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EXACT DIAGONALIZATION OF MANY-FERMIONHAMILTONIAN COMBINED WITHWAVE-FUNCTION READJUSTMENT:APPLICATION TO ONE-DIMENSIONAL SYSTEMS�J. Spaªek, R. Podsiadªy, A. Ry
erzMarian Smolu
howski Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polandand W. Wój
ikInstitute of Physi
s, Tadeusz Ko±
iuszko Te
hni
al UniversityPod
hor¡»y
h 1, 30-084 Kraków, Poland(Re
eived November 15, 2000)We des
ribe brie�y a new method of approa
h to the intera
ting fermionand boson systems. Namely, we determine the expli
it form of the single-parti
le wave fun
tions fwi(r)g appearing in the mi
ros
opi
 parametersof models in the se
ond-quantization representation. The method is illus-trated on the examples of H2 mole
ule and He atom, the Hubbard 
hain,and a ring of N � 10 atoms.PACS numbers: 71.10.Fd, 71.15.Fv, 31.25.Nj1. Introdu
tionCurrent dis
ussion of properties of the latti
e 
orrelated fermion sys-tems relies heavily on parametrized models su
h as the Hubbard [1℄, t�J [2℄,Kondo-impurity [3℄, as well as the impurity and the latti
e Anderson mod-els [4℄. In all these models the mi
ros
opi
 parameters su
h as the hoppingintegral t (or hybridization), the intraatomi
 Coulomb U , and the nearest-neighbor Coulomb and ex
hange integrals (K and J , respe
tively) are takenas parameters, in terms of whi
h we express the ground state energy andother physi
al properties in
luding the quantum phase transitions. In su
h� Presented at the XL Cra
ow S
hool of Theoreti
al Physi
s, Zakopane, PolandJune 3�11, 2000. (2879)



2880 J. Spaªek et al.dis
ussion we utilize the exa
t solutions in zero- and one- dimensions [5℄, ex-a
t diagonalization for �nite systems [6℄, (usually 
ombined with the density-matrix renormalization group te
hnique [7℄), as well as various approximatesolutions using slave bosons [8℄, dynami
 mean �eld 
on
ept [9℄, perturba-tion te
hniques, et
., to name a few. In this extensive analysis the mostimportant fa
tor is the nonperturbative in�uen
e of the intera
tion on thesingle-parti
le states, sin
e their magnitude is 
omparable or even substan-tially larger than the Fermi energy, i.e. the systems are those of strongly
orrelated parti
les.A dire
t 
omparison of the solutions with the experiment is not alwayspossible as the mi
ros
opi
 parameters are mostly not dire
tly measurable.However, the full solution would require their expli
it determination, sin
ethey 
ontain single-parti
le (Wannier) wave fun
tions. In 
onne
tion withthis one usually starts with a single-parti
le solution (su
h as LDA), deter-mines the single-parti
le states and band energies f"kg and then introdu
eslo
al 
orre
tions. In this manner approa
hes su
h as LDA+U [10℄ or SIC [11℄have been devised. They require a very subtle dis
ussion of the intera
tionpart, as it is in
luded twi
e, at the band-stru
ture 
al
ulation stage, as wellas at that in
luding the lo
al 
orre
tions. Apart from that it is impossible toknow a priori, in whi
h systems the method would work, parti
ularly whenwe 
onsider the system of low dimensionality.We have proposed [12℄ a new method of approa
h to the 
orrelated sys-tems whi
h 
ombines the exa
t diagonalization of many fermion Hamiltonianin the Fo
k spa
e with a readjustment of the single-parti
le wave fun
tions(in Hilbert spa
e), in the 
orrelated state (the appli
ation to the approx-imate solutions is dis
ussed brie�y at the end). Our method is based onan elementary but yet fundamental question: Should one not readjust thesingle-parti
le wave fun
tion to the situation when the intera
tion plays su
ha 
ru
ial role in determining the 
hara
ter of the nontrivial quantum ma
rostate? In other words, we in
lude the intera
tion pro
esses in the Fo
kspa
e �rst and thus obtained ground state energy of the intera
ting parti-
les optimize with respe
t to the wave fun
tions 
ontained in the mi
ros
opi
parameters. This wave fun
tion relaxation in the intera
ting state is simplypossible, sin
e the single-parti
le basis fwi(r)g de�ning the �eld operators	̂�(r) and 	̂ y�(r) is 
ompletely arbitrary if only it is 
omplete and (possi-bly) orthonormal [13℄. From the theoreti
al side, su
h a readjustment of thewave fun
tion leads to the renormalized wave equation whi
h represents theEuler equation obtained from the ground state energy, whi
h is regarded asa fun
tional of the single-parti
le wave fun
tions and their gradients. Thewave-fun
tion determination 
ompletes the solution of the se
ond-quantizedmodels if only their rigorous treatment in the Fo
k spa
e is possible.
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t Diagonalization of Many-Fermion Hamiltonian : : : 2881Few features of this new approa
h should be mentioned at the outset.First, the method is free in a natural manner from 
ounting the intera
tiontwi
e, sin
e the wave fun
tion is obtained only after 
onstru
ting the ground(or equilibrium) state of the intera
ting system. Se
ond, it provides the so-lution as a fun
tion of latti
e parameter. In parti
ular, the solution providesthe equilibrium latti
e 
onstant if the 
onsidered model has this property.Third, the approa
h represents probably the only possibility of determiningin a 
onsistent way the single-parti
le wave fun
tion in rather strongly in-tera
ting (
orrelated) system. However, the method has one disadvantage,namely, it 
an be applied rigorously only to either exa
tly soluble modelsystems or small systems 
ontaining N � 10�20 atoms, depending on thesystem dimensionality. It should 
ertainly be appli
able to the dis
ussionof quantum states of 
orrelated quantum dots and other quantum 
lustersystems. The 
onstru
tion of systemati
 analysis based on an approximatesolution is yet to be resolved. Therefore, we review here only our re
entresults [12, 14, 15℄ and provide a brief overview of the subje
t on this earlystage of development. 2. Method of approa
hIn des
ribing the system of intera
ting parti
les one usually starts fromthe 
on
ept of the �eld operator 	̂�(r), whi
h is de�ned in a 
ompleteorthonormal basis of single-parti
le basis fwi(r)��g in the following manner:	̂�(r) =Xi wi(r)��ai� ; (1)where ai� is the annihilation operator of a parti
le in a single-parti
le stateji�i. One should note that the basis fwi(r)��g is 
ompletely arbitrary in thisde�nition. As already noted above, the natural (and fundamental) questionone may ask immediately is: Can one �nd an optimal way of determinationthe wave fun
tion fwi(r)g and solve the 
orresponding HamiltonianH = X� Z d3r	̂ y�(r)H1(r)	̂�(r)+12 X�1�2 Z Z d3rd3r0	̂ y�1(r1)	̂ y�2(r2)V (r1 � r2)	̂�2(r2)	̂�1(r1) (2)in the Fo
k spa
e exa
tly? Su
h a pro
edure is perfe
tly well de�ned as theoperators H1(r) and V (r1� r2) � V12, representing respe
tively the single-parti
le and two-parti
le operators, a
t only in the 
oordinate (Hilbert)
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e, whereas the 
reation and annihilation operators a
t in the o

upation-number (Fo
k) spa
e. In the present se
tion we 
ombine those two 
omple-mentary steps, whi
h will be then implemented expli
itly in some modelsituations in the next se
tions.A remark is in order before presenting the formalism. Namely, startingfrom the diagonalization in the Fo
k spa
e we obtain the expression for e.g.the ground state energy, whi
h is still a fun
tional of the single-parti
le wavefun
tions fwi(r)g via the parameterstij � hwijH1jwji � Z d3rw?i (r)H1(r)wj(r) (3)andVijkl � hwiwj jV jwkwli � Z d3rd3r0w?i (r)w?j (r0)V (r � r0)wk(r)wl(r0); (4)whi
h des
ribe respe
tively the atomi
 part of energy (tii), the hoppingintegrals (tij for i 6= j), and the intera
tion matrix elements in the basisfwi(r)g. The minimization of the ground state energy with respe
t to the
hoi
e of the basis fun
tions fwi(r)g(appearing only under integrals) willlead to the Euler equation for those wave fun
tions that plays the role of therenormalized wave equation.Expli
itly, we start from the model of intera
ting fermions on a latti
efor whi
h the Hamiltonian (2) after substituting into it expression (1) hasthe following form in the real-spa
e representationH =Xij� tijayi�aj� + 12 Xijkl��0 Vijklayi�ayj�0al�0ak� � E1 +E2: (5)The solution of this model involves 
al
ulation of the ground-state energyEG � hHi =Xij� tij Dayi�aj�E+ 12 Xijkl��0 Vijkl Dayi�ayj�0al�0ak�E : (6)Introdu
ing the 
orrelation fun
tionsCij �X� Dayi�aj�E ; and Cijlk �X��0 Dayi�ayj�0al�0ak�E ; (7)we see that the diagonalization of the Hamiltonian (6) requires determinationof the above 
orrelation fun
tions as a fun
tion of parameters tij and Vijkl.In the standard treatment of 
orrelated model systems tij and Vijkl areregarded as 
onstants, i.e. the solution is analyzed as a fun
tion of those



Exa
t Diagonalization of Many-Fermion Hamiltonian : : : 2883parameters dividing the whole situation roughly into two limiting situations:(a) the metalli
 limit when jE1j � E2, and (b) the strong-
orrelation limitwhen jE1j � E2 (this limit may 
orrespond also the so-
alled Mott or Mott��Hubbard insulator limit when the number of ele
trons Ne is equal to thenumber of sites N . The regime when the two terms in (5) of 
omparablemagnitude (jE1j ' E2) is regarded as a separate limit (
) in whi
h the Mott�Hubbard (metal-insulator) transition takes pla
e. In the situation (a) theband theoreti
al or perturbation te
hniques [11, 12℄ provide the ele
troni
states, at least at temperature T = 0, with a su�
ient degree of a

ura
y.Therefore, the most interesting are the limits (b) and (
) when the single-parti
le part is not dominant. In those limits the intera
tion part determinesthe nature of the quantum ground state, e.g. indu
es the 
rystallization ofthe ele
tron gas on the parent ions (the Mott�Hubbard transition), as wellas leads to the strong spin 
orrelations among the ele
trons (exempli�ed bythe kineti
 ex
hange intera
tion) or even introdu
es pairing whi
h may lead(for Ne 6= N) to the super
ondu
tivity [16℄.The nontrivial e�e
ts of intera
tion are parti
ularly strong for low-dimen-sional systems, where e.g. the ele
trons are lo
alized for arbitrarily smallmagnitude of the intera
tion if only short-range part of both tij (i; j are thenearest neighbors) and Vijkl (i = j = k = l) are taken into a

ount [5℄. Inthe same manner, the prin
ipal assumptions of the Fermi-liquid theory [7℄may be broken and the system may form (again for Ne = N) a Tomonaga��Luttinger fermioni
 liquid [18℄.In view of the above dis
ussion stressing the strongly nonperturbativenature of the intera
tions one should ask again: Should one not optimize thesingle-parti
le basis fwi(r)g together with the determination of the 
orrela-tion fun
tions Cij � C1(Ri �Rj) and Cijkl � C2(Ri �Rk;Rj �Rl; : : :)?This is parti
ularly so be
ause the 
ontributions E1 < 0 (for bound states)and E2 > 0 (for repulsive intera
tions) 
ompete with ea
h other in determin-ing the resultant state (metalli
 or insulating) of the system. Su
h question
an be inferred from those posed long time ago by Peierls, Mott, Andersonand others [19℄ about the prin
ipal role played by the ele
tron 
orrelations,whi
h have a nontrivial (e.g. non Hartree�Fo
k) 
hara
ter.As the answer to the posed question we have proposed [12, 14, 15℄ to
lose the analysis of the 
orrelated states by taking Cij = Cijftij ; Vijklg andCijkl = Cijklftij ; Vijklg and determining the renormalized wave equation forfwj(r)g by treating EG as a fun
tional of fwi(r)g and their derivatives,sin
e H1(r) = �(~=2m)r2 + V (r), with V (r) being the single-parti
le po-tential. In su
h a situation wi(r) is determined from an Euler equation forthe fun
tionalFfwi(r)g = EGfwi(r)g �Xi �i�Z d3rjwi(r)j2 � 1� ; (8)



2884 J. Spaªek et al.where �i is the Lagrange multiplier introdu
ed for the fun
tion wi(r), whi
his required to be normalized (i.e. represents a bound state). The generalform of this equation isÆEGÆw?i (r) �r ÆEGÆrw?i (r) � �iwi(r) = 0 ; (9)or expli
itly� ÆEGÆw?i (r) �r ÆEGÆrw?i (r)�0�Xj(i) tijCij + 12Xjkl VijklCijlk1A� �iwi(r) = 0 :(10)De�ning this renormalized wave equation in the form ( ~Hi � �i)wi(r) = 0,we obtain the expli
it form of the renormalized single-parti
le Hamiltonian~Hi = ~H1, whi
h has the same form at ea
h latti
e site if the latti
e istranslationally invariant (H1 is its bare 
ounterpart). In the next se
tion wewill write the expli
it form of this equation for 
on
rete examples. Note that�i does not ne
essarily plays the role of the eigenvalue, as e.g. the atomi
energy is de�ned as "a = hwijH1jwii = tii. Also, if the fun
tions fwi(r)gare orthogonalized �rst, then in Eqs. (8)�(10) one has to put �i � 0, andthen Eqs. (9) and (10) 
orrespond to a variational minimization of EG =EGfwi(r)g.3. Simple examples: H2 mole
ule and He atomWe start with the most general Hamiltonian in the Fo
k spa
e for a two-site system [20℄ for the 
ase, ea
h site 
ontributing a single s-type orbital:H = "a(n1 + n2) + tX� (ay1�a2� + ay2�a1�) + U�n1"n1# + n2"n2#��2J �S1 � S2 � 14n1n2�+Kn1n2 + J(ay1"ay1#a2#a2" + h.
.)+V X� (n1� + n2�)(ay1�a2� + ay2�a1�): (11)The �rst term determines the atomi
 lo
ation ("a) of the ele
trons on thetwo sites, t des
ribes the hopping (resonan
e) integral, U is the magnitudeof the intraatomi
 Coulomb intera
tion (the Hubbard intera
tion), J is theHeisenberg ex
hange integral, K is the intersite Coulomb intera
tion, and Vrepresents the so-
alled 
orrelated hopping term. For the sake of 
omplete-ness we will write the expli
it expressions for those quantities (in atomi




Exa
t Diagonalization of Many-Fermion Hamiltonian : : : 2885units, Ry), namely"a = Z d3rw?i (r)h�r2 +Xj V (r �Rj)iwi(r) � hwi j H1 j wii ; (12)t � t12 � tij = Z d3rw?i (r)h�r2 +Xj V (r �Rj)iwj(r)� hwi j H1 j wji ; (13)U = Z d3rd3r0 j wi(r) j2 2j r � r0 j j wi(r0) j2� hwiwi j V12 j wiwii ; (14)Jij = Z d3rd3r0w?i (r)wj(r0) 2j r � r0 jw?j (r)wi(r0) � hwiwj j V12 j wjwii ;(15)K � K12 � Kij = Z d3rd3r0 j wi(r) j2 2j r � r0 j j wj(r0) j2� hwiwj j V12 j wiwji ; (16)V � V12 � Vij = Z d3rd3r0 j wi(r) j2 2j r � r0 jwi(r0)w?j (r0)� hwiwj j V12 j wiwii : (17)The two-site Hamiltonian (11) may be easily diagonalized for Ne = 2 ele
-trons. Namely, sin
e the total spin (S) and its z 
omponent (Sz) are theintegrals of motion, one 
an write the trial basis for triplet (S = 1) andsinglet (S = 0) states. Namely, there are six su
h statesj1i = ay1"ay2"j0i (S = Sz = 1) ; (18)j2i = ay1#ay2#j0i (S = 1; Sz = �1) ; (19)j3i = 1p2 �ay1"ay2# + ay1#ay2"� j0i (S = 1; Sz = 0) ; (20)j4i = 1p2 �ay1"ay2# � ay1#ay2"� j0i (S = 0) ; (21)j5i = 1p2 �ay1"ay1# + ay2"ay2#� j0i (S = 0) ; (22)j6i = 1p2 �ay1"ay1# � ay2"ay2#� j0i (S = 0) : (23)



2886 J. Spaªek et al.The triplet state have eigenvalues �1 = �2 = �3 = 2 "a + K � J , whi
hseparate from the singlet states, for whi
h we have (3 � 3) Hamiltonianmatrix hi j H j ji in su
h 
hosen basis, namely(H)ij = 0� 2"a +K + J; 2(t+ V ); 02(t+ V ); 2"a + J + U; 00; 0; 2"a + U � J 1A : (24)This matrix has the eigenvalues�4;5 = 2"a + 12(K + U) + J � 12 �(U �K)2 + 16(t + V )2�1=2 ; (25)�6 = 2"a + U � J : (26)The 
orresponding eigenstates are also easy to obtain. The most importantfeature is that �5 is the lowest eigenvalue. Therefore, a

ording to our pro-posal we have still to minimize �5 with respe
t to fwi(r)g = fw1(r); w2(r)g.The 
orresponding renormalized wave equation will take the form�iwi(r) = [�r2 + V (r �R1)℄wi(r) + V (r �R2)wj(r)+12 ÆÆw?i (U +K + 2J)� 12 1[(U �K)2 + 16(t + V )2℄1=2� �(U �K)Æ(U �K)Æw?i + 16(t+ V )Æ(t+ V )Æw?i � : (27)The �rst term represents atomi
 energy for the parti
le lo
ated on i-th site,the se
ond re�e
ts the attra
tion to the j-th site, whereas the remainingterms des
ribe nonlinear nonlo
al in�uen
e of the Coulomb intera
tion be-tween the parti
les. To solve this equation in a simpli�ed way we 
omposethe orthogonalized atomi
 wave fun
tions fwi(r)g of the (nonorthogonal)atomi
 1s fun
tions i(r) �  (r �Ri) =ra3� exp(� j r �Ri j �) :Then, imposing the orthonormality 
onditions hwi j wji = Æij on the fun
-tion taken in the form wi(r) = �[ i(r)� 
 j(r)℄ ; (28)with i 6= j, and S = h 1 j  2i, we obtain that� = 1p2 � 11� S2 + 1(1� S2)1=2 �1=2 ; 
 = S1 +p1� S2 : (29)



Exa
t Diagonalization of Many-Fermion Hamiltonian : : : 2887The parameters "a, t, U , K, J , and V must be now rede�ned in the atomi
basis using (28). In e�e
t, one obtains the expressions for those parame-ters in terms of the Slater integrals [21℄. Those expressions are providedin the original paper [12℄. Substituting those to the expression (25) for�5 we will obtain the expression for the lowest eigenenergy as a fun
tionof interatomi
 distan
e (bond length) R and the size of the atomi
 fun
-tions ��1, i.e. �5 = �5(R; �). Minimizing this expression, as well as allex
ited-state energies (�i for i 6= 5), we will obtain the s
heme of the en-ergy levels depi
ted in Fig. 1 as a fun
tion of R. The optimal bond length islB = 0:757Å and the optimal ground state energy is EG = �2:296Ry, whi
h

Fig. 1. The lowest six energy levels for H2 mole
ule (solid lines) 
al
ulated to thesame degree of a

ura
y as for the Hubbard 
hain (see main text), for whi
h theground state energy of whi
h (per two sites) is shown as the dashed line.di�er by about 2.5% of Koªos and Wolniewi
z [22℄. The optimized size of theorbitals for ea
h eigenvalue is provided in Fig. 2. Finally, the 
orrespondingorthogonalized atomi
 wave fun
tion 
entered on the 
orresponding nu
leusis shown in Fig. 3. Note that we do not have to 
onstru
t any mole
ular wavefun
tions or 
onstru
t the Heitler�London determinantal wave fun
tion; theonly simplifying assumption is the 
hoi
e of a simple basis. Obviously, thepresent approa
h 
an be extended to in
lude the states 2s; 2p, et
., but thiswould go beyond the main purpose of this se
tion � the illustration of ourmethod of approa
h to the intera
ting systems. The in�uen
e of the higherex
ited atomi
 states is important to rea
h the quantitative des
ription of
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Fig. 2. Optimal size of atomi
 fun
tions for the �rst six states of the H2 mole
ule(solid lines), as 
ompared to that for the Hubbard 
hain (dashed line).

Fig. 3. Renormalized and orthogonalized atomi
 orbitals (the Wannier fun
tions)for H2 mole
ule in the equilibrium 
on�guration (R = Rmin = 1:43 a0).H2 mole
ule, sin
e for example the magnitude U is of the order of the valuefor 1s ! 2s atomi
 transitions. One methodologi
al remark is in order. In
onstru
ting Fig. 2 we have optimized the size ��1 of the orbitals for ea
heigenvalue �i separately. Stri
tly speaking, when the transitions betweenthe states are fast, then we should optimize the size of the atomi
 orbital



Exa
t Diagonalization of Many-Fermion Hamiltonian : : : 2889only in the ground state (for eigenvalue �5) and then substitute this optimalsize to those representing the ex
ited states. Otherwise, the eigenstates arenot orthogonal to ea
h other.In Fig. 4 we display the distan
e dependen
e of the model parameters.

Fig. 4. The mi
ros
opi
 parameters of the two-site Hamiltonian 
al
ulated for theH2 mole
ule as a fun
tion of the bond length (in units of Bohr radius).Ground state of helium atomThe He atom is the simplest system with intera
ting ele
trons. Thesingle-ele
tron Hamiltonian is H1 = �r2 � 4=r. Taking the ele
tron wavefun
tion in the 1s form  (r) = (�3=�)1=2 exp(��r), we 
an write down thesystem ground-state energy in one-state approximation E = 2"a + U in theform E = 2(�2 � 4�) + 54� = 2�2 � 274 � : (30)Minimizing � with respe
t to � we obtain that � = 27=16, and that E =�min = �5:695Ry, the well known value [23℄. It is interesting to write thefull renormalized wave equation, whi
h has the form��r2 � 4r�w(r) +w(r)Z d3r 2j r � r0 j j w(r0) j2= �w(r) : (31)This equation 
oin
ides with the Hartree equation for the single-parti
lewave fun
tion. It would be interesting to 
al
ulate �min taking expli
itly thesolution of (31).
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hainThe Hubbard model is based on a drasti
 simpli�
ation of the Hamil-tonian (6) in the following sense: (i) From all the matrix element only theintera
tion term Viii � U is retained, and (ii) the hopping matrix elementtij for i 6= j is taken only if i and j represent the nearest neighboring sites,i.e. thiji = t < 0. In e�e
t, the model Hamiltonian with an in
lusion of theatomi
 part is of the formH = "aXi� ni� + tXhiji� ayi�aj� + UXi ni"ni# : (32)This model in one dimension was solved by Lieb and Wu [5℄ and the ex-pression for the ground state energy in the half-�lled band (Ne = N) 
aseis EGN = E0 + 4t 1Z0 d! J1(!)J0(!)! �1 + exp �!U2t �� ; (33)where E0 
ontains both the atomi
 ("a) and the latti
e 
ontributions, andJn(x) is the Bessel fun
tion with n = 0 or 1. The model parameters t andU are de�ned as beforet = Z d3rw�i (r)H1(r)wi�1(r) = hwi j H1 j wi�1i; (34)and U = Z d3rd3r0 j wi(r) j2 2j r � r0 j j wi(r0) j2 : (35)Similarly, "a = hwi j H1(r) j wii : (36)Finally, the latti
e 
ontribution will be taken in the simplest 
lassi
al form,whi
h written in the atomi
 unit has the form Pi j Ri �Ri+1 j�1.As the solution of this model provides the ground-state energy in theform of (33), we have to determine the single-parti
le basis. We start fromthe atomi
 1s-type fun
tions f	i(r)g, whi
h are orthogonalized in the tight-binding approximation, whi
h de�ned throughwi(r) = �	i(r) + 
[	i+1(r) +	i�1(r)℄ ; (37)where the 
oe�
ients � and 
 are obtained from the 
onditions hwi j wii = 1and hwi j wi�1i = 0. Hen
e� = 1 +p1� 3S2q2� 5S2 + 2(1� 2S2)p1� 3S2 ;



Exa
t Diagonalization of Many-Fermion Hamiltonian : : : 2891
 = �Sq2� 5S2 + 2(1� 2S2)p1� 3S2 : (38)With the help of the Wannier fun
tions fwi(r)g we 
an de�ne the parameterst and U as follows: "a = ��2 + 2
2� "0a + 4�
t0 ; (39)t = ��2 + 3
2� t0 + 2�
"0a ; (40)and U = ��4 + 2
4�U 0 + 8�3
V 0 + 8�
3V 0 + 4�2
2K 0 + 8�2
2J 0 ; (41)where the primed parameters are the Slater integrals 
al
ulated for thes-type atomi
 wave fun
tions; they depend on both the size (��1) of theatomi
 orbitals and the interatomi
 distan
e R. Also, one has to in
lude theatomi
 part "a, as it varies with R.The simpli�ed atomi
 basis optimization is 
arried through the mini-mization of the fun
tional EG with respe
t to � (for given R) after substi-tution of the expressions (39)�(41) to (33). The ground-state energy (peratom) obtained in this manner (with the ion�ion repulsion in
luded to thefourth neighbor) is displayed in Fig. 5. The energy approa
hes the atomi


Fig. 5. Ground-state energy EG of the Hubbard 
hains as a fun
tion of relative in-teratomi
 distan
e R=a0. The atomi
 part of the energy and the interioni
 Coulombrepulsion (to the fourth neighbor) is in
luded. The inset provides EG with in
lusionof nearest neighbor Coulomb intera
tion � K in the Hartree�Fo
k approximation.



2892 J. Spaªek et al.value (�1Ry) per site for R=a0 > 6, where a0 = 0:539Å is the Bohr ra-dius. The optimal distan
e is Rmin = 3:15a0 � 1:6Å and the minimum ofEG=N � �1:03Ry, i.e. the 
ohesive energy is � 0:4 eV/atom. One shouldnote that the 
hain 
ollapses if the repulsion between the ions is taken onlybetween the nearest or the se
ond nearest neighbors. In the inset we show theresult for EG when the nearest neighbor Coulomb intera
tion KPi nini+1 isalso in
luded in the Hartree�Fo
k approximation (the 
hain is again instablethen).The interatomi
 distan
e dependen
e of the size of the optimized atomi
orbital size (in units of a0) is shown in Fig. 6 (the bare orbitals have the size��1=a0 = 1). The orbitals in the 
orrelated state shrink under the in�uen
eof the Coulomb intera
tion. In the inset we display the R dependen
e of thenearest neighbor overlap integral S. Even for the 
hain spa
ing R = Rmin(marked by the verti
al dotted line) the overlap S < 0:3, making our versionof the tight-binding approximation (37) appli
able for R � Rmin.

Fig. 6. Optimal size of atomi
 1s orbital (in
luding 
orrelations) in units of theatomi
 Bohr radius as a fun
tion of interatomi
 distan
e (the dashed line, withthe nearest-neighbor Coulomb intera
tion, as in Fig. 5). In the inset the overlapintegral is displayed. The verti
al dotted line marks the position, at whi
h EG hasa minimum.In Fig. 7 we have plotted the distan
e dependen
e of the mi
ros
opi
parameters based on our solution for the Hubbard model in the tight-bindingapproximation (the dashed lines in
lude in the solution theKn2 
oming from
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k approximation for the intersite Coulomb intera
tion). Wesee that in the atomi
 limit U � 15 eV for the renormalized 1s orbitals. Thehopping parameter de
reases strongly with the in
reasing distan
e. Thismeans that for the distan
e R ' 3a0 ' 1:5Å the situation U = W isa
hieved, where W = 2z j t j= 4 j t jis the band-width of the single-parti
lestates.

Fig. 7. The mi
ros
opi
 parameters 
al
ulated for the optimized Wannier fun
tionobtained for the Hubbard 
hain (solid lines), and with the Kn2 term in EG (dashedlines). 5. One-dimensional quantum dots (rings)Our method 
an be applied also to one-dimensional rings up to N = 12atoms, for whi
h a 
areful treatment of both two-site intera
tions and moredistant hopping pro
esses (and the wave fun
tion overlaps) is possible.TheHamiltonian has the same formal stru
ture as (11) ex
ept that now we in-
lude all pair intera
tions between the pair of sites hi; ji along the ring.Su
h a Hamiltonian is diagonalized numeri
ally in the Fo
k spa
e and theparameters are 
al
ulated with the help of exa
t one-band Wannier fun
tionsde�ned as wi(r) = N�1Xj=0 �i�j j(r) : (42)
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oe�
ients �ij 
an be 
al
ulated starting from the representation of theBlo
h fun
tion in the tight-binding approximation�q(r) = NqXj eiq �Rj j(r) ; (43)where the normalization fa
tor is determined via the overlap Sij betweenthe 
orresponding atomi
 wave fun
tions, i.e. has the formNq = �NXj eiq � (Rj�Ri)Sij��1=2 : (44)The 
oe�
ients �ij are de�ned through�ij = 1pN Xq eiq � (Ri�Rj)Nq : (45)The Hamiltonian and the mi
ros
opi
 parameters have a 
ompli
ate formand therefore will not be written down here [14℄. Additionally, if we in-
lude the intera
tions and the overlaps beyond the nearest-neighbor 3-siteintegrals appear whi
h are dealt with in spheroidal 
oordinates. Here wedis
uss only the �nal results obtained from detailed numeri
al analysis.

Fig. 8. Renormalized (solid line) and bare (dashed line) Wannier fun
tions for thering of N = 8 atoms and the interatomi
 distan
e R=a0 = 2.
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t Diagonalization of Many-Fermion Hamiltonian : : : 2895The bare and renormalized Wannier fun
tions, the latter obtained fordiagonalized exa
tly 
hain of N = 8 atoms, are depi
ted in Fig. 8 for thedistan
e R = 2a0. The repulsive intera
tion shrinks then even to the largeextent when 
ompared to the 
ase of Hubbard 
hain. The values of themi
ros
opi
 parameters for di�erent R values (together with their asymp-toti
 form) are presented in Table I. We note two basi
 features of theseresults: (i) the atomi
 energy "a depends rather strongly on the distan
e,and (ii) the intersite Coulomb intera
tion � Kij falls o� slowly with thedistan
e and has the asymptoti
 form Kij � 2=Rij (in Ry). The Heisen-berg ex
hange integral (J1) and the 
orrelated hopping (V1) are of at leasttwo orders of magnitude smaller than either U or K1. The renormalizedhopping parameter t1 is almost an order of magnitude larger than either t2and t3, making the tight-binding approximation realisti
 (tp is obviously thehopping integral between the p-th neighbors). TABLE IMi
ros
opi
 parameters (in Rydbergs) as a fun
tion of interatomi
 distan
e R fordi�erent neighbors p = 1; 2; 3.R=a0 "a t1 103t2 103t3 U K1 K2 K3 103J1 103V1 103V22:0 �4:043 �0:585 89:6 �98:3 2:301 1:077 0:676 0:450 9:54 �18:07 33:582:5 �3:734 �0:331 45:5 �45:0 1:949 0:843 0:499 0:331 7:39 �17:45 19:583:0 �3:422 �0:200 24:4 �21:9 1:717 0:692 0:391 0:259 5:59 �16:08 11:954:0 �2:916 �0:083 7:4 �5:3 1:452 0:508 0:269 0:179 2:90 �12:92 4:495:0 �2:558 �0:037 4:2 �2:7 1:327 0:403 0:206 0:138 1:26 �9:64 1:56Probably the most spe
ta
ular R dependen
e is that of statisti
al distri-bution fun
tion nk� = h0 j ayk�ak� j 0i in the momentum spa
e, as shown inFig. 9 for N = 10 atoms. For small latti
e 
onstant (R=a0 = 2) a 
lear sign ofthe Fermi wave ve
tor kF = �R=2 (
orresponding to one ele
tron per atom)
an be seen, whereas for R � 5a0 this distribution is smeared out throughoutthe �rst Brillouin zone meaning that the ele
trons are pra
ti
ally lo
alized forthat distan
e. This point is elaborated in detail elsewhere. The ground statej 0i of the system is a true spin singlet, i.e. with h0 jPNi=1 Si j 0i = 0. The
al
ulation of the wave fun
tion allows for determination of experimentallymeasurable quantities su
h as spin�spin 
orrelation fun
tion or ex
hange in-tegrals. Also, by extending the results to the situation with Ne < N one
an study the dynami
s of the holes in this strongly 
orrelated mesos
opi
system. The results will be presented elsewhere.
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Fig. 9. Momentum distribution nk� for ele
trons in the �rst Brillouin zone for ringof N = 10 atoms and the interatomi
 distan
es spe
i�ed.6. Con
lusionsWe have reviewed brie�y a new method of 
al
ulations of the ele
troni
states in 
orrelated low-dimensional and small systems. The method is basedon diagonalizing �rst the many-parti
le Hamiltonian in the Fo
k spa
e fol-lowed by the readjustment of the single-parti
le wave fun
tion. Therefore,the present two-step pro
edure in a reverse order is thus, stri
tly speaking,possible only in the situation when the exa
t solution of the many-parti
leaspe
t of a model is available or exe
utable numeri
ally. The obtained solu-tions provide the physi
al properties of the 
onsidered system as a fun
tionof latti
e parameter, not only as a fun
tion of the mi
ros
opi
 parameters.One may ask if the appli
ation of the method to the systems with anapproximate treatment of the 
orrelations is possible. Su
h approa
h wasoutlined some time ago [24℄, where the ele
troni
 
orrelations have beentreated within the Gutzwiller approa
h. We believe that our method 
anbe also used starting from the dynami
 mean-�eld theory (DMFT) [9℄. Theimplementation of DMFT 
ombined with the wave-fun
tion optimizationwould provide a possibility of testing the predi
tions of the Hubbard model,as the variations of the properties with 
hanging latti
e 
onstant 
an be 
ar-ried out experimentally by applying the pressure.



Exa
t Diagonalization of Many-Fermion Hamiltonian : : : 2897On the theoreti
al side one should in
orporate the density-matrix renor-malization group te
hnique [7℄ to extend the size of the system (number ofatoms N), parti
ularly for Ne < N , when one 
an study 
arefully the holestates and their pairing indu
ed by the kineti
 ex
hange intera
tion and/orparamagnons.Extension of our method to two-dimensional systems would be also im-portant, but that would involve more advan
ed numeri
al pro
edures.The work was supported by the Polish State Committee for S
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