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EXACT DIAGONALIZATION OF MANY-FERMIONHAMILTONIAN COMBINED WITHWAVE-FUNCTION READJUSTMENT:APPLICATION TO ONE-DIMENSIONAL SYSTEMS�J. Spaªek, R. Podsiadªy, A. RyerzMarian Smoluhowski Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polandand W. WójikInstitute of Physis, Tadeusz Ko±iuszko Tehnial UniversityPodhor¡»yh 1, 30-084 Kraków, Poland(Reeived November 15, 2000)We desribe brie�y a new method of approah to the interating fermionand boson systems. Namely, we determine the expliit form of the single-partile wave funtions fwi(r)g appearing in the mirosopi parametersof models in the seond-quantization representation. The method is illus-trated on the examples of H2 moleule and He atom, the Hubbard hain,and a ring of N � 10 atoms.PACS numbers: 71.10.Fd, 71.15.Fv, 31.25.Nj1. IntrodutionCurrent disussion of properties of the lattie orrelated fermion sys-tems relies heavily on parametrized models suh as the Hubbard [1℄, t�J [2℄,Kondo-impurity [3℄, as well as the impurity and the lattie Anderson mod-els [4℄. In all these models the mirosopi parameters suh as the hoppingintegral t (or hybridization), the intraatomi Coulomb U , and the nearest-neighbor Coulomb and exhange integrals (K and J , respetively) are takenas parameters, in terms of whih we express the ground state energy andother physial properties inluding the quantum phase transitions. In suh� Presented at the XL Craow Shool of Theoretial Physis, Zakopane, PolandJune 3�11, 2000. (2879)



2880 J. Spaªek et al.disussion we utilize the exat solutions in zero- and one- dimensions [5℄, ex-at diagonalization for �nite systems [6℄, (usually ombined with the density-matrix renormalization group tehnique [7℄), as well as various approximatesolutions using slave bosons [8℄, dynami mean �eld onept [9℄, perturba-tion tehniques, et., to name a few. In this extensive analysis the mostimportant fator is the nonperturbative in�uene of the interation on thesingle-partile states, sine their magnitude is omparable or even substan-tially larger than the Fermi energy, i.e. the systems are those of stronglyorrelated partiles.A diret omparison of the solutions with the experiment is not alwayspossible as the mirosopi parameters are mostly not diretly measurable.However, the full solution would require their expliit determination, sinethey ontain single-partile (Wannier) wave funtions. In onnetion withthis one usually starts with a single-partile solution (suh as LDA), deter-mines the single-partile states and band energies f"kg and then introduesloal orretions. In this manner approahes suh as LDA+U [10℄ or SIC [11℄have been devised. They require a very subtle disussion of the interationpart, as it is inluded twie, at the band-struture alulation stage, as wellas at that inluding the loal orretions. Apart from that it is impossible toknow a priori, in whih systems the method would work, partiularly whenwe onsider the system of low dimensionality.We have proposed [12℄ a new method of approah to the orrelated sys-tems whih ombines the exat diagonalization of many fermion Hamiltonianin the Fok spae with a readjustment of the single-partile wave funtions(in Hilbert spae), in the orrelated state (the appliation to the approx-imate solutions is disussed brie�y at the end). Our method is based onan elementary but yet fundamental question: Should one not readjust thesingle-partile wave funtion to the situation when the interation plays suha ruial role in determining the harater of the nontrivial quantum marostate? In other words, we inlude the interation proesses in the Fokspae �rst and thus obtained ground state energy of the interating parti-les optimize with respet to the wave funtions ontained in the mirosopiparameters. This wave funtion relaxation in the interating state is simplypossible, sine the single-partile basis fwi(r)g de�ning the �eld operators	̂�(r) and 	̂ y�(r) is ompletely arbitrary if only it is omplete and (possi-bly) orthonormal [13℄. From the theoretial side, suh a readjustment of thewave funtion leads to the renormalized wave equation whih represents theEuler equation obtained from the ground state energy, whih is regarded asa funtional of the single-partile wave funtions and their gradients. Thewave-funtion determination ompletes the solution of the seond-quantizedmodels if only their rigorous treatment in the Fok spae is possible.



Exat Diagonalization of Many-Fermion Hamiltonian : : : 2881Few features of this new approah should be mentioned at the outset.First, the method is free in a natural manner from ounting the interationtwie, sine the wave funtion is obtained only after onstruting the ground(or equilibrium) state of the interating system. Seond, it provides the so-lution as a funtion of lattie parameter. In partiular, the solution providesthe equilibrium lattie onstant if the onsidered model has this property.Third, the approah represents probably the only possibility of determiningin a onsistent way the single-partile wave funtion in rather strongly in-terating (orrelated) system. However, the method has one disadvantage,namely, it an be applied rigorously only to either exatly soluble modelsystems or small systems ontaining N � 10�20 atoms, depending on thesystem dimensionality. It should ertainly be appliable to the disussionof quantum states of orrelated quantum dots and other quantum lustersystems. The onstrution of systemati analysis based on an approximatesolution is yet to be resolved. Therefore, we review here only our reentresults [12, 14, 15℄ and provide a brief overview of the subjet on this earlystage of development. 2. Method of approahIn desribing the system of interating partiles one usually starts fromthe onept of the �eld operator 	̂�(r), whih is de�ned in a ompleteorthonormal basis of single-partile basis fwi(r)��g in the following manner:	̂�(r) =Xi wi(r)��ai� ; (1)where ai� is the annihilation operator of a partile in a single-partile stateji�i. One should note that the basis fwi(r)��g is ompletely arbitrary in thisde�nition. As already noted above, the natural (and fundamental) questionone may ask immediately is: Can one �nd an optimal way of determinationthe wave funtion fwi(r)g and solve the orresponding HamiltonianH = X� Z d3r	̂ y�(r)H1(r)	̂�(r)+12 X�1�2 Z Z d3rd3r0	̂ y�1(r1)	̂ y�2(r2)V (r1 � r2)	̂�2(r2)	̂�1(r1) (2)in the Fok spae exatly? Suh a proedure is perfetly well de�ned as theoperators H1(r) and V (r1� r2) � V12, representing respetively the single-partile and two-partile operators, at only in the oordinate (Hilbert)



2882 J. Spaªek et al.spae, whereas the reation and annihilation operators at in the oupation-number (Fok) spae. In the present setion we ombine those two omple-mentary steps, whih will be then implemented expliitly in some modelsituations in the next setions.A remark is in order before presenting the formalism. Namely, startingfrom the diagonalization in the Fok spae we obtain the expression for e.g.the ground state energy, whih is still a funtional of the single-partile wavefuntions fwi(r)g via the parameterstij � hwijH1jwji � Z d3rw?i (r)H1(r)wj(r) (3)andVijkl � hwiwj jV jwkwli � Z d3rd3r0w?i (r)w?j (r0)V (r � r0)wk(r)wl(r0); (4)whih desribe respetively the atomi part of energy (tii), the hoppingintegrals (tij for i 6= j), and the interation matrix elements in the basisfwi(r)g. The minimization of the ground state energy with respet to thehoie of the basis funtions fwi(r)g(appearing only under integrals) willlead to the Euler equation for those wave funtions that plays the role of therenormalized wave equation.Expliitly, we start from the model of interating fermions on a lattiefor whih the Hamiltonian (2) after substituting into it expression (1) hasthe following form in the real-spae representationH =Xij� tijayi�aj� + 12 Xijkl��0 Vijklayi�ayj�0al�0ak� � E1 +E2: (5)The solution of this model involves alulation of the ground-state energyEG � hHi =Xij� tij Dayi�aj�E+ 12 Xijkl��0 Vijkl Dayi�ayj�0al�0ak�E : (6)Introduing the orrelation funtionsCij �X� Dayi�aj�E ; and Cijlk �X��0 Dayi�ayj�0al�0ak�E ; (7)we see that the diagonalization of the Hamiltonian (6) requires determinationof the above orrelation funtions as a funtion of parameters tij and Vijkl.In the standard treatment of orrelated model systems tij and Vijkl areregarded as onstants, i.e. the solution is analyzed as a funtion of those



Exat Diagonalization of Many-Fermion Hamiltonian : : : 2883parameters dividing the whole situation roughly into two limiting situations:(a) the metalli limit when jE1j � E2, and (b) the strong-orrelation limitwhen jE1j � E2 (this limit may orrespond also the so-alled Mott or Mott��Hubbard insulator limit when the number of eletrons Ne is equal to thenumber of sites N . The regime when the two terms in (5) of omparablemagnitude (jE1j ' E2) is regarded as a separate limit () in whih the Mott�Hubbard (metal-insulator) transition takes plae. In the situation (a) theband theoretial or perturbation tehniques [11, 12℄ provide the eletronistates, at least at temperature T = 0, with a su�ient degree of auray.Therefore, the most interesting are the limits (b) and () when the single-partile part is not dominant. In those limits the interation part determinesthe nature of the quantum ground state, e.g. indues the rystallization ofthe eletron gas on the parent ions (the Mott�Hubbard transition), as wellas leads to the strong spin orrelations among the eletrons (exempli�ed bythe kineti exhange interation) or even introdues pairing whih may lead(for Ne 6= N) to the superondutivity [16℄.The nontrivial e�ets of interation are partiularly strong for low-dimen-sional systems, where e.g. the eletrons are loalized for arbitrarily smallmagnitude of the interation if only short-range part of both tij (i; j are thenearest neighbors) and Vijkl (i = j = k = l) are taken into aount [5℄. Inthe same manner, the prinipal assumptions of the Fermi-liquid theory [7℄may be broken and the system may form (again for Ne = N) a Tomonaga��Luttinger fermioni liquid [18℄.In view of the above disussion stressing the strongly nonperturbativenature of the interations one should ask again: Should one not optimize thesingle-partile basis fwi(r)g together with the determination of the orrela-tion funtions Cij � C1(Ri �Rj) and Cijkl � C2(Ri �Rk;Rj �Rl; : : :)?This is partiularly so beause the ontributions E1 < 0 (for bound states)and E2 > 0 (for repulsive interations) ompete with eah other in determin-ing the resultant state (metalli or insulating) of the system. Suh questionan be inferred from those posed long time ago by Peierls, Mott, Andersonand others [19℄ about the prinipal role played by the eletron orrelations,whih have a nontrivial (e.g. non Hartree�Fok) harater.As the answer to the posed question we have proposed [12, 14, 15℄ tolose the analysis of the orrelated states by taking Cij = Cijftij ; Vijklg andCijkl = Cijklftij ; Vijklg and determining the renormalized wave equation forfwj(r)g by treating EG as a funtional of fwi(r)g and their derivatives,sine H1(r) = �(~=2m)r2 + V (r), with V (r) being the single-partile po-tential. In suh a situation wi(r) is determined from an Euler equation forthe funtionalFfwi(r)g = EGfwi(r)g �Xi �i�Z d3rjwi(r)j2 � 1� ; (8)



2884 J. Spaªek et al.where �i is the Lagrange multiplier introdued for the funtion wi(r), whihis required to be normalized (i.e. represents a bound state). The generalform of this equation isÆEGÆw?i (r) �r ÆEGÆrw?i (r) � �iwi(r) = 0 ; (9)or expliitly� ÆEGÆw?i (r) �r ÆEGÆrw?i (r)�0�Xj(i) tijCij + 12Xjkl VijklCijlk1A� �iwi(r) = 0 :(10)De�ning this renormalized wave equation in the form ( ~Hi � �i)wi(r) = 0,we obtain the expliit form of the renormalized single-partile Hamiltonian~Hi = ~H1, whih has the same form at eah lattie site if the lattie istranslationally invariant (H1 is its bare ounterpart). In the next setion wewill write the expliit form of this equation for onrete examples. Note that�i does not neessarily plays the role of the eigenvalue, as e.g. the atomienergy is de�ned as "a = hwijH1jwii = tii. Also, if the funtions fwi(r)gare orthogonalized �rst, then in Eqs. (8)�(10) one has to put �i � 0, andthen Eqs. (9) and (10) orrespond to a variational minimization of EG =EGfwi(r)g.3. Simple examples: H2 moleule and He atomWe start with the most general Hamiltonian in the Fok spae for a two-site system [20℄ for the ase, eah site ontributing a single s-type orbital:H = "a(n1 + n2) + tX� (ay1�a2� + ay2�a1�) + U�n1"n1# + n2"n2#��2J �S1 � S2 � 14n1n2�+Kn1n2 + J(ay1"ay1#a2#a2" + h..)+V X� (n1� + n2�)(ay1�a2� + ay2�a1�): (11)The �rst term determines the atomi loation ("a) of the eletrons on thetwo sites, t desribes the hopping (resonane) integral, U is the magnitudeof the intraatomi Coulomb interation (the Hubbard interation), J is theHeisenberg exhange integral, K is the intersite Coulomb interation, and Vrepresents the so-alled orrelated hopping term. For the sake of omplete-ness we will write the expliit expressions for those quantities (in atomi



Exat Diagonalization of Many-Fermion Hamiltonian : : : 2885units, Ry), namely"a = Z d3rw?i (r)h�r2 +Xj V (r �Rj)iwi(r) � hwi j H1 j wii ; (12)t � t12 � tij = Z d3rw?i (r)h�r2 +Xj V (r �Rj)iwj(r)� hwi j H1 j wji ; (13)U = Z d3rd3r0 j wi(r) j2 2j r � r0 j j wi(r0) j2� hwiwi j V12 j wiwii ; (14)Jij = Z d3rd3r0w?i (r)wj(r0) 2j r � r0 jw?j (r)wi(r0) � hwiwj j V12 j wjwii ;(15)K � K12 � Kij = Z d3rd3r0 j wi(r) j2 2j r � r0 j j wj(r0) j2� hwiwj j V12 j wiwji ; (16)V � V12 � Vij = Z d3rd3r0 j wi(r) j2 2j r � r0 jwi(r0)w?j (r0)� hwiwj j V12 j wiwii : (17)The two-site Hamiltonian (11) may be easily diagonalized for Ne = 2 ele-trons. Namely, sine the total spin (S) and its z omponent (Sz) are theintegrals of motion, one an write the trial basis for triplet (S = 1) andsinglet (S = 0) states. Namely, there are six suh statesj1i = ay1"ay2"j0i (S = Sz = 1) ; (18)j2i = ay1#ay2#j0i (S = 1; Sz = �1) ; (19)j3i = 1p2 �ay1"ay2# + ay1#ay2"� j0i (S = 1; Sz = 0) ; (20)j4i = 1p2 �ay1"ay2# � ay1#ay2"� j0i (S = 0) ; (21)j5i = 1p2 �ay1"ay1# + ay2"ay2#� j0i (S = 0) ; (22)j6i = 1p2 �ay1"ay1# � ay2"ay2#� j0i (S = 0) : (23)



2886 J. Spaªek et al.The triplet state have eigenvalues �1 = �2 = �3 = 2 "a + K � J , whihseparate from the singlet states, for whih we have (3 � 3) Hamiltonianmatrix hi j H j ji in suh hosen basis, namely(H)ij = 0� 2"a +K + J; 2(t+ V ); 02(t+ V ); 2"a + J + U; 00; 0; 2"a + U � J 1A : (24)This matrix has the eigenvalues�4;5 = 2"a + 12(K + U) + J � 12 �(U �K)2 + 16(t + V )2�1=2 ; (25)�6 = 2"a + U � J : (26)The orresponding eigenstates are also easy to obtain. The most importantfeature is that �5 is the lowest eigenvalue. Therefore, aording to our pro-posal we have still to minimize �5 with respet to fwi(r)g = fw1(r); w2(r)g.The orresponding renormalized wave equation will take the form�iwi(r) = [�r2 + V (r �R1)℄wi(r) + V (r �R2)wj(r)+12 ÆÆw?i (U +K + 2J)� 12 1[(U �K)2 + 16(t + V )2℄1=2� �(U �K)Æ(U �K)Æw?i + 16(t+ V )Æ(t+ V )Æw?i � : (27)The �rst term represents atomi energy for the partile loated on i-th site,the seond re�ets the attration to the j-th site, whereas the remainingterms desribe nonlinear nonloal in�uene of the Coulomb interation be-tween the partiles. To solve this equation in a simpli�ed way we omposethe orthogonalized atomi wave funtions fwi(r)g of the (nonorthogonal)atomi 1s funtions i(r) �  (r �Ri) =ra3� exp(� j r �Ri j �) :Then, imposing the orthonormality onditions hwi j wji = Æij on the fun-tion taken in the form wi(r) = �[ i(r)�  j(r)℄ ; (28)with i 6= j, and S = h 1 j  2i, we obtain that� = 1p2 � 11� S2 + 1(1� S2)1=2 �1=2 ;  = S1 +p1� S2 : (29)



Exat Diagonalization of Many-Fermion Hamiltonian : : : 2887The parameters "a, t, U , K, J , and V must be now rede�ned in the atomibasis using (28). In e�et, one obtains the expressions for those parame-ters in terms of the Slater integrals [21℄. Those expressions are providedin the original paper [12℄. Substituting those to the expression (25) for�5 we will obtain the expression for the lowest eigenenergy as a funtionof interatomi distane (bond length) R and the size of the atomi fun-tions ��1, i.e. �5 = �5(R; �). Minimizing this expression, as well as allexited-state energies (�i for i 6= 5), we will obtain the sheme of the en-ergy levels depited in Fig. 1 as a funtion of R. The optimal bond length islB = 0:757Å and the optimal ground state energy is EG = �2:296Ry, whih

Fig. 1. The lowest six energy levels for H2 moleule (solid lines) alulated to thesame degree of auray as for the Hubbard hain (see main text), for whih theground state energy of whih (per two sites) is shown as the dashed line.di�er by about 2.5% of Koªos and Wolniewiz [22℄. The optimized size of theorbitals for eah eigenvalue is provided in Fig. 2. Finally, the orrespondingorthogonalized atomi wave funtion entered on the orresponding nuleusis shown in Fig. 3. Note that we do not have to onstrut any moleular wavefuntions or onstrut the Heitler�London determinantal wave funtion; theonly simplifying assumption is the hoie of a simple basis. Obviously, thepresent approah an be extended to inlude the states 2s; 2p, et., but thiswould go beyond the main purpose of this setion � the illustration of ourmethod of approah to the interating systems. The in�uene of the higherexited atomi states is important to reah the quantitative desription of



2888 J. Spaªek et al.

Fig. 2. Optimal size of atomi funtions for the �rst six states of the H2 moleule(solid lines), as ompared to that for the Hubbard hain (dashed line).

Fig. 3. Renormalized and orthogonalized atomi orbitals (the Wannier funtions)for H2 moleule in the equilibrium on�guration (R = Rmin = 1:43 a0).H2 moleule, sine for example the magnitude U is of the order of the valuefor 1s ! 2s atomi transitions. One methodologial remark is in order. Inonstruting Fig. 2 we have optimized the size ��1 of the orbitals for eaheigenvalue �i separately. Stritly speaking, when the transitions betweenthe states are fast, then we should optimize the size of the atomi orbital



Exat Diagonalization of Many-Fermion Hamiltonian : : : 2889only in the ground state (for eigenvalue �5) and then substitute this optimalsize to those representing the exited states. Otherwise, the eigenstates arenot orthogonal to eah other.In Fig. 4 we display the distane dependene of the model parameters.

Fig. 4. The mirosopi parameters of the two-site Hamiltonian alulated for theH2 moleule as a funtion of the bond length (in units of Bohr radius).Ground state of helium atomThe He atom is the simplest system with interating eletrons. Thesingle-eletron Hamiltonian is H1 = �r2 � 4=r. Taking the eletron wavefuntion in the 1s form  (r) = (�3=�)1=2 exp(��r), we an write down thesystem ground-state energy in one-state approximation E = 2"a + U in theform E = 2(�2 � 4�) + 54� = 2�2 � 274 � : (30)Minimizing � with respet to � we obtain that � = 27=16, and that E =�min = �5:695Ry, the well known value [23℄. It is interesting to write thefull renormalized wave equation, whih has the form��r2 � 4r�w(r) +w(r)Z d3r 2j r � r0 j j w(r0) j2= �w(r) : (31)This equation oinides with the Hartree equation for the single-partilewave funtion. It would be interesting to alulate �min taking expliitly thesolution of (31).



2890 J. Spaªek et al.4. Hubbard hainThe Hubbard model is based on a drasti simpli�ation of the Hamil-tonian (6) in the following sense: (i) From all the matrix element only theinteration term Viii � U is retained, and (ii) the hopping matrix elementtij for i 6= j is taken only if i and j represent the nearest neighboring sites,i.e. thiji = t < 0. In e�et, the model Hamiltonian with an inlusion of theatomi part is of the formH = "aXi� ni� + tXhiji� ayi�aj� + UXi ni"ni# : (32)This model in one dimension was solved by Lieb and Wu [5℄ and the ex-pression for the ground state energy in the half-�lled band (Ne = N) aseis EGN = E0 + 4t 1Z0 d! J1(!)J0(!)! �1 + exp �!U2t �� ; (33)where E0 ontains both the atomi ("a) and the lattie ontributions, andJn(x) is the Bessel funtion with n = 0 or 1. The model parameters t andU are de�ned as beforet = Z d3rw�i (r)H1(r)wi�1(r) = hwi j H1 j wi�1i; (34)and U = Z d3rd3r0 j wi(r) j2 2j r � r0 j j wi(r0) j2 : (35)Similarly, "a = hwi j H1(r) j wii : (36)Finally, the lattie ontribution will be taken in the simplest lassial form,whih written in the atomi unit has the form Pi j Ri �Ri+1 j�1.As the solution of this model provides the ground-state energy in theform of (33), we have to determine the single-partile basis. We start fromthe atomi 1s-type funtions f	i(r)g, whih are orthogonalized in the tight-binding approximation, whih de�ned throughwi(r) = �	i(r) + [	i+1(r) +	i�1(r)℄ ; (37)where the oe�ients � and  are obtained from the onditions hwi j wii = 1and hwi j wi�1i = 0. Hene� = 1 +p1� 3S2q2� 5S2 + 2(1� 2S2)p1� 3S2 ;



Exat Diagonalization of Many-Fermion Hamiltonian : : : 2891 = �Sq2� 5S2 + 2(1� 2S2)p1� 3S2 : (38)With the help of the Wannier funtions fwi(r)g we an de�ne the parameterst and U as follows: "a = ��2 + 22� "0a + 4�t0 ; (39)t = ��2 + 32� t0 + 2�"0a ; (40)and U = ��4 + 24�U 0 + 8�3V 0 + 8�3V 0 + 4�22K 0 + 8�22J 0 ; (41)where the primed parameters are the Slater integrals alulated for thes-type atomi wave funtions; they depend on both the size (��1) of theatomi orbitals and the interatomi distane R. Also, one has to inlude theatomi part "a, as it varies with R.The simpli�ed atomi basis optimization is arried through the mini-mization of the funtional EG with respet to � (for given R) after substi-tution of the expressions (39)�(41) to (33). The ground-state energy (peratom) obtained in this manner (with the ion�ion repulsion inluded to thefourth neighbor) is displayed in Fig. 5. The energy approahes the atomi

Fig. 5. Ground-state energy EG of the Hubbard hains as a funtion of relative in-teratomi distane R=a0. The atomi part of the energy and the interioni Coulombrepulsion (to the fourth neighbor) is inluded. The inset provides EG with inlusionof nearest neighbor Coulomb interation � K in the Hartree�Fok approximation.



2892 J. Spaªek et al.value (�1Ry) per site for R=a0 > 6, where a0 = 0:539Å is the Bohr ra-dius. The optimal distane is Rmin = 3:15a0 � 1:6Å and the minimum ofEG=N � �1:03Ry, i.e. the ohesive energy is � 0:4 eV/atom. One shouldnote that the hain ollapses if the repulsion between the ions is taken onlybetween the nearest or the seond nearest neighbors. In the inset we show theresult for EG when the nearest neighbor Coulomb interation KPi nini+1 isalso inluded in the Hartree�Fok approximation (the hain is again instablethen).The interatomi distane dependene of the size of the optimized atomiorbital size (in units of a0) is shown in Fig. 6 (the bare orbitals have the size��1=a0 = 1). The orbitals in the orrelated state shrink under the in�ueneof the Coulomb interation. In the inset we display the R dependene of thenearest neighbor overlap integral S. Even for the hain spaing R = Rmin(marked by the vertial dotted line) the overlap S < 0:3, making our versionof the tight-binding approximation (37) appliable for R � Rmin.

Fig. 6. Optimal size of atomi 1s orbital (inluding orrelations) in units of theatomi Bohr radius as a funtion of interatomi distane (the dashed line, withthe nearest-neighbor Coulomb interation, as in Fig. 5). In the inset the overlapintegral is displayed. The vertial dotted line marks the position, at whih EG hasa minimum.In Fig. 7 we have plotted the distane dependene of the mirosopiparameters based on our solution for the Hubbard model in the tight-bindingapproximation (the dashed lines inlude in the solution theKn2 oming from



Exat Diagonalization of Many-Fermion Hamiltonian : : : 2893the Hartree�Fok approximation for the intersite Coulomb interation). Wesee that in the atomi limit U � 15 eV for the renormalized 1s orbitals. Thehopping parameter dereases strongly with the inreasing distane. Thismeans that for the distane R ' 3a0 ' 1:5Å the situation U = W isahieved, where W = 2z j t j= 4 j t jis the band-width of the single-partilestates.

Fig. 7. The mirosopi parameters alulated for the optimized Wannier funtionobtained for the Hubbard hain (solid lines), and with the Kn2 term in EG (dashedlines). 5. One-dimensional quantum dots (rings)Our method an be applied also to one-dimensional rings up to N = 12atoms, for whih a areful treatment of both two-site interations and moredistant hopping proesses (and the wave funtion overlaps) is possible.TheHamiltonian has the same formal struture as (11) exept that now we in-lude all pair interations between the pair of sites hi; ji along the ring.Suh a Hamiltonian is diagonalized numerially in the Fok spae and theparameters are alulated with the help of exat one-band Wannier funtionsde�ned as wi(r) = N�1Xj=0 �i�j j(r) : (42)



2894 J. Spaªek et al.The oe�ients �ij an be alulated starting from the representation of theBloh funtion in the tight-binding approximation�q(r) = NqXj eiq �Rj j(r) ; (43)where the normalization fator is determined via the overlap Sij betweenthe orresponding atomi wave funtions, i.e. has the formNq = �NXj eiq � (Rj�Ri)Sij��1=2 : (44)The oe�ients �ij are de�ned through�ij = 1pN Xq eiq � (Ri�Rj)Nq : (45)The Hamiltonian and the mirosopi parameters have a ompliate formand therefore will not be written down here [14℄. Additionally, if we in-lude the interations and the overlaps beyond the nearest-neighbor 3-siteintegrals appear whih are dealt with in spheroidal oordinates. Here wedisuss only the �nal results obtained from detailed numerial analysis.

Fig. 8. Renormalized (solid line) and bare (dashed line) Wannier funtions for thering of N = 8 atoms and the interatomi distane R=a0 = 2.



Exat Diagonalization of Many-Fermion Hamiltonian : : : 2895The bare and renormalized Wannier funtions, the latter obtained fordiagonalized exatly hain of N = 8 atoms, are depited in Fig. 8 for thedistane R = 2a0. The repulsive interation shrinks then even to the largeextent when ompared to the ase of Hubbard hain. The values of themirosopi parameters for di�erent R values (together with their asymp-toti form) are presented in Table I. We note two basi features of theseresults: (i) the atomi energy "a depends rather strongly on the distane,and (ii) the intersite Coulomb interation � Kij falls o� slowly with thedistane and has the asymptoti form Kij � 2=Rij (in Ry). The Heisen-berg exhange integral (J1) and the orrelated hopping (V1) are of at leasttwo orders of magnitude smaller than either U or K1. The renormalizedhopping parameter t1 is almost an order of magnitude larger than either t2and t3, making the tight-binding approximation realisti (tp is obviously thehopping integral between the p-th neighbors). TABLE IMirosopi parameters (in Rydbergs) as a funtion of interatomi distane R fordi�erent neighbors p = 1; 2; 3.R=a0 "a t1 103t2 103t3 U K1 K2 K3 103J1 103V1 103V22:0 �4:043 �0:585 89:6 �98:3 2:301 1:077 0:676 0:450 9:54 �18:07 33:582:5 �3:734 �0:331 45:5 �45:0 1:949 0:843 0:499 0:331 7:39 �17:45 19:583:0 �3:422 �0:200 24:4 �21:9 1:717 0:692 0:391 0:259 5:59 �16:08 11:954:0 �2:916 �0:083 7:4 �5:3 1:452 0:508 0:269 0:179 2:90 �12:92 4:495:0 �2:558 �0:037 4:2 �2:7 1:327 0:403 0:206 0:138 1:26 �9:64 1:56Probably the most spetaular R dependene is that of statistial distri-bution funtion nk� = h0 j ayk�ak� j 0i in the momentum spae, as shown inFig. 9 for N = 10 atoms. For small lattie onstant (R=a0 = 2) a lear sign ofthe Fermi wave vetor kF = �R=2 (orresponding to one eletron per atom)an be seen, whereas for R � 5a0 this distribution is smeared out throughoutthe �rst Brillouin zone meaning that the eletrons are pratially loalized forthat distane. This point is elaborated in detail elsewhere. The ground statej 0i of the system is a true spin singlet, i.e. with h0 jPNi=1 Si j 0i = 0. Thealulation of the wave funtion allows for determination of experimentallymeasurable quantities suh as spin�spin orrelation funtion or exhange in-tegrals. Also, by extending the results to the situation with Ne < N onean study the dynamis of the holes in this strongly orrelated mesosopisystem. The results will be presented elsewhere.
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Fig. 9. Momentum distribution nk� for eletrons in the �rst Brillouin zone for ringof N = 10 atoms and the interatomi distanes spei�ed.6. ConlusionsWe have reviewed brie�y a new method of alulations of the eletronistates in orrelated low-dimensional and small systems. The method is basedon diagonalizing �rst the many-partile Hamiltonian in the Fok spae fol-lowed by the readjustment of the single-partile wave funtion. Therefore,the present two-step proedure in a reverse order is thus, stritly speaking,possible only in the situation when the exat solution of the many-partileaspet of a model is available or exeutable numerially. The obtained solu-tions provide the physial properties of the onsidered system as a funtionof lattie parameter, not only as a funtion of the mirosopi parameters.One may ask if the appliation of the method to the systems with anapproximate treatment of the orrelations is possible. Suh approah wasoutlined some time ago [24℄, where the eletroni orrelations have beentreated within the Gutzwiller approah. We believe that our method anbe also used starting from the dynami mean-�eld theory (DMFT) [9℄. Theimplementation of DMFT ombined with the wave-funtion optimizationwould provide a possibility of testing the preditions of the Hubbard model,as the variations of the properties with hanging lattie onstant an be ar-ried out experimentally by applying the pressure.
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