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In this article we discuss two manifestations of electron correlation ef-
fects, namely the electrical characteristics and quantum critical phenomena
observed in the NiSs_,Se, system, and the electrical properties and orbital
ordering effects encountered in the V503 system. Considerable emphasis
will be placed on recent developments.

PACS numbers: 71.30.+h, 71.28.+d, 72.80.Ga

1. The NiS,_,Se, system

The NiSs_,Se, system represents one of the rare cases for which it is
possible completely to alter the electronic properties of the compound by
fine-tuning the anion composition, in this case, the S/Se ratio. The end
member NiSy is a semiconductor (or insulator as temperature T — 0),
whereas NiSes is a poor metal. These compounds can be mixed in all pro-
portions without changing the cubic pyrite structure; the lattice parameter
varies linearly with z in accord with Vegard’s law. Clearly, at some interme-
diate composition the system must progress from one electronic state to the
other — leading to interesting physical consequences. The NiSy_,Se, system
presents the additional advantage that the gradation of physical properties
is achieved by isoelectronic substitution in the anion sublattice, while leav-
ing the cationic sublattice intact and the electron count constant. This is
to be contrasted with almost all comparable systems in which the alter-
ation of electronic properties is achieved by aliovalent substitutions of ions
in the cation sublattice: this process produces cation vacancies, changes in
the electron density, and is also generally associated with changes in lattice
symmetry — complications that one normally wishes to avoid.

* Presented at the XL Cracow School of Theoretical Physics, Zakopane, Poland
June 3-11, 2000.
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The physical properties of the NiSy_,Se, system as studied by numer-
ous workers have been extensively reviewed in a recent article [1] and will
not again be discussed in detail. We thus concentrate on recent studies in
which the author has participated. The relevant electrical properties are
summarized as sketched below: (i) In the composition range 0 < z < 0.3
the material displays insulating characteristics depicted in Fig. 1(a). From
plots of logp vws 1/T (p is the resistivity, T' the temperature) one deduces
energy gaps of ca. 220 meV at higher and 660 meV at lower tempera-
tures, where the system is in the Paramagnetic Insulating (PI) and canted
AntiFerromagnetic Insulating (AFI) regimes, respectively. The increase in
gap size presumable arises from the Slater mechanism for the prevailing
canted AF order. (7i) In the range 0.38 < z < 0.51 the resistivity displays
metallic characteristics at low T'; this is followed by a very steep rise in p
with T', due to the gradual opening of a band gap. Beyond the maximum
in p the alloy exhibits semiconducting characteristics, with a band gap of
220 meV. These properties are sketched in Fig. 1(b); the size of the hump
diminishes with increasing z. (i17) For £ > 0.55 the material is a poor metal,
as depicted in Fig. 1(c).

The Seebeck coefficients « in these three composition ranges also display
unusual properties; ¢f. Figs. 1(d), 1(e), 1(f). In regime (i) v is almost exactly
zero at low T, precisely in the range where p rises sharply and indefinitely
with diminishing temperature; a then passes through a very large maximum
at intermediate T and finally drops off again. These results go counter the
general rule that the variation of a with T" should qualitatively mimic that of
p with T'. In regime (7i) the size of the maximum is considerably suppressed.
In regime (717) « is slightly negative, numerically very small, and linear in T'.
These latter results are in conformity with standard theories of the Seebeck
coefficients of metals [2].

The above findings may be rationalized by the qualitative band struc-
ture diagram of Fig. 2. The important features involve the band of primar-
ily cationic 3e, character, with some anionic admixture; this band is rather
narrow and is half-filled, as shown in Fig. 2(a). In relatively recent theo-
retical studies [3| involving electron correlation effects in crystals of infinite
dimensionality it has been established that the Mott—Hubbard picture of
the Metal-Insulator Transition (MIT) must be modified. In the more recent
theories there is no collapse of the band gap separating the upper and lower
Hubbard subbands when a correlated electron system undergoes the MIT.
Instead, the density of states (DOS) pattern shifts such that for the metallic
state a central peak develops in the DOS around the Fermi level e, at the
expense of states in the two Hubbard subbands. This gives rise to the un-
dulating characteristics of the DOS for the e, band sketched in Fig. 2(a). A
wide S—Se 3po—4po band with some cationic admixture is energetically situ-
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Fig.1. Schematic diagram of the electrical properties of NiS,_,Se, below 300 K.
Resistivity p vs temperature T for 0 < z < 0.30 (part (a)), 0.38 < z < 0.52 (part
(b)), and z > 0.55 (part (c)). Seebeck coefficient « vs T for 0 < x < 0.30 (part
(d)), 0.38 < z < 0.52 (part (e)), and = > 0.55 (part (f)). Resistivities lie in the
range 1-3kQ cm, 1Qcm—600Q cm, and 0.002-0.02 Q cm for regimes (4), (i), and
(i) respectively. Seebeck coefficients peak at 60-120 pV/deg and 10-30 pV deg
for regimes (i) and (%i) respectively; they fall in the range —2 to —8 uV/deg in
regime (%44).

ated at slightly lower energies and is completely filled by electrons at T' = 0.
This disposition is believed to apply to alloys in regimes (i) and (7ii). As
is reduced to below z. ~ 0.3, the 3d, band continually narrows because the
orbital overlap diminishes, since the 3po orbitals have a much smaller radial
extension than the 4po orbitals. Below a certain critical band width, the
central peak disappears, leaving only the two Hubbard subbands. The lower
portion, 3dy, is completely filled and upper half, 3d;, empty, as depicted in
Fig. 2(b). This situation is believed to apply to alloys in regime (7).

On the basis of Fig. 2(b), NiSy and NiSs_,Se, with z < 0.3 are in-
sulators at T' = 0. As T is increased these compounds become intrinsic
semiconductors through the thermal promotion of charge carriers across the
energy gap. This rationalizes the exponential decline of p with rising T'. Fur-
thermore, the Seebeck coefficient of an intrinsic semiconductor is specified
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Fig. 2. Schematic band diagram for the NiS,_,Se, system. Shaded areas represent
occupied energy states. Part (a): Quasimetallic characteristics; Fermi level inter-
sects DOS in midgap region. Part (b): Fermi level falls in gap between upper and
lower Hubbard subbands. The top edge of the anionic band falls just slightly below
the top edge of the lower Hubbard subband.

by the relation [2]

o= _0n|an| + TpQyp ’ (1)
Onp +O'p

where oy, 0}, are the partial conductivities of electrons and holes and ay,,
are the corresponding Seebeck coefficients. Since the e, subbands of Fig. 2(b)
are very nearly mirror images of each other, the numerator in Eq. (1) ap-
proaches zero; this rationalizes the finding that a = 0 at low temperatures.
With rising T" a situation is reached where carriers from the top of the much
wider po band at slightly lower energies also begin to be promoted thermally
into vacant e, levels. This generates an increasing density of highly mobile
holes in the anionic band, ultimately in sufficient numbers to swamp out the
contributions of the charge carriers in the e, subbands that are of much lower
mobility. The electrical resistivity will still be of a thermally activated type.
On the other hand, a will first rise after the po holes become dominant;
rather large values of a are reached in the initial stage of the resulting quasi
one-carrier semiconductor at low po hole densities. With rising T the po
hole density increases and « drops correspondingly, as predicted by theory
[2]. This rationalizes the observed trend of o with T for regime (7).

A new feature emerges for alloys in category (4i). As sketched in Fig. 1(b)
these compounds are metallic at low temperature and become semiconduc-
tors beyond some critical temperature T,. This feature is rationalized on
the assumption that a gap opens up in the density of states at T¢.
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A very simple mechanism for explaining the gap feature was first ad-
vanced by Spalek and coworkers [4]; this approach is undoubtedly correct
in principle but perhaps not in detail. One compares the thermodynamic
properties of essentially localized (¢) charge carriers with those in itiner-
ant (i) states. In its simplest form we take the energy of the localized set,
E; = 0, as the zero of energy. The entropy of such carriers is Sy = kg1ln2
because each electron can be localized on a lattice site with spin “up” or
“down” (kg is Boltzmann’s constant). The free energy per carrier is then
F=FE-TS = —(kgln2)T; F changes linearly with temperature, as shown
in Fig. 3. On the other hand, for a set of interacting, itinerant free carriers
we assume the Sommerfeld law C; = 4T to apply; here = is related to but
different from the free-electron value [4]. One can then determine the en-
ergy per particle according to the expression E; = [ CdT = Ey + (1/2)yT?
and the entropy per particle according to S; = [(C/T)dT = «T. The free
energy is then given by F; = E; — T'S; = Ey — (1/2)yT?; this quantity varies
parabolically with T'. These parabolas are sketched in Fig. 3 for different
values of the intercept Fy. When Fj is negative but numerically large, as
for curve 1, the parabola always lies below the straight line; then F; < Fj
at all T, so that the itinerant state is stable. As Fy becomes less negative
a situation may arise whereby the parabola (curve 3) intersects the straight
line at two points. Then for T' < T3p or T' > T3, F; < Fy, but in the range
Ty < T < T3y, Fp < F;. This corresponds to the case of reentrant metallic
behavior — as in Cr-doped V503. For Fy values that are even less negative,
as in curve 4, the itinerant state is encountered in the low temperature range
T < Ty, and the localized configuration applies for T' > T. This rationalizes
regime (4i) for NiSq_,Se,, or more generally, for the case of a material that
is metallic at low temperatures and becomes an insulator at higher temper-
atures. Finally, for Fy > 0 one finds, according to curve 2, that Fy < F; at
temperatures T' < Tb; the system switches to the metallic state for T' > Tb;
this is the more commonly encountered insulator-metal transition.

The value of Ej is clearly crucial in determining the characteristics of
the interacting electron system. This quantity is specified by [4]

By = —&(n)le| + Un. (2)

In the absence of electron interactions, Ey = —|é| involves the aver-
age value of the energy for all electrons in the conduction band (e.g. for
a half-filled rectangular band of width W, & = —W/4). In the Hubbard
approximation the electrons are also subject to an intra-atomic repulsion
energy U when two of them temporarily reside on the same site with paired
spins. Let the probability of double occupation of a given site be n; then
+Un is the potential energy of interaction per electron pair. Next, to simu-
late the increasing difficulty of getting interacting mobile electrons to move
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past each other, Spatek and coworkers [4] introduced a band narrowing fac-
tor @(n); n and @(n) are specified in terms of U and W by the theory; their
exact form need not concern us here.

Eq. (2) shows that Ej is governed by the balance between the kinetic
energy — @(n)|Z| that is negative relative to the zero of energy for localized
carriers, and by the potential energy of interactions U that is positive. For
alloys in category (%) the kinetic contribution evidently slightly outweighs
the potential energy (cf. curve 4 of Fig. 3); this explains the qualitative
features of Fig. 1(b). As concerns the Seebeck coefficients, the e, bands
in regime (7i) are wider than those of regime (i), so that the disparity in
mobility is now smaller than for case (i); hence, the peak in « is now smaller
than before.

0 —{ 1:2 :El T]3u T

T T T

Fj=-kgT In2

Fig. 3. Free energy curves for localized (¢) and itinerant (%) electrons in a half-filled,
nondegenerate band. See text for details.

Finally, the characteristics of regime (7ii) may be explained by noting
that the central DOS peak of Fig. 2(a) is now sufficiently developed so that
the Fermi level always lies within a narrow band. The material is a poor
metal, with electrical characteristics as schematically depicted in Figs. 1(c)
and 1(f). One sees then how the electrical properties of NiSe_;Se, can be
fine tuned by adjustment of z.

2. Critical phenomena in electrical properties of NiS,_,Se,

We next turn to another avenue of investigation. This consists in adjust-
ing x so that the alloy is insulating but very close to the borderline between
insulator and metal. The compound is subsequently rendered slightly metal-
lic by application of hydrostatic pressure under conditions where quantum
critical fluctuations become manifest. The NiSo_,Se, system is thus a good
medium for studies of critical phenomena in the electrical properties of solids:
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specifically, the resistivity was measured by Rosenbaum and collaborators
[5] as a function of temperature 7' < 1 K at a set of different pressures P
slightly in excess of the critical pressure P, = 1.51,1.67 kbar (depending on
the exact sample composition), or as a function of pressures P > P, at a
fixed temperature T" = 50 mK. The elucidation of such properties requires
a digression (necessarily brief and superficial here) into scaling theories; see
e.g. Ref. [6,7] for a proper and readable discussion of this topic.

These are based on the classic thermodynamic principle of homogene-
ity, as illustrated by the volume V of a system containing n; moles of
species i; V. = V(nq,n9,...,ni,...). At constant T' and P let the system
now be altered to contain An; moles for each species 7. Then the volume
obeys the condition V(Any, Ang, ..., An;,...) = AV (e.g., if the number of
moles of each constituent is doubled the volume doubles). This concept
must now be generalized. Taking the Gibbs free energy density g as an
example it is supposed that for a system close to a critical pressure P,
and critical temperature Tc, g should depend on the independent variables
p=(P—-P.)/P. and ¢t = (T — T,) /T, according to [6]

g()\ftf’ Agpﬁ) = )\g(f,ﬁ) ) (3)

where &, §; are exponents that must be empirically determined. Eq. (3) is
to hold for any arbitrary assignment of A. To make contact with experiment
we set A = (—£)"/&: j.e. A& = (—1%), and differentiate g with respect to p at
fixed t; this generates a molar volume v as follows:

&t \rp F 5
)\gp ag(A tta>‘ pp) _ Aag(tap)

oXep) T ap W

or

v(t,1) = (=)&) /& y(—1,1). (5)

Comparison with experimental measurements near ¢ = 1 on the variation of
v with P — P, then specifies (1 —&,)/&;. A similar (double) differentiation
process with respect to ¢ yields the molar heat capacity C; the corresponding
exponent can be checked against experimental changes of C' with T — T¢,
so that &, and & may be obtained separately. The reason for adopting such
procedures is that the use of standard equations of state to determine molar
volumes and other quantities of interest near the critical point is notoriously
unreliable.

More generally, we adopt the hypothesis that a system near its critical
point at T' = 0 is subject to quantum fluctuations that dominate its prop-
erties. Let K be a variable under study and let K. be its critical value.
We characterize the measurement of K near K. by a correlation length &,
that in turn is linked to 6 = |K — K| , the deviation of an experimental
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variable K from its critical value. One adopts the relation £ ~ |§|7", so that
as K — K., & grows indefinitely.

Associated with the above is the time scale that governs the approach
to criticality; for, as the correlations length grows, the time scale for estab-
lishing the correlation throughout the system also increases. One assumes
that the length and time scales (7) pertaining to criticality are linked by the
relation |7]

&(K) =865 S(K) =10, (6)

where z is called the dynamic scaling exponent and v, the correlation length
exponent.

The basis for adopting a correlation “length” in the time domain for a
quantum system is the following: The partition function is specified through
the relation Z = tr (exp(—fSH)), where H is the appropriate Hamiltonian,
B = 1/kpT, and tr represents the trace operation. Now exp(—fSH) is rem-
iniscent of the time development operator exp(—iH7/k) in the Heisenberg
representation. One may link these two factors through the introduction
of an imaginary time scale 7 = —4Af that is infinite in “length” at T' = 0,
but which has an upper limit L, = —ih8 for T' > 0. The establishment
of critical length and time scales & and &, is a generic feature of quantum
critical phenomena [7].

Accordingly, for a quantum mechanical operator O of interest we postu-
late that near the critical point (as K — K.), and for T' = 0,

Olk,w, K) = £ O(k €, wés), (7)

~

where k, w are the momenta (in reciprocal space) and frequency, respec-

tively. The operator on the right now involves dimensionless quantities and
is of no direct interest; the effect of K is subsumed though the introduction
of the correlation length.

For T' > 0 we must recall the upper limit L; on &:; because ¢ and &,

are linked we also deal with an upper limit Lf"/ “ on the correlation length.
Accordingly, the scaling form for an operator at T > 0 is postulated to be

O(k,w,K,T) = L*/*0O(k LY* wL., L, /£;) . (8)

Again, the operator on the right involves dimensionless variables and is of no
direct interest. This sets up the framework for our subsequent data analysis.

Rosenbaum and collaborators [5] investigated the low temperature resis-
tivities p of NiSo_,Se, with z = 0.44. Fig. 4 shows that at pressures P well
above the critical pressure P, = 1.51 kbar, required to maintain this alloy in
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Fig.4. Resistivity of NiS; 565€0.44 maintained at low temperatures at pressures
considerably above P, = 1.51 kbar; note the large T2 dependence typical of corre-
lated electron systems. Inset shows conductivity in the range 7' < 1 K, where the
crystalline disorder gives rise to the observed o ~ T"'/? dependence.

the metallic state, p ~ T? in the range 5-14 K; this is consistent with strong
electron—electron interactions. The inset to this figure shows that in the very
low T range 50-100 mK and for P > 1.9 kbar, p ~ T~1/2, consistent with
electron scattering in the presence of lattice disorder that then dominates
the electrical properties. Fig. 5 shows that when the pressure P is allowed
to approach P, the conductivity o ~ 7?2, a very unusual value of the ex-
ponent. According to Eq. (8) (applicable to resistivities) we must link this

exponent to the ratio L;‘T"/Z ~ T%/% (applicable to conductivities); thus,
To/z = 0.22.

0.10

P=1.56 kbar

| NiS;.565€0.44

0.02

7022 (Ko.zz) '

Fig.5. Dependence of conductivity on temperature for NiS; 56Seg 44 maintained at
pressure just slightly in excess of P.; note the T°-22 temperature dependence.
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In a second set of experiments [5| these workers measured the variation
of o with p at T = 50 mK. This is sufficiently close to T' = 0 to permit use
of Eq. (7). With &% ~ |§|*» ~ p% = p* and from the data of Fig. 6 one
deduces that o ~ p*, with p = 1.1 & 0.2. Then, according to the data of
Fig. 5, ©,/z = p/zv = 0.22 £ 0.02, so that zv ~ 4.6.

P (kbar)
15 1.6 1.7 1.8

o

NiS; 56S€0.44

50 mK) (milliohm-cm)-!

a (T:
[ ]
N
- @&

0 01 0.2

Fig. 6. Conductivity of NiS; 56Seg.44 at 50 mK as a function of the ratio (P—P.)/Pe.
Open and closed circles represent two samples with slightly different P, values.

To test the overall consistency of this approach one notes that the ratio
of the measurements o (p,t) and p* should follow the relation

o oz T1/2 Lo

pr pTe jud

On taking logarithms one finds that a plot of In(o/p*) vs In(T'/p*”) should
produce a universal curve. Indeed, as Fig. 7 shows, the data taken at various
p do collapse onto a single plot (the slight kink in the graph is not presently
understood). This is proof that the scaling procedure outlined above is
applicable to the present experimental data.

One can separate out z from v by additional conductivity studies in the
non-ohmic regime. The relevant analysis is based on the use of /., the mean
free path, as the dominant length scale of the experiment near the critical
point, with a corresponding time scale /2. The electronic contribution to the
field £ is associated with the energy change F = ef{.; by the uncertainty
principle we also posit that AE = /&, ~ £2%, so that #2771 ~ £71 or
0, ~ EY(1+2)  One defines an effective temperature through the relation
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Fig.7. Collapse of conductivity data in the critical range onto a single curve, as
specified by Eq. (9).

kpTer = e€l.; this quantity may be found from measurements in the ohmic
range. Thus, near the quantum critical point,

Tog ~ EL. ~ EF/0F2) (10)

A plot of logTer vs log& should then yield a single curve whose slope is
given by z/(1 + z). Experiments [5] indeed display the predicted universal-
ity, as shown by the representative data of Fig. 8 for P = 1.56 kbar and
for 0.35 < T < 0.80 K. Similar results were obtained for P = 1.51 and
1.70 kbar. From the observed slope one obtains a value of z = 2.7 £ 0.35,
whence v = 1.7 £ 0.25, and x, = 0.64 + 0.13.

] 1
P = 1.56 kbar
3 - -
g
5
oL i
A A
¢ oo a 080K
»h" * 060K
13ee m 045K
e 035K
0.3 L :
104 107 10
E (V/icm)

Fig. 8. Effective electron temperature Teg vs electric field at p = 0.03. Note merging
of data in the 0.35 to 0.80 K range to a single curve at higher £.
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These values have been carefully scrutinized [8] and compared with crit-
ical quantum fluctuations observed in other systems. The value p = 1.1 is
consonant with commonly encountered exponents in related systems, but
the product z falls outside the generally accepted range. The hyperscaling
relation 4 = (d—2) is not satisfied and z falls well outside the expected value
of 0.8 to 1. At present there is no consensus in the interpretation of these
results. The value of x, is particularly puzzling for a system of three dimen-
sions. Further investigations into this problem are therefore warranted.

In any event, the principal aim so far has been to show the great ver-
satility of the NiSq_ ,Se, system: by varying = one can achieve gradations
in electrical characteristics that probe electron correlation effects. Further-
more, for properly chosen z one can study the characteristics of the system
in the region of quantum critical phenomena.

3. Correlations in the V503 system

We next turn to several manifestations of correlation phenomena in the
V303 system.

The physical characteristics of VoOg3 and its dilute alloys with neighbor-
ing transition metal cations have been studied for a long time; the reader is
referred to several reviews [9] for background reading and for references to
earlier work. Here we examine recent developments illustrating complexities
that must be faced in accounting for the properties of V5Os3.

Vanadium sesquioxide has generally been regarded as a model system
for displaying electron correlation effects. Several experimental properties
support this claim: (3) The electronic contribution to the low-temperature
heat capacity of VoO3 — rendered metallic by application of hydrostatic
pressure, or by incorporation of 1-5 at % Ti, or by incorporation of excess
oxygen — is exceptionally high in comparison to values for standard metals.
(#1) The Pauli paramagnetic susceptibility x in this same group of materials
likewise is greatly enhanced over the values associated with a free electron
gas. (111) The electrical resistivity p of this class of materials at low tempera-
tures T varies as p ~ T?; this feature is again characteristic of an interacting
electron gas.

Up to now these findings were generally interpreted in terms of the
Brinkman-Rice (BR) [10] theory that deals with interacting electrons oc-
cupying a single nondegenerate band; in light of more recent work this
model has to be altered, as described earlier, in conformity with Ref. [3].
For present purposes we begin by using the elementary models of Ref. [4],
summarized earlier, to indicate how electron correlations give rise to metal
insulator transitions or to reentrant metallic behavior. This rationalizes [11]
the observed successive transitions in VoO3 with rising temperature T be-



Electron Correlation Effects in . .. 2869

tween the antiferromagnetic insulating (AFI), Paramagnetic Metallic (PM),
and Paramagnetic Insulating (PI) states [12], shown in the phase diagram
of Fig. 9. One should note that through Cr doping one moves towards
the right, whereas by application of pressure, Ti doping, or by increasing
V vacancies one moves to the left of the diagram. However, factors other
than electron correlations are also involved in these transitions: first, even
though the PM-PI transformation involves no change in lattice symmetry
the transition is accompanied by enormous hysteresis effects, of the order of
50-70 K. This clearly shows that even in the simplest of the three transi-
tions one should not ignore the role of the lattice. Second, in the PM-AFI
transition most of the observed entropy change (based on heat capacity mea-
surements) can be accounted for by use of the standard AS = RIn(2J + 1)
expression. This indicates that magnetic ordering plays an important role
in this particular transformation. A variety of additional mechanisms listed
in Ref. [12]| have also been invoked to explain the various phase transitions
in the V503 system, though many of these are probably irrelevant in the
present case.

0.03 002 001 0 .02 .04
(Vl—xcrx)ZOS

Fig.9. Phase diagram of the V503 system, determined as a function of composition.
PM — paramagnetic metal, PI — paramagnetic insulator, AFI — antiferromag-
netic insulator, SDW — spin density wave in an antiferromagnetic metal (AFM).
Hatched region corresponds to the only phase in which antiferromagntic ordering
of the type shown in Fig. 11(b) is encountered.

The phase diagram, Fig. 9, is somewhat misleading, in that one cannot
superficially equate the effects of pressure, of doping with Ti, or of introduc-
ing cation defects by use of excess oxygen. This is brought out in Fig. 10,
where the electronic heat capacity +y is shown as a function of pressure P, or
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as the deviation y in Vo_,O3 from perfect stoichiometry [13]. One sees that
as the pressure is reduced towards the critical value P., below which V5Og3
enters the insulating phase, the heat capacity rises indefinitely, essentially
in accord with the BR theory: v = vo/(1 — I)?, I = U/U., where 7 is the
value in the absence of electron correlation effects, U is the Hubbard one-
site Coulomb repulsion energy between two electrons, and U, is its critical
value. This should be contrasted with the effect of decreasing the degree of
nonstoichiometry y towards its critical value y. that separates the metallic
from the insulating state. In these particular experiments v is only slightly
reduced in value. The difference in these properties arises from the fact that
with reduced pressure the band width narrows, thus increasing U, whereas
changes in y reflect alterations in the degree of filling of the conduction band
of nearly constant width.

.02 03
80 00 0
! T
|
> | V., O
N 2-y V3
¥ 60 .
o
£ el
= =
g =
=40 .
> |
|
| y=0.013 l
20 ] ! L 1
3 5
P (kbar)

Fig.10. Electronic contribution to the heat capacity as a function of applied hy-
drostatic pressure and cation vacancy concentration. The vertical dashed line rep-
resents the boundary between the metallic (right) and insulating (left) states.

We next draw attention to one more phase shown in Fig. 9. On cooling
the PM phase one encounters near 10 K a transition to an antiferromagnetic
metallic (AFM or SDWM) configuration whose magnetic structure was re-
cently determined [14], as shown in Fig. 11(a): The spins lie in the basal
planes of the corundum structure and form a honeycomb pattern. When
stacked vertically along the ¢ axis the spins form a left- or right-handed spi-
ral pattern with a pitch of nearly 37/2. This arrangement is to be contrasted
with the very different spin configuration of Fig. 11(b) for the AFI phase,
as determined by Moon [15]. Here the spins are canted by 71° away from
the ¢ axis; they are arranged ferromagnetically within a given vertical slab,
with successive parallel slabs showing opposite spin orientations.

The discussion points up that the AFI arrangement is encountered only
in the hatched region of the phase diagram of Fig. 9; outside this range the
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Fig.11. Magnetic ordering in the AFM-SDW V503 phase (part (a)) and in the
AFT phase (part (b)).

spin spiral arrangement prevails in the AFM—-SDW region, and remnants at
this type of ordering are also encountered both in the PM and in the PI
portions of the phase diagram. More precisely, the elastic sharp magnetic
neutron diffraction peaks centered on (1,0,0.3) and (1,0,2.3) in the AFM
(SDW) phase give way to very broad magnetic inelastic scattering peaks
characterizing the PM and PI phase. This is best illustrated by reference to
Figs. 12 and 13, where various types of diffraction peaks are shown. Fig. 12
pertains to diffraction peaks observed for VoO3 whose low temperature state
(T < 140 K) is the AFT configuration; as indicated by the solid circles, the
inelastic scattering peaks occur at (%,'k,£), with no noticeable diffraction
intensity along (1,0,£). When V50j3 is heated to 200 K where the PM phase
prevails (open circles), the situation is reversed; now the diffraction peaks are
encountered along (1,0,£), with no noticeable intensity along ('/2,'/2,£). Thus
the system switches from magnetic ordering for the AFT phase to a quite
distinctive ordering in the PM phase, reminiscent of the ordering in the AFM
(SDW) state. A rather similar situation is shown for Fig. 13 displaying data
for V1.94Crg.0603, that, on raising the temperature, switches from the AFI
to the PI phase. Thus, the magnetic ordering pattern changes completely
on exiting the AFI phase to any of the other phases of the VoOgs system.
The intensity patterns for the PM phase have been rationalized on the
basis of the self consistent renormalization (SCR) theory of Moriya [16] in the
small magnetic moment limit. By standard methodology one uses measured
inelastic diffraction peak intensities to obtain the imaginary component "



2872 J.M. HoNIG

: V.04
i i
807 12mev § § o200K]
€0 ©140K4
c 40
IS 20
:—) 0 N 0'00
o -2 - 6 1 2
) (1/2,1/2,1)
*E T T T T T T
O Py béé ® 130K{
100 b -
;;;o?a’iié;§¢¢’§Asx

+ 447
ML M TLLARFY
o] ' [ 1 1 i !

-2 1 4
(100)

Fig.12. Constant energy scans along (‘/2,'/s,f) (upper panel) and (1,0,¢) (lower
panel) in the PM (open circles) and AFT (solid circles) phases of V50s3.

200 V,.04Cro.0603
¥ K] T
12meV 0205K
150¢
100
E
E 50t
;6 0
o, -2 -1 0 1 2
v (1/2,1/2,1)
+E t I L] ] 1 1 T
o) | Sme © 205K
3 2 ¢ , 17K
- ¢
L I o
10505 5544 '}aééé e
FoTaere s ¢%V¢
0 L I 1 ! ! !
-2 1 4

(100)

Fig.13. Constant energy scans along ('/2,'/,f) (upper panel) and (1,0,¢) (lower
panel) in the PI (open circles) and AFT (solid circles) phases of V1.94Crg.0603.
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of the magnetic susceptibility. In the relevant SCR scheme this quantity is
specified by

X//(Q+g,w) 1 2 huya (K2 + ) § "
XQ 1+ (4)" (7hw)? + [ya (8% + ¢?)]

where 4 is a temperature-independent parameter, ¢ is the displacement

from the antiferromagnetic Bragg vector ), k is the inverse correlation

length ¢! Aw is the energy transfer, and Xq is the staggered magnetic
susceptibility.

Representative intensity vs ¢ plots based on Eq. (11) are shown in Fig. 14
for hw = 3 meV at a variety of temperatures, using the data displayed in
Fig. 15 as input parameters. Note that the maximum value of the intensity
at ¢ = 0 remains finite; no resonances occur. This is a reflection of the
proximity of the system to the critical quantum fluctuation regime.

T=

£ (meV-)

Fig.14. Plots of x" vs ¢ for lw = 3 meV, as determined according to Eq. (11),
using the data of Fig. 15 as input parameters.
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The values of the parameters of Eq. (11) for VoO3 are shown in Fig. 15 as
a function of temperature T'. The staggered susceptibility follows the Curie—
~Weiss law over a considerable temperature range. Note that at higher T
the correlation length & barely exceeds the interionic distances in VoOg3 and
that ¢ is smaller in the PI than in the PM phase.
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Fig.15. Variation of input parameters m,xél,'m as a function of temperature;
¢* = 0.448 A=' in the AFM phase.

The change in magnetic ordering in passing from the AFI to the various
other phases requires an explanation that goes beyond the one band approx-
imation. Two views have recently been advanced. In the model adopted by
Sawatzky and coworkers [17] the two electrons of the Vd? ion configuration
are distributed with comparable probability among the energetically lower
lying a; state and on one of the doubly degenerate e states. The net spin
then is S = 1 per V atom, as compared to the experimental magnetic mo-
ment of 1.2 Bohr magnetons. The workers of Ref. [17] justify adoption of this
model through the comparison of their measured V Lg 3 X-ray absorption
intensities, taken with the electric vector F||c and E L ¢, with differences
calculated on applying LDA + U theory to a VOg cluster. If the aq state
were projected out, as described below, the calculation would disagree with
experiment. Based on their work the authors determined that on average
for the two electrons per V atom, the ratios of the e/e vs e/a; occupancy is
2 : 1 for the AFT phase, 1 : 1 for the PM phase, and 3 : 2 for the PI phase.
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An alternative treatment of this problem was developed earlier, based on
qualitative arguments advanced by Goodenough [18] and on a more rigorous
assessment by the Ranninger group [19] over 20 years ago. In this approach
it is recognized that there exist V-V molecular-like units along the c axis
of the PI corundum phase. On entering the monoclinic AFI configuration
the internuclear axis tilts away from the ¢ axis, and the two V atoms of the
molecular unit move slightly apart. In accord with chemical intuition, the
two electrons occupying the lowest-lying a; state on the two paired V atoms
are deemed to form a covalent bond, so that the a; states may be projected
out. In this view the V-V pairing is the result of chemical bonding rather
than deriving from the ionic configuration of the corundum lattice. The
remaining electron on each V atom in the lattice then occupies the e state,
with a resultant net spin of S = !5.

Ranninger and coworkers considered various alternative configurations
for the remaining e-state electron that can occupy either of the two degen-
erate e states on different V atoms in the same basal plane. This leads to
the possibility of bond ordering. They deduced the spin and orbital order-
ings shown in Fig. 16, as representing the lowest energy state. With the
a; ~ 322 — r? orbital removed from further consideration there remain the
dy ~ (2% —y?) + (zy) and ds ~ (z2) + (y2) orbital states. These in turn can
be combined into the r = dy 4+ d3 and s = do — ds3 configurations that are
arranged as shown in Fig. 16 as dark and light circles representing V atoms
in the cationic sublattice. The arrows represent electron spin alignments.
Experimental evidence in favor of this ordered orbital arrangement derives
from resonant X-ray absorption measurements [20]: X-ray irradiation at a
wavelength centered on the vanadium atomic absorption band impinges on
the sample and is absorbed by electrons whose density around the various V
atoms is slightly nonspherical. These weakly allowed transitions are moni-
tored as a function of the rotation of the sample around an azimuthal angle;
the results are then compared with theoretical predictions. From the overall
concordance between theory and experiment the original configuration of
the ordered orbitals of Ref. [14] was adopted by these workers.

As Fig. 16 suggests, the orbital and spin coordinates are very closely
interlinked; these degrees of freedom must therefore also be closely coupled
in the relevant Hamiltonian, as discussed by Kugel’ and Khomskii [21], and
as adapted by Rice [22] to the case of V203. On exiting the AFI phase
the orbital ordering is severely perturbed; this leads to the scrambling of
the spin configuration as well, as discussed by Rice [22] and by Bao and
coworkers [14].

At present the issue as to whether the S = 1 or S = /4 model is ap-
propriate to the ordered magnetic insulating phase of V503 has not been
settled.
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Fig. 16. Proposed orbital ordering in the AFI phase of V203, see Refs. [14,22]. The
full and empty circles represent V atoms with associated orbitals r and s discussed
in the text. The arrows represent electron spin alignments. The oxygen ions are
omitted for clarity.

In conclusion, we have surveyed the gradual evolution of the simple BR
picture based on considerations of one electron in a nondegenerate band
of V503 to a more sophisticated consideration of two electrons distributed
among several accessible d-states. No truly satisfactory picture has emerged
at the time of writing, but the trend is very clear: theory and experiment
must advance cooperatively to explore the effects of degeneracy that were left
out of account in the original assessment, some forty years ago, of electron
correlation effects in the VoOg system.

The author wishes to acknowledge his indebtedness to all his collabora-
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theoretical framework. He is particularly indebted to Prof. G. Sawatzky
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