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SUPERCONDUCTOR�INSULATOR QUANTUMPHASE TRANSITIONS�Adriaan M.J. ShakelLow Temperature Laboratory, Helsinki University of TehnologyP.O. Box 2200, FIN-02015 HUT, FinlandandNational Chiao Tung University, Department of EletrophysisHsinhu, 30050, Taiwan, R.O.C.e-mail: shakel�.ntu.edu.tw(Reeived Otober 24, 2000)In these letures, superondutivity in impure thin �lms lose to theabsolute zero of temperature is disussed. The behavior as funtion of theapplied magneti �eld and the amount of impurities suggests the preseneof a superondutor�insulator transition at zero temperature. The theoryof superondutivity in the limit where all the eletrons beome tightlybound in pairs is used to explain the main harateristis of the transition.In that limit, where the theory beomes equivalent to a phase-only theory,eletron pairs exist on either side of the transition. The presentation ispedagogial in nature and inludes exerises as a learning aid for those newto the �eld.PACS numbers: 74.40.+k, 71.30.+h, 64.60.Fr1. IntrodutionThe topi of these letures is superondutivity in impure thin �lms loseto the absolute zero of temperature. Suh superonduting �lms may by in-reasing either the amount of impurities, or the applied magneti �eld goover to an insulating state. The transition is believed to signal the preseneof a quantum ritial point at zero temperature [1,2℄. Quantum ritial phe-nomena di�er from onventional ritial phenomena taking plae at �nitetemperature, in that quantum rather than thermal �utuations are impor-tant in the ritial region. Sine quantum phase transitions oure at zerotemperature, they annot be indued by hanging the temperature as an� Presented at the XL Craow Shool of Theoretial Physis, Zakopane, Poland,June 3�11, 2000. (2899)



2900 A.M.J. Shakelthermal phase transitions, and another parameter is to be varied to triggerthe transition. It also means that one an never tune right through thetransition as experiments are neessarily done at �nite temperature. Forlow enough temperature though, the presene of a quantum ritial pointan nevertheless be deteted by using �nite-size saling.A superonduting and an insulating state seems an unlikely ombina-tion to be present in the same system. Whereas superondutivity needs anattrative interation for the pairing between eletrons, the insulating stateneeds a repulsive interation. It is a priori not lear how these two require-ments an be ful�lled in a single system. Adding to the bewilderment isthe striking similarity in the urrent�voltage harateristis in both phaseslose to the transition. By interhanging the urrent and voltage axes inone phase, a harateristi obtained at some value of the applied magneti�eld say, an be mapped onto a harateristi of the other phase obtainedat a di�erent value of the �eld. This means that, although the physialproperties of the superonduting and the insulating state are ompletelydi�erent, there is a lose onnetion between the ondution mehanisms inthe two phases. A last de�ning aspet of the superondutor�insulator tran-sition is the presene of a 1=r Coulomb potential, whih at low harge-arrierdensities beomes very strong.In these letures, we will argue that the main aspets of the superondu-tor�insulator transition just mentioned an be aounted for by a singletheory. Namely, the theory of superondutivity in the limit where all theeletrons beome tightly bound in pairs � the so-alled omposite bosonlimit [3, 4℄. This is the opposite limit of the onventional weak-ouplingBCS limit, where only eletrons in a thin shell around the Fermi surfaebeome loosely bound in Cooper pairs. In the omposite boson limit, thesuperonduting state displays a quantum phase transition to an insulatingstate haraterized not by an unbinding of eletron pairs, but rather by aquenhing of the ondensate of omposite bosons. In other words, eletronpairs exist on both sides of the transition. In the superonduting statethey are Bose�Einstein ondensed, while in the insulating state they areloalized. The attrative interation responsible for the binding of the ele-trons in pairs translates into a repulsive interation between the ompositebosons. The theory desribing these bosons is the Bogoliubov theory of su-per�uidity, whih is equivalent to a phase-only theory. This implies thatthe superondutor�insulator transition an be desribed by a phase-onlye�etive theory without ignoring any degrees of freedom [5, 6℄.To be fair, we should mention at this point that no onsensus exists towhat extend the phase-only theory an be applied to the superondutor�insulator transition. Further experimental and theoretial studies are re-quired to settle this point.



Superondutor�Insulator Quantum Phase Transitions 29011.1. General salingSine quantum rather than thermal �utuations are relevant in a quan-tum phase transition, one has to work in spaetime rather than just in spaeas is appropriate for thermal phase transitions in equilibrium. As a result, inaddition to a diverging orrelation length �, quantum phase transitions havealso a diverging orrelation time �t. They indiate, respetively, the dis-tane and time period over whih the system �utuates oherently. The twoare related, with the diverging orrelation time saling with the divergingorrelation length as �t � �z; (1)where z is the so-alled dynami exponent. It is a measure for the asym-metry between the time and spae diretions lose to the ritial point.The dynami exponent is to be added to the set of ritial exponents usedto haraterize a thermal phase transition. Sine suh transitions have onlytwo independent exponents, a quantum phase transition is spei�ed by threeindependent exponents.The traditional saling theory of thermal, ontinuous phase transitionsin equilibrium, �rst put forward by Widom [7℄, is easily extended to inludethe time dimension [8℄ beause the relation (1) implies the presene of onlyone independent diverging sale.Let Æ = K �K, with K the parameter triggering the phase transition,measure the distane from the ritial value K. A physial observable O atthe absolute zero of temperature depends on K as well as on other variable,suh as an external �eld, energy, or momentum. Let us denote these othervariables olletively by � . In the ritial region lose to the ritial point,O an be written asO(�;K) = �dOO(�̂ ); (T = 0); (2)where dO is the saling dimension of the observable O, � � jÆj�� , with � theorrelation length exponent, and �̂ is obtained from � by resaling it withfators of the orrelation length, so that �̂ is independent of that sale. Tobe spei�, if an external �eld sales as � � �d� , then the resaled �eld isde�ned as �̂ = ��d� � . The right side of Eq. (2) does not depend expliitlyon K, but only impliitly through �.The data of the observable O as funtion of an external �eld � obtainedat di�erent values of the parameter K triggering the transition an be ol-lapsed on a single urve when instead of O(�;K), the resaled quantityjÆj�dOO(�;K) is plotted as funtion not of � , but of �̂ . Indeed, beause ofEq. (2), the ombination jÆj�dOO(�;K) depends only on �̂ and is thus in-dependent of the distane from the ritial point. This is used to determine



2902 A.M.J. Shakelritial exponents experimentally. By resaling the vertial and horizontalaxis of the plot with jÆjx and jÆjy , respetively, the best ollapse obtained atsome value x0 and y0 give the ombination of ritial exponents �dO = y0and �d� = x0.Sine a physial system is always at some �nite temperature, we have toinvestigate how the saling law (2) hanges when the temperature beomesnonzero. The easiest way to inlude the temperature in a quantum theoryis to go over to imaginary time � = it, with � restrited to the interval0 � � � 1=T . The temporal dimension thus beomes of �nite extend. Thebehavior at a �nite temperature is still ontrolled by the quantum ritialpoint, provided the orrelation time satis�es �t < 1=T . If this ondition isful�lled, the system will not see the �nite extent of the time dimension. Thisis what makes quantum phase transitions experimentally aessible. Insteadof the zero-temperature saling (2), we now have the �nite-size salingO(�;K; T ) = T�dO=zO(�̂T ; �tT ); (T 6= 0); (3)where instead of using the orrelation length to onvert dimensionfull quan-tities in dimensionless ones, the temperature is used: �̂T = T d� =z� .NotationWe adopt Feynman's notation and denote a spaetime point by x =x� = (t;x), � = 0; 1; � � � ; d, with d the number of spae dimensions, while theenergy k0 and momentum k of a partile will be denoted by k = k� = (k0;k).The time derivative �0 = �=�t and the gradient r are sometimes ombinedin a single vetor ~�� = (�0;�r). The tilde on �� is to alert the reader forthe minus sign appearing in the spatial omponents of this vetor. We de�nethe salar produt k x = k�x� = k0t � k � x and use Einstein's summationonvention. Beause of the minus sign in the de�nition of the vetor ~�� itfollows that ~��a� = �0a0 +r � a, with a� an arbitrary vetor.Integrals over spaetime are denoted byZx = Zt;x = Z dt ddx;while those over energy and momentum byZk = Zk0;k = Z dk02� ddk(2�)d :When no integration limits are indiated, the integrals are assumed to runover all possible values of the integration variables. Similarly, for funtional



Superondutor�Insulator Quantum Phase Transitions 2903integrals we use the notation Z D� = Z� :We will work in natural units with the speed of light, Boltzmann's on-stant kB, and Plank's onstant ~ set to unity.These letures inlude exerises, whih are learly marked. Most of thesolutions an be found in Ref. [9℄.2. SuperondutivityIn this setion we study the theory of superondutivity in the limitwhere all the eletrons beome tightly bound in pairs [3, 4℄. The ompositeboson limit is to be distinguished from the usual weak-oupling BCS limit,where only eletrons (of opposite momentum) in a thin shell around theFermi surfae beome loosely bound in Cooper pairs.2.1. BCS theoryAs starting point we take the mirosopi BCS model spei�ed by theLagrangian [10℄L =  �" [i�0 � �(�ir)℄ " +  �# [i�0 � �(�ir)℄ # � � �"  �#  #  ":= L0 + Lint; (4)where L0 is the free theory, and Lint = �� �"  �#  #  " is a loal eletron�eletron interation term, representing the e�etive, phonon mediated, at-tration between eletrons with oupling onstant � < 0. The �eld  "(#)is an antiommuting �eld desribing the eletrons with mass m and spinup (down), while �(�ir) = �(�ir) � �, with �(�ir) = �r2=2m, is thekineti energy operator with the hemial potential � haraterizing the en-semble of fermions subtrated. The theory is invariant under global U(1)transformations under whih  � ! ei� � (5)with � ="; # and � a onstant transformation parameter. The superondut-ing state is haraterized by a spontaneous breakdown of this symmetry.To investigate the superonduting state, we integrate out the fermionidegrees of freedom at the expense of a newly introdued auxiliary �eld, whih



2904 A.M.J. Shakelis better equipped to desribe this ondensed matter state. It is onvenientto �rst introdue the two-omponent �eld = �  " �# �  y = ( �" ;  #): (6)In this so-alled Nambu representation, L0 beomesL0 =  y � i�0 � �(�ir) 00 i�0 + �(�ir) �  ; (7)where the antiommuting harater of the eletron �elds is used and totalderivatives are negleted. We next replae the eletron�eletron interationwith an expression involving the auxiliary �eld �� �"  �#  #  " ! ��  #  " +  �"  �# �� 1� j�j2: (8)The original interation is regained when the auxiliary �eld is integrated out.Physially, �, representing a produt of two eletron �elds, desribes ele-tron pairs. We shall therefore refer to it as pair �eld. With this replaement,the partition funtion Z = Z y; exp0�iZx L1A ; (9)beomesZ = Z y; ;��;� exp0� i� Zx j�j21A� exp24iZx  y� i�0 � �(�ir) ����� i�0 + �(�ir) � 35 : (10)Sine the fermion �elds appear quadratially now, they may be integratedout to yield an e�etive ation Se� for � and ��Se� [��;�℄ = �iTr ln� p0 � �(p) ����� p0 + �(p) � ; (11)where p0 = i�0 and �(p) = �(p) � �, with �(p) = p2=2m and p = �ir, sothat the partition funtion beomesZ = Z��;� exp0�iSe� [��;�℄ + i� Zx j�j21A : (12)



Superondutor�Insulator Quantum Phase Transitions 2905The trae Tr appearing in Eq. (11) denotes the trae over disrete indies aswell as the integration over spaetime and over energy k0 and momentum k.In the mean-�eld approximation, the funtional integral over the pair�eld in Eq. (12) is approximated by the saddle point, where only the extremalvalue, satisfying the equationÆSe�Æ��0(x) = � 1��0(x); (13)is inluded. For a system homogeneous in spaetime, the pair �eld is aonstant ��, and Eq. (13) redues, after passing to the Fourier representation,to the BCS gap equation [10℄:1� = �iZk 1k20 �E2(k) + i�= �12 Zk 1E(k) : (14)Here, � is an in�nitesimal positive onstant whih is to be set to zero at theend of the alulation, andE(k) =q�2(k) + j ��0j2 (15)is the spetrum1 of the fermioni exitations. A nontrivial solution to thegap equation signals the spontaneous symmetry breakdown of the globalU(1) symmetry (5). 2.2. Composite boson limitFor studying the omposite boson limit, it proves prudent to swap theoupling onstant � in the gap equation (14) for a more onvenient param-eter, namely the binding energy �a of an eletron pair in vauum [11℄. Bothparameters haraterize the strength of the eletron�eletron interation. Toestablish the onnetion between the two, let us onsider the Shrödingerequation for the problem at hand.In redued oordinates, it reads��r2m + � Æ(x)� (x) = ��a; (16)1 To avoid onfusion, let us repeat that the bar in ��0 indiates that the pair �eld is aonstant, while the subsript 0 indiates that it satis�es the extremal ondition (13).



2906 A.M.J. Shakelwhere the redued mass is m=2 and the delta-funtion potential, with � < 0,represents the attrative loal eletron�eletron interation Lint in (4). Westress that this is a two-partile problem in vauum and not the famousCooper problem of two interating fermions on top of a �lled Fermi sea.The equation is most easily solved in the Fourier representation, yielding (k) = � �k2m + �a (0) ; (17)or � 1� = Zk 1k2m + �a : (18)This bound-state equation allows us to replae the oupling onstant � withthe binding energy �a. When substituted in the gap equation (14), the latterbeomes Zk 1k2m + �a = 12 Zk 1E(k) : (19)By inspetion, it follows that this equation has a solution given by [3, 4℄��0 ! 0; �! �12�a ; (20)where it should be noted that, in ontrast to the weak-oupling limit, thehemial potential haraterizing the ensemble of fermions is negative here.This is the omposite boson limit.To appreiate the physial signi�ane of the spei� value found for thehemial potential in this limit and also its name, observe that the spetrumEB(q) of the two-fermion bound state measured relative to the pair hemialpotential 2� reads EB(q) = q24m � �B ; (21)where �B is de�ned as �B = �a+2� and may be understood as the hemialpotential haraterizing the ensemble of omposite bosons. The negativevalue for � found in Eq. (20) is preisely the ondition for a Bose�Einsteinondensation of an ideal gas of omposite bosons in the q = 0 state.Inluding quadrati terms in ��0, we obtain as solution to Eq. (19)� = �12�a +�1� d4� j ��0j2�a : (22)This leads to the hemial potential�B = �2� d2� j ��0j2�a ; (23)haraterizing the now interating Bose gas.



Superondutor�Insulator Quantum Phase Transitions 29072.3. RenormalizationFor a system homogeneous in spaetime, so that the �eld �0(x) is on-stant, the e�etive ation (11) is readily evaluated. Disassembling the argu-ment of the logarithm as� p0 � �(p) � ��0� ���0 p0 + �(p) � = � p0 � �(p) 00 p0 + �(p) ��� 0 ��0���0 0 � ;(24)and expanding the seond logarithm in a Taylor series, we reognize theform Se� [ ���0; ��0℄ = �iTr ln� p0 � �(p) 00 p0 + �(p) ��iTr ln�1� j ��0j2p20 � �2(p)� ; (25)apart from an irrelevant onstant. Again passing to the Fourier representa-tion, and arrying out the integral over the loop energy k0, we obtain thee�etive Lagrangian Le� = Zk [E(k)� �(k)℄ : (26)Exerise: Derive this result from Eq. (25), using ontour integration. Ratherthan integrating the logarithms in that equation, one better �rst di�eren-tiate it with respet to the hemial potential as the integral over the loopenergy k0 beomes easier that way. In the end one integrates the resultingexpression again over the hemial potential to obtain the desired result.To the one-loop result (26), the tree term j ��0j2=� is to be added. Ex-panding E(k) in Eq. (26) in a Taylor series, we see that the e�etive La-grangian also ontains a term quadrati in ��0. This term amounts to arenormalization of the oupling onstant. Spei�ally, the renormalized ou-pling onstant �r is to this order given by1�r = 1� + 12 Zk 1�(k)= 1� + � �1� d2�(4�)d=2 md=2�1�d=2a ; (27)with, as is appropriate in the omposite boson limit,�(k) = �(k) + 12�a ; (28)



2908 A.M.J. Shakeland dimensional regularization is used in evaluating the momentum integral.Beause of Eq. (18), whih may be viewed as the de�ning equation of theparameter �a, the right side of Eq. (27) is zero. This implies that in theomposite boson limit, �r ! �1 so that we indeed have tightly boundpairs here. 3. Bogoliubov theoryIn this setion we show that in the omposite boson limit, the e�etivetheory obtained after integrating out the fermioni degrees of freedom, isthe Bogoliubov theory of super�uidity in an interating Bose gas. The gasonsists of omposite bosons with a mass twie the eletron mass. Thesystem is known to undergo a quantum phase transition from the super�uidto a (Mott) insulating state [12℄. When translated bak to the fermionitheory, this transition orresponds to one where the ondensate is drainedof omposite bosons, without breaking them up. We inlude impurities in theBogoliubov theory to show that it leads to loalization without destroyingthe super�uid state ompletely. The insulating sate, whih is now a resultnot only beause of repulsive interations, as in a Mott insulator, but alsoof (Anderson) loalization, is alled an Anderson�Mott insulator.3.1. Derivative expansionWe next wish to relax the assumption of homogeneity in spaetime andonsider a spaetime-dependent pair �eld. To this end, we study the e�etiveation (11) and expand �(x) around the onstant value ��0 satisfying thegap equation (14), �(x) = ��0 + ~�(x) : (29)We obtain in this way,Se� = iTr 1X̀=1 1̀ �G0(p)� 0 ~�~�� 0 ��` ; (30)where G0 is the orrelation funtion,G0(k) = � k0 � �(k) � ��0� ���0 k0 + �(k) ��1= 1k20 �E2(k) + i� � k0 eik0� + �(k) ��0���0 k0 e�ik0� � �(k) � : (31)



Superondutor�Insulator Quantum Phase Transitions 2909The exponential funtions in the diagonal elements of the orrelation fun-tion are additional onvergene fators needed in nonrelativisti theories [13℄.When evaluating the e�etive ation (30), the preise meaning of thetrae Tr appearing there should be kept in mind. Expliitly, it is de�ned asSe� = �iTr ln [K(p; x)℄ = �itr ln hK(p; x)Æ(x � y)jy=xi ; (32)where the trae tr is the usual one over disrete indies. We abbreviated thematrix appearing in (11) by K(p; x) so as to over the entire lass of ationsof the form S = Zx  y(x)K(p; x) (x): (33)The delta funtion in (32) arises beause K(p; x) is obtained as a seondfuntional derivative of the ationÆ2SÆ y(x) Æ (x) = K(p; x) Æ(x � y)jy=x; (34)eah of whih gives a delta funtion. Sine the ation ontains only oneintegral over spaetime, one delta funtion remains. Beause it is diagonal,the delta funtion may be taken out of the logarithm and (32) an be writtenas Se� = �itr Zx ln [K(p; x)℄ Æ(x� y)jy=x= �itr Zx Zk eik x ln [K(p; x)℄ e�ik x: (35)In the last step, we used the integral representation of the delta funtion:Æ(x) = Zk e�ik x; (36)shifted the exponential funtion exp(ik y) to the left, whih is justi�ed be-ause the derivative p� does not operate on it, and, �nally, set y� equal tox�. We thus see that the trae Tr in Eq. (32) stands for the trae over dis-rete indies as well as the integration over spaetime and over energy andmomentum. The integral Rk arises beause the e�etive ation alulatedhere is a one-loop result with k� the loop energy and momentum.The integrals in (35) annot in general be evaluated in losed form be-ause the logarithm ontains energy�momentum operators and spaetime-dependent funtions in a mixed order. To disentangle the integrals resort has



2910 A.M.J. Shakelto be taken to a derivative expansion [14℄ in whih the logarithm is expandedin a Taylor series. Eah term ontains powers of the energy�momentum op-erator p� whih ats on every spaetime-dependent funtion to its right. Allthese operators are shifted to the left by repeatedly applying the identityf(x)p�g(x) = (p� � i~��)f(x)g(x) ; (37)where f(x) and g(x) are arbitrary funtions of spaetime and the derivative~�� = (�0;�r) ats only on the next objet to the right. One then integratesby parts, so that all the p�'s at to the left where only a fator exp(ik x)stands. Ignoring total derivatives and taking into aount the minus signsthat arise when integrating by parts, one sees that all ourrenes of p� (anoperator) are replaed with k� (an integration variable). The exponentialfuntion exp(�ik x) an at this stage be moved to the left where it is anni-hilated by the funtion exp(ik x). The energy�momentum integration annow in priniple be arried out and the e�etive ation be ast in the formof an integral over a loal density Le� :Se� = Zx Le� : (38)This is in a nutshell how the derivative expansion works.Exerise: Apply the derivative expansion to the LagrangianL = 12 (~���)2 � 12m2�2 � 14��4; (39)with � a real salar �eld. The theory has a Z2 symmetry under whih thesalar �eld �ips sign: � ! �0 = ��. Show that the e�etive theory in twospae dimensions is given byLe� = 12Z(�)(~���)2 � Ve�(�) ; (40)with Ve�(�) = � 112� (m2 + 12��2)3=2;Z(�) = 1192� �2�2(m2 + 12��2)3=2 : (41)



Superondutor�Insulator Quantum Phase Transitions 29113.2. Map onto Bogoliubov theoryWe are interested in terms in the e�etive ation (30) quadrati in the�eld ~�. Using the derivative expansion, we �ndS(2)e� (q) = i2 Tr 1p20 �E2(p) 1(p0 + q0)2 �E2(p� q)�n ��20 ~�� ~�� + [p0 + �(p)℄[p0 + q0 � �(p� q)℄ ~� ~��+ ���20 ~� ~�+ [p0 � �(p)℄[p0 + q0 + �(p� q)℄ ~�� ~�o; (42)where q� = i~��. Let us �rst ignore the derivatives in this expression. Afterarrying out the integral over the loop energy k0 and using the gap equation(14), we obtainL(2)(0) = �18 Zk 1E3(k) � ��20 ~��2 + ���20 ~�2 + 2j ��0j2j ~�j2� : (43)In the omposite boson limit, where the spetrum of the fermioni exita-tions is given by Eq. (28), the integral over the loop momentum beomeselementary, yieldingZk 1E3(k) = 4� �3� d2�(4�)d=2 md=2�d=2�3a : (44)We next onsider the terms in Eq. (42) involving derivatives. FollowingRef. [15℄ we set ��0 to zero here. The integral over the loop energy is easilyarried out, with the resultL(2)(q) = �12 Zk 1q0 � k2m + 2�� q24m ~� ~���12 Zk 1�q0 � k2m + 2�� q24m ~�� ~�: (45)In the omposite boson limit, the remaining momentum integrals beomeelementary again and after expanding in derivatives we �ndZk 1q0 � k2m � �a � q24m= �� �1� d2�(4�)d=2 md=2�d=2�1a � � �2� d2�(4�)d=2 md=2�d=2�2a �q0 � q24m� : (46)



2912 A.M.J. ShakelWhen ombined with the tree term j ~�j2=�, the �rst term at the right side ofthis equation yields the renormalization (27) of the oupling onstant. Theseond term at the right side of Eq. (46) gives, when ombined with theontribution (43), the result [15℄,L(2) = 12 � �2� d2�(4�)d=2 md=2�d=2�2a ~	 yM0(q) ~	; ~	 = � ~�~�� � ; (47)where M0(q) stands for the 2� 2 matrix,M0(q) =0� q0 � q24m � �2� d2� j ��0j2�a � �2� d2� ��20�a� �2� d2� ���20�a �q0 � q24m � �2� d2� j ��0j2�a 1A : (48)As we shall show now, this is the Bogoliubov theory of super�uidity in aninterating Bose gas. That is to say, after integrating out the fermionidegrees of freedom from the theory of superondutivity, we obtain in theomposite boson limit a theory desribing a gas of repulsively interating(omposite) bosons. 3.3. Quantum phase transitionThe Bogoliubov theory is spei�ed by the Lagrangian [16℄L = ��[i�0 � �(�ir) + �B℄�� �Bj�j4; (49)where �B is the hemial potential haraterizing the Bose gas. The self-oupling is taken to be positive, �B > 0, so that the loal interation isrepulsive.At the mean-�eld, or lassial level, where quantum �utuations areignored, the theory (49) undergoes a phase transition when the hemialpotential hanges sign. For �B > 0, the global U(1) symmetry is sponta-neously broken by a nontrivial ground state, while for �B < 0 the symmetryis unbroken. The hange in �B an be indued by varying the temperature,as in a thermal phase transition, but it an also be indued at zero temper-ature by varying, for example, the number of harge arriers, or the amountof impurities. The zero-temperature quantum phase transition desribes atransition between a super�uid and an insulating state [12℄.The ground state of a system homogeneous in spaetime is obtained byonsidering the shape of the potential energyV = ��Bj��j2 + �Bj��j4: (50)



Superondutor�Insulator Quantum Phase Transitions 2913For �B > 0 it indeed has a minimum away from the origin � = 0 given byj��0j2 = 12 �B�B ; (51)and the potential beomes V0 = � �2B4�B : (52)Sine the total partile number density nB is represented bynB(x) = j�(x)j2; (53)the quantity n0 := j�0j2 physially denotes the number density of partilesresiding in the ground state. A nonzero value for n0 thus signals Bose��Einstein ondensation. For a homogeneous system in its ground state, wesee that at the mean-�eld level �n0 = �n so that all the partiles reside in theondensate. This will hange when quantum �utuations are inluded as aresult of whih partiles are knoked out of the ondensate (see below).To aount for the nontrivial ground state, we introdue the shifted �eld2~�(x): �(x) = ��0 + ~�(x) : (54)The terms in the Lagrangian (49) quadrati in this shifted �eld may be astin the matrix form L0 = 12 ~�yM0(p) ~�; ~� = � ~�~�� � ; (55)withM0(p) = � p0 � �(p) + �B � 4�Bj��0j2 �2�B ��20�2�B ���20 �p0 � �(p) + �B � 4�Bj��0j2 � :(56)Taking into aount only the quadrati terms in the �eld and negletinghigher-order terms, as we just did, is known as the Bogoliubov approxima-tion.Comparing this expression with Eq. (48) obtained in the omposite bosonlimit after integrating out the fermioni degrees of freedom from the theoryof superondutivity, we onlude that the omposite bosons have � as ex-peted � a mass mB = 2m twie the fermion mass m, and a small hemialpotential given by Eq. (23), whih we there derived from the gap equation.2 Similar as before, the bar in ��0 denotes a onstant value of the �eld, while thesubsript 0 indiates that it satis�es the mean-�eld equation (51).



2914 A.M.J. ShakelIt also follows that the number density of omposite bosons ondensed inthe ground state reads�n0 = � �2� d2�(4�)d=2 md=2�d=2�2a j ��0j2; (57)and that the interation �B between the omposite bosons is�B = (4�)d=2 1� d4� �2� d2� �1�d=2amd=2 ; (58)or, using Eq. (18), �B = �1� d41� d2 � : (59)Note that the parameter �(< 0) haraterizing the attrative eletron�eletron interation appears below d = 2 with a minus sign here, leadingto a repulsive interation between the omposite bosons. (In the next sub-setion, we will see that d = 2 is the upper ritial dimension of the T = 0Bogoliubov theory.) This brings us to the important onlusion that ford < 2 the same interation responsible for the formation of eletron pairs, isalso responsible for the stability of the super�uid state, and when this stateeases to exist, for that of the insulating state, whih both need a repulsiveinteration.The quantum phase transition enoded in the Bogoliubov theory or-responds, when translated bak to the fermioni theory, to one where theondensate is drained of omposite bosons, without breaking them up. Inother words, omposite bosons exist on both sides of the transition, eitherondensed (super�uid state) or loalized (insulating state) [5, 6℄.3.4. Beyond mean-�eld theoryWe an ontinue now and improve on the usual mean-�eld approximationof the theory of superondutivity, where the funtional integral over the pair�eld in the partition funtion (12) is approximated by the saddle point, byintegrating out the �eld ~	 in Eq. (47), or to simplify notation, the �eld ~�in Eq. (55). This leads to the e�etive potentialVe� = � i2tr Zk ln[M0(k)℄ = 12 Zk E(k) : (60)Here, E(k) is the famous single-partile Bogoliubov spetrum [16℄,E(k) = p�2(k) + 2�B�(k)= q�2(k) + 4�Bj��0j2�(k) : (61)



Superondutor�Insulator Quantum Phase Transitions 2915In the limit of large momentum, the spetrum behaves in a wayE(k) � �(k) + 2�Bj��0j2 (62)typial for a nonrelativisti partile of mass m moving in a bakgroundmedium, provided by the ondensate in this ase. The most notable fea-ture of the Bogoliubov spetrum is that it is gapless, behaving for smallmomentum as E(k) �  jkj ; (63)with  =p�B=m.Exerise: Carry out the integral over the loop energy k0 in Eq. (60) usingontour integration and show that this leads to the right side of that equa-tion. This is best done by �rst di�erentiating the expression with respet tothe hemial potential �B, and in the end integrating the result again withrespet to �B.The integral over the loop momentum in Eq. (60) an be arried outusing the integral representation of the Gamma funtion1az = 1� (z) 1Z0 d�� � ze�a� : (64)In arbitrary spae dimension d this yields, using dimensional regularization:Ve� = �Ldmd=2�d=2+1B ; Ld = � �1� d2�� �d2 + 12�2�d=2+1=2� �d2 + 2� : (65)For d = 2, the e�etive potential diverges. To investigate this, we setd = 2� ", with " small and positive, and expand Ve� around d = 2, givingVe� = � m4�" �2B�"=2 ; (66)with � an arbitrary renormalization group sale parameter whih enters fordimensional reasons. If the Bogoliubov spetrum had not been gapless, buthad an energy gap instead, this parameter would have appeared in Eq. (66) inthe plae of �. As always in dimensional regularization, the divergene showsup as a pole in ". Comparing the one-loop ontribution with the lassialontribution (52), we onlude that Eq. (66) leads to a renormalization ofthe oupling onstant �, yielding the renormalized oupling �r [17℄1̂�r = 1̂� + m� 1" ; (67)



2916 A.M.J. Shakelwhere �̂ = �=�"=2 and a similar de�nition for �̂r. The quantum ritial pointis approahed by letting the renormalized group sale parameter �! 0. For�xed oupling �, it then follows that upon approahing the ritial point,the renormalized oupling tends to �̂r ! �"=m. For d < 2, or equivalently" > 0, the �xed point is nontrivial. In the limit d ! 2, �̂r ! 0 and thetheory beomes Gaussian, identifying d = 2 as the upper ritial dimension.Due to quantum �utuations not all the partiles are known to residein the ondensate [18℄. Spei�ally, in d spae dimensions, the (onstant)partile number density �n at the one-loop level is given by [19℄�n = j��0j2 � 2d=2�2 d2 � 4d� 1 Ldmd=2�d=2B j��0jd: (68)Sine the quantum-indued term is positive for 1 < d < 4, the numberof partiles residing in the ondensate given �n is redued ompared to thelassial result �n = j��0j2. This shows that due to quantum �utuations,partiles are knoked out of the ondensate.Exerise: Derive Eq. (68). In doing so, one should not use the mean-�eldequation (51) too early, and instead work with the more general single-partile spetrumE(k) =q[�(k)� �0 + 4�0j��j2℄2 � 4�20j��j4 : (69)It redues to the Bogoliubov spetrum when the mean-�eld equation is used.Despite that due to quantum �utuations not all the partiles reside inthe ondensate, all the partiles do in the absene of impurities and at zerotemperature partiipate in the super�ow, and move on the average with thesuper�uid veloity. Put di�erently, the super�uid mass density �s is givenby the total partile number density n: �s = mn.Exerise: Prove this. To this end, assume that the entire system moveswith a veloity u relative to the laboratory system. As in standard hydro-dynamis, the time derivative in the frame following the motion of the �uidis �0 + u � r. Also assume that the ondensate moves with the super�uidveloity vs and boost the �eld:�(x)! �0(x) = eimvs�x�(x) : (70)Show that when inorporated in the Lagrangian (49) of the interating Bosegas, these two hanges result in a hange of the hemial potential�B ! �e� := �B � 12mvs � (vs � 2u) : (71)



Superondutor�Insulator Quantum Phase Transitions 2917Show that the resulting Bogoliubov spetrum and thermodynami potentialare given by the previous results (61) and (65) with this replaement.The momentum density, or equivalently, the mass urrent g of the systemis obtained in this approximation by di�erentiating the e�etive potentialwith respet to �u. Show that g = ��svs ; (72)with ��s = m�n the super�uid mass density.3.5. ImpuritiesOne of the ways to trigger a superondutor�insulator transition is tohange the amount of impurities. This means that, e.g., the orrelationlength � diverges as j�̂� � �̂j�� when the parameter �̂ haraterizing theimpurities approahes the ritial value �̂�.To aount for impurities, we inlude a term [8℄L� =  (x) j�(x)j2 (73)in the bosoni theory (49), where  (x) is a spae-dependent random �eldwith a Gaussian distributionP [ ℄ = exp24� 1� Zx  2(x)35 ; (74)haraterized by the impurity strength � (�̂ alluded to above is a resaledversion of �). Notie that the random �eld does not depend on time. This isbeause it is introdued to mimi impurities, whih are randomly distributedin spae, not in time.We shall treat the impurities in the so-alled quenhed approximation [8℄,where the average of an observable O(��; �) is obtained as followshO(��; �)i = Z P [ ℄ hO(��; �)i ; (75)with hO(��; �)i indiating the grand-anonial average for a given impurityon�guration. That is to say, �rst the ensemble average is taken for �xed  ,and only after that the averaging over the random �eld is arried out.In terms of the shifted �eld (54), the random term (73) beomesL� =  (x)(j��0j2 + j~�j2 + ��0 ~�� + ���0 ~�) : (76)



2918 A.M.J. ShakelThe �rst two terms lead to an irrelevant hange in the hemial potential,so that only the last two terms need to be onsidered, whih an be ast inthe matrix form L� =  (x) ��y0 ~� ; ��0 = � ��0���0 � : (77)The integral over ~� is Gaussian in the Bogoliubov approximation andtherefore easily performed to yield an additional term to the e�etive ationS� = �12 Zx;y  (x) ��y0G0(x� y) ��0 (y) ; (78)where the orrelation funtion G0 is the inverse of the matrixM0 introduedin Eq. (56). To proeed, we pass to the Fourier representation:G0(x� y) = Zk e�ik (x�y)G0(k) ; (79) (x) = Zk eik�x (k) : (80)The ontribution to the e�etive ation then appears in the formS� = �12 Zk j (k)j2 ��y0G(0;k) ��0 : (81)Sine the random �eld is Gaussian distributed, the average over this �eldrepresenting quenhed impurities yields:hj (k)j2i = 12
� ; (82)with 
 the volume of the system. The remaining integral over the loopmomentum in Eq. (81) is readily arried out to yield in arbitrary spaedimensions the ontribution to the LagrangianhL�i = 12� �1� d2��m2��d=2 j��0j2(6�Bj��0j2 � �B)d=2�1� : (83)The divergene in the limit d! 2 shows that also in the presene of impu-rities, the two-dimensional ase is speial. This expression an be used toobtain the additional depletion due to impurities. To this end, we di�eren-tiate it with respet to the hemial potential, giving [20, 21℄�n� = �hL�i��B = 2d=2�5� �2� d2��d=2 md=2�d=2�2B �nd=2�10 � ; (84)



Superondutor�Insulator Quantum Phase Transitions 2919where we reall that �n0 = j��0j2 denotes the (onstant) number density ofpartiles residing in the ondensate. Beause this ontribution is positive,it amounts to an additional depletion of the ondensate. The divergene inthe limit �B ! 0 for d < 4 signals the ollapse of the system with impuritieswhen the interpartile repulsion is removed.To determine the super�uid mass density ��s in the presene of impurities,we replae, as in the last exerise of Se. 3.4, �B with �e� de�ned in Eq. (71)and i�0 with i�0 � (u� vs) � (�ir) in the ontribution (81) to the e�etiveation. Di�erentiating it with respet to the externally imposed veloity,�u, we �nd to linear order in the di�erene u� vs:g = ��svs + ��nu ; (85)with the super�uid and normal mass density [21℄��s = m��n� 4d �n�� ; ��n = 4dm�n� : (86)As expeted, ��s 6= m�n in the presene of impurities. Moreover, the normalmass density is a fator 4=d larger than the mass densitym�n� knoked out ofthe ondensate by the impurities. For d = 3 this gives the fator 43 �rst foundin Ref. [22℄. As argued there, this indiates that part of the zero-momentumstate belongs not to the ondensate, but to the normal �uid. Being trappedby the impurities, the fration (4 � d)=d � �n� of the zero-momentum stateis loalized.This is an important onlusion as it shows that the phenomenon ofloalization an be aounted for in the Bogoliubov theory of super�uidityby inluding a random �eld, without neessarily destroying that state.4. Phase-only theoryIn this setion we show that the Bogoliubov theory, whih we obtainedin the omposite boson limit after integrating out the fermioni degrees offreedom from the theory of superondutivity, ontains only one degree offreedom, viz. the phase of the order parameter. Physially, it desribes theGoldstone mode of the spontaneously broken global U(1) symmetry. Inthe ontext of superondutivity, this mode is alled Anderson�Bogoliubovmode. The Bogoliubov theory may therefore, at least in the super�uid state,be represented by a phase-only e�etive theory. We ontinue to aount forthe 1=r Coulomb potential in the e�etive theory and give general salingarguments for the physial quantities represented by that theory.



2920 A.M.J. Shakel4.1. DerivationIt was �rst shown by Beliaev [23℄ that the gaplessness of the single-partile spetrum �rst found by Bogoliubov at the lassial level persists atthe one-loop order and later proven by Hugenholtz and Pines [24℄ to holdto all orders in perturbation theory. In fat, as was proven by Gavoret andNozières [25℄, the Bogoliubov spetrum is idential to that of the Goldstonemode aompanying the spontaneous breakdown of the global U(1) symme-try, thus explaining its gaplessness.Also from the perspetive of degrees of freedom, this onlusion makessense. Although the normal phase is desribed by a omplex �-�eld, havingtwo omponents, it ontains only one degree of freedom [26℄. This is beausethe energy E(k) � k2 is always positive. As a result, only positive energiesappear in the Fourier deomposition of the �eld, and one needs � as is wellknown from standard quantum mehanis � a omplex �eld to desribe asingle spinless partile. In the super�uid phase, on the other hand, whereE2(k) � k2, the Fourier deomposition ontains positive as well as negativeenergies so that a single real �eld su�es to desribe this mode. In otherwords, although the number of �elds is di�erent, the number of degrees offreedom is the same in both phases. This implies that the super�uid statean be desribed by a phase-only theory as it aptures all the degrees offreedom, ignoring vorties for the moment whih are easily inorporated inthe theory as will be disussed in the next setion.To obtain the phase-only theory, we set, f. Eq. (54)�(x) = ei'(x) (��0 + ~�) ; (87)with '(x) a bakground �eld representing the Goldstone mode aompa-nying the spontaneous symmetry breakdown of the global U(1) symmetry.Inserting this in the Lagrangian (49) and expanding it, we obtainL(2) = �V0 � j��0j2U � U( ��0 ~�� + ���0 ~�)� �Bj��0j2(��0 ~�� + ���0 ~�)2; (88)where the �eld U(x) stands for the ombinationU(x) = �0'(x) + 12m [r'(x)℄2: (89)In deriving Eq. (88), we used the mean-�eld equation �B = 2�Bj��0j2. Weontinue to integrate out the tilde �eld (whih is tantamount to substitutingits �eld equation bak into the Lagrangian) to obtain the phase-only theoryLe� = ��nU(x) + 14U(x) 1�BU(x) ; (90)



Superondutor�Insulator Quantum Phase Transitions 2921where we ignored the irrelevant onstant term V0 and substitutedj��0j2(= �n0) = �n to this order. Using the mean-�eld equation again, wean write the oe�ient of the last term as:14 1�B = 12 �nm2 = 12 �n2� ; (91)with  the speed of sound introdued in Eq. (63). Standard thermodynamisrelates  to the ompressibility � via� = 1m�n2 : (92)The phase-only theory (90) an thus be ast in the equivalent formLe� = ��n��0'+ 12m (r')2�+ 12 �n2� ��0'+ 12m (r')2�2 ; (93)whih turns out to be exat [27℄.The theory desribes a sound wave, with the dimensionless phase �eld 'representing the Goldstone mode of the spontaneously broken global U(1)symmetry. It has the gapless spetrum E2(k) = 2k2. The e�etive the-ory gives, ignoring vorties for the moment, a omplete desription of thesuper�uid at low energies and small momenta. When one goes to higher en-ergies and momenta, additional terms with higher-order derivatives shouldbe inluded in the e�etive theory, but it remains a phase-only theory.4.2. Coulomb potentialIt is straightforward to generalize the result (90) to inlude long-rangedinterations. A ase of partiular interest to us is the 3-dimensional Coulombpotential V (x) = q2jxj ; (94)whose Fourier transform in d spae dimensions readsV (k) = 2d�1�(d�1)=2� �12(d� 1)� q2jkjd�1 : (95)Here, q stands for the eletri harge, whih in the ase of Cooper pairs istwie the eletron harge. The simple ontat interation Lint=��B Rx j�(x)j4in Eq. (49) is now replaed byLint = �12 Zx;y j�(t;x)j2V (x� y)j�(t;y)j2: (96)



2922 A.M.J. ShakelThe rationale for using the 3-dimensional Coulomb potential, even whenonsidering harges on�ned to move in a lower dimensional spae, is thatthe eletromagneti interation remains 3-dimensional. The e�etive theorythen beomes after passing over to the Fourier representationLe� = ��nU(k) + 12U(k0;k) 1V (k)U(k0;�k) ; (97)and leads to the spetrumE2(k) = 2d�1�(d�1)=2� �12(d� 1)� �nq2m jkj3�d: (98)For d = 3, this yields the famous plasma mode, with an energy gap givenby the plasma frequeny !2p = 4��nq2=m. For d = 2 on the other hand, thespetrum behaves as E(k) / pjkj, implying that the mode it desribes ismuh harder that the sound wave with the spetrum E(k) / jkj obtainedfor the system without the 1=r Coulomb interation inluded.To appreiate under whih irumstanes the Coulomb interation be-omes important, we note that for eletroni systems 1=jxj � kF for di-mensional reasons and the fermion number density �n � kdF, where kF is theFermi momentum. The ratio of the Coulomb interation energy to the Fermienergy �F = k2F=2m is therefore proportional to �n�1=d. This means that thelower the eletron number density is, the more important the Coulomb in-teration beomes. 4.3. HypersalingLet us onsider the two terms in the e�etive theory (93) quadrati inthe Goldstone �eld ' and write them in the most general form [28℄L(2)e� = �12 �sm2 (r')2 + 12 �n2�(�0')2: (99)The oe�ient �s is the super�uid mass density, whih is, as we saw in theprevious setion, a response funtion and in general does not equal m�n. Theother oe�ient, �n2� = ��n��B ; (100)an be related to the (0,0)-omponent of the polarization tensor �00. Thisan be understood by noting that an eletromagneti �eld is inluded via theminimal substitution ~�� ! ~�� + qA�, with A� the eletromagneti vetor



Superondutor�Insulator Quantum Phase Transitions 2923potential. Sine the polarization tensor (times q2) is obtained by di�eren-tiating the e�etive theory twie with respet to the vetor potential, weobtain limjkj!0�00(0;k) = �n2� ; (101)where, as is typial for response funtions, the energy transfer is put tozero before the momentum transfer k is. Equation (99) leads to the generalexpression for the speed of sound2 = �sm2�n2� : (102)The singular behavior of the system lose to the ritial point is enodedin the phase-only theory. Simple dimensional analysis shows that near thephase transition it sales as Le� � ��(d+z); (103)while (r')2 � ��2; (�0')2 � ��2t � ��2z; (104)with �t the orrelation time and z the dynami exponent. Combining thesehypersaling arguments, and remembering that the mass parameter is inessen-tial with regards to the ritial behavior, one arrives [28℄ at the saling lawsfor the two oe�ients appearing in the e�etive theory (99):�s � ��(d+z�2); � � ��(d�z): (105)The �rst onlusion is onsistent with the universal jump predited by Nelsonand Kosterlitz [29℄ whih orresponds to taking z = 0 and d = 2.In the presene of impurities it is believed that the ompressibility stays�nite at the ritial point, implying z = d [28℄. This remarkably simpleargument thus predits an exat and nontrivial value for the dynami expo-nent.Without impurities, the dynami exponent is z = 2 [17℄. This agreeswith what one naively expets, given that in the nonrelativisti theory (49)we started with, one time derivative appears in ombination with two spaederivatives, i�0 +r2=2m. This last argument should, however, be treatedwith are when applied to the phase-only theory (93). In that theory, thetime and spae derivatives appear in a symmetrial form, yet z is in generalnot unity, as we just saw. The di�erene is that in the e�etive theory,the relative oe�ient 2 sales aording to Eq. (102) with the saling laws(105) as 2 � �2(1�z); (106)



2924 A.M.J. Shakelwhile the relative oe�ient m in the mirosopi theory does not sale.Inidentally, the (quantum) XY model has a dynami exponent z = 1, sothat  in that ase does not sale.In experiments on harged systems, instead of the super�uid mass den-sity, usually the ondutivity � is measured. To see the relation between thetwo, we introdue a vetor potential in the e�etive theory by replaing r'with r'� qA in Eq. (99), and allow the super�uid mass density to vary inspae and time. The term in the ation quadrati in A then beomes afterpassing to the Fourier representationS� = �12 q2m2 Zk A(�k)�s(k)A(k) : (107)The eletromagneti urrent, j(k) = ÆS�ÆA(�k) (108)obtained from this ation an be written asj(k) = �(k)E(k) ; (109)with the ondutivity �(k) = i q2m2 �s(k)k0 (110)essentially given by the super�uid mass density. So if we know the salingof the eletri harge, we an determine the saling of the ondutivity.With the 1=r Coulomb potential inluded, the quadrati terms in thee�etive theory (97) may, after passing to the Fourier representation, beast in the general formL(2)e� = 12 � �sm2k2 � jkjd�1q02 k20� j'(k)j2; (111)where q0 is the rede�ned harge parameterq0 2 = 2d�1�(d�1)=2� �12(d� 1)� q2: (112)The harge is onneted to the (0, 0)-omponent of the polarization tensorvia q0 2 = limjkj!0 jkjd�1�00(0;k) : (113)



Superondutor�Insulator Quantum Phase Transitions 2925A simple hypersaling argument like the one given above for the ase withoutCoulomb interation shows that near the transition, the harge sales as [30℄q0 2 � �1�z; (114)independent of the number of spae dimensions d. It then follows fromEq. (110) that the ondutivity sales as� � �3�(d+z): (115)Exerise: Give an alternative derivation of the result (114), using Eq. (101).In the presene of random impurities, the harge is expeted to be �niteat the transition, so that z = 1 [30℄. This is again an exat result, whihreplaes the value z = d of an impure system without Coulomb interation.The predition was �rst on�rmed for impure superonduting �lms [2℄, andhas subsequently also been observed in other 2-dimensional systems suh 2-dimensional Josephson-juntion arrays [31℄, quantum Hall systems [32℄, and2-dimensional eletron systems [33℄. We will refer to a Quantum CritialPoint with a 1=r Coulomb interation as CQCP. In the viinity of suh aritial point, the ondutivity sales as [34℄� � �2�d ; (116)implying that in two spae dimensions, the ondutivity is a marginal oper-ator whih remains �nite at the CQCP.4.4. Saling of magneti vetor potentialLet us �nish this setion by determining the saling of the magnetivetor potential. We start with the observation that lose to a CQCP, theeletri �eld E sales as E � ��1t ��1 � ��(z+1) (for a review, see Ref. [35℄).Thus ondutivity measurements [33, 36℄ lose to a CQCP ollapse ontoa single urve when plotted as funtion of the dimensionless ombinationjÆj�(z+1)=E, where as before Æ = K �K) measures the distane from theritial point K, and � is the orrelation length exponent, � � jÆj�� . (Fora �eld-ontrolled transition, K stands for the applied magneti �eld, whilefor a density-ontrolled transition it stands for the harge-arrier density.)The saling of the eletri �eld with the orrelation length expresses themore fundamental result that the anomalous saling dimension dA of themagneti vetor potential A is unity, dA = 1.



2926 A.M.J. ShakelBeause the magneti vetor potential always appears in the gauge-invariant ombination r� qA, the anomalous saling dimension of the ele-tri harge q of the harge arriers times the vetor potential is unity too,dqA = 1. Writing the anomalous saling dimension of the vetor potential asa sum dA = d0A+ 12�A of its anonial saling dimension d0A = 12 (d+ z� 2),obtained by simple power ounting, and (half) the ritial exponent �A,desribing how the orrelation funtion deays at the ritial point, we on-lude that dq = d0q� 12�A. Here, d0q = 1�d0A stands for the anonial salingdimension of the eletri harge. Now, for a 1=r Coulomb potential, theharge sales aording to Eq. (114) as q2 � �1�z independent of the num-ber d of spae dimensions [30℄. Combined with the previous result, this �xesthe value of the exponent �A in terms of the number of spae dimensionsand the dynami exponent: �A = 5� d� 2z : (117)Sine in the presene of impurities, the eletri harge is �nite at a CQCP,leading to z = 1, it follows that �A = 1 in two spae dimensions.As we shall see in the next setion, this exponent beomes importantwhen onsidering the interation between vorties lose to the CQCP.4.5. Experimental statusFor a ritial disussion of the experimental status of the phase-onlytheory, see Ref. [37℄. A more reent disussion an be found in Ref. [38℄.Aording to the phase-only theory disussed here, no eletroni exita-tions exist in the ritial region. However, eletron tunneling measurementson superonduting �lms of varying thikness apparently probed the energygap of these exitations [39℄. Moreover, the gap was found to approahzero as the transition to the insulating state is approahed. Similar ex-periments [40℄ for the �eld-tuned transition showed the presene of a largenumber of eletroni exitations near the Fermi energy, thus raising doubtsabout the appliability of the phase-only theory.Experimental support for the presene of eletron pairs in the insulatingstate omes from Hall e�et studies on superonduting �lms, whih showtwo ritial �elds [41℄. The lower ritial �eld is seen in the longitudinalresistane and is believed to mark the superondutor�insulator transition.The higher ritial �eld is seen in the transverse or Hall resistane andis believed to signal the rossover from a bosoni to a fermioni insulatorwithout pairing. At the higher ritial �eld, the longitudinal resistane hasits maximum.The ritial exponents determined in earlier experiments on the super-ondutor�insulator transition [2, 36℄ had the value z = 1 for the dynami



Superondutor�Insulator Quantum Phase Transitions 2927exponent, in aord with the predition in Ref. [1℄, and � = 1:3 for the or-relation length exponent. More reent studies [42℄, however, �nd agreementwith these results only for the transition tuned by hanging the �lm thik-ness. For the �eld-tuned transition the value z� = 0:7 was found instead,whih is about half the value one expets. The ause for this disrepanyis not lear. It implies that, ontrary to ommon believe, the ritial expo-nents depend on how the phase transition is rossed, by tuning the �eld orthe �lm thikness.Clearly, more experimental and theoretial studies are required to fullyunderstand the superondutor�insulator transition, and to establish to whatextend the phase-only theory is appliable.5. DualityOne of the most intriguing results found in experiments on quantumphase transitions in superonduting �lms, as well as in 2-dimensionalJosephson-juntion arrays [31℄, quantum Hall systems [43℄, and 2-dimension-al eletron systems [33℄ is the striking similarity in the urrent�voltage (I�V )harateristis on both sides of the transition. By interhanging the I and Vaxes in one phase, an I�V harateristi of that phase at a given value of theapplied magneti �eld (in superonduting �lms, 2-dimensional Josephson-juntion arrays, and quantum Hall systems) or harge arrier density (in2-dimensional eletron systems) an be mapped onto an I�V harateristiof the other phase at a di�erent value of the magneti �eld or harge-arrierdensity. This re�etion symmetry hints at a deep onnetion between theondution mehanisms in the two phases that an be understood by in-voking a duality transformation [1, 44℄. Whereas the onduting phase ismost suintly desribed in terms of harge arriers of the system, the in-sulating phase is best formulated in terms of vorties. At zero temperature,these topologial defets should, just like the harge arriers, be thoughtof as quantum point partiles. The duality transformation links the twodesriptions, whih turn out to be very similar.5.1. VortiesLet us now inlude vorties in the phase-only theory. This is ahievedby introduing the so-alled plasti �eld 'P� via the minimal substitution~��' ! ~��' + 'P� [45℄. The plasti �eld is de�ned suh that its url givesa delta funtion at the loation of the vorties. Spei�ally, in two spaedimensions, where vorties are point objets, loated at the positions x�say: r�'P = �2�X� Æ(x � x�) ; (118)



2928 A.M.J. Shakelwhile in three dimensions, where vorties are line objets, loated along theurves C� say: r�'P = �2�X� ZC� dx� Æ(x� x�) : (119)Let us onentrate on stati phenomena so that we an ignore the timederivatives in the e�etive theory (99). When besides vorties also the mag-neti vetor potential is inluded, the e�etive theory beomes in three di-mensions L(2)e� = �12 �sm2 (r'�'P � qA)2 � 12(r�A)2; (120)or after the anonial transformation qA! qA�'P:L(2)e� = �12 �sm2 (r'� qA)2 � 12(r�A�BP)2; (121)where the plasti �eld BP stands forBP = ��0X� ZC� dx� Æ(x� x�) ; (122)with �0 = 2�=q the magneti �ux quantum in units where the speed of lightand Plank's onstant ~ are set to unity. [In two dimensions, this plasti�eld is a salar and stands forBP = ��0X� Æ(x � x�) ; (123)as follows from Eq. (118).℄After integrating out the phase �eld ' in Eq. (121), we obtain the mag-neti part of the e�etive ation Smag. Written as a funtional integral overthe magneti vetor potential, it reads in the Coulomb gauge r �A = 0eiSmag = ZA exp8<:iZx ��12 �r�A�BP�2 � 12 1�2A2�9=; ; (124)with � the magneti penetration depth. The mass term, with ��2=q2�s=m2,is generated through the Anderson�Higgs mehanism in the proess of inte-grating out the phase mode '.With this onstrution, we an now alulate the interation between twovorties. To failitate the alulation in the ase of a superonduting �lm



Superondutor�Insulator Quantum Phase Transitions 2929below, we linearize the �rst term in Eq. (124) by introduing an auxiliary�eld ~h via a Hubbard�Stratonovih transformation:�12 �r�A�BP�2 ! i �r�A�BP� � ~h� 12 ~h2: (125)The original form is regained after integrating out the auxiliary �eld again.After integrating out the magneti vetor potential, we arrive at a formappropriate for a dual desription in terms of magneti vorties rather thaneletri harges [46℄eiSmag = Z~h exp8<:iZx h�12�2(r� ~h)2 � 12 ~h2 � i~h �BPi9=; : (126)Physially, ~h, whih satis�es the ondition r� ~h = 0, represents (i times) the�utuating loal indution. The vorties desribed by BP ouple to ~h witha oupling onstant g = �0=� independent of the eletri harge. Observethe lose similarity between the original (124) and the dual form (126). Thisbeomes even more so when an external eletri urrent jP is oupled to theA �eld by inluding a term �A � jP in Eq. (124), and BP desribing thevorties is set to zero there.Finally, also integrating out the loal indution, one obtains the well-known Biot�Savart law for the interation potential Smag = � Rt V betweentwo stati vorties in a bulk superondutor [47℄,V (r) = 12�2 Zx;y BPi (x)G(x � y)BPi (y)= g24� ZC1 ZC2 dl1 � dl2 e�R=�R= � g22�L hln� r2��+ i+O � r��2 ; (127)where we ignored the self-interation. In Eq. (127), G(x) is the vortex��vortex orrelation funtion with Fourier transform G(k) = 1=(k2 + ��2),R denotes the distane between the di�erential lengths dl1 and dl2, L is thelength of eah of the two vorties, and  is Euler's onstant. For distanessmaller than the magneti penetration depth, whih is the length sale forvariations in the eletri urrent and the magneti �eld, the interation islogarithmi as in a super�uid. If the system size is smaller than �, it willreplae the penetration depth as infra-red uto� in the logarithm, and therewill be no referene to the eletri harge anymore.



2930 A.M.J. ShakelTo desribe magneti vorties in a �lm of thikness w [48℄, the bulkresult (126) has to be adjusted in two ways to aount for the fat that boththe vorties and the sreening urrents, whih produe the seond term in(126), are on�ned to the plane. This is ahieved by inluding a Dira deltafuntion wÆ(x3) in the seond and third term. Instead of Eq. (126), we thenarrive at the interation potential [47, 48℄V?(r) = 12�? Zx?;y? BP?(x?)G?(x? � y?)BP?(y?)= �g2?2� �ln� r4�?�+ �+O� r�?�2 ; (128)where BP? = ��0P� Æ(x? � x�?) desribes the vorties in the �lm withoordinates x?, �? = �2=w is the transverse magneti penetration depth,g2? = �20=�? the oupling onstant squared, andG?(x?) = Zx3 G?(x?; x3)= Zk? e�ik?�x?G?(k?; 0) ; (129)with G?(k?; 0) = 2=k?(2k? + ��1? ). For small distanes, the interation isseen to be idential to that in a bulk superondutor [48℄, and also to thatin a super�uid �lm. As in the bulk, the vortex oupling onstant g? in the�lm is independent of the eletri harge.The logarithmi interation between vorties we found in Eq. (128) ap-pears to pose a severe problem to the duality piture we alluded to in theintrodution of this setion as the harges interat via a 1=r Coulomb po-tential. The di�erene should spoil the experimentally observed re�etionsymmetry in the I�V harateristis. However, it should be realized thatthe results derived in this subsetion are valid only in the mean-�eld region,where �A = 0. In the ritial region governed by a CQCP, the value of thisexponent was found in Se. 4.4 to be unity. As we will now demonstrate,this leads to a qualitative hange in the interation potential between twovorties from logarithmi in the mean-�eld region to 1=r in the viinity ofthe CQCP.



Superondutor�Insulator Quantum Phase Transitions 29315.2. Changing vortex interationClose to a CQCP we have to inlude the �eld renormalization fator ZAin the vortex�vortex orrelation funtion G? appearing in the expression(128) for the vortex interation. It then beomesG?(k?; 0) = 2k? ZA2k? + ��1? ; (130)with ZA � k�A? . Beause the magneti vetor potential and the loal indu-tion renormalize in the same way, their renormalization fator is idential.Due to this extra fator, the interation between two vorties in the �lmtakes the form of a 1=r Coulomb potential [49℄V?(r) = g2?2� ar ; (131)where a is some mirosopi length sale whih aompanies the renormal-ization fator ZA for dimensional reasons [50℄.The absene of any referene to the eletri harge in the renormalizedand bare interation (at least for small enough systems) implies that thesame results should be derivable from our starting theory (120) with q setto zero. By diretly integrating out the Anderson�Bogoliubov mode, andignoring the momentum dependene of �s, whih is valid outside the riti-al region, one easily reprodues the bare interation potential (128). Therenormalized interation (131) is obtained by realizing that aording to Eq.(105), �s � k? for d = 2 and z = 1. In other words, the extra fator of k?that ame in via the renormalization fator ZA in our �rst alulation toprodue the 1=r potential, omes in via �s here.One might wonder if perhaps also the Coulomb interation between ele-tri harges hanges in the viinity of a CQCP. We do not expet this tohappen. Sine the 1=r Coulomb interation is genuine 3-dimensional, thisinteration annot be a�eted too muh by what happens in the �lm, whihonstitutes a mere slie of 3-dimensional spae. The reason that the intera-tion between vorties is suseptible to the presene of a CQCP, is that thisinteration is a result of urrents around the vortex ores whih are on�nedto the plane.A similar hange in the r-dependene of the interation between twovorties upon entering a ritial region has been observed numerially in the3-dimensional Ginzburg�Landau model [51℄. Near the harged �xed pointof that theory, �a = 1 [52℄, as in our ase.This is a very pleasing oinidene as the (2+1)-dimensional Ginzburg��Landau model onstitutes the dual formulation of the system.



2932 A.M.J. Shakel5.3. Dual theoryThe dynamis of the harged degrees of freedom is desribed by the e�e-tive Lagrangian (99) with the speed of sound given by Eq. (102). In aordwith the above �ndings, we have ignored the oupling to the magneti vetorpotential, so that the e�etive theory essentially desribes a super�uid.In the dual formulation, the roles of harges and vorties are inter-hanged. And the Anderson�Bogoliubov mode mediating the interationbetween two vorties is represented as a photon assoiated with a �titiousgauge �eld a�, i.e., ~��' � ���� ~��a�. In 2 + 1 dimensions, this identi�ationmakes sense as a photon has only one transverse diretion and thus only onedegree of freedom. It therefore represents the same number of degrees offreedom as does the Anderson�Bogoliubov mode.The elementary exitations of the dual theory are the vorties, desribedby a omplex salar �eld  . Spei�ally, the dual theory of Eq. (99) turnsout to be the Ginzburg�Landau model [44�46, 53℄Ldual = �14f2�� + j(�� � iga�) j2 �m2 j j2 � uj j4; (132)with f�� = ~��a� � ~��a�, m a mass parameter, and u the strength of theself-oupling. Both the gauge part as well as the matter part of the dualtheory are of a relativisti form. The gauge part is beause the e�etivetheory (99), obtained after ignoring nonlinear terms, is Lorentz invariant.The matter part is beause vorties of positive and negative irulation anannihilate, and an also be reated. In this sense they behave as relativistipartiles. As was pointed out in Ref. [44℄, the speed of �light� in the gaugeand matter part need not to be idential and will in general di�er.The interation potential (128) between two external vorties is nowbeing interpreted as the 2-dimensional Coulomb potential between harges.The observation onerning the ritial behavior of the Ginzburg�Landaumodel implies that the qualitative hange in V (r) upon entering the ritialregion is properly represented in the dual formulation.Whereas in the onduting phase, the harges are ondensed, in theinsulating phase, the vorties are ondensed [1℄. In the dual theory, thevortex ondensate is represented by a nonzero expetation value of the  �eld, whih in turn leads via the Anderson�Higgs mehanism to a massterm for the gauge �eld a�. Beause (���� ~��a�)2 � (~��')2, the mass terma2� with two derivatives less implies that the Anderson�Bogoliubov modehas aquired an energy gap. That is to say, the phase where the vorties areondensed is inompressible and indeed an insulator. Sine eletri hargesare seen by the dual theory as �ux quanta, they are expelled from the systemas long as the dual theory is in the Meissner state. Above the ritial �eldh = r?�a = h1 they start penetrating the system and form an Abrikosov
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