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SUPERCONDUCTOR�INSULATOR QUANTUMPHASE TRANSITIONS�Adriaan M.J. S
hakelLow Temperature Laboratory, Helsinki University of Te
hnologyP.O. Box 2200, FIN-02015 HUT, FinlandandNational Chiao Tung University, Department of Ele
trophysi
sHsin
hu, 30050, Taiwan, R.O.C.e-mail: s
hakel�

.n
tu.edu.tw(Re
eived O
tober 24, 2000)In these le
tures, super
ondu
tivity in impure thin �lms 
lose to theabsolute zero of temperature is dis
ussed. The behavior as fun
tion of theapplied magneti
 �eld and the amount of impurities suggests the presen
eof a super
ondu
tor�insulator transition at zero temperature. The theoryof super
ondu
tivity in the limit where all the ele
trons be
ome tightlybound in pairs is used to explain the main 
hara
teristi
s of the transition.In that limit, where the theory be
omes equivalent to a phase-only theory,ele
tron pairs exist on either side of the transition. The presentation ispedagogi
al in nature and in
ludes exer
ises as a learning aid for those newto the �eld.PACS numbers: 74.40.+k, 71.30.+h, 64.60.Fr1. Introdu
tionThe topi
 of these le
tures is super
ondu
tivity in impure thin �lms 
loseto the absolute zero of temperature. Su
h super
ondu
ting �lms may by in-
reasing either the amount of impurities, or the applied magneti
 �eld goover to an insulating state. The transition is believed to signal the presen
eof a quantum 
riti
al point at zero temperature [1,2℄. Quantum 
riti
al phe-nomena di�er from 
onventional 
riti
al phenomena taking pla
e at �nitetemperature, in that quantum rather than thermal �u
tuations are impor-tant in the 
riti
al region. Sin
e quantum phase transitions o

ure at zerotemperature, they 
annot be indu
ed by 
hanging the temperature as 
an� Presented at the XL Cra
ow S
hool of Theoreti
al Physi
s, Zakopane, Poland,June 3�11, 2000. (2899)
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hakelthermal phase transitions, and another parameter is to be varied to triggerthe transition. It also means that one 
an never tune right through thetransition as experiments are ne
essarily done at �nite temperature. Forlow enough temperature though, the presen
e of a quantum 
riti
al point
an nevertheless be dete
ted by using �nite-size s
aling.A super
ondu
ting and an insulating state seems an unlikely 
ombina-tion to be present in the same system. Whereas super
ondu
tivity needs anattra
tive intera
tion for the pairing between ele
trons, the insulating stateneeds a repulsive intera
tion. It is a priori not 
lear how these two require-ments 
an be ful�lled in a single system. Adding to the bewilderment isthe striking similarity in the 
urrent�voltage 
hara
teristi
s in both phases
lose to the transition. By inter
hanging the 
urrent and voltage axes inone phase, a 
hara
teristi
 obtained at some value of the applied magneti
�eld say, 
an be mapped onto a 
hara
teristi
 of the other phase obtainedat a di�erent value of the �eld. This means that, although the physi
alproperties of the super
ondu
ting and the insulating state are 
ompletelydi�erent, there is a 
lose 
onne
tion between the 
ondu
tion me
hanisms inthe two phases. A last de�ning aspe
t of the super
ondu
tor�insulator tran-sition is the presen
e of a 1=r Coulomb potential, whi
h at low 
harge-
arrierdensities be
omes very strong.In these le
tures, we will argue that the main aspe
ts of the super
ondu
-tor�insulator transition just mentioned 
an be a

ounted for by a singletheory. Namely, the theory of super
ondu
tivity in the limit where all theele
trons be
ome tightly bound in pairs � the so-
alled 
omposite bosonlimit [3, 4℄. This is the opposite limit of the 
onventional weak-
ouplingBCS limit, where only ele
trons in a thin shell around the Fermi surfa
ebe
ome loosely bound in Cooper pairs. In the 
omposite boson limit, thesuper
ondu
ting state displays a quantum phase transition to an insulatingstate 
hara
terized not by an unbinding of ele
tron pairs, but rather by aquen
hing of the 
ondensate of 
omposite bosons. In other words, ele
tronpairs exist on both sides of the transition. In the super
ondu
ting statethey are Bose�Einstein 
ondensed, while in the insulating state they arelo
alized. The attra
tive intera
tion responsible for the binding of the ele
-trons in pairs translates into a repulsive intera
tion between the 
ompositebosons. The theory des
ribing these bosons is the Bogoliubov theory of su-per�uidity, whi
h is equivalent to a phase-only theory. This implies thatthe super
ondu
tor�insulator transition 
an be des
ribed by a phase-onlye�e
tive theory without ignoring any degrees of freedom [5, 6℄.To be fair, we should mention at this point that no 
onsensus exists towhat extend the phase-only theory 
an be applied to the super
ondu
tor�insulator transition. Further experimental and theoreti
al studies are re-quired to settle this point.
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tor�Insulator Quantum Phase Transitions 29011.1. General s
alingSin
e quantum rather than thermal �u
tuations are relevant in a quan-tum phase transition, one has to work in spa
etime rather than just in spa
eas is appropriate for thermal phase transitions in equilibrium. As a result, inaddition to a diverging 
orrelation length �, quantum phase transitions havealso a diverging 
orrelation time �t. They indi
ate, respe
tively, the dis-tan
e and time period over whi
h the system �u
tuates 
oherently. The twoare related, with the diverging 
orrelation time s
aling with the diverging
orrelation length as �t � �z; (1)where z is the so-
alled dynami
 exponent. It is a measure for the asym-metry between the time and spa
e dire
tions 
lose to the 
riti
al point.The dynami
 exponent is to be added to the set of 
riti
al exponents usedto 
hara
terize a thermal phase transition. Sin
e su
h transitions have onlytwo independent exponents, a quantum phase transition is spe
i�ed by threeindependent exponents.The traditional s
aling theory of thermal, 
ontinuous phase transitionsin equilibrium, �rst put forward by Widom [7℄, is easily extended to in
ludethe time dimension [8℄ be
ause the relation (1) implies the presen
e of onlyone independent diverging s
ale.Let Æ = K �K
, with K the parameter triggering the phase transition,measure the distan
e from the 
riti
al value K
. A physi
al observable O atthe absolute zero of temperature depends on K as well as on other variable,su
h as an external �eld, energy, or momentum. Let us denote these othervariables 
olle
tively by � . In the 
riti
al region 
lose to the 
riti
al point,O 
an be written asO(�;K) = �dOO(�̂ ); (T = 0); (2)where dO is the s
aling dimension of the observable O, � � jÆj�� , with � the
orrelation length exponent, and �̂ is obtained from � by res
aling it withfa
tors of the 
orrelation length, so that �̂ is independent of that s
ale. Tobe spe
i�
, if an external �eld s
ales as � � �d� , then the res
aled �eld isde�ned as �̂ = ��d� � . The right side of Eq. (2) does not depend expli
itlyon K, but only impli
itly through �.The data of the observable O as fun
tion of an external �eld � obtainedat di�erent values of the parameter K triggering the transition 
an be 
ol-lapsed on a single 
urve when instead of O(�;K), the res
aled quantityjÆj�dOO(�;K) is plotted as fun
tion not of � , but of �̂ . Indeed, be
ause ofEq. (2), the 
ombination jÆj�dOO(�;K) depends only on �̂ and is thus in-dependent of the distan
e from the 
riti
al point. This is used to determine
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hakel
riti
al exponents experimentally. By res
aling the verti
al and horizontalaxis of the plot with jÆjx and jÆjy , respe
tively, the best 
ollapse obtained atsome value x0 and y0 give the 
ombination of 
riti
al exponents �dO = y0and �d� = x0.Sin
e a physi
al system is always at some �nite temperature, we have toinvestigate how the s
aling law (2) 
hanges when the temperature be
omesnonzero. The easiest way to in
lude the temperature in a quantum theoryis to go over to imaginary time � = it, with � restri
ted to the interval0 � � � 1=T . The temporal dimension thus be
omes of �nite extend. Thebehavior at a �nite temperature is still 
ontrolled by the quantum 
riti
alpoint, provided the 
orrelation time satis�es �t < 1=T . If this 
ondition isful�lled, the system will not see the �nite extent of the time dimension. Thisis what makes quantum phase transitions experimentally a

essible. Insteadof the zero-temperature s
aling (2), we now have the �nite-size s
alingO(�;K; T ) = T�dO=zO(�̂T ; �tT ); (T 6= 0); (3)where instead of using the 
orrelation length to 
onvert dimensionfull quan-tities in dimensionless ones, the temperature is used: �̂T = T d� =z� .NotationWe adopt Feynman's notation and denote a spa
etime point by x =x� = (t;x), � = 0; 1; � � � ; d, with d the number of spa
e dimensions, while theenergy k0 and momentum k of a parti
le will be denoted by k = k� = (k0;k).The time derivative �0 = �=�t and the gradient r are sometimes 
ombinedin a single ve
tor ~�� = (�0;�r). The tilde on �� is to alert the reader forthe minus sign appearing in the spatial 
omponents of this ve
tor. We de�nethe s
alar produ
t k x = k�x� = k0t � k � x and use Einstein's summation
onvention. Be
ause of the minus sign in the de�nition of the ve
tor ~�� itfollows that ~��a� = �0a0 +r � a, with a� an arbitrary ve
tor.Integrals over spa
etime are denoted byZx = Zt;x = Z dt ddx;while those over energy and momentum byZk = Zk0;k = Z dk02� ddk(2�)d :When no integration limits are indi
ated, the integrals are assumed to runover all possible values of the integration variables. Similarly, for fun
tional
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ondu
tor�Insulator Quantum Phase Transitions 2903integrals we use the notation Z D� = Z� :We will work in natural units with the speed of light, Boltzmann's 
on-stant kB, and Plan
k's 
onstant ~ set to unity.These le
tures in
lude exer
ises, whi
h are 
learly marked. Most of thesolutions 
an be found in Ref. [9℄.2. Super
ondu
tivityIn this se
tion we study the theory of super
ondu
tivity in the limitwhere all the ele
trons be
ome tightly bound in pairs [3, 4℄. The 
ompositeboson limit is to be distinguished from the usual weak-
oupling BCS limit,where only ele
trons (of opposite momentum) in a thin shell around theFermi surfa
e be
ome loosely bound in Cooper pairs.2.1. BCS theoryAs starting point we take the mi
ros
opi
 BCS model spe
i�ed by theLagrangian [10℄L =  �" [i�0 � �(�ir)℄ " +  �# [i�0 � �(�ir)℄ # � � �"  �#  #  ":= L0 + Lint; (4)where L0 is the free theory, and Lint = �� �"  �#  #  " is a lo
al ele
tron�ele
tron intera
tion term, representing the e�e
tive, phonon mediated, at-tra
tion between ele
trons with 
oupling 
onstant � < 0. The �eld  "(#)is an anti
ommuting �eld des
ribing the ele
trons with mass m and spinup (down), while �(�ir) = �(�ir) � �, with �(�ir) = �r2=2m, is thekineti
 energy operator with the 
hemi
al potential � 
hara
terizing the en-semble of fermions subtra
ted. The theory is invariant under global U(1)transformations under whi
h  � ! ei� � (5)with � ="; # and � a 
onstant transformation parameter. The super
ondu
t-ing state is 
hara
terized by a spontaneous breakdown of this symmetry.To investigate the super
ondu
ting state, we integrate out the fermioni
degrees of freedom at the expense of a newly introdu
ed auxiliary �eld, whi
h
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hakelis better equipped to des
ribe this 
ondensed matter state. It is 
onvenientto �rst introdu
e the two-
omponent �eld = �  " �# �  y = ( �" ;  #): (6)In this so-
alled Nambu representation, L0 be
omesL0 =  y � i�0 � �(�ir) 00 i�0 + �(�ir) �  ; (7)where the anti
ommuting 
hara
ter of the ele
tron �elds is used and totalderivatives are negle
ted. We next repla
e the ele
tron�ele
tron intera
tionwith an expression involving the auxiliary �eld �� �"  �#  #  " ! ��  #  " +  �"  �# �� 1� j�j2: (8)The original intera
tion is regained when the auxiliary �eld is integrated out.Physi
ally, �, representing a produ
t of two ele
tron �elds, des
ribes ele
-tron pairs. We shall therefore refer to it as pair �eld. With this repla
ement,the partition fun
tion Z = Z y; exp0�iZx L1A ; (9)be
omesZ = Z y; ;��;� exp0� i� Zx j�j21A� exp24iZx  y� i�0 � �(�ir) ����� i�0 + �(�ir) � 35 : (10)Sin
e the fermion �elds appear quadrati
ally now, they may be integratedout to yield an e�e
tive a
tion Se� for � and ��Se� [��;�℄ = �iTr ln� p0 � �(p) ����� p0 + �(p) � ; (11)where p0 = i�0 and �(p) = �(p) � �, with �(p) = p2=2m and p = �ir, sothat the partition fun
tion be
omesZ = Z��;� exp0�iSe� [��;�℄ + i� Zx j�j21A : (12)
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ondu
tor�Insulator Quantum Phase Transitions 2905The tra
e Tr appearing in Eq. (11) denotes the tra
e over dis
rete indi
es aswell as the integration over spa
etime and over energy k0 and momentum k.In the mean-�eld approximation, the fun
tional integral over the pair�eld in Eq. (12) is approximated by the saddle point, where only the extremalvalue, satisfying the equationÆSe�Æ��0(x) = � 1��0(x); (13)is in
luded. For a system homogeneous in spa
etime, the pair �eld is a
onstant ��, and Eq. (13) redu
es, after passing to the Fourier representation,to the BCS gap equation [10℄:1� = �iZk 1k20 �E2(k) + i�= �12 Zk 1E(k) : (14)Here, � is an in�nitesimal positive 
onstant whi
h is to be set to zero at theend of the 
al
ulation, andE(k) =q�2(k) + j ��0j2 (15)is the spe
trum1 of the fermioni
 ex
itations. A nontrivial solution to thegap equation signals the spontaneous symmetry breakdown of the globalU(1) symmetry (5). 2.2. Composite boson limitFor studying the 
omposite boson limit, it proves prudent to swap the
oupling 
onstant � in the gap equation (14) for a more 
onvenient param-eter, namely the binding energy �a of an ele
tron pair in va
uum [11℄. Bothparameters 
hara
terize the strength of the ele
tron�ele
tron intera
tion. Toestablish the 
onne
tion between the two, let us 
onsider the S
hrödingerequation for the problem at hand.In redu
ed 
oordinates, it reads��r2m + � Æ(x)� (x) = ��a; (16)1 To avoid 
onfusion, let us repeat that the bar in ��0 indi
ates that the pair �eld is a
onstant, while the subs
ript 0 indi
ates that it satis�es the extremal 
ondition (13).
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hakelwhere the redu
ed mass is m=2 and the delta-fun
tion potential, with � < 0,represents the attra
tive lo
al ele
tron�ele
tron intera
tion Lint in (4). Westress that this is a two-parti
le problem in va
uum and not the famousCooper problem of two intera
ting fermions on top of a �lled Fermi sea.The equation is most easily solved in the Fourier representation, yielding (k) = � �k2m + �a (0) ; (17)or � 1� = Zk 1k2m + �a : (18)This bound-state equation allows us to repla
e the 
oupling 
onstant � withthe binding energy �a. When substituted in the gap equation (14), the latterbe
omes Zk 1k2m + �a = 12 Zk 1E(k) : (19)By inspe
tion, it follows that this equation has a solution given by [3, 4℄��0 ! 0; �! �12�a ; (20)where it should be noted that, in 
ontrast to the weak-
oupling limit, the
hemi
al potential 
hara
terizing the ensemble of fermions is negative here.This is the 
omposite boson limit.To appre
iate the physi
al signi�
an
e of the spe
i�
 value found for the
hemi
al potential in this limit and also its name, observe that the spe
trumEB(q) of the two-fermion bound state measured relative to the pair 
hemi
alpotential 2� reads EB(q) = q24m � �B ; (21)where �B is de�ned as �B = �a+2� and may be understood as the 
hemi
alpotential 
hara
terizing the ensemble of 
omposite bosons. The negativevalue for � found in Eq. (20) is pre
isely the 
ondition for a Bose�Einstein
ondensation of an ideal gas of 
omposite bosons in the q = 0 state.In
luding quadrati
 terms in ��0, we obtain as solution to Eq. (19)� = �12�a +�1� d4� j ��0j2�a : (22)This leads to the 
hemi
al potential�B = �2� d2� j ��0j2�a ; (23)
hara
terizing the now intera
ting Bose gas.
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tor�Insulator Quantum Phase Transitions 29072.3. RenormalizationFor a system homogeneous in spa
etime, so that the �eld �0(x) is 
on-stant, the e�e
tive a
tion (11) is readily evaluated. Disassembling the argu-ment of the logarithm as� p0 � �(p) � ��0� ���0 p0 + �(p) � = � p0 � �(p) 00 p0 + �(p) ��� 0 ��0���0 0 � ;(24)and expanding the se
ond logarithm in a Taylor series, we re
ognize theform Se� [ ���0; ��0℄ = �iTr ln� p0 � �(p) 00 p0 + �(p) ��iTr ln�1� j ��0j2p20 � �2(p)� ; (25)apart from an irrelevant 
onstant. Again passing to the Fourier representa-tion, and 
arrying out the integral over the loop energy k0, we obtain thee�e
tive Lagrangian Le� = Zk [E(k)� �(k)℄ : (26)Exer
ise: Derive this result from Eq. (25), using 
ontour integration. Ratherthan integrating the logarithms in that equation, one better �rst di�eren-tiate it with respe
t to the 
hemi
al potential as the integral over the loopenergy k0 be
omes easier that way. In the end one integrates the resultingexpression again over the 
hemi
al potential to obtain the desired result.To the one-loop result (26), the tree term j ��0j2=� is to be added. Ex-panding E(k) in Eq. (26) in a Taylor series, we see that the e�e
tive La-grangian also 
ontains a term quadrati
 in ��0. This term amounts to arenormalization of the 
oupling 
onstant. Spe
i�
ally, the renormalized 
ou-pling 
onstant �r is to this order given by1�r = 1� + 12 Zk 1�(k)= 1� + � �1� d2�(4�)d=2 md=2�1�d=2a ; (27)with, as is appropriate in the 
omposite boson limit,�(k) = �(k) + 12�a ; (28)
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hakeland dimensional regularization is used in evaluating the momentum integral.Be
ause of Eq. (18), whi
h may be viewed as the de�ning equation of theparameter �a, the right side of Eq. (27) is zero. This implies that in the
omposite boson limit, �r ! �1 so that we indeed have tightly boundpairs here. 3. Bogoliubov theoryIn this se
tion we show that in the 
omposite boson limit, the e�e
tivetheory obtained after integrating out the fermioni
 degrees of freedom, isthe Bogoliubov theory of super�uidity in an intera
ting Bose gas. The gas
onsists of 
omposite bosons with a mass twi
e the ele
tron mass. Thesystem is known to undergo a quantum phase transition from the super�uidto a (Mott) insulating state [12℄. When translated ba
k to the fermioni
theory, this transition 
orresponds to one where the 
ondensate is drainedof 
omposite bosons, without breaking them up. We in
lude impurities in theBogoliubov theory to show that it leads to lo
alization without destroyingthe super�uid state 
ompletely. The insulating sate, whi
h is now a resultnot only be
ause of repulsive intera
tions, as in a Mott insulator, but alsoof (Anderson) lo
alization, is 
alled an Anderson�Mott insulator.3.1. Derivative expansionWe next wish to relax the assumption of homogeneity in spa
etime and
onsider a spa
etime-dependent pair �eld. To this end, we study the e�e
tivea
tion (11) and expand �(x) around the 
onstant value ��0 satisfying thegap equation (14), �(x) = ��0 + ~�(x) : (29)We obtain in this way,Se� = iTr 1X̀=1 1̀ �G0(p)� 0 ~�~�� 0 ��` ; (30)where G0 is the 
orrelation fun
tion,G0(k) = � k0 � �(k) � ��0� ���0 k0 + �(k) ��1= 1k20 �E2(k) + i� � k0 eik0� + �(k) ��0���0 k0 e�ik0� � �(k) � : (31)



Super
ondu
tor�Insulator Quantum Phase Transitions 2909The exponential fun
tions in the diagonal elements of the 
orrelation fun
-tion are additional 
onvergen
e fa
tors needed in nonrelativisti
 theories [13℄.When evaluating the e�e
tive a
tion (30), the pre
ise meaning of thetra
e Tr appearing there should be kept in mind. Expli
itly, it is de�ned asSe� = �iTr ln [K(p; x)℄ = �itr ln hK(p; x)Æ(x � y)jy=xi ; (32)where the tra
e tr is the usual one over dis
rete indi
es. We abbreviated thematrix appearing in (11) by K(p; x) so as to 
over the entire 
lass of a
tionsof the form S = Zx  y(x)K(p; x) (x): (33)The delta fun
tion in (32) arises be
ause K(p; x) is obtained as a se
ondfun
tional derivative of the a
tionÆ2SÆ y(x) Æ (x) = K(p; x) Æ(x � y)jy=x; (34)ea
h of whi
h gives a delta fun
tion. Sin
e the a
tion 
ontains only oneintegral over spa
etime, one delta fun
tion remains. Be
ause it is diagonal,the delta fun
tion may be taken out of the logarithm and (32) 
an be writtenas Se� = �itr Zx ln [K(p; x)℄ Æ(x� y)jy=x= �itr Zx Zk eik x ln [K(p; x)℄ e�ik x: (35)In the last step, we used the integral representation of the delta fun
tion:Æ(x) = Zk e�ik x; (36)shifted the exponential fun
tion exp(ik y) to the left, whi
h is justi�ed be-
ause the derivative p� does not operate on it, and, �nally, set y� equal tox�. We thus see that the tra
e Tr in Eq. (32) stands for the tra
e over dis-
rete indi
es as well as the integration over spa
etime and over energy andmomentum. The integral Rk arises be
ause the e�e
tive a
tion 
al
ulatedhere is a one-loop result with k� the loop energy and momentum.The integrals in (35) 
annot in general be evaluated in 
losed form be-
ause the logarithm 
ontains energy�momentum operators and spa
etime-dependent fun
tions in a mixed order. To disentangle the integrals resort has
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hakelto be taken to a derivative expansion [14℄ in whi
h the logarithm is expandedin a Taylor series. Ea
h term 
ontains powers of the energy�momentum op-erator p� whi
h a
ts on every spa
etime-dependent fun
tion to its right. Allthese operators are shifted to the left by repeatedly applying the identityf(x)p�g(x) = (p� � i~��)f(x)g(x) ; (37)where f(x) and g(x) are arbitrary fun
tions of spa
etime and the derivative~�� = (�0;�r) a
ts only on the next obje
t to the right. One then integratesby parts, so that all the p�'s a
t to the left where only a fa
tor exp(ik x)stands. Ignoring total derivatives and taking into a

ount the minus signsthat arise when integrating by parts, one sees that all o

urren
es of p� (anoperator) are repla
ed with k� (an integration variable). The exponentialfun
tion exp(�ik x) 
an at this stage be moved to the left where it is anni-hilated by the fun
tion exp(ik x). The energy�momentum integration 
annow in prin
iple be 
arried out and the e�e
tive a
tion be 
ast in the formof an integral over a lo
al density Le� :Se� = Zx Le� : (38)This is in a nutshell how the derivative expansion works.Exer
ise: Apply the derivative expansion to the LagrangianL = 12 (~���)2 � 12m2�2 � 14��4; (39)with � a real s
alar �eld. The theory has a Z2 symmetry under whi
h thes
alar �eld �ips sign: � ! �0 = ��. Show that the e�e
tive theory in twospa
e dimensions is given byLe� = 12Z(�)(~���)2 � Ve�(�) ; (40)with Ve�(�) = � 112� (m2 + 12��2)3=2;Z(�) = 1192� �2�2(m2 + 12��2)3=2 : (41)
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ondu
tor�Insulator Quantum Phase Transitions 29113.2. Map onto Bogoliubov theoryWe are interested in terms in the e�e
tive a
tion (30) quadrati
 in the�eld ~�. Using the derivative expansion, we �ndS(2)e� (q) = i2 Tr 1p20 �E2(p) 1(p0 + q0)2 �E2(p� q)�n ��20 ~�� ~�� + [p0 + �(p)℄[p0 + q0 � �(p� q)℄ ~� ~��+ ���20 ~� ~�+ [p0 � �(p)℄[p0 + q0 + �(p� q)℄ ~�� ~�o; (42)where q� = i~��. Let us �rst ignore the derivatives in this expression. After
arrying out the integral over the loop energy k0 and using the gap equation(14), we obtainL(2)(0) = �18 Zk 1E3(k) � ��20 ~��2 + ���20 ~�2 + 2j ��0j2j ~�j2� : (43)In the 
omposite boson limit, where the spe
trum of the fermioni
 ex
ita-tions is given by Eq. (28), the integral over the loop momentum be
omeselementary, yieldingZk 1E3(k) = 4� �3� d2�(4�)d=2 md=2�d=2�3a : (44)We next 
onsider the terms in Eq. (42) involving derivatives. FollowingRef. [15℄ we set ��0 to zero here. The integral over the loop energy is easily
arried out, with the resultL(2)(q) = �12 Zk 1q0 � k2m + 2�� q24m ~� ~���12 Zk 1�q0 � k2m + 2�� q24m ~�� ~�: (45)In the 
omposite boson limit, the remaining momentum integrals be
omeelementary again and after expanding in derivatives we �ndZk 1q0 � k2m � �a � q24m= �� �1� d2�(4�)d=2 md=2�d=2�1a � � �2� d2�(4�)d=2 md=2�d=2�2a �q0 � q24m� : (46)
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hakelWhen 
ombined with the tree term j ~�j2=�, the �rst term at the right side ofthis equation yields the renormalization (27) of the 
oupling 
onstant. These
ond term at the right side of Eq. (46) gives, when 
ombined with the
ontribution (43), the result [15℄,L(2) = 12 � �2� d2�(4�)d=2 md=2�d=2�2a ~	 yM0(q) ~	; ~	 = � ~�~�� � ; (47)where M0(q) stands for the 2� 2 matrix,M0(q) =0� q0 � q24m � �2� d2� j ��0j2�a � �2� d2� ��20�a� �2� d2� ���20�a �q0 � q24m � �2� d2� j ��0j2�a 1A : (48)As we shall show now, this is the Bogoliubov theory of super�uidity in anintera
ting Bose gas. That is to say, after integrating out the fermioni
degrees of freedom from the theory of super
ondu
tivity, we obtain in the
omposite boson limit a theory des
ribing a gas of repulsively intera
ting(
omposite) bosons. 3.3. Quantum phase transitionThe Bogoliubov theory is spe
i�ed by the Lagrangian [16℄L = ��[i�0 � �(�ir) + �B℄�� �Bj�j4; (49)where �B is the 
hemi
al potential 
hara
terizing the Bose gas. The self-
oupling is taken to be positive, �B > 0, so that the lo
al intera
tion isrepulsive.At the mean-�eld, or 
lassi
al level, where quantum �u
tuations areignored, the theory (49) undergoes a phase transition when the 
hemi
alpotential 
hanges sign. For �B > 0, the global U(1) symmetry is sponta-neously broken by a nontrivial ground state, while for �B < 0 the symmetryis unbroken. The 
hange in �B 
an be indu
ed by varying the temperature,as in a thermal phase transition, but it 
an also be indu
ed at zero temper-ature by varying, for example, the number of 
harge 
arriers, or the amountof impurities. The zero-temperature quantum phase transition des
ribes atransition between a super�uid and an insulating state [12℄.The ground state of a system homogeneous in spa
etime is obtained by
onsidering the shape of the potential energyV = ��Bj��j2 + �Bj��j4: (50)
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tor�Insulator Quantum Phase Transitions 2913For �B > 0 it indeed has a minimum away from the origin � = 0 given byj��0j2 = 12 �B�B ; (51)and the potential be
omes V0 = � �2B4�B : (52)Sin
e the total parti
le number density nB is represented bynB(x) = j�(x)j2; (53)the quantity n0 := j�0j2 physi
ally denotes the number density of parti
lesresiding in the ground state. A nonzero value for n0 thus signals Bose��Einstein 
ondensation. For a homogeneous system in its ground state, wesee that at the mean-�eld level �n0 = �n so that all the parti
les reside in the
ondensate. This will 
hange when quantum �u
tuations are in
luded as aresult of whi
h parti
les are kno
ked out of the 
ondensate (see below).To a

ount for the nontrivial ground state, we introdu
e the shifted �eld2~�(x): �(x) = ��0 + ~�(x) : (54)The terms in the Lagrangian (49) quadrati
 in this shifted �eld may be 
astin the matrix form L0 = 12 ~�yM0(p) ~�; ~� = � ~�~�� � ; (55)withM0(p) = � p0 � �(p) + �B � 4�Bj��0j2 �2�B ��20�2�B ���20 �p0 � �(p) + �B � 4�Bj��0j2 � :(56)Taking into a

ount only the quadrati
 terms in the �eld and negle
tinghigher-order terms, as we just did, is known as the Bogoliubov approxima-tion.Comparing this expression with Eq. (48) obtained in the 
omposite bosonlimit after integrating out the fermioni
 degrees of freedom from the theoryof super
ondu
tivity, we 
on
lude that the 
omposite bosons have � as ex-pe
ted � a mass mB = 2m twi
e the fermion mass m, and a small 
hemi
alpotential given by Eq. (23), whi
h we there derived from the gap equation.2 Similar as before, the bar in ��0 denotes a 
onstant value of the �eld, while thesubs
ript 0 indi
ates that it satis�es the mean-�eld equation (51).
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hakelIt also follows that the number density of 
omposite bosons 
ondensed inthe ground state reads�n0 = � �2� d2�(4�)d=2 md=2�d=2�2a j ��0j2; (57)and that the intera
tion �B between the 
omposite bosons is�B = (4�)d=2 1� d4� �2� d2� �1�d=2amd=2 ; (58)or, using Eq. (18), �B = �1� d41� d2 � : (59)Note that the parameter �(< 0) 
hara
terizing the attra
tive ele
tron�ele
tron intera
tion appears below d = 2 with a minus sign here, leadingto a repulsive intera
tion between the 
omposite bosons. (In the next sub-se
tion, we will see that d = 2 is the upper 
riti
al dimension of the T = 0Bogoliubov theory.) This brings us to the important 
on
lusion that ford < 2 the same intera
tion responsible for the formation of ele
tron pairs, isalso responsible for the stability of the super�uid state, and when this state
eases to exist, for that of the insulating state, whi
h both need a repulsiveintera
tion.The quantum phase transition en
oded in the Bogoliubov theory 
or-responds, when translated ba
k to the fermioni
 theory, to one where the
ondensate is drained of 
omposite bosons, without breaking them up. Inother words, 
omposite bosons exist on both sides of the transition, either
ondensed (super�uid state) or lo
alized (insulating state) [5, 6℄.3.4. Beyond mean-�eld theoryWe 
an 
ontinue now and improve on the usual mean-�eld approximationof the theory of super
ondu
tivity, where the fun
tional integral over the pair�eld in the partition fun
tion (12) is approximated by the saddle point, byintegrating out the �eld ~	 in Eq. (47), or to simplify notation, the �eld ~�in Eq. (55). This leads to the e�e
tive potentialVe� = � i2tr Zk ln[M0(k)℄ = 12 Zk E(k) : (60)Here, E(k) is the famous single-parti
le Bogoliubov spe
trum [16℄,E(k) = p�2(k) + 2�B�(k)= q�2(k) + 4�Bj��0j2�(k) : (61)
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ondu
tor�Insulator Quantum Phase Transitions 2915In the limit of large momentum, the spe
trum behaves in a wayE(k) � �(k) + 2�Bj��0j2 (62)typi
al for a nonrelativisti
 parti
le of mass m moving in a ba
kgroundmedium, provided by the 
ondensate in this 
ase. The most notable fea-ture of the Bogoliubov spe
trum is that it is gapless, behaving for smallmomentum as E(k) � 
 jkj ; (63)with 
 =p�B=m.Exer
ise: Carry out the integral over the loop energy k0 in Eq. (60) using
ontour integration and show that this leads to the right side of that equa-tion. This is best done by �rst di�erentiating the expression with respe
t tothe 
hemi
al potential �B, and in the end integrating the result again withrespe
t to �B.The integral over the loop momentum in Eq. (60) 
an be 
arried outusing the integral representation of the Gamma fun
tion1az = 1� (z) 1Z0 d�� � ze�a� : (64)In arbitrary spa
e dimension d this yields, using dimensional regularization:Ve� = �Ldmd=2�d=2+1B ; Ld = � �1� d2�� �d2 + 12�2�d=2+1=2� �d2 + 2� : (65)For d = 2, the e�e
tive potential diverges. To investigate this, we setd = 2� ", with " small and positive, and expand Ve� around d = 2, givingVe� = � m4�" �2B�"=2 ; (66)with � an arbitrary renormalization group s
ale parameter whi
h enters fordimensional reasons. If the Bogoliubov spe
trum had not been gapless, buthad an energy gap instead, this parameter would have appeared in Eq. (66) inthe pla
e of �. As always in dimensional regularization, the divergen
e showsup as a pole in ". Comparing the one-loop 
ontribution with the 
lassi
al
ontribution (52), we 
on
lude that Eq. (66) leads to a renormalization ofthe 
oupling 
onstant �, yielding the renormalized 
oupling �r [17℄1̂�r = 1̂� + m� 1" ; (67)
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hakelwhere �̂ = �=�"=2 and a similar de�nition for �̂r. The quantum 
riti
al pointis approa
hed by letting the renormalized group s
ale parameter �! 0. For�xed 
oupling �, it then follows that upon approa
hing the 
riti
al point,the renormalized 
oupling tends to �̂r ! �"=m. For d < 2, or equivalently" > 0, the �xed point is nontrivial. In the limit d ! 2, �̂r ! 0 and thetheory be
omes Gaussian, identifying d = 2 as the upper 
riti
al dimension.Due to quantum �u
tuations not all the parti
les are known to residein the 
ondensate [18℄. Spe
i�
ally, in d spa
e dimensions, the (
onstant)parti
le number density �n at the one-loop level is given by [19℄�n = j��0j2 � 2d=2�2 d2 � 4d� 1 Ldmd=2�d=2B j��0jd: (68)Sin
e the quantum-indu
ed term is positive for 1 < d < 4, the numberof parti
les residing in the 
ondensate given �n is redu
ed 
ompared to the
lassi
al result �n = j��0j2. This shows that due to quantum �u
tuations,parti
les are kno
ked out of the 
ondensate.Exer
ise: Derive Eq. (68). In doing so, one should not use the mean-�eldequation (51) too early, and instead work with the more general single-parti
le spe
trumE(k) =q[�(k)� �0 + 4�0j��j2℄2 � 4�20j��j4 : (69)It redu
es to the Bogoliubov spe
trum when the mean-�eld equation is used.Despite that due to quantum �u
tuations not all the parti
les reside inthe 
ondensate, all the parti
les do in the absen
e of impurities and at zerotemperature parti
ipate in the super�ow, and move on the average with thesuper�uid velo
ity. Put di�erently, the super�uid mass density �s is givenby the total parti
le number density n: �s = mn.Exer
ise: Prove this. To this end, assume that the entire system moveswith a velo
ity u relative to the laboratory system. As in standard hydro-dynami
s, the time derivative in the frame following the motion of the �uidis �0 + u � r. Also assume that the 
ondensate moves with the super�uidvelo
ity vs and boost the �eld:�(x)! �0(x) = eimvs�x�(x) : (70)Show that when in
orporated in the Lagrangian (49) of the intera
ting Bosegas, these two 
hanges result in a 
hange of the 
hemi
al potential�B ! �e� := �B � 12mvs � (vs � 2u) : (71)
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tor�Insulator Quantum Phase Transitions 2917Show that the resulting Bogoliubov spe
trum and thermodynami
 potentialare given by the previous results (61) and (65) with this repla
ement.The momentum density, or equivalently, the mass 
urrent g of the systemis obtained in this approximation by di�erentiating the e�e
tive potentialwith respe
t to �u. Show that g = ��svs ; (72)with ��s = m�n the super�uid mass density.3.5. ImpuritiesOne of the ways to trigger a super
ondu
tor�insulator transition is to
hange the amount of impurities. This means that, e.g., the 
orrelationlength � diverges as j�̂� � �̂j�� when the parameter �̂ 
hara
terizing theimpurities approa
hes the 
riti
al value �̂�.To a

ount for impurities, we in
lude a term [8℄L� =  (x) j�(x)j2 (73)in the bosoni
 theory (49), where  (x) is a spa
e-dependent random �eldwith a Gaussian distributionP [ ℄ = exp24� 1� Zx  2(x)35 ; (74)
hara
terized by the impurity strength � (�̂ alluded to above is a res
aledversion of �). Noti
e that the random �eld does not depend on time. This isbe
ause it is introdu
ed to mimi
 impurities, whi
h are randomly distributedin spa
e, not in time.We shall treat the impurities in the so-
alled quen
hed approximation [8℄,where the average of an observable O(��; �) is obtained as followshO(��; �)i = Z P [ ℄ hO(��; �)i ; (75)with hO(��; �)i indi
ating the grand-
anoni
al average for a given impurity
on�guration. That is to say, �rst the ensemble average is taken for �xed  ,and only after that the averaging over the random �eld is 
arried out.In terms of the shifted �eld (54), the random term (73) be
omesL� =  (x)(j��0j2 + j~�j2 + ��0 ~�� + ���0 ~�) : (76)
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hakelThe �rst two terms lead to an irrelevant 
hange in the 
hemi
al potential,so that only the last two terms need to be 
onsidered, whi
h 
an be 
ast inthe matrix form L� =  (x) ��y0 ~� ; ��0 = � ��0���0 � : (77)The integral over ~� is Gaussian in the Bogoliubov approximation andtherefore easily performed to yield an additional term to the e�e
tive a
tionS� = �12 Zx;y  (x) ��y0G0(x� y) ��0 (y) ; (78)where the 
orrelation fun
tion G0 is the inverse of the matrixM0 introdu
edin Eq. (56). To pro
eed, we pass to the Fourier representation:G0(x� y) = Zk e�ik (x�y)G0(k) ; (79) (x) = Zk eik�x (k) : (80)The 
ontribution to the e�e
tive a
tion then appears in the formS� = �12 Zk j (k)j2 ��y0G(0;k) ��0 : (81)Sin
e the random �eld is Gaussian distributed, the average over this �eldrepresenting quen
hed impurities yields:hj (k)j2i = 12
� ; (82)with 
 the volume of the system. The remaining integral over the loopmomentum in Eq. (81) is readily 
arried out to yield in arbitrary spa
edimensions the 
ontribution to the LagrangianhL�i = 12� �1� d2��m2��d=2 j��0j2(6�Bj��0j2 � �B)d=2�1� : (83)The divergen
e in the limit d! 2 shows that also in the presen
e of impu-rities, the two-dimensional 
ase is spe
ial. This expression 
an be used toobtain the additional depletion due to impurities. To this end, we di�eren-tiate it with respe
t to the 
hemi
al potential, giving [20, 21℄�n� = �hL�i��B = 2d=2�5� �2� d2��d=2 md=2�d=2�2B �nd=2�10 � ; (84)
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ondu
tor�Insulator Quantum Phase Transitions 2919where we re
all that �n0 = j��0j2 denotes the (
onstant) number density ofparti
les residing in the 
ondensate. Be
ause this 
ontribution is positive,it amounts to an additional depletion of the 
ondensate. The divergen
e inthe limit �B ! 0 for d < 4 signals the 
ollapse of the system with impuritieswhen the interparti
le repulsion is removed.To determine the super�uid mass density ��s in the presen
e of impurities,we repla
e, as in the last exer
ise of Se
. 3.4, �B with �e� de�ned in Eq. (71)and i�0 with i�0 � (u� vs) � (�ir) in the 
ontribution (81) to the e�e
tivea
tion. Di�erentiating it with respe
t to the externally imposed velo
ity,�u, we �nd to linear order in the di�eren
e u� vs:g = ��svs + ��nu ; (85)with the super�uid and normal mass density [21℄��s = m��n� 4d �n�� ; ��n = 4dm�n� : (86)As expe
ted, ��s 6= m�n in the presen
e of impurities. Moreover, the normalmass density is a fa
tor 4=d larger than the mass densitym�n� kno
ked out ofthe 
ondensate by the impurities. For d = 3 this gives the fa
tor 43 �rst foundin Ref. [22℄. As argued there, this indi
ates that part of the zero-momentumstate belongs not to the 
ondensate, but to the normal �uid. Being trappedby the impurities, the fra
tion (4 � d)=d � �n� of the zero-momentum stateis lo
alized.This is an important 
on
lusion as it shows that the phenomenon oflo
alization 
an be a

ounted for in the Bogoliubov theory of super�uidityby in
luding a random �eld, without ne
essarily destroying that state.4. Phase-only theoryIn this se
tion we show that the Bogoliubov theory, whi
h we obtainedin the 
omposite boson limit after integrating out the fermioni
 degrees offreedom from the theory of super
ondu
tivity, 
ontains only one degree offreedom, viz. the phase of the order parameter. Physi
ally, it des
ribes theGoldstone mode of the spontaneously broken global U(1) symmetry. Inthe 
ontext of super
ondu
tivity, this mode is 
alled Anderson�Bogoliubovmode. The Bogoliubov theory may therefore, at least in the super�uid state,be represented by a phase-only e�e
tive theory. We 
ontinue to a

ount forthe 1=r Coulomb potential in the e�e
tive theory and give general s
alingarguments for the physi
al quantities represented by that theory.
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hakel4.1. DerivationIt was �rst shown by Beliaev [23℄ that the gaplessness of the single-parti
le spe
trum �rst found by Bogoliubov at the 
lassi
al level persists atthe one-loop order and later proven by Hugenholtz and Pines [24℄ to holdto all orders in perturbation theory. In fa
t, as was proven by Gavoret andNozières [25℄, the Bogoliubov spe
trum is identi
al to that of the Goldstonemode a

ompanying the spontaneous breakdown of the global U(1) symme-try, thus explaining its gaplessness.Also from the perspe
tive of degrees of freedom, this 
on
lusion makessense. Although the normal phase is des
ribed by a 
omplex �-�eld, havingtwo 
omponents, it 
ontains only one degree of freedom [26℄. This is be
ausethe energy E(k) � k2 is always positive. As a result, only positive energiesappear in the Fourier de
omposition of the �eld, and one needs � as is wellknown from standard quantum me
hani
s � a 
omplex �eld to des
ribe asingle spinless parti
le. In the super�uid phase, on the other hand, whereE2(k) � k2, the Fourier de
omposition 
ontains positive as well as negativeenergies so that a single real �eld su�
es to des
ribe this mode. In otherwords, although the number of �elds is di�erent, the number of degrees offreedom is the same in both phases. This implies that the super�uid state
an be des
ribed by a phase-only theory as it 
aptures all the degrees offreedom, ignoring vorti
es for the moment whi
h are easily in
orporated inthe theory as will be dis
ussed in the next se
tion.To obtain the phase-only theory, we set, 
f. Eq. (54)�(x) = ei'(x) (��0 + ~�) ; (87)with '(x) a ba
kground �eld representing the Goldstone mode a

ompa-nying the spontaneous symmetry breakdown of the global U(1) symmetry.Inserting this in the Lagrangian (49) and expanding it, we obtainL(2) = �V0 � j��0j2U � U( ��0 ~�� + ���0 ~�)� �Bj��0j2(��0 ~�� + ���0 ~�)2; (88)where the �eld U(x) stands for the 
ombinationU(x) = �0'(x) + 12m [r'(x)℄2: (89)In deriving Eq. (88), we used the mean-�eld equation �B = 2�Bj��0j2. We
ontinue to integrate out the tilde �eld (whi
h is tantamount to substitutingits �eld equation ba
k into the Lagrangian) to obtain the phase-only theoryLe� = ��nU(x) + 14U(x) 1�BU(x) ; (90)
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ondu
tor�Insulator Quantum Phase Transitions 2921where we ignored the irrelevant 
onstant term V0 and substitutedj��0j2(= �n0) = �n to this order. Using the mean-�eld equation again, we
an write the 
oe�
ient of the last term as:14 1�B = 12 �nm
2 = 12 �n2� ; (91)with 
 the speed of sound introdu
ed in Eq. (63). Standard thermodynami
srelates 
 to the 
ompressibility � via� = 1m�n
2 : (92)The phase-only theory (90) 
an thus be 
ast in the equivalent formLe� = ��n��0'+ 12m (r')2�+ 12 �n2� ��0'+ 12m (r')2�2 ; (93)whi
h turns out to be exa
t [27℄.The theory des
ribes a sound wave, with the dimensionless phase �eld 'representing the Goldstone mode of the spontaneously broken global U(1)symmetry. It has the gapless spe
trum E2(k) = 
2k2. The e�e
tive the-ory gives, ignoring vorti
es for the moment, a 
omplete des
ription of thesuper�uid at low energies and small momenta. When one goes to higher en-ergies and momenta, additional terms with higher-order derivatives shouldbe in
luded in the e�e
tive theory, but it remains a phase-only theory.4.2. Coulomb potentialIt is straightforward to generalize the result (90) to in
lude long-rangedintera
tions. A 
ase of parti
ular interest to us is the 3-dimensional Coulombpotential V (x) = q2jxj ; (94)whose Fourier transform in d spa
e dimensions readsV (k) = 2d�1�(d�1)=2� �12(d� 1)� q2jkjd�1 : (95)Here, q stands for the ele
tri
 
harge, whi
h in the 
ase of Cooper pairs istwi
e the ele
tron 
harge. The simple 
onta
t intera
tion Lint=��B Rx j�(x)j4in Eq. (49) is now repla
ed byLint = �12 Zx;y j�(t;x)j2V (x� y)j�(t;y)j2: (96)
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hakelThe rationale for using the 3-dimensional Coulomb potential, even when
onsidering 
harges 
on�ned to move in a lower dimensional spa
e, is thatthe ele
tromagneti
 intera
tion remains 3-dimensional. The e�e
tive theorythen be
omes after passing over to the Fourier representationLe� = ��nU(k) + 12U(k0;k) 1V (k)U(k0;�k) ; (97)and leads to the spe
trumE2(k) = 2d�1�(d�1)=2� �12(d� 1)� �nq2m jkj3�d: (98)For d = 3, this yields the famous plasma mode, with an energy gap givenby the plasma frequen
y !2p = 4��nq2=m. For d = 2 on the other hand, thespe
trum behaves as E(k) / pjkj, implying that the mode it des
ribes ismu
h harder that the sound wave with the spe
trum E(k) / jkj obtainedfor the system without the 1=r Coulomb intera
tion in
luded.To appre
iate under whi
h 
ir
umstan
es the Coulomb intera
tion be-
omes important, we note that for ele
troni
 systems 1=jxj � kF for di-mensional reasons and the fermion number density �n � kdF, where kF is theFermi momentum. The ratio of the Coulomb intera
tion energy to the Fermienergy �F = k2F=2m is therefore proportional to �n�1=d. This means that thelower the ele
tron number density is, the more important the Coulomb in-tera
tion be
omes. 4.3. Hypers
alingLet us 
onsider the two terms in the e�e
tive theory (93) quadrati
 inthe Goldstone �eld ' and write them in the most general form [28℄L(2)e� = �12 �sm2 (r')2 + 12 �n2�(�0')2: (99)The 
oe�
ient �s is the super�uid mass density, whi
h is, as we saw in theprevious se
tion, a response fun
tion and in general does not equal m�n. Theother 
oe�
ient, �n2� = ��n��B ; (100)
an be related to the (0,0)-
omponent of the polarization tensor �00. This
an be understood by noting that an ele
tromagneti
 �eld is in
luded via theminimal substitution ~�� ! ~�� + qA�, with A� the ele
tromagneti
 ve
tor
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e the polarization tensor (times q2) is obtained by di�eren-tiating the e�e
tive theory twi
e with respe
t to the ve
tor potential, weobtain limjkj!0�00(0;k) = �n2� ; (101)where, as is typi
al for response fun
tions, the energy transfer is put tozero before the momentum transfer k is. Equation (99) leads to the generalexpression for the speed of sound
2 = �sm2�n2� : (102)The singular behavior of the system 
lose to the 
riti
al point is en
odedin the phase-only theory. Simple dimensional analysis shows that near thephase transition it s
ales as Le� � ��(d+z); (103)while (r')2 � ��2; (�0')2 � ��2t � ��2z; (104)with �t the 
orrelation time and z the dynami
 exponent. Combining thesehypers
aling arguments, and remembering that the mass parameter is inessen-tial with regards to the 
riti
al behavior, one arrives [28℄ at the s
aling lawsfor the two 
oe�
ients appearing in the e�e
tive theory (99):�s � ��(d+z�2); � � ��(d�z): (105)The �rst 
on
lusion is 
onsistent with the universal jump predi
ted by Nelsonand Kosterlitz [29℄ whi
h 
orresponds to taking z = 0 and d = 2.In the presen
e of impurities it is believed that the 
ompressibility stays�nite at the 
riti
al point, implying z = d [28℄. This remarkably simpleargument thus predi
ts an exa
t and nontrivial value for the dynami
 expo-nent.Without impurities, the dynami
 exponent is z = 2 [17℄. This agreeswith what one naively expe
ts, given that in the nonrelativisti
 theory (49)we started with, one time derivative appears in 
ombination with two spa
ederivatives, i�0 +r2=2m. This last argument should, however, be treatedwith 
are when applied to the phase-only theory (93). In that theory, thetime and spa
e derivatives appear in a symmetri
al form, yet z is in generalnot unity, as we just saw. The di�eren
e is that in the e�e
tive theory,the relative 
oe�
ient 
2 s
ales a

ording to Eq. (102) with the s
aling laws(105) as 
2 � �2(1�z); (106)
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hakelwhile the relative 
oe�
ient m in the mi
ros
opi
 theory does not s
ale.In
identally, the (quantum) XY model has a dynami
 exponent z = 1, sothat 
 in that 
ase does not s
ale.In experiments on 
harged systems, instead of the super�uid mass den-sity, usually the 
ondu
tivity � is measured. To see the relation between thetwo, we introdu
e a ve
tor potential in the e�e
tive theory by repla
ing r'with r'� qA in Eq. (99), and allow the super�uid mass density to vary inspa
e and time. The term in the a
tion quadrati
 in A then be
omes afterpassing to the Fourier representationS� = �12 q2m2 Zk A(�k)�s(k)A(k) : (107)The ele
tromagneti
 
urrent, j(k) = ÆS�ÆA(�k) (108)obtained from this a
tion 
an be written asj(k) = �(k)E(k) ; (109)with the 
ondu
tivity �(k) = i q2m2 �s(k)k0 (110)essentially given by the super�uid mass density. So if we know the s
alingof the ele
tri
 
harge, we 
an determine the s
aling of the 
ondu
tivity.With the 1=r Coulomb potential in
luded, the quadrati
 terms in thee�e
tive theory (97) may, after passing to the Fourier representation, be
ast in the general formL(2)e� = 12 � �sm2k2 � jkjd�1q02 k20� j'(k)j2; (111)where q0 is the rede�ned 
harge parameterq0 2 = 2d�1�(d�1)=2� �12(d� 1)� q2: (112)The 
harge is 
onne
ted to the (0, 0)-
omponent of the polarization tensorvia q0 2 = limjkj!0 jkjd�1�00(0;k) : (113)
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aling argument like the one given above for the 
ase withoutCoulomb intera
tion shows that near the transition, the 
harge s
ales as [30℄q0 2 � �1�z; (114)independent of the number of spa
e dimensions d. It then follows fromEq. (110) that the 
ondu
tivity s
ales as� � �3�(d+z): (115)Exer
ise: Give an alternative derivation of the result (114), using Eq. (101).In the presen
e of random impurities, the 
harge is expe
ted to be �niteat the transition, so that z = 1 [30℄. This is again an exa
t result, whi
hrepla
es the value z = d of an impure system without Coulomb intera
tion.The predi
tion was �rst 
on�rmed for impure super
ondu
ting �lms [2℄, andhas subsequently also been observed in other 2-dimensional systems su
h 2-dimensional Josephson-jun
tion arrays [31℄, quantum Hall systems [32℄, and2-dimensional ele
tron systems [33℄. We will refer to a Quantum Criti
alPoint with a 1=r Coulomb intera
tion as CQCP. In the vi
inity of su
h a
riti
al point, the 
ondu
tivity s
ales as [34℄� � �2�d ; (116)implying that in two spa
e dimensions, the 
ondu
tivity is a marginal oper-ator whi
h remains �nite at the CQCP.4.4. S
aling of magneti
 ve
tor potentialLet us �nish this se
tion by determining the s
aling of the magneti
ve
tor potential. We start with the observation that 
lose to a CQCP, theele
tri
 �eld E s
ales as E � ��1t ��1 � ��(z+1) (for a review, see Ref. [35℄).Thus 
ondu
tivity measurements [33, 36℄ 
lose to a CQCP 
ollapse ontoa single 
urve when plotted as fun
tion of the dimensionless 
ombinationjÆj�(z+1)=E, where as before Æ = K �K
) measures the distan
e from the
riti
al point K
, and � is the 
orrelation length exponent, � � jÆj�� . (Fora �eld-
ontrolled transition, K stands for the applied magneti
 �eld, whilefor a density-
ontrolled transition it stands for the 
harge-
arrier density.)The s
aling of the ele
tri
 �eld with the 
orrelation length expresses themore fundamental result that the anomalous s
aling dimension dA of themagneti
 ve
tor potential A is unity, dA = 1.
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ause the magneti
 ve
tor potential always appears in the gauge-invariant 
ombination r� qA, the anomalous s
aling dimension of the ele
-tri
 
harge q of the 
harge 
arriers times the ve
tor potential is unity too,dqA = 1. Writing the anomalous s
aling dimension of the ve
tor potential asa sum dA = d0A+ 12�A of its 
anoni
al s
aling dimension d0A = 12 (d+ z� 2),obtained by simple power 
ounting, and (half) the 
riti
al exponent �A,des
ribing how the 
orrelation fun
tion de
ays at the 
riti
al point, we 
on-
lude that dq = d0q� 12�A. Here, d0q = 1�d0A stands for the 
anoni
al s
alingdimension of the ele
tri
 
harge. Now, for a 1=r Coulomb potential, the
harge s
ales a

ording to Eq. (114) as q2 � �1�z independent of the num-ber d of spa
e dimensions [30℄. Combined with the previous result, this �xesthe value of the exponent �A in terms of the number of spa
e dimensionsand the dynami
 exponent: �A = 5� d� 2z : (117)Sin
e in the presen
e of impurities, the ele
tri
 
harge is �nite at a CQCP,leading to z = 1, it follows that �A = 1 in two spa
e dimensions.As we shall see in the next se
tion, this exponent be
omes importantwhen 
onsidering the intera
tion between vorti
es 
lose to the CQCP.4.5. Experimental statusFor a 
riti
al dis
ussion of the experimental status of the phase-onlytheory, see Ref. [37℄. A more re
ent dis
ussion 
an be found in Ref. [38℄.A

ording to the phase-only theory dis
ussed here, no ele
troni
 ex
ita-tions exist in the 
riti
al region. However, ele
tron tunneling measurementson super
ondu
ting �lms of varying thi
kness apparently probed the energygap of these ex
itations [39℄. Moreover, the gap was found to approa
hzero as the transition to the insulating state is approa
hed. Similar ex-periments [40℄ for the �eld-tuned transition showed the presen
e of a largenumber of ele
troni
 ex
itations near the Fermi energy, thus raising doubtsabout the appli
ability of the phase-only theory.Experimental support for the presen
e of ele
tron pairs in the insulatingstate 
omes from Hall e�e
t studies on super
ondu
ting �lms, whi
h showtwo 
riti
al �elds [41℄. The lower 
riti
al �eld is seen in the longitudinalresistan
e and is believed to mark the super
ondu
tor�insulator transition.The higher 
riti
al �eld is seen in the transverse or Hall resistan
e andis believed to signal the 
rossover from a bosoni
 to a fermioni
 insulatorwithout pairing. At the higher 
riti
al �eld, the longitudinal resistan
e hasits maximum.The 
riti
al exponents determined in earlier experiments on the super-
ondu
tor�insulator transition [2, 36℄ had the value z = 1 for the dynami
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ord with the predi
tion in Ref. [1℄, and � = 1:3 for the 
or-relation length exponent. More re
ent studies [42℄, however, �nd agreementwith these results only for the transition tuned by 
hanging the �lm thi
k-ness. For the �eld-tuned transition the value z� = 0:7 was found instead,whi
h is about half the value one expe
ts. The 
ause for this dis
repan
yis not 
lear. It implies that, 
ontrary to 
ommon believe, the 
riti
al expo-nents depend on how the phase transition is 
rossed, by tuning the �eld orthe �lm thi
kness.Clearly, more experimental and theoreti
al studies are required to fullyunderstand the super
ondu
tor�insulator transition, and to establish to whatextend the phase-only theory is appli
able.5. DualityOne of the most intriguing results found in experiments on quantumphase transitions in super
ondu
ting �lms, as well as in 2-dimensionalJosephson-jun
tion arrays [31℄, quantum Hall systems [43℄, and 2-dimension-al ele
tron systems [33℄ is the striking similarity in the 
urrent�voltage (I�V )
hara
teristi
s on both sides of the transition. By inter
hanging the I and Vaxes in one phase, an I�V 
hara
teristi
 of that phase at a given value of theapplied magneti
 �eld (in super
ondu
ting �lms, 2-dimensional Josephson-jun
tion arrays, and quantum Hall systems) or 
harge 
arrier density (in2-dimensional ele
tron systems) 
an be mapped onto an I�V 
hara
teristi
of the other phase at a di�erent value of the magneti
 �eld or 
harge-
arrierdensity. This re�e
tion symmetry hints at a deep 
onne
tion between the
ondu
tion me
hanisms in the two phases that 
an be understood by in-voking a duality transformation [1, 44℄. Whereas the 
ondu
ting phase ismost su

in
tly des
ribed in terms of 
harge 
arriers of the system, the in-sulating phase is best formulated in terms of vorti
es. At zero temperature,these topologi
al defe
ts should, just like the 
harge 
arriers, be thoughtof as quantum point parti
les. The duality transformation links the twodes
riptions, whi
h turn out to be very similar.5.1. Vorti
esLet us now in
lude vorti
es in the phase-only theory. This is a
hievedby introdu
ing the so-
alled plasti
 �eld 'P� via the minimal substitution~��' ! ~��' + 'P� [45℄. The plasti
 �eld is de�ned su
h that its 
url givesa delta fun
tion at the lo
ation of the vorti
es. Spe
i�
ally, in two spa
edimensions, where vorti
es are point obje
ts, lo
ated at the positions x�say: r�'P = �2�X� Æ(x � x�) ; (118)
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es are line obje
ts, lo
ated along the
urves C� say: r�'P = �2�X� ZC� dx� Æ(x� x�) : (119)Let us 
on
entrate on stati
 phenomena so that we 
an ignore the timederivatives in the e�e
tive theory (99). When besides vorti
es also the mag-neti
 ve
tor potential is in
luded, the e�e
tive theory be
omes in three di-mensions L(2)e� = �12 �sm2 (r'�'P � qA)2 � 12(r�A)2; (120)or after the 
anoni
al transformation qA! qA�'P:L(2)e� = �12 �sm2 (r'� qA)2 � 12(r�A�BP)2; (121)where the plasti
 �eld BP stands forBP = ��0X� ZC� dx� Æ(x� x�) ; (122)with �0 = 2�=q the magneti
 �ux quantum in units where the speed of lightand Plan
k's 
onstant ~ are set to unity. [In two dimensions, this plasti
�eld is a s
alar and stands forBP = ��0X� Æ(x � x�) ; (123)as follows from Eq. (118).℄After integrating out the phase �eld ' in Eq. (121), we obtain the mag-neti
 part of the e�e
tive a
tion Smag. Written as a fun
tional integral overthe magneti
 ve
tor potential, it reads in the Coulomb gauge r �A = 0eiSmag = ZA exp8<:iZx ��12 �r�A�BP�2 � 12 1�2A2�9=; ; (124)with � the magneti
 penetration depth. The mass term, with ��2=q2�s=m2,is generated through the Anderson�Higgs me
hanism in the pro
ess of inte-grating out the phase mode '.With this 
onstru
tion, we 
an now 
al
ulate the intera
tion between twovorti
es. To fa
ilitate the 
al
ulation in the 
ase of a super
ondu
ting �lm



Super
ondu
tor�Insulator Quantum Phase Transitions 2929below, we linearize the �rst term in Eq. (124) by introdu
ing an auxiliary�eld ~h via a Hubbard�Stratonovi
h transformation:�12 �r�A�BP�2 ! i �r�A�BP� � ~h� 12 ~h2: (125)The original form is regained after integrating out the auxiliary �eld again.After integrating out the magneti
 ve
tor potential, we arrive at a formappropriate for a dual des
ription in terms of magneti
 vorti
es rather thanele
tri
 
harges [46℄eiSmag = Z~h exp8<:iZx h�12�2(r� ~h)2 � 12 ~h2 � i~h �BPi9=; : (126)Physi
ally, ~h, whi
h satis�es the 
ondition r� ~h = 0, represents (i times) the�u
tuating lo
al indu
tion. The vorti
es des
ribed by BP 
ouple to ~h witha 
oupling 
onstant g = �0=� independent of the ele
tri
 
harge. Observethe 
lose similarity between the original (124) and the dual form (126). Thisbe
omes even more so when an external ele
tri
 
urrent jP is 
oupled to theA �eld by in
luding a term �A � jP in Eq. (124), and BP des
ribing thevorti
es is set to zero there.Finally, also integrating out the lo
al indu
tion, one obtains the well-known Biot�Savart law for the intera
tion potential Smag = � Rt V betweentwo stati
 vorti
es in a bulk super
ondu
tor [47℄,V (r) = 12�2 Zx;y BPi (x)G(x � y)BPi (y)= g24� ZC1 ZC2 dl1 � dl2 e�R=�R= � g22�L hln� r2��+ 
i+O � r��2 ; (127)where we ignored the self-intera
tion. In Eq. (127), G(x) is the vortex��vortex 
orrelation fun
tion with Fourier transform G(k) = 1=(k2 + ��2),R denotes the distan
e between the di�erential lengths dl1 and dl2, L is thelength of ea
h of the two vorti
es, and 
 is Euler's 
onstant. For distan
essmaller than the magneti
 penetration depth, whi
h is the length s
ale forvariations in the ele
tri
 
urrent and the magneti
 �eld, the intera
tion islogarithmi
 as in a super�uid. If the system size is smaller than �, it willrepla
e the penetration depth as infra-red 
uto� in the logarithm, and therewill be no referen
e to the ele
tri
 
harge anymore.
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hakelTo des
ribe magneti
 vorti
es in a �lm of thi
kness w [48℄, the bulkresult (126) has to be adjusted in two ways to a

ount for the fa
t that boththe vorti
es and the s
reening 
urrents, whi
h produ
e the se
ond term in(126), are 
on�ned to the plane. This is a
hieved by in
luding a Dira
 deltafun
tion wÆ(x3) in the se
ond and third term. Instead of Eq. (126), we thenarrive at the intera
tion potential [47, 48℄V?(r) = 12�? Zx?;y? BP?(x?)G?(x? � y?)BP?(y?)= �g2?2� �ln� r4�?�+ 
�+O� r�?�2 ; (128)where BP? = ��0P� Æ(x? � x�?) des
ribes the vorti
es in the �lm with
oordinates x?, �? = �2=w is the transverse magneti
 penetration depth,g2? = �20=�? the 
oupling 
onstant squared, andG?(x?) = Zx3 G?(x?; x3)= Zk? e�ik?�x?G?(k?; 0) ; (129)with G?(k?; 0) = 2=k?(2k? + ��1? ). For small distan
es, the intera
tion isseen to be identi
al to that in a bulk super
ondu
tor [48℄, and also to thatin a super�uid �lm. As in the bulk, the vortex 
oupling 
onstant g? in the�lm is independent of the ele
tri
 
harge.The logarithmi
 intera
tion between vorti
es we found in Eq. (128) ap-pears to pose a severe problem to the duality pi
ture we alluded to in theintrodu
tion of this se
tion as the 
harges intera
t via a 1=r Coulomb po-tential. The di�eren
e should spoil the experimentally observed re�e
tionsymmetry in the I�V 
hara
teristi
s. However, it should be realized thatthe results derived in this subse
tion are valid only in the mean-�eld region,where �A = 0. In the 
riti
al region governed by a CQCP, the value of thisexponent was found in Se
. 4.4 to be unity. As we will now demonstrate,this leads to a qualitative 
hange in the intera
tion potential between twovorti
es from logarithmi
 in the mean-�eld region to 1=r in the vi
inity ofthe CQCP.
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tionClose to a CQCP we have to in
lude the �eld renormalization fa
tor ZAin the vortex�vortex 
orrelation fun
tion G? appearing in the expression(128) for the vortex intera
tion. It then be
omesG?(k?; 0) = 2k? ZA2k? + ��1? ; (130)with ZA � k�A? . Be
ause the magneti
 ve
tor potential and the lo
al indu
-tion renormalize in the same way, their renormalization fa
tor is identi
al.Due to this extra fa
tor, the intera
tion between two vorti
es in the �lmtakes the form of a 1=r Coulomb potential [49℄V?(r) = g2?2� ar ; (131)where a is some mi
ros
opi
 length s
ale whi
h a

ompanies the renormal-ization fa
tor ZA for dimensional reasons [50℄.The absen
e of any referen
e to the ele
tri
 
harge in the renormalizedand bare intera
tion (at least for small enough systems) implies that thesame results should be derivable from our starting theory (120) with q setto zero. By dire
tly integrating out the Anderson�Bogoliubov mode, andignoring the momentum dependen
e of �s, whi
h is valid outside the 
riti-
al region, one easily reprodu
es the bare intera
tion potential (128). Therenormalized intera
tion (131) is obtained by realizing that a

ording to Eq.(105), �s � k? for d = 2 and z = 1. In other words, the extra fa
tor of k?that 
ame in via the renormalization fa
tor ZA in our �rst 
al
ulation toprodu
e the 1=r potential, 
omes in via �s here.One might wonder if perhaps also the Coulomb intera
tion between ele
-tri
 
harges 
hanges in the vi
inity of a CQCP. We do not expe
t this tohappen. Sin
e the 1=r Coulomb intera
tion is genuine 3-dimensional, thisintera
tion 
annot be a�e
ted too mu
h by what happens in the �lm, whi
h
onstitutes a mere sli
e of 3-dimensional spa
e. The reason that the intera
-tion between vorti
es is sus
eptible to the presen
e of a CQCP, is that thisintera
tion is a result of 
urrents around the vortex 
ores whi
h are 
on�nedto the plane.A similar 
hange in the r-dependen
e of the intera
tion between twovorti
es upon entering a 
riti
al region has been observed numeri
ally in the3-dimensional Ginzburg�Landau model [51℄. Near the 
harged �xed pointof that theory, �a = 1 [52℄, as in our 
ase.This is a very pleasing 
oin
iden
e as the (2+1)-dimensional Ginzburg��Landau model 
onstitutes the dual formulation of the system.
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s of the 
harged degrees of freedom is des
ribed by the e�e
-tive Lagrangian (99) with the speed of sound given by Eq. (102). In a

ordwith the above �ndings, we have ignored the 
oupling to the magneti
 ve
torpotential, so that the e�e
tive theory essentially des
ribes a super�uid.In the dual formulation, the roles of 
harges and vorti
es are inter-
hanged. And the Anderson�Bogoliubov mode mediating the intera
tionbetween two vorti
es is represented as a photon asso
iated with a �
titiousgauge �eld a�, i.e., ~��' � ���� ~��a�. In 2 + 1 dimensions, this identi�
ationmakes sense as a photon has only one transverse dire
tion and thus only onedegree of freedom. It therefore represents the same number of degrees offreedom as does the Anderson�Bogoliubov mode.The elementary ex
itations of the dual theory are the vorti
es, des
ribedby a 
omplex s
alar �eld  . Spe
i�
ally, the dual theory of Eq. (99) turnsout to be the Ginzburg�Landau model [44�46, 53℄Ldual = �14f2�� + j(�� � iga�) j2 �m2 j j2 � uj j4; (132)with f�� = ~��a� � ~��a�, m a mass parameter, and u the strength of theself-
oupling. Both the gauge part as well as the matter part of the dualtheory are of a relativisti
 form. The gauge part is be
ause the e�e
tivetheory (99), obtained after ignoring nonlinear terms, is Lorentz invariant.The matter part is be
ause vorti
es of positive and negative 
ir
ulation 
anannihilate, and 
an also be 
reated. In this sense they behave as relativisti
parti
les. As was pointed out in Ref. [44℄, the speed of �light� in the gaugeand matter part need not to be identi
al and will in general di�er.The intera
tion potential (128) between two external vorti
es is nowbeing interpreted as the 2-dimensional Coulomb potential between 
harges.The observation 
on
erning the 
riti
al behavior of the Ginzburg�Landaumodel implies that the qualitative 
hange in V (r) upon entering the 
riti
alregion is properly represented in the dual formulation.Whereas in the 
ondu
ting phase, the 
harges are 
ondensed, in theinsulating phase, the vorti
es are 
ondensed [1℄. In the dual theory, thevortex 
ondensate is represented by a nonzero expe
tation value of the  �eld, whi
h in turn leads via the Anderson�Higgs me
hanism to a massterm for the gauge �eld a�. Be
ause (���� ~��a�)2 � (~��')2, the mass terma2� with two derivatives less implies that the Anderson�Bogoliubov modehas a
quired an energy gap. That is to say, the phase where the vorti
es are
ondensed is in
ompressible and indeed an insulator. Sin
e ele
tri
 
hargesare seen by the dual theory as �ux quanta, they are expelled from the systemas long as the dual theory is in the Meissner state. Above the 
riti
al �eldh = r?�a = h
1 they start penetrating the system and form an Abrikosov
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e. In the original formulation, this 
orresponds to a Wigner 
rystalof the 
harges. Finally, when more 
harges are added and the dual �eldrea
hes the 
riti
al value h
2 , the latti
e melts and the 
harges 
ondense inthe super�uid phase des
ribed by the e�e
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