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We describe briefly a new method of approach to the interacting fermion
and boson systems. Namely, we determine the explicit form of the single-
particle wave functions {w;(r)} appearing in the microscopic parameters
of models in the second-quantization representation. The method is illus-
trated on the examples of Hy molecule and He atom, the Hubbard chain,
and a ring of N < 10 atoms.
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1. Introduction

Current discussion of properties of the lattice correlated fermion sys-
tems relies heavily on parametrized models such as the Hubbard [1], ¢-J [2],
Kondo-impurity [3], as well as the impurity and the lattice Anderson mod-
els [4]. In all these models the microscopic parameters such as the hopping
integral ¢ (or hybridization), the intraatomic Coulomb U, and the nearest-
neighbor Coulomb and exchange integrals (K and J, respectively) are taken
as parameters, in terms of which we express the ground state energy and
other physical properties including the quantum phase transitions. In such
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discussion we utilize the exact solutions in zero- and one- dimensions [5], ex-
act diagonalization for finite systems [6], (usually combined with the density-
matrix renormalization group technique [7]), as well as various approximate
solutions using slave bosons [8], dynamic mean field concept [9], perturba-
tion techniques, etc., to name a few. In this extensive analysis the most
important factor is the nonperturbative influence of the interaction on the
single-particle states, since their magnitude is comparable or even substan-
tially larger than the Fermi energy, i.e. the systems are those of strongly
correlated particles.

A direct comparison of the solutions with the experiment is not always
possible as the microscopic parameters are mostly not directly measurable.
However, the full solution would require their explicit determination, since
they contain single-particle (Wannier) wave functions. In connection with
this one usually starts with a single-particle solution (such as LDA), deter-
mines the single-particle states and band energies {e¢g} and then introduces
local corrections. In this manner approaches such as LDA+U [10] or SIC [11]
have been devised. They require a very subtle discussion of the interaction
part, as it is included twice, at the band-structure calculation stage, as well
as at that including the local corrections. Apart from that it is impossible to
know a priori, in which systems the method would work, particularly when
we consider the system of low dimensionality.

We have proposed [12] a new method of approach to the correlated sys-
tems which combines the ezact diagonalization of many fermion Hamiltonian
in the Fock space with a readjustment of the single-particle wave functions
(in Hilbert space), in the correlated state (the application to the approx-
imate solutions is discussed briefly at the end). Our method is based on
an elementary but yet fundamental question: Should one not readjust the
single-particle wave function to the situation when the interaction plays such
a crucial role in determining the character of the nontrivial quantum macro
state? In other words, we include the interaction processes in the Fock
space first and thus obtained ground state energy of the interacting parti-
cles optimize with respect to the wave functions contained in the microscopic
parameters. This wave function relaxation in the interacting state is simply
possible, since the single-particle basis {w;(r)} defining the field operators
@U(r) and @;(r) is completely arbitrary if only it is complete and (possi-
bly) orthonormal [13]. From the theoretical side, such a readjustment of the
wave function leads to the renormalized wave equation which represents the
Euler equation obtained from the ground state energy, which is regarded as
a functional of the single-particle wave functions and their gradients. The
wave-function determination completes the solution of the second-quantized
models if only their rigorous treatment in the Fock space is possible.
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Few features of this new approach should be mentioned at the outset.
First, the method is free in a natural manner from counting the interaction
twice, since the wave function is obtained only after constructing the ground
(or equilibrium) state of the interacting system. Second, it provides the so-
lution as a function of lattice parameter. In particular, the solution provides
the equilibrium lattice constant if the considered model has this property.
Third, the approach represents probably the only possibility of determining
in a consistent way the single-particle wave function in rather strongly in-
teracting (correlated) system. However, the method has one disadvantage,
namely, it can be applied rigorously only to either exactly soluble model
systems or small systems containing N < 10-20 atoms, depending on the
system dimensionality. It should certainly be applicable to the discussion
of quantum states of correlated quantum dots and other quantum cluster
systems. The construction of systematic analysis based on an approximate
solution is yet to be resolved. Therefore, we review here only our recent
results [12,14,15] and provide a brief overview of the subject on this early
stage of development.

2. Method of approach

In describing the system of interacting particles one usually starts from
the concept of the field operator ¥,(r), which is defined in a complete
orthonormal basis of single-particle basis {w;(r)x,} in the following manner:

= Zwi(r)XUUJia 5 (1)

where a;, is the annihilation operator of a particle in a single-particle state
lio). One should note that the basis {w;(7)x, } is completely arbitrary in this
definition. As already noted above, the natural (and fundamental) question
one may ask immediately is: Can one find an optimal way of determination
the wave function {w;(r)} and solve the corresponding Hamiltonian

_ Z/d%@;(r)ﬂl(r)@a(r)
4y 30 [ [ ot B ) B )V (= 1) B (2) By 1)

01 D)

in the Fock space exactly? Such a procedure is perfectly well defined as the
operators Hq(r) and V(r; — ry) = Vio, representing respectively the single-
particle and two-particle operators, act only in the coordinate (Hilbert)
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space, whereas the creation and annihilation operators act in the occupation-
number (Fock) space. In the present section we combine those two comple-
mentary steps, which will be then implemented explicitly in some model
situations in the next sections.

A remark is in order before presenting the formalism. Namely, starting
from the diagonalization in the Fock space we obtain the expression for e.g.
the ground state energy, which is still a functional of the single-particle wave
functions {w;(r)} via the parameters

by = (il i) = [ drof(e) ey (r) g
and
Vijrl = (wiw;|Vwpw;) = /dgrd‘gr'wf(r)w;(r')V(r — rwg(r)w(r'), (4)

which describe respectively the atomic part of energy (;;), the hopping
integrals (¢;; for 4 # j), and the interaction matrix elements in the basis
{w;(r)}. The minimization of the ground state energy with respect to the
choice of the basis functions {w;(r)}(appearing only under integrals) will
lead to the Euler equation for those wave functions that plays the role of the
renormalized wave equation.

Explicitly, we start from the model of interacting fermions on a lattice
for which the Hamiltonian (2) after substituting into it expression (1) has
the following form in the real-space representation

H = Ztijazaaja Z szklawaja,ala/akg = E1 + EQ. (5)
ijo zgklaa
The solution of this model involves calculation of the ground-state energy
Zt” <awajg> + - Z Vzgkl< a5 ngala’aka> . (6)
ijo zgklaa
Introducing the correlation functions
Cij = Z <a}aaja> , and Gy = Z <ajga;g:azg'aka> ; (7)
a oo’

we see that the diagonalization of the Hamiltonian (6) requires determination
of the above correlation functions as a function of parameters ¢;; and Vj;z;.

In the standard treatment of correlated model systems #;; and Vj;;; are
regarded as constants, i.e. the solution is analyzed as a function of those
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parameters dividing the whole situation roughly into two limiting situations:
(a) the metallic limit when |Fy| > Fs, and (b) the strong-correlation limit
when |E| < Ej (this limit may correspond also the so-called Mott or Mott—
—Hubbard insulator limit when the number of electrons N, is equal to the
number of sites N. The regime when the two terms in (5) of comparable
magnitude (| F1| ~ E») is regarded as a separate limit (c) in which the Mott—
Hubbard (metal-insulator) transition takes place. In the situation (a) the
band theoretical or perturbation techniques [11,12] provide the electronic
states, at least at temperature T' = 0, with a sufficient degree of accuracy.
Therefore, the most interesting are the limits (b) and (¢) when the single-
particle part is not dominant. In those limits the interaction part determines
the nature of the quantum ground state, e.g. induces the crystallization of
the electron gas on the parent ions (the Mott—Hubbard transition), as well
as leads to the strong spin correlations among the electrons (exemplified by
the kinetic exchange interaction) or even introduces pairing which may lead
(for N, # N) to the superconductivity [16].

The nontrivial effects of interaction are particularly strong for low-dimen-
sional systems, where e.g. the electrons are localized for arbitrarily small
magnitude of the interaction if only short-range part of both t;; (i, j are the
nearest neighbors) and Vi (i = j = k = [) are taken into account [5]. In
the same manner, the principal assumptions of the Fermi-liquid theory [7]
may be broken and the system may form (again for N, = N) a Tomonaga—
—Luttinger fermionic liquid [18].

In view of the above discussion stressing the strongly nonperturbative
nature of the interactions one should ask again: Should one not optimize the
single-particle basis {w;(r)} together with the determination of the correla-
tion functions Cij = Ci1(R; — Rj) and Cijkl = Cy(R; — Ry, R, — Ry,.. 7
This is particularly so because the contributions F; < 0 (for bound states)
and Ey > 0 (for repulsive interactions) compete with each other in determin-
ing the resultant state (metallic or insulating) of the system. Such question
can be inferred from those posed long time ago by Peierls, Mott, Anderson
and others [19] about the principal role played by the electron correlations,
which have a nontrivial (e.g. non Hartree-Fock) character.

As the answer to the posed question we have proposed [12, 14, 15] to
close the analysis of the correlated states by taking C;; = Cj;{t;;, Vijm} and
Cijki = Cijri{tij, Viju} and determining the renormalized wave equation for
{wj(r)} by treating Fq as a functional of {w;(r)} and their derivatives,
since Hy(r) = —(h/2m)V? + V(r), with V(r) being the single-particle po-
tential. In such a situation w;(r) is determined from an Euler equation for
the functional

Plustr)} = Bofutr)) - S0 ([ P -1) . )
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where ); is the Lagrange multiplier introduced for the function w;(r), which
is required to be normalized (i.e. represents a bound state). The general
form of this equation is

0 v 0Fq
dwr(r) IVwi(r)

— Aiwi(r) =0, (9)

or explicitly

oFE 0E 1
6w:(6;) -V W] Ztijcij + 5 Z Vijleiﬂk — )\iwi(r) =0.
3(2) Jkl

(10)
Defining this renormalized wave equation in the form (H; — \)w;(r) = 0,
we obtain the explicit form of the renormalized single-particle Hamiltonian
H; = Hi, which has the same form at each lattice site if the lattice is
translationally invariant (H; is its bare counterpart). In the next section we
will write the explicit form of this equation for concrete examples. Note that
A; does not necessarily plays the role of the eigenvalue, as e.g. the atomic
energy is defined as e, = (w;|Hy|w;) = t;;. Also, if the functions {w;(r)}
are orthogonalized first, then in Eqs. (8)—(10) one has to put A; = 0, and
then Egs. (9) and (10) correspond to a variational minimization of Fg =

Eg{wi (T‘)}

3. Simple examples: Hy molecule and He atom

We start with the most general Hamiltonian in the Fock space for a two-
site system [20] for the case, each site contributing a single s-type orbital:

H = g4(ny +n9) + tZ(aLagg + aggalg) + U(n”nu + nngu)

g

1
—2J <Sl . SQ - Z’nl’n?) + Knlng + J((Z];Ta.hagiag'r + h.C.)

+V ) (n16 + n20)(al5a25 + alza15). (11)

g

The first term determines the atomic location (g,) of the electrons on the
two sites, ¢ describes the hopping (resonance) integral, U is the magnitude
of the intraatomic Coulomb interaction (the Hubbard interaction), J is the
Heisenberg exchange integral, K is the intersite Coulomb interaction, and V
represents the so-called correlated hopping term. For the sake of complete-
ness we will write the explicit expressions for those quantities (in atomic
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units, Ry), namely

€a = /dsrwi*(r) [ -Vi4 Z V(r— Rj)}wi(r) = (w; | Hy | w;), (12)
J

t = tig =t = /dgrwf(r) [ —-VZ4+ Z Vir-— Rj)] wj(r)
J

= (wi | Hi | wj), (13)
2
U= /dg’”d?’rl | wir) r—1| | wi(r') [*= (wiw; | Vig | wiws),  (14)
3., 13,1, * ! 2 * N —

(15)

K = Kp = K;; :/dgrd3r'|w-(r) LI PWANE

= 12 = fhqy % | r_ ol | J
= (wjw; | Viz | wiwy), (16)
2

V= Vie=Vy = [ drds ) =t )

= (wjw; | Vg | wiw;) . (17)

The two-site Hamiltonian (11) may be easily diagonalized for N, = 2 elec-
trons. Namely, since the total spin (S) and its z component (S*) are the
integrals of motion, one can write the trial basis for triplet (S = 1) and
singlet (S = 0) states. Namely, there are six such states

1) = ajaplo) (S=5°=1), (18)
2) = ajja|0) (S=1, 57 =-1), (19)
13) = % (alyal, +alal,) 0) (S=1. 5% =0). (20)
[4) = % (a”agi aLa;T) 0) (S=0), (21)
) = == (abal, +abial ) 10) (5=0), (22)
6) = == (abyal, — abyaly ) 10) (5 =0) (23)
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The triplet state have eigenvalues Ay = Ay = A3 = 2¢, + K — J, which
separate from the singlet states, for which we have (3 x 3) Hamiltonian
matrix (i | H | j) in such chosen basis, namely

du+ K+J,  2t+V), 0
(H)ij = 2(t+V), 2eq +J+ U, 0 . (24)
0, 0, %n +U —J

This matrix has the eigenvalues
M = 20+ HE+U)+ T+ L[(U-K)?+16(+V)2]"?,  (25)
Ao = 26,4+ U —J. (26)

The corresponding eigenstates are also easy to obtain. The most important
feature is that A is the lowest eigenvalue. Therefore, according to our pro-
posal we have still to minimize A5 with respect to {w;(r)} = {wi(r), wa(r)}.
The corresponding renormalized wave equation will take the form

)\iwi(r) = [—V2 + V(’I‘ — Rl)]wi(r) + V(’I‘ — Rg)wj (’I‘)
14 1 1
U e ke s e P

(U - K) I(t+V)

S0 +16(t+V) S

13 13

x |(U - K) . (27)

The first term represents atomic energy for the particle located on i-th site,
the second reflects the attraction to the j-th site, whereas the remaining
terms describe nonlinear nonlocal influence of the Coulomb interaction be-
tween the particles. To solve this equation in a simplified way we compose
the orthogonalized atomic wave functions {w;(r)} of the (nonorthogonal)
atomic 1ls functions

Pi(r) = P(r — Ri) = @exp(— |7 = Ri|a).

Then, imposing the orthonormality conditions (w; | w;j) = §;; on the func-
tion taken in the form

wi(r) = Bli(r) —vi;(r)], (28)
with 7 # j, and S = (11 | 12), we obtain that

1 1 1 1/2 S
=7 5+ 2)1/2 N e
V2 1-82  (1-82)Y 1++v1 - 52

(29)
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The parameters ¢4, t, U, K, J, and V must be now redefined in the atomic
basis using (28). In effect, one obtains the expressions for those parame-
ters in terms of the Slater integrals [21]. Those expressions are provided
in the original paper [12]. Substituting those to the expression (25) for
A5 we will obtain the expression for the lowest eigenenergy as a function
of interatomic distance (bond length) R and the size of the atomic func-
tions a1, i.e. Ay = A5(R, @). Minimizing this expression, as well as all
excited-state energies (\; for i # 5), we will obtain the scheme of the en-
ergy levels depicted in Fig. 1 as a function of R. The optimal bond length is
Ip = 0.757 A and the optimal ground state energy is Eq = —2.296 Ry, which

R (A)
0.0 1.1 2.1 32 42 53
0.5 . ' . . 6.8
L -> L1=L2=L3 (triplet °%. )
0.0} 40.0
05| 168 _
— >
> L
€ 1o} L4 (singlet '3 ) |-13.6 &
> g =
on %]
S =
g 15t L6 (singlet % ) 1 -204
Hubbard chain
2.0} -27.2
L5 (singlet 1Zg)
-2.5 1 1 L 1 -34.0
0 2 4 6 8 10

R/a0

Fig. 1. The lowest six energy levels for Hy molecule (solid lines) calculated to the
same degree of accuracy as for the Hubbard chain (see main text), for which the
ground state energy of which (per two sites) is shown as the dashed line.

differ by about 2.5% of Kolos and Wolniewicz [22]. The optimized size of the
orbitals for each eigenvalue is provided in Fig. 2. Finally, the corresponding
orthogonalized atomic wave function centered on the corresponding nucleus
is shown in Fig. 3. Note that we do not have to construct any molecular wave
functions or construct the Heitler-London determinantal wave function; the
only simplifying assumption is the choice of a simple basis. Obviously, the
present approach can be extended to include the states 2s, 2p, etc., but this
would go beyond the main purpose of this section — the illustration of our
method of approach to the interacting systems. The influence of the higher
excited atomic states is important to reach the quantitative description of
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R (A)

0.0 1.1 21 32 42 53
25 T : . r

2.0

o-1/a

1.0

Hubbard chain
0 2 4 6 8 10
R/a0

0.5

Fig.2. Optimal size of atomic functions for the first six states of the Ho molecule
(solid lines), as compared to that for the Hubbard chain (dashed line).

r )
42 21 00 2.1 4.2

0.8 T — 0.8
) a=1
0.6F ' Rmin =143 0.6
=
£ 04F 10.4
°
=
£ o02f 102
2
£ . .
g Rt
Z 0.0 s S 0.0
02F 1-0.2

r/a
0

Fig.3. Renormalized and orthogonalized atomic orbitals (the Wannier functions)
for Hy molecule in the equilibrium configuration (R = Ruyin = 1.43 ao).

Hy molecule, since for example the magnitude U is of the order of the value
for 1s — 2s atomic transitions. One methodological remark is in order. In
constructing Fig. 2 we have optimized the size o~ ! of the orbitals for each
eigenvalue \; separately. Strictly speaking, when the transitions between
the states are fast, then we should optimize the size of the atomic orbital
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only in the ground state (for eigenvalue A\5) and then substitute this optimal
size to those representing the excited states. Otherwise, the eigenstates are
not orthogonal to each other.

In Fig. 4 we display the distance dependence of the model parameters.

R(A)
0.0 1.1 21 32 42 53
3.7 . . r r — 50
2.9 140
2.2 130
~ 1.5Q U  J20 ~
ﬁ? >
< 07 K 10%
%” 0.0 Jo &
=
= 0.7 v 4-107
t
-1.51 1-20
2.2 L L L L 1-30
0 2 4 6 8 10
R/a0

Fig.4. The microscopic parameters of the two-site Hamiltonian calculated for the
H, molecule as a function of the bond length (in units of Bohr radius).

Ground state of helium atom

The He atom is the simplest system with interacting electrons. The
single-electron Hamiltonian is H; = —V? — 4/r. Taking the electron wave
function in the 1s form 9 (r) = (a?/x)"/2 exp(—ar), we can write down the
system ground-state energy in one-state approximation E = 2¢, + U in the
form

5 27
E =2(a? — 4a) + 10 = 20 — T (30)
Minimizing A with respect to @ we obtain that o = 27/16, and that E =
Amin = —5.695 Ry, the well known value [23]. It is interesting to write the

full renormalized wave equation, which has the form

<—v2 _ §> w(r) +w(r) /d%% Lw(r) = Mu(r).  (31)

T r—r

This equation coincides with the Hartree equation for the single-particle
wave function. It would be interesting to calculate Ay, taking explicitly the
solution of (31).
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4. Hubbard chain

The Hubbard model is based on a drastic simplification of the Hamil-
tonian (6) in the following sense: (i) From all the matrix element only the
interaction term Vj; = U is retained, and (7i) the hopping matrix element
t;; for i # j is taken only if 4 and j represent the nearest neighboring sites,
i.e. 15y =t < 0. In effect, the model Hamiltonian with an inclusion of the
atomic part is of the form

H=¢, Z Nis + 1 Z a;-raajg +U Z NN, - (32)
i (ij)o i

This model in one dimension was solved by Lieb and Wu [5] and the ex-
pression for the ground state energy in the half-filled band (N, = N) case
is

Eq A A
=G _ By +4t0/dww e i1 (33)

where Ej contains both the atomic (g,) and the lattice contributions, and
Jp(z) is the Bessel function with n = 0 or 1. The model parameters ¢ and
U are defined as before

- / Brw (r) Hy (F)wies (r) = (w; | Hy | wis), (34)
and
U= /d%d%’ i (r) 2 —2— | () 2 . (35)
|r—r'|
Similarly,
€a = (wj | Hi(r) | w;). (36)

Finally, the lattice contribution will be taken in the simplest classical form,
which written in the atomic unit has the form Y. | R; — Riy | L.

As the solution of this model provides the ground-state energy in the
form of (33), we have to determine the single-particle basis. We start from
the atomic 1s-type functions { &;(r)}, which are orthogonalized in the tight-
binding approximation, which defined through

wi(r) = BPi(r) +v[Piy1(r) + Yica(r)], (37)

where the coefficients 8 and 7y are obtained from the conditions (w; | w;) =1
and (w; | wi+1) = 0. Hence

- 14 v1- 382
V2 - 557 +2(1 - 25%) VI - 357

g
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-5
Y= .
\/2 - 557 +2(1 - 252) VT - 357

With the help of the Wannier functions {w;(7)} we can define the parameters
t and U as follows:

(38)

ea = (B2 +27%) e, + 46, (39)
t = (82439t +2Bye),, (40)

and
U= (B"+29") U +88°yV' + 86y V' + 48>y’ K’ + 84T, (41)

where the primed parameters are the Slater integrals calculated for the
s-type atomic wave functions; they depend on both the size (a~!) of the
atomic orbitals and the interatomic distance R. Also, one has to include the
atomic part g4, as it varies with R.

The simplified atomic basis optimization is carried through the mini-
mization of the functional Fg with respect to « (for given R) after substi-
tution of the expressions (39)-(41) to (33). The ground-state energy (per
atom) obtained in this manner (with the ion—ion repulsion included to the
fourth neighbor) is displayed in Fig. 5. The energy approaches the atomic

RA)
1.06 2.12 3.17 4.23 5.29
0985 C 7 7 7134
RA)
1.06212317423529
0. 0.0
-0.990| l13s
= -0.995| “ 1135 %
& 2
~ ]
&) =
=
-1.000} -13.6
1. a3
LO0S ==
R/ a

Fig.5. Ground-state energy Eq of the Hubbard chains as a function of relative in-
teratomic distance R/ag. The atomic part of the energy and the interionic Coulomb
repulsion (to the fourth neighbor) is included. The inset provides Eq with inclusion
of nearest neighbor Coulomb interaction ~ K in the Hartree—Fock approximation.
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value (—1Ry) per site for R/ag > 6, where ag = 0.539 A is the Bohr ra-
dius. The optimal distance is Rpyin = 3.15ag ~ 1.6 A and the minimum of
E¢/N ~ —1.03Ry, i.e. the cohesive energy is ~ 0.4eV/atom. One should
note that the chain collapses if the repulsion between the ions is taken only
between the nearest or the second nearest neighbors. In the inset we show the
result for Eq when the nearest neighbor Coulomb interaction K . n;n;q1 is
also included in the Hartree-Fock approximation (the chain is again instable
then).

The interatomic distance dependence of the size of the optimized atomic
orbital size (in units of ag) is shown in Fig. 6 (the bare orbitals have the size
a~'/ag = 1). The orbitals in the correlated state shrink under the influence
of the Coulomb interaction. In the inset we display the R dependence of the
nearest neighbor overlap integral S. Even for the chain spacing R = Rnin
(marked by the vertical dotted line) the overlap S < 0.3, making our version
of the tight-binding approximation (37) applicable for R > Rpip.

R (R)
11 21 32 42 53

1.00 —
0.96 ' R& 1

1.1 2.1 32 42 53

0.92 0.4 .

- 088f ;[ o3 -

ol/a

w02 i

0.84

0.1f ! 4

0.80F

0.0

0.76

0.72L— : s
2

Fig.6. Optimal size of atomic 1s orbital (including correlations) in units of the
atomic Bohr radius as a function of interatomic distance (the dashed line, with
the nearest-neighbor Coulomb interaction, as in Fig. 5). In the inset the overlap
integral is displayed. The vertical dotted line marks the position, at which Eq has
a minimum.

In Fig. 7 we have plotted the distance dependence of the microscopic
parameters based on our solution for the Hubbard model in the tight-binding
approximation (the dashed lines include in the solution the Kn? coming from
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the Hartree—Fock approximation for the intersite Coulomb interaction). We
see that in the atomic limit U ~ 15eV for the renormalized 1s orbitals. The
hopping parameter decreases strongly with the increasing distance. This
means that for the distance R ~ 3qq ~ 1.5A the situation U = W is
achieved, where W = 2z | t |= 4 | t |is the band-width of the single-particle
states.

R (A)
1.06 2.12 3.17 4.23 5.29
—— 17— 27.2
15 N\ U 120.4
10| 1136
=z >
& 0.5} K leg &
> >
=11} =11}
5 5
40. =
g oo} 00 =
-0.5 1-6.8
1.0 s -13.6
2 4 6 8 10
R/ a,

Fig. 7. The microscopic parameters calculated for the optimized Wannier function
obtained for the Hubbard chain (solid lines), and with the Kn? term in Eg (dashed
lines).

5. One-dimensional quantum dots (rings)

Our method can be applied also to one-dimensional rings up to N = 12
atoms, for which a careful treatment of both two-site interactions and more
distant hopping processes (and the wave function overlaps) is possible.The
Hamiltonian has the same formal structure as (11) except that now we in-
clude all pair interactions between the pair of sites (i, j) along the ring.
Such a Hamiltonian is diagonalized numerically in the Fock space and the
parameters are calculated with the help of ezact one-band Wannier functions

defined as
N-1

Bi-jt;(r (42)

=0

.
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The coefficients 3;; can be calculated starting from the representation of the
Bloch function in the tight-binding approximation

Bq(r) = Ny y_ e Rig(r), (43)
J

where the normalization factor is determined via the overlap S;; between
the corresponding atomic wave functions, ¢.e. has the form

. . —1/2
N, = (NZe“"(RJ Rz)si-) . (44)
J
The coefficients (3;; are defined through
1 .
= —— ) e (BB 45
/8 J \/N Eq: q ( )

The Hamiltonian and the microscopic parameters have a complicate form

and therefore will not be written down here [14]. Additionally, if we in-
clude the interactions and the overlaps beyond the nearest-neighbor 3-site
integrals appear which are dealt with in spheroidal coordinates. Here we
discuss only the final results obtained from detailed numerical analysis.

Wannier function

Fig. 8. Renormalized (solid line) and bare (dashed line) Wannier functions for the
ring of N = 8 atoms and the interatomic distance R/ag = 2.
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The bare and renormalized Wannier functions, the latter obtained for
diagonalized exactly chain of N = 8 atoms, are depicted in Fig. 8 for the
distance R = 2ag. The repulsive interaction shrinks then even to the large
extent when compared to the case of Hubbard chain. The values of the
microscopic parameters for different R values (together with their asymp-
totic form) are presented in Table I. We note two basic features of these
results: (i) the atomic energy e, depends rather strongly on the distance,
and (ii) the intersite Coulomb interaction ~ Kj; falls off slowly with the
distance and has the asymptotic form K;; ~ 2/R;; (in Ry). The Heisen-
berg exchange integral (J;) and the correlated hopping (V1) are of at least
two orders of magnitude smaller than either U or K;. The renormalized
hopping parameter ¢; is almost an order of magnitude larger than either t9
and t3, making the tight-binding approximation realistic (¢, is obviously the
hopping integral between the p-th neighbors).

TABLE 1

Microscopic parameters (in Rydbergs) as a function of interatomic distance R for
different neighbors p = 1,2, 3.

R/ag ca t1 103, | 1035 U K1 Ko K3 10377 | 103vy | 103V,
2.0 | —4.043 | —0.585 | 89.6 | —98.3 | 2.301 | 1.077 | 0.676 | 0.450 | 9.54 | —18.07 | 33.58
2.5 | —3.734 | —0.331 | 45.5 | —45.0 | 1.949 | 0.843 | 0.499 | 0.331 | 7.39 | —17.45 | 19.58
3.0 | —3.422 | —0.200 | 24.4 | —21.9 | 1.717 | 0.692 | 0.391 | 0.259 | 5.59 | —16.08 | 11.95
4.0 | —2.916 | —0.083 | 7.4 —5.3 | 1.452 | 0.508 | 0.269 | 0.179 | 2.90 | —12.92 | 4.49
5.0 | —2.558 | —0.037 | 4.2 —2.7 | 1.327 | 0.403 | 0.206 | 0.138 | 1.26 —9.64 1.56

Probably the most spectacular R dependence is that of statistical distri-
bution function ng, = (0 | aLgakg | 0) in the momentum space, as shown in
Fig. 9 for N = 10 atoms. For small lattice constant (R/ag = 2) a clear sign of
the Fermi wave vector kr = mR/2 (corresponding to one electron per atom)
can be seen, whereas for R > bay this distribution is smeared out throughout
the first Brillouin zone meaning that the electrons are practically localized for
that distance. This point is elaborated in detail elsewhere. The ground state
| 0) of the system is a true spin singlet, i.e. with (0 | S~ 8; | 0) = 0. The
calculation of the wave function allows for determination of experimentally
measurable quantities such as spin—spin correlation function or exchange in-
tegrals. Also, by extending the results to the situation with N, < N one
can study the dynamics of the holes in this strongly correlated mesoscopic
system. The results will be presented elsewhere.
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Fig.9. Momentum distribution ng, for electrons in the first Brillouin zone for ring
of N =10 atoms and the interatomic distances specified.

6. Conclusions

We have reviewed briefly a new method of calculations of the electronic
states in correlated low-dimensional and small systems. The method is based
on diagonalizing first the many-particle Hamiltonian in the Fock space fol-
lowed by the readjustment of the single-particle wave function. Therefore,
the present two-step procedure in a reverse order is thus, strictly speaking,
possible only in the situation when the exact solution of the many-particle
aspect of a model is available or executable numerically. The obtained solu-
tions provide the physical properties of the considered system as a function
of lattice parameter, not only as a function of the microscopic parameters.

One may ask if the application of the method to the systems with an
approximate treatment of the correlations is possible. Such approach was
outlined some time ago [24|, where the electronic correlations have been
treated within the Gutzwiller approach. We believe that our method can
be also used starting from the dynamic mean-field theory (DMFT) [9]. The
implementation of DMFT combined with the wave-function optimization
would provide a possibility of testing the predictions of the Hubbard model,
as the variations of the properties with changing lattice constant can be car-
ried out experimentally by applying the pressure.
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On the theoretical side one should incorporate the density-matrix renor-

malization group technique [7] to extend the size of the system (number of
atoms N), particularly for N, < N, when one can study carefully the hole
states and their pairing induced by the kinetic exchange interaction and/or
paramagnons.

Extension of our method to two-dimensional systems would be also im-

portant, but that would involve more advanced numerical procedures.

The work was supported by the Polish State Committee for Scientific

Research (KBN), Grant No. 2P03B 092 18.

[1]
2]

3]

[4]

[5]

[6]

[7]
18]
[9]

[10]

[11]

REFERENCES

J. Hubbard, Proc. Roy. Soc. London A276, 238 (1963); The Hubbard Model:
Recent Results, ed M. Raseti, World Scientific, Singapore 1991.

P.W. Anderson, Phys. Rev. 115, 2 (1959); K.A. Chao, J. Spalek, A.M. Oles,
J. Phys. C 10, L271 (1977); F.C. Zhang, T.M. Rice, Phys. Rev. B37, 3759
(1988).

J. Kondo, in Solid State Physics, eds F. Seitz, D. Turnbull, and H. Ehren-
reich, Academic Press, New York 1969, vol. 23, pp. 184-281; J.R. Schrieffer,
P.A. Wolff, Phys. Rev. 149, 491 (1966).

P.W. Anderson, Phys. Rev. 124, 41 (1961); D.M. Newns, N. Read, Adv. Phys.
36, 799 (1987); P. Fulde, J. Keller, G. Zwicknagl, in Solid State Physics, eds
F. Seitz, D. Turnbull, and H. Ehrenreich, Academic Press, New York 1988,
vol. 41, p. 2ff.

E.H. Lieb, F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968); R. Strack, D. Volhardt,
Phys. Rev. Lett. 70, 2637 (1993); L. Aracha, A.A. Aligia, Phys. Rev. Lett. 73,
2240 (1994); A.A. Ovchinnikov, Phys. Rev. Lett. BT, 1397 (1993).

E. Dagotto, Rev. Mod. Phys. 66, 763 (1993); A. Moreo et al., in Lectures on
the Physics of Strongly Correlated Systems, ed. F. Mancini, AIP Conf. Proc.
438, 129 (1998).

S.R. White, Phys. Rev. B48, 10345 (1993); R.M. Noack, F. Gebhardt, Phys.
Rev. Lett. 82,1915 (1999); S. Qin et al., Phys. Rev. B52, R5475 (1995).

J. Spatek, W. Wajcik, in Spectroscopy of Mott Insulators and Correlated Met-
als, eds A. Fujimori and Y. Tokura, Springer Verlag, Berlin 1995, p. 41-65.

W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989); D. Vollhardt, Int.
J. Mod. Phys. B3, 2189 (1989); M. Jarrell, Phys. Rev. Lett. 69, 168 (1992).

V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B44, 943 (1991);
V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenschtein, J. Phys.: Condens. Mat-
ter 9, 767 (1997).

W.M. Temmerman et al., in FElectronic Density Functional Theory: Recent
Progress and New Directions, eds J.F. Dobson et al., Plenum, New York 1998;
A. Svane et al., Int. J. Quantum Chem. 77, 799 (2000).



2898 J. SPALEK ET AL.

[12] J. Spatek, R. Podsiadty, W. Wojcik, A. Rycerz, Phys. Rev. B61, 15676 (2000).

[13] V.A. Fock, Raboty po Kvantovoi Teorii Pola (in Russian), Izdatelstvo
Leningradskogo Universiteta, 1957.

[14] A. Rycerz, J. Spaltek, Phys. Rev. B63, in press.
[15] J. Spalek, A. Rycerz, submitted for publication.

[16] P.W. Anderson, Science 235, 1196 (1987); J. Spaltek, Phys. Rev. B37, 533
(1988).

[17] L. Landau, Sov. Phys. JETP 3, 920 (1957); 5, 101 (1957).
[18] J. Voit, Rep. Prog. Phys. 57,977 (1995).

[19] See e.g. N.F. Mott, Metal-Insulator Transitions, 2nd edition, Taylor & Francis,
London 1990.

[20] J. Spalek, A.M. Oles, K.A. Chao, Phys. Status Solidi B108, 329 (1981);
J. de Boer, A. Schadschneider, Phys. Rev. Lett. 75, 4298 (1995).

[21] J.C. Slater, Quantum Theory of Molecules and Solids vol. 1, McGraw-Hill,
New York 1963, p. 50ff.

[22] W. Kolos, L. Wolniewicz, J. Chem. Phys. 49, 404 (1968).

[23] See e.g. H.A. Bethe, E.E. Slapeter, Quantum Mechanics of One- and Two-
Electron Atoms, Academic Press, New York 1957, p. 154-156, and references
therein.

[24] J. Spatek, W. Wojcik, Phys. Rev. B45, 3799 (1992); J. Magn. Magn. Mater.
104-107, 723 (1992).



