results from different experimental
groups is very difficult. This is, however only part of the story. Some groups
correct for final state interactions (mostly coulombic) and/or resonances,
others do not. Various cuts defining the data samples are used. Some
groups assume that every negative particle is a 77, while other have particle
identification. Because of all that great care is necessary when interpreting
the experimental results and their stated errors. This difficulty has been
known for a long time cf. e.g. [6]. For a more recent (pessimistic) review

cf [7].

4. Beyond spherical symmetry

The GGLP weight factor is a function of 72 = 22 + 2 + 22 and, there-
fore, it is spherically symmetric. It is natural to replace r? by an arbitrary
quadratic form in z,y, z, provided the eigenvalues are positive so that the
weight function can be normalized to unity. Performing the averaging of the
cosine one obtains

3
Ca(g, K) =1+ A(K) exp [— > Rzzj(K)Qin] : (9)
i,5=1

Here besides abandoning spherical symmetry two improvements have
been introduced. In agreement with experimental observation (cf. e.g. [6])
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a factor 0 < A < 1 has been included and a dependence of all the coefficients
on K = (p; + py)/2 has been allowed. The coefficients denoted Rfj do not

have to be all positive. Out of the nine coefficients R?j three are eliminated
by the symmetry condition R?j = RJQZ Moreover, choosing the y axis so that
K, = 0 and assuming reflection symmetry with respect to the xz, z plane we
have R;Z = Rzm = 0. Thus there are four independent coefficients left.
The time component gy can be easily obtained from the identity K*g, =
(p? —p3)/2 =0.

It is convenient to choose the z-axis in the longitudinal direction i.e. for
central heavy ion collisions along the beam axis and for eTe~ annihilations
along the jet axis. The y-axis is perpendicular to the z-axis and to the
vector K. This fixes also the direction of the z-axis. With this choice, the
x,1, z directions are often referred to as the out direction, the side direction
and the longz’tudz’nal direction respectively. The R? parameters are denoted
R?, R3, R? and R}, [8,9]. There were speculations that the study of Rous/Rs
could give clues as to whether there is quark-gluon plasma and/or collective
flow in the system [8], but the results have not been conclusive and a com-
plete study of all the parameters seems now to be the best strategy. Other
choices of parameters are also possible. For instance one can put

Co(q, K) =1+ Xexp|—R2q: — R2q2 — R2q2 — T°qj)] (10)

yqy

[10], or
Colg, K) = 1+ Aexpl—Rqh — R2(q} — ¢2) — (R} + B0 (g —vg?)], (11)

where

1
,},_ /—1_1)2’

and u = (1,0, v). This parametrization proposed in [11| and improved in
[12] is particularly popular and is often referred to as the YKP parametriza-
tion.

(12)

5. Time dependence

In the GGLP picture the production of all the hadrons was instantaneous
at some time to. Formally this assumption is difficult to disprove. Choosing
the time ¢g after all the hadrons have been produced and interacted and be-
fore the time when they were observed, one can calculate the distributions
at the observation time using the state at time ¢y as the initial condition.
Whether the hadrons existed before time ¢, is irrelevant for this calculation.
In particular, one may assume that all the hadrons were created at time #g.
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Guessing the initial condition at time %, is, however, very hard in this ap-
proach. Therefore, it is more practical to choose a more realistic conjecture
about the origin of the hadrons, because then the initial conditions are more
natural and easier to guess.

In particular, several authors (¢f. e.g. [13-15]) assumed that the produc-
tion of hadrons is from sources, which fly away from each other and such
that in the rest frame of a source the production of hadrons is isotropic.
Consider the simplest case of just two sources. If their relative velocity is
large and the momenta of the hadrons in the rest frames of the correspond-
ing sources are moderate, then it is very unlikely that two identical pions
from different sources have momenta close to each other. On the other hand,
all the information about the structure of the source comes from pairs with
small momentum differences |g|. For large values of |q| function C; is flat
and carries no information. Consequently, the observed function Cy con-
tains only information about the single sources and no information about
the distance between them. One finds that the effective production region
is spherical in its rest frame, while the actual production region composed
of the two sources is elongated. This is an important piece of information.
What we observe is not the total size of the hadronization region, but the
average size of the so-called regions of homogeneity [16], i.e. regions, where
hadrons with similar momenta are produced. For this reason the effective
hadronization regions observed in experiment are approximately spherical,
while we expect that at high collision energy the actual production regions
are strongly elongated, because of their stringy origin.

There is one more interesting result connected with the problem of
the time span of the hadronization process [8]. Consider instantaneous
hadronization from a spherical shell of thickness §R. The length § R should
be reflected in the momentum correlations along the direction zqy,¢, because
the particles, which come from the inner part of the shell, are out of phase
with those, which come from the outer part of the shell. The same effect can
be obtained, however, if some particles are produced later than others. From
the experimental fact that Ryt is not particularly large, one concludes that
the hadronization process does not last very long. This excludes models,
where hadrons are produced from the quark-gluon plasma in a first order
phase transition with a large latent heat. This process would be too slow to
be made consistent with the observed moderate time interval of the hadron
production.
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6. More quantum physics

The formulation of the GGLP model is quasiclassical — one talks about a
pion with momentum p created at point , which is not quantum mechanics.
Much work has been done on formulations consistent with quantum mechan-
ics. When dealing with incoherent superpositions of states one should use
density matrices or density operators. The starting point may be the density
matrix in coordinate representation p(z,2’,t) or in momentum representa-
tion p(p,p’,t). Often it is convenient to replace the vectors a,a’ by their
linear combinations

a;=3(a+a); a =(a-ad). (13)

In particular, the GGLP results can be derived from the density matrix

o(p. 0. 1) = / dr (plr)p(r) (r|p') (14)

This incidentally shows that in spite of its pseudoclassical formulation the
GGLP model can be translated into respectable quantum mechanics.

The density matrices, however, do not combine explicitly the informa-
tion about the space distribution of sources and the momentum distribution
of the final pions. Therefore, in order to derive the space distribution of
sources from the momentum distributions of the observed final particles
other approaches have been proposed.

One can use the Wigner function W defined in term of the density matrix
by the formula

W(p, @) = / dp_cP~+ p(p. ', 1). (15)

The properties of the Wigner functions are described in detail in the famous
review article [17]. For a recent application to the description of multiple
production of identical particles cf. [18]. In a well defined sense [17] Wigner’s
function is the best quantum mechanical analogue of the classical phase
space distribution. In this formulation Heisenberg’s uncertainty principle is
easily implemented. The density in phase space should not be too large.
Quantitatively the condition is

W (p,,p_, )] < (xh)™*", (16)

where 3n is the dimension of the vectors p., or equivalently n is the number
of particles described by the Wigner function W.

An alternative approach is to introduce the classical position and momen-
tum vectors &, 7 besides the quantum mechanical position and momentum
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vectors @, p. Each pair of vectors &, 7w defines a quantum mechanical wave
packet e.g.

o? @ 1 9
@lem) = (%) e 5@~ 92 im-a] (17)
or equivalently in momentum representation

3
4

wlem) = (3) o |satp -2 vie-m-p). (9

Coherent, or incoherent superpositions of such wave packets are legal quan-
tum mechanical states. On the other hand, the values of £ and p are con-
strained to be close to the values of & and w. If the distribution of the
parameters £ and 7 is calculated from some classical model, the result is
directly translated into a distribution of the observables & and p, which
is consistent with quantum mechanics. This approach was pioneered in
Ref. [19]. For a recent application and detailed discussion cf. [20].

Still another approach is to introduce a source function S related to the
density matrix by the formula

po.9') = [ d'sexplip-a.1S(a1.p4). (19)

In this formula z,z’,p,p’ are four-vectors. The similarity of this formula to
the formula relating Wigner’s function to the density matrix caused that the
source function is often referred to as a Wigner function, a kind of Wigner
function, a pseudo Wigner function etc. (cf. e.g. [21,22]). In fact the relation
between the source function and Wigner’s function is not unique and may
be quite complicated. We will not discuss this problem here, but let us note
that the density matrices and Wigner’s function were calculated at a given
time, while here the time dependence must be known. In simple cases the
time dependence of a Wigner function can be found and used (cf. e.g. [23]),
but it is quite complicated and unlikely to be found by a simple guess. What
is more, the source function depends on two time arguments.

There is one case, however, when the source function has an easy inter-
pretation. If the pions are produced by classical currents J, then [21,24]

4.’1)7 )
Swrps) = [ ggme T T @), (20)

where the averaging is over all the incoherent components of the currents
J(z).
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7. Momentum—position correlations

In the GGLP model and in many others the momentum spectrum of the
produced particles does not depend on the position of the source. When
momentum—position correlations are introduced in the model, unexpected
results may be obtained. Let us consider for example quasiclassical sources
with the single particle position-momentum distribution

3 r?
p(xz,p) = V2rR? 6(p — \r)exp ~5p| - (21)
Correlations of the type p ~ r occur in classical versions of various models,
e.g. in string models and in models, where hadronization is preceded by a

rapid flow of hot matter. The average of the cosine from the interference
term in the present generalized GGLP model is

(coslg - (r1 —2)]) = A® exp [— ;f—;] exp [-%} cos [q;] L (22)

In comparison with the GGLP result for the Gaussian weight function p, two
changes are striking. A dependence on the sum of momenta K has appeared
and the dependence on the momentum difference q is no more Gaussian. For
non-Gaussian distributions the effective radius of the distribution of sources
in space is usually defined by

R% = — <%(cos[. . .])>q2:0 . (23)

For the GGLP model with a Gaussian weight function this reproduces the
usual result Reg = R. In the present case, however, we obtain

1

- 55 (24)

RefT
Due to the position-momentum correlations, Res becomes inversely propor-
tional to R!
A more realistic model with similar correlations can be built as follows
[25,26]. For the source function we choose

—Az)i(p—Az)-  (p—Az)i @

S(x,p) = 6(12 — 22 — 72 (p + _ T Fr

(z,p) ( z° —T3)exp 9 5ﬁ 9 5% IR2
(25)
This formula has a simple physical interpretation. The subscript T denotes
the vector component transverse with respect to the beam axis z. The last
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term in the exponent implies that the particles are created not too far from
the beam axis, typical distances being of the order of the parameter R. The
first two terms in the exponent impose the condition p =~ Ax. The sub-
scripts £ refer to the four-vector components ag =+ a,. The dispersion of
the transverse components is of the order of 6% and that of the longitudinal
component of the order of 5ﬁ. The Dirac delta implies that for each drop
of the hot matter hadronization takes place after the same longitudinal in-
variant time 7g. It is useful that for this source function the corresponding
density matrix in the momentum representation can be calculated in closed
form. One finds in particular

R2M?
Ip(K,q)” ~ (5% + T) exp

K2 + R2822 ] . IQM%

: 82+ R2M27;? 52
(26)
where K is the modified Bessel function,
M{ 13(Kr-qp)? tgmiprm3 2itg Mt K
2 T To\AAT- 4T oMoy . 12 oMTHKTqT
= —— — h — ——, (27

and m2. = m2 + pZ. and M2 = K? + K?2 are transverse masses of the two
particles and of the pair. The single particle distribution can be calculated
from the formula p1(p) = p(p,0).

This model was found to reproduce reasonably well the data for single
particle distributions and for Bose-Einstein correlations in ete™ annihila-
tions at LEP energies [27].

8. Final state interactions and (partial) coherence

In the GGLP model and in many later models, after hadronization the
pions propagate as free particles. In fact we know, that the majority of
pions is generated in resonance decays. Moreover, there are the nonresonant
strong and the electromagnetic interactions among the pions. All that has
been studied for years, but many problems are still controversial.

Strong nonresonant interactions are usually neglected, but it has been
pointed out [22] that absorption of the produced pions can lead to a decrease
of the effective radius Reg with increasing momentum of the pair |K|. The
effect of resonances seems to be much more important. The long lived reso-
nances, mostly n and 7', usually decay far from the centre of the interaction
region. Therefore they simulate a large hadronization region and produce
a narrow peak in the plot of Cy versus g?. This peak is narrower than the
experimental resolution and consequently its main effect is to reduce the
parameter A. The resonances with life times neither very long, nor very
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short, like the w resonance, produce for small > a steep rise of Cy with de-
creasing @2. Short lived resonances, like the p meson, increase only slightly
the measured radius of the interaction region. It has been suggested [7,28]
that in eTe™ annihilation it may be difficult to explain why after correcting
for the resonance effects the Bose—FEinstein correlations remain as strong as
observed in experiment.

Coulomb interactions can be easily included by replacing in the descrip-
tion of the propagation of the pions the plane waves by Coulomb wave func-
tions, which leads to the introduction of the so called Gamow factor [19].
This is now known to grossly overestimate the effect (for a review cf. [29]).
The physical reason is that the introduction of the Coulomb wave functions
describes the evolution of an isolated pair of pions, while in reality there
are many other pions around, which partly screen the Coulomb interac-
tion within the pair. A direct experimental argument is that the reasoning
leading to the Gamow factor, when applied to 77~ pairs, gives a strong
attraction, which is not seen in the data. A simple way of correcting for the
screening effect is given in Ref. [30] (see also [29]). A screening radius rg is
introduced. The interaction potential of the pair is continuous at r = ry,
Coulomb for r > rg and constant for r < ry. The parameter r( is chosen so
as to reproduce correctly the experimental data for 77~ pairs. Coulomb
corrections calculated in this way are rather small.

Another assumption of GGLP, which has been put into doubt, was that
the production process is completely incoherent. Complete coherence would
kill the effect, but some degree of coherence seems difficult to avoid in re-
alistic models. It is easy to write down general formulae including partial
coherence (cf. e.g. [19]), but it is not clear how to use them fruitfully. At a
time it was suggested that the parameter A\ measures the degree of coherence
(A = 1 no coherence, A = 0 complete coherence), but now it is clear that this
parameter is strongly affected by the dynamics of the production process,
in particular by resonance production, and by experimental conditions (e.g.
particle misidentification).

9. Two recent models

In order to illustrate how Bose—Einstein correlations are nowadays anal-
ysed, we present two recent models. The first (¢f. [2] and references quoted
there) is based on analogies with hydrodynamics and thermodynamics. It
is being used to describe central heavy ion collisions. The starting point is
the (single particle) source function
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mr coshy coshnr(rr) — prE sinhnr(rr)
T
i LA 70)2] . (28)

P [_ 9R? ~ 2(An)2  2(Ar)?

S(z,p) ~mrcosh(y —n) exp [

In this formula ~ means that a normalization constant has been omitted, y
is the rapidity along the z axis i.e. along the beam direction. The pseudo-
rapidity
1 ! t+z
=My T
The distance from the z axis rv = /22 + y2. The rapidity of the transverse
flow has been assumed in the form

(29)

nr(rr) = np—, (30)

where 77 is a constant. The model contains six free parameters: R,T,n;, An,
7o and A7. These parameters have been estimated by comparison with the
data from the NA49 experiment for collisions of lead nuclei at an energy
of 158 GeV per nucleon. Some of the results have interesting physical im-
plications. The parameter R, interpreted as the transverse radius of the
hadronization region, is about 7 fm. From the known size of the lead nu-
cleus one could have expected a number about twice smaller. This means
that there is substantial transverse spreading of the interaction region before
hadronization takes place. The parameter T interpreted as the local temper-
ature is about 130 MeV. This is less than the temperatures found in models
used to calculate the chemical composition of the produced hadrons, which
could mean that the spreading is accompanied by cooling. The parameter
1y is about 0.35. This is a very reasonable value. The velocity of sound
in a plasma is about 1/3 (in units of the velocity of light in vacuum). The
parameters 79 and A7 are about 9 fm and 1.5 fm respectively. It means
that the time span of hadronization is short compared to the time between
the original interaction and the onset of hadronization. This would exclude
models, where hadronization is a first order phase transition with a large
latent heat, because in such models the time span of hadronization is large.
One should keep in mind, however, the authors’ warning that the determi-
nation of the parameter A7 from the data is poor. This example shows that
given a model one can extract from the data much interesting information.
Little is known, however, about the model dependence of these results.

A very different picture of the Bose-Einstein correlations [31-34| has
been inspired by a string model of the Lund type. This model is tailored
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for eTe™ annihilations. An annihilation is depicted as the formation of a
string with a quark at one end and an antiquark at the other. This string
stretches with the speed of light. Then somewhere along the string a quark—
antiquark pair is produced and the string breaks. The pieces stretch and
break again. Finally sufficiently short bits of strings hadronize. In the 2,
plane the trajectories of the ends of all these strings form a closed contour.
Let us denote the area enclosed by this contour by A. The key assumption
is that the probability amplitude for a given final state is

M ~ exp[i€A]. (31)

We have not written explicitly the factor related to the transverse momenta
of the produced particles. Denoting by b/2 the imaginary part of £ one finds

|M|? ~ e, (32)

This result is well known from the Lund model. For the description of the
Bose—Einstein correlations, however, it is the real part of & which is the
important one. It is expected to be of the order of the string tension i.e.
of the order of 1 GeV/fm. The point is that the production amplitude has
to be symmetrized with respect to exchanges of identical particles. Such
an exchange, however, changes the area A and because of the nonzero real
part of & the phase of the amplitude. Numerical calculations show that
this model gives a reasonable description of the Bose—FEinsten correlations
in eTe™ annihilations. This is very interesting, because this model, contrary
to all the previous ones, does not contain incoherent components, random
phases etc. It is curious what happens, when in a process more than one
string is initially produced. In e*e™ annihilations there are events, where two
W bosons are produced, which implies two strings. It has been suggested [34]
that in this case only pions from a single string should exhibit Bose-Einstein
correlations. To be sure, nobody doubts that pions are bosons and that
consequently their production amplitude should be suitably symmetrized,
but the attraction in momentum space, known since the GGLP paper as
Bose—Einstein correlations, requires in addition certain phase relationships,
which may not be realized for pions originating from different strings. In
central heavy ion collisions many strings are produced. By extension of the
previous argument one could expect very weak Bose—Einstein correlations,
which experimentally is not the case. This suggests that the state from
which hadronization occurs in heavy ion collisions is not a bunch of strings.
The strings must somehow merge and form a very different object, perhaps
a volume of quark—gluon plasma.
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10. Conclusion

Bose-Einstein correlations attract much interest. Many hundreds of pa-
pers have been published on this subject. In principle they offer the only ac-
cess to some important information about the hadronization process. Typi-
cal questions are: what is the size and shape of the hadronization region, how
is hadronization distributed in time, what is the coherence of the sources,
what is the hadronization mechanism etc. In practice it is difficult to find
model independent, definitive answers to these questions. The common ap-
proach is to study models, which either demonstrates the viability of certain
scenarios, like the sting model discussed above, or give tentative answers to
the questions concerning hadronization.
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