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In these lectures, superconductivity in impure thin films close to the
absolute zero of temperature is discussed. The behavior as function of the
applied magnetic field and the amount of impurities suggests the presence
of a superconductor—insulator transition at zero temperature. The theory
of superconductivity in the limit where all the electrons become tightly
bound in pairs is used to explain the main characteristics of the transition.
In that limit, where the theory becomes equivalent to a phase-only theory,
electron pairs exist on either side of the transition. The presentation is
pedagogical in nature and includes exercises as a learning aid for those new
to the field.

PACS numbers: 74.40.+k, 71.30.+h, 64.60.Fr

1. Introduction

The topic of these lectures is superconductivity in impure thin films close
to the absolute zero of temperature. Such superconducting films may by in-
creasing either the amount of impurities, or the applied magnetic field go
over to an insulating state. The transition is believed to signal the presence
of a quantum critical point at zero temperature [1,2]. Quantum critical phe-
nomena differ from conventional critical phenomena taking place at finite
temperature, in that quantum rather than thermal fluctuations are impor-
tant in the critical region. Since quantum phase transitions occure at zero
temperature, they cannot be induced by changing the temperature as can
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thermal phase transitions, and another parameter is to be varied to trigger
the transition. It also means that one can never tune right through the
transition as experiments are necessarily done at finite temperature. For
low enough temperature though, the presence of a quantum critical point
can nevertheless be detected by using finite-size scaling.

A superconducting and an insulating state seems an unlikely combina-
tion to be present in the same system. Whereas superconductivity needs an
attractive interaction for the pairing between electrons, the insulating state
needs a repulsive interaction. It is a priori not clear how these two require-
ments can be fulfilled in a single system. Adding to the bewilderment is
the striking similarity in the current—voltage characteristics in both phases
close to the transition. By interchanging the current and voltage axes in
one phase, a characteristic obtained at some value of the applied magnetic
field say, can be mapped onto a characteristic of the other phase obtained
at a different value of the field. This means that, although the physical
properties of the superconducting and the insulating state are completely
different, there is a close connection between the conduction mechanisms in
the two phases. A last defining aspect of the superconductor—insulator tran-
sition is the presence of a 1/r Coulomb potential, which at low charge-carrier
densities becomes very strong.

In these lectures, we will argue that the main aspects of the superconduc-
tor—insulator transition just mentioned can be accounted for by a single
theory. Namely, the theory of superconductivity in the limit where all the
electrons become tightly bound in pairs — the so-called composite boson
limit 3,4]. This is the opposite limit of the conventional weak-coupling
BCS limit, where only electrons in a thin shell around the Fermi surface
become loosely bound in Cooper pairs. In the composite boson limit, the
superconducting state displays a quantum phase transition to an insulating
state characterized not by an unbinding of electron pairs, but rather by a
quenching of the condensate of composite bosons. In other words, electron
pairs exist on both sides of the transition. In the superconducting state
they are Bose—Einstein condensed, while in the insulating state they are
localized. The attractive interaction responsible for the binding of the elec-
trons in pairs translates into a repulsive interaction between the composite
bosons. The theory describing these bosons is the Bogoliubov theory of su-
perfluidity, which is equivalent to a phase-only theory. This implies that
the superconductor-insulator transition can be described by a phase-only
effective theory without ignoring any degrees of freedom [5, 6].

To be fair, we should mention at this point that no consensus exists to
what extend the phase-only theory can be applied to the superconductor—
insulator transition. Further experimental and theoretical studies are re-
quired to settle this point.
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1.1. General scaling

Since quantum rather than thermal fluctuations are relevant in a quan-
tum phase transition, one has to work in spacetime rather than just in space
as is appropriate for thermal phase transitions in equilibrium. As a result, in
addition to a diverging correlation length ¢, quantum phase transitions have
also a diverging correlation time &;. They indicate, respectively, the dis-
tance and time period over which the system fluctuates coherently. The two
are related, with the diverging correlation time scaling with the diverging
correlation length as

gt ~ fza (1)

where z is the so-called dynamic exponent. It is a measure for the asym-
metry between the time and space directions close to the critical point.
The dynamic exponent is to be added to the set of critical exponents used
to characterize a thermal phase transition. Since such transitions have only
two independent exponents, a quantum phase transition is specified by three
independent exponents.

The traditional scaling theory of thermal, continuous phase transitions
in equilibrium, first put forward by Widom [7], is easily extended to include
the time dimension [8] because the relation (1) implies the presence of only
one independent diverging scale.

Let § = K — K., with K the parameter triggering the phase transition,
measure the distance from the critical value K.. A physical observable O at
the absolute zero of temperature depends on K as well as on other variable,
such as an external field, energy, or momentum. Let us denote these other
variables collectively by I'. In the critical region close to the critical point,
O can be written as

O(ILK) = £0(D), (T'=0), (2)

where dg is the scaling dimension of the observable O, £ ~ |§|7", with v the
correlation length exponent, and I is obtained from I' by rescaling it with
factors of the correlation length, so that I' is independent of that scale. To
be specific, if an external field scales as I" ~ €41 | then the rescaled field is
defined as I' = ¢79r I". The right side of Eq. (2) does not depend explicitly
on K, but only implicitly through &.

The data of the observable O as function of an external field I" obtained
at different values of the parameter K triggering the transition can be col-
lapsed on a single curve when instead of O(I', K), the rescaled quantity
|6]¥40 O(I', K) is plotted as function not of I, but of I". Indeed, because of
Eq. (2), the combination |§|*% O(I', K) depends only on I" and is thus in-
dependent of the distance from the critical point. This is used to determine
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critical exponents experimentally. By rescaling the vertical and horizontal
axis of the plot with |§|* and |0]Y, respectively, the best collapse obtained at
some value o and yo give the combination of critical exponents vdp = yg
and vdr = xy.

Since a physical system is always at some finite temperature, we have to
investigate how the scaling law (2) changes when the temperature becomes
nonzero. The easiest way to include the temperature in a quantum theory
is to go over to imaginary time 7 = 4, with 7 restricted to the interval
0 <7 <1/T. The temporal dimension thus becomes of finite extend. The
behavior at a finite temperature is still controlled by the quantum critical
point, provided the correlation time satisfies & < 1/T. If this condition is
fulfilled, the system will not see the finite extent of the time dimension. This
is what makes quantum phase transitions experimentally accessible. Instead
of the zero-temperature scaling (2), we now have the finite-size scaling

O(IK,T) = T4 /*0(I'r,T), (T #0), (3)

where instead of using the correlation length to convert dimensionfull quan-
tities in dimensionless ones, the temperature is used: I’y = Tr/=.

Notation

We adopt Feynman’s notation and denote a spacetime point by =z =
z, = (t,z), p=0,1,---,d, with d the number of space dimensions, while the
energy ko and momentum k of a particle will be denoted by k = k,, = (ko, k).
The time derivative 9y = /0t and the gradient V are sometimes combined
in a single vector 9, = (y, —V). The tilde on 8, is to alert the reader for
the minus sign appearing in the spatial components of this vector. We define
the scalar product kz = k,x, = kot — k -  and use Einstein’s summation
convention. Because of the minus sign in the definition of the vector 5# it
follows that 5#% = Opao + V - a, with a, an arbitrary vector.

Integrals over spacetime are denoted by

/:/:/dtddm,
x t,e

while those over energy and momentum by

/ / / dko ddk
k07

When no integration limits are indicated, the integrals are assumed to run
over all possible values of the integration variables. Similarly, for functional
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integrals we use the notation
Jre=]
¢

We will work in natural units with the speed of light, Boltzmann’s con-
stant kg, and Planck’s constant A set to unity.

These lectures include exercises, which are clearly marked. Most of the
solutions can be found in Ref. [9].

2. Superconductivity

In this section we study the theory of superconductivity in the limit
where all the electrons become tightly bound in pairs [3,4]. The composite
boson limit is to be distinguished from the usual weak-coupling BCS limit,
where only electrons (of opposite momentum) in a thin shell around the
Fermi surface become loosely bound in Cooper pairs.

2.1. BCS theory

As starting point we take the microscopic BCS model specified by the
Lagrangian [10]

L = Pi[idy — E(—iV)|ipr + P [i00 — E(—iV)]py — ML) 2y oy
= Lo+ Eint, (4)

where Lg is the free theory, and Liyy = —)ﬂﬁ; Ql)j 1y 94 is a local electron—
electron interaction term, representing the effective, phonon mediated, at-
traction between electrons with coupling constant A < 0. The field 1y
is an anticommuting field describing the electrons with mass m and spin
up (down), while ¢(—iV) = €(—iV) — u, with €(—iV) = —V?/2m, is the
kinetic energy operator with the chemical potential x4 characterizing the en-
semble of fermions subtracted. The theory is invariant under global U(1)
transformations under which

e — em% (5)

with o =1, ] and « a constant transformation parameter. The superconduct-

ing state is characterized by a spontaneous breakdown of this symmetry.
To investigate the superconducting state, we integrate out the fermionic

degrees of freedom at the expense of a newly introduced auxiliary field, which
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is better equipped to describe this condensed matter state. It is convenient
to first introduce the two-component field

p=(0) =i )
In this so-called Nambu representation, £y becomes
_ 10y — &(—iV) 0
Lo=1' < T iy + €(~iV) ) 4 ()

where the anticommuting character of the electron fields is used and total
derivatives are neglected. We next replace the electron—electron interaction
with an expression involving the auxiliary field A

1
A¢?¢I¢¢¢T—>A*¢¢Q/JT+¢?¢IA—XIAIQ- (8)

The original interaction is regained when the auxiliary field is integrated out.
Physically, A, representing a product of two electron fields, describes elec-
tron pairs. We shall therefore refer to it as pair field. With this replacement,

the partition function
= /exp i/ﬁ , (9)

P z

becomes

Z = / exp %/|A|2

Phy,A%A

e Z/ 1/1*( r 0 +_£?—z'v) )w o

Since the fermion fields appear quadratically now, they may be integrated
out to yield an effective action Seg for A and A*

Seg[A*, A] = —iTrln( po__jfp) pol?(p) ) (11)

where pg = i9y and £(p) = €(p) — u, with €(p) = p?/2m and p = —iV, so
that the partition function becomes

Z - /exp iSeg[A*,A]+§/|A|2 . (12)
A* A T
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The trace Tr appearing in Eq. (11) denotes the trace over discrete indices as
well as the integration over spacetime and over energy kg and momentum k.

In the mean-field approximation, the functional integral over the pair
field in Eq. (12) is approximated by the saddle point, where only the extremal
value, satisfying the equation

0Sef 1

is included. For a system homogeneous in spacetime, the pair field is a
constant A, and Eq. (13) reduces, after passing to the Fourier representation,
to the BCS gap equation [10]:

1 , 1
X _l/kg—EQ(k)Jrin
k

1
/m (14)
k

Here, 1 is an infinitesimal positive constant which is to be set to zero at the
end of the calculation, and

DN | =

E(k) = \/€2(k) + | Ao|? (15)

is the spectrum! of the fermionic excitations. A nontrivial solution to the
gap equation signals the spontaneous symmetry breakdown of the global
U(1) symmetry (5).

2.2. Composite boson limit

For studying the composite boson limit, it proves prudent to swap the
coupling constant A in the gap equation (14) for a more convenient param-
eter, namely the binding energy €, of an electron pair in vacuum [11]. Both
parameters characterize the strength of the electron—electron interaction. To
establish the connection between the two, let us consider the Schrédinger
equation for the problem at hand.

In reduced coordinates, it reads

v?
- ad(e)]| wie) = o (16

m

! To avoid confusion, let us repeat that the bar in Ay indicates that the pair field is a
constant, while the subscript 0 indicates that it satisfies the extremal condition (13).
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where the reduced mass is m /2 and the delta-function potential, with A < 0,
represents the attractive local electron—electron interaction Lin in (4). We
stress that this is a two-particle problem in vacuum and not the famous
Cooper problem of two interacting fermions on top of a filled Fermi sea.
The equation is most easily solved in the Fourier representation, yielding

A
(k) = ———(0), (17)
m T €
or 1 1
_X:/%Q—f—ea' 18)

k

This bound-state equation allows us to replace the coupling constant A with
the binding energy €,. When substituted in the gap equation (14), the latter

becomes
/ . o k/ % (19)

By inspection, it follows that this equation has a solution given by [3,4|
A70_>07 M_>_ €a s (20)

where it should be noted that, in contrast to the weak-coupling limit, the
chemical potential characterizing the ensemble of fermions is negative here.
This is the composite boson limit.

To appreciate the physical significance of the specific value found for the
chemical potential in this limit and also its name, observe that the spectrum
Eg(q) of the two-fermion bound state measured relative to the pair chemical

potential 2u reads
2

Bn(g) = o~ . (21)

where pup is defined as ug = €, + 2p and may be understood as the chemical
potential characterizing the ensemble of composite bosons. The negative
value for p found in Eq. (20) is precisely the condition for a Bose-Einstein
condensation of an ideal gas of composite bosons in the g = 0 state.
Including quadratic terms in A, we obtain as solution to Eq. (19)

1 |40
= __¢ 1— = . 22
p=geat (1-5) 2 (22)

This leads to the chemical potential

m=(2-5) L, 23)

characterizing the now interacting Bose gas.
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2.3. Renormalization

For a system homogeneous in spacetime, so that the field Ag(z) is con-
stant, the effective action (11) is readily evaluated. Disassembling the argu-
ment of the logarithm as

<P0—§(P) — Ao )_<p0—f(P) 0 )_( 0 Ao)
-4 po+élp) ) 0 po +¢&(p) 4 0 )
(24)
and expanding the second logarithm in a Taylor series, we recognize the

form

Sefi[AG, Do) = —inln< P _of(p) Do +0£(p)>
T P )
Trl (1 pg—@(p))’ %

apart from an irrelevant constant. Again passing to the Fourier representa-
tion, and carrying out the integral over the loop energy kg, we obtain the
effective Lagrangian

Lop = / B(k) - £(k)]. (26)

k

Exercise: Derive this result from Eq. (25), using contour integration. Rather
than integrating the logarithms in that equation, one better first differen-
tiate it with respect to the chemical potential as the integral over the loop
energy ko becomes easier that way. In the end one integrates the resulting
expression again over the chemical potential to obtain the desired result.

To the one-loop result (26), the tree term |Ag|?/\ is to be added. Ex-
panding E(k) in Eq. (26) in a Taylor series, we see that the effective La-
grangian also contains a term quadratic in Ag. This term amounts to a
renormalization of the coupling constant. Specifically, the renormalized cou-
pling constant A; is to this order given by

1 1+1/ 1
M oA 2] Ek)
k
1+r(1_g) md/?
A (47)d/2 661;d/2’

with, as is appropriate in the composite boson limit,

¢(k) = e(k) + 3¢, (28)
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and dimensional regularization is used in evaluating the momentum integral.
Because of Eq. (18), which may be viewed as the defining equation of the
parameter €4, the right side of Eq. (27) is zero. This implies that in the
composite boson limit, A\, — —oo so that we indeed have tightly bound
pairs here.

3. Bogoliubov theory

In this section we show that in the composite boson limit, the effective
theory obtained after integrating out the fermionic degrees of freedom, is
the Bogoliubov theory of superfluidity in an interacting Bose gas. The gas
consists of composite bosons with a mass twice the electron mass. The
system is known to undergo a quantum phase transition from the superfluid
to a (Mott) insulating state [12]. When translated back to the fermionic
theory, this transition corresponds to one where the condensate is drained
of composite bosons, without breaking them up. We include impurities in the
Bogoliubov theory to show that it leads to localization without destroying
the superfluid state completely. The insulating sate, which is now a result
not only because of repulsive interactions, as in a Mott insulator, but also
of (Anderson) localization, is called an Anderson—-Mott insulator.

3.1. Derivative expansion

We next wish to relax the assumption of homogeneity in spacetime and
consider a spacetime-dependent pair field. To this end, we study the effective
action (11) and expand A(z) around the constant value Ay satisfying the
gap equation (14),

A(z) = Ao+ A(x) . (29)

We obtain in this way,
0 ~ l
. 1 0 A
Seﬂzzﬂéz_gz [Go(p)< Ao )] : (30)
where G is the correlation function,

_(ko—&(R) —Ay T
Golk) = < A ko+elk) )

1 ko €0 + ¢ (k) A
k3 — E2(k) +in A koe~tkon —¢(k) |-




Superconductor—Insulator Quantum Phase Transitions 2909

The exponential functions in the diagonal elements of the correlation func-
tion are additional convergence factors needed in nonrelativistic theories [13].

When evaluating the effective action (30), the precise meaning of the
trace Tr appearing there should be kept in mind. Explicitly, it is defined as

Set = —iTr In[K (p, z)] = —itrIn [K(p,ﬂv)(s(ﬂﬁ - y)|y:x] ) (32)

where the trace tr is the usual one over discrete indices. We abbreviated the
matrix appearing in (11) by K (p,z) so as to cover the entire class of actions
of the form

Sz/@W@K@wW@) (33)

The delta function in (32) arises because K (p,z) is obtained as a second
functional derivative of the action

528
ot (z) 6¢p(x)
each of which gives a delta function. Since the action contains only one
integral over spacetime, one delta function remains. Because it is diagonal,

the delta function may be taken out of the logarithm and (32) can be written
as

= K(p,x) 5($ - y)|y:z’ (34)

&ﬂ=4u/mmmmamwmq

xT
= —itr //eikm In [K (p, z)] e, (35)
Tk
In the last step, we used the integral representation of the delta function:

5(z) = / emike, (36)

k

shifted the exponential function exp(ik y) to the left, which is justified be-
cause the derivative p, does not operate on it, and, finally, set 1, equal to
x,. We thus see that the trace Tr in Eq. (32) stands for the trace over dis-
crete indices as well as the integration over spacetime and over energy and
momentum. The integral [, . arises because the effective action calculated
here is a one-loop result with k&, the loop energy and momentum.

The integrals in (35) cannot in general be evaluated in closed form be-
cause the logarithm contains energy—momentum operators and spacetime-
dependent functions in a mixed order. To disentangle the integrals resort has
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to be taken to a derivative expansion [14] in which the logarithm is expanded
in a Taylor series. Each term contains powers of the energy—momentum op-
erator p, which acts on every spacetime-dependent function to its right. All
these operators are shifted to the left by repeatedly applying the identity

f(@)pug(x) = (pu — i0,) f (2)g(x) , (37)

where f(z) and g(z) are arbitrary functions of spacetime and the derivative
éu = (dg, —V) acts only on the next object to the right. One then integrates
by parts, so that all the p,’s act to the left where only a factor exp(ik x)
stands. Ignoring total derivatives and taking into account the minus signs
that arise when integrating by parts, one sees that all occurrences of p, (an
operator) are replaced with k, (an integration variable). The exponential
function exp(—ik z) can at this stage be moved to the left where it is anni-
hilated by the function exp(ik z). The energy—momentum integration can
now in principle be carried out and the effective action be cast in the form
of an integral over a local density Leg:

S = / Lo (39)

This is in a nutshell how the derivative expansion works.

Exercise: Apply the derivative expansion to the Lagrangian
L =5(0u9)" — 5m?¢” — 1A¢", (39)

with ¢ a real scalar field. The theory has a Zs symmetry under which the
scalar field flips sign: ¢ — ¢’ = —¢. Show that the effective theory in two
space dimensions is given by

Lot = 37($)(0ud)” — Verr(9) , (40)
with
Vet (¢) = —%(rrn2 + %)\(ﬁ2)3/2,
I R — m

1927 (m2 + Lag?)3/2
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3.2. Map onto Bogoliubov theory

We are interested in terms in the effective action (30) quadratic in the
field A. Using the derivative expansion, we find

7 1 1
2 B () (o + a0 - B2(p— )
x{jg A*A* + Ipo + £(P)]lpo + q0 — &(p — q)]A~

A*
+45" AA + [po — £()]lpo + a0 + E(p — )] }

S@(q) =

where ¢, = iéu. Let us first ignore the derivatives in this expression. After
carrying out the integral over the loop energy kg and using the gap equation
(14), we obtain

1 1 o o~ _2 - _ -

< | o (B A2+ AT A2 42 APIAP). (43

5 [ T (B A7+ &7 2 2 dP1AR). @)
In the composite boson limit, where the spectrum of the fermionic excita-

tions is given by Eq. (28), the integral over the loop momentum becomes
elementary, yielding

(3 ) /2

We next consider the terms in Eq. (42) involving derivatives. Following
Ref. [15] we set Ag to zero here. The integral over the loop energy is easily
carried out, with the result

1 1 <
‘C(Q)(Q) = _5/ k2 72 AA
b G0~ 22— gy
1 1 o s
__/ 2 _AAL (45)
S A R T 7

In the composite boson limit, the remaining momentum integrals become
elementary again and after expanding in derivatives we find

/ 1
k2 2
40~ ~ €0~ i

4m

F(l_%) d/2 _d/2—1 F(Q—%) d/2 _d/2—2 ‘12
= ams e = S (= )
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When combined with the tree term |A|?/), the first term at the right side of
this equation yields the renormalization (27) of the coupling constant. The
second term at the right side of Eq. (46) gives, when combined with the
contribution (43), the result [15],

(2)_1F(2_%)

— d/2 _d/2—2 3t T 7 — A:
2 am ™ ¥t My(q) @, @ <A* ) (47)

where My(q) stands for the 2 x 2 matrix,

My(q) =

A (48)

N—
o
Q

As we shall show now, this is the Bogoliubov theory of superfluidity in an
interacting Bose gas. That is to say, after integrating out the fermionic
degrees of freedom from the theory of superconductivity, we obtain in the
composite boson limit a theory describing a gas of repulsively interacting
(composite) bosons.

3.3. Quantum phase transition

The Bogoliubov theory is specified by the Lagrangian [16]
L= ¢'lidy — e(=iV) + pnld — Au|@l", (49)

where up is the chemical potential characterizing the Bose gas. The self-
coupling is taken to be positive, Ag > 0, so that the local interaction is
repulsive.

At the mean-field, or classical level, where quantum fluctuations are
ignored, the theory (49) undergoes a phase transition when the chemical
potential changes sign. For ug > 0, the global U(1) symmetry is sponta-
neously broken by a nontrivial ground state, while for up < 0 the symmetry
is unbroken. The change in ug can be induced by varying the temperature,
as in a thermal phase transition, but it can also be induced at zero temper-
ature by varying, for example, the number of charge carriers, or the amount
of impurities. The zero-temperature quantum phase transition describes a
transition between a superfluid and an insulating state [12].

The ground state of a system homogeneous in spacetime is obtained by
considering the shape of the potential energy

V= —uglo® + As|4|". (50)
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For up > 0 it indeed has a minimum away from the origin ¢ = 0 given by

Lpm

72
= 51
Bl = 542, 61)
and the potential becomes
2
HB
=——= 52
Vo D (52)
Since the total particle number density ng is represented by
np(z) = |¢(z)[%, (53)

the quantity ng := |¢o|? physically denotes the number density of particles
residing in the ground state. A nonzero value for mg thus signals Bose—
—Einstein condensation. For a homogeneous system in its ground state, we
see that at the mean-field level ng = n so that all the particles reside in the
condensate. This will change when quantum fluctuations are included as a
result of which particles are knocked out of the condensate (see below).
_ To account for the nontrivial ground state, we introduce the shifted field?
¢(z): o

$(z) = do + ¢(). (54)

The terms in the Lagrangian (49) quadratic in this shifted field may be cast
in the matrix form

Ly = %éTMO(p)éa é = < g* ) ’ (55)
with
Mo(p) = ( po — €(p) +uB_—24>\B|q30|2 —2X\B¢; ) )
0 -2\ —po — €(p) + B — 4AB| o |? '56)
56

Taking into account only the quadratic terms in the field and neglecting
higher-order terms, as we just did, is known as the Bogoliubov approxima-
tion.

Comparing this expression with Eq. (48) obtained in the composite boson
limit after integrating out the fermionic degrees of freedom from the theory
of superconductivity, we conclude that the composite bosons have — as ex-
pected — a mass mp = 2m twice the fermion mass m, and a small chemical
potential given by Eq. (23), which we there derived from the gap equation.

? Similar as before, the bar in ¢o denotes a constant value of the field, while the
subscript 0 indicates that it satisfies the mean-field equation (51).
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It also follows that the number density of composite bosons condensed in
the ground state reads

r2-%) .
= /2 d/2 2 2
nog = (47T)d/2 |A | (57)

and that the interaction Ag between the composite bosons is

1@ 1—-d/2

CEERTES (58)

Ap = (4m) %/

or, using Eq. (18),
A= ——2)\. (59)

Note that the parameter A(< 0) characterizing the attractive electron—
electron interaction appears below d = 2 with a minus sign here, leading
to a repulsive interaction between the composite bosons. (In the next sub-
section, we will see that d = 2 is the upper critical dimension of the T' =0
Bogoliubov theory.) This brings us to the important conclusion that for
d < 2 the same interaction responsible for the formation of electron pairs, is
also responsible for the stability of the superfluid state, and when this state
ceases to exist, for that of the insulating state, which both need a repulsive
interaction.

The quantum phase transition encoded in the Bogoliubov theory cor-
responds, when translated back to the fermionic theory, to one where the
condensate is drained of composite bosons, without breaking them up. In
other words, composite bosons exist on both sides of the transition, either
condensed (superfluid state) or localized (insulating state) [5,6].

3.4. Beyond mean-field theory

We can continue now and improve on the usual mean-field approximation
of the theory of superconductivity, where the functional integral over the pair
field in the partition function (12) is approximated by the saddle point, by
integrating out the field ¥ in Eq. (47), or to simplify notation, the field 7
in Eq. (55). This leads to the effective potential

Vet = —%tr / In[Mo (k / E(k (60)
k
Here, E(k) is the famous single-particle Bogoliubov spectrum [16],

E(k) = VE(k) 1 2upe(k)
_ \/62(k)+4AB|¢30|2e(k). (61)
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In the limit of large momentum, the spectrum behaves in a way
E(k) ~ e(k) + 2\| do|” (62)

typical for a nonrelativistic particle of mass m moving in a background
medium, provided by the condensate in this case. The most notable fea-
ture of the Bogoliubov spectrum is that it is gapless, behaving for small
momentum as

with ¢ = \/up/m.

Exercise: Carry out the integral over the loop energy kg in Eq. (60) using
contour integration and show that this leads to the right side of that equa-
tion. This is best done by first differentiating the expression with respect to
the chemical potential yp, and in the end integrating the result again with
respect to ug.

E(k) ~ clk], (63)

The integral over the loop momentum in Eq. (60) can be carried out
using the integral representation of the Gamma function

11 [d

T zZ, —aT
= | = . 64
a* I'(z)) T Te (64)
0

In arbitrary space dimension d this yields, using dimensional regularization:

_r-9r+s

- _J d/2 d/2+1 _ ) 65
For d = 2, the effective potential diverges. To investigate this, we set
d =2 — ¢, with € small and positive, and expand Vg around d = 2, giving
2
__ ™ kB
VQH - 47'{'6 [{16/2 9 (66)

with k an arbitrary renormalization group scale parameter which enters for
dimensional reasons. If the Bogoliubov spectrum had not been gapless, but
had an energy gap instead, this parameter would have appeared in Eq. (66) in
the place of k. As always in dimensional regularization, the divergence shows
up as a pole in €. Comparing the one-loop contribution with the classical
contribution (52), we conclude that Eq. (66) leads to a renormalization of
the coupling constant A, yielding the renormalized coupling A, [17]
1 1 ml

— = = 67
=3t e (67)
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where X = A/ x¢/2 and a similar definition for ;. The quantum critical point
is approached by letting the renormalized group scale parameter x — 0. For
fixed coupling A, it then follows that upon approaching the critical point,
the renormalized coupling tends to A, — me/m. For d < 2, or equivalently
e > 0, the fixed point is nontrivial. In the limit d — 2, A — 0 and the
theory becomes Gaussian, identifying d = 2 as the upper critical dimension.

Due to quantum fluctuations not all the particles are known to reside
in the condensate [18]. Specifically, in d space dimensions, the (constant)
particle number density n at the one-loop level is given by [19]

d> -4

-1
Since the quantum-induced term is positive for 1 < d < 4, the number
of particles residing in the condensate given 71 is reduced compared to the

classical result 7 = |¢o|?>. This shows that due to quantum fluctuations,
particles are knocked out of the condensate.

n = |go|? — 2422 Lam®2 )12\ go |4 (68)

Exercise: Derive Eq. (68). In doing so, one should not use the mean-field
equation (51) too early, and instead work with the more general single-
particle spectrum

B(k) = 1/[e(k) — o + 00|32 — N1 (69)

It reduces to the Bogoliubov spectrum when the mean-field equation is used.

Despite that due to quantum fluctuations not all the particles reside in
the condensate, all the particles do in the absence of impurities and at zero
temperature participate in the superflow, and move on the average with the
superfluid velocity. Put differently, the superfluid mass density pg is given
by the total particle number density n: ps = mn.

Exercise: Prove this. To this end, assume that the entire system moves
with a velocity w relative to the laboratory system. As in standard hydro-
dynamics, the time derivative in the frame following the motion of the fluid
is dp + u - V. Also assume that the condensate moves with the superfluid
velocity vg and boost the field:

$(z) = ¢ (z) = ™ h(x). (70)

Show that when incorporated in the Lagrangian (49) of the interacting Bose
gas, these two changes result in a change of the chemical potential

UB —> Meff := 4B — %mvs < (vs — 2u) . (71)
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Show that the resulting Bogoliubov spectrum and thermodynamic potential
are given by the previous results (61) and (65) with this replacement.

The momentum density, or equivalently, the mass current g of the system
is obtained in this approximation by differentiating the effective potential
with respect to —u. Show that

g = PsVs, (72)

with ps = mfn the superfluid mass density.

3.5. Impurities

One of the ways to trigger a superconductor—insulator transition is to
change the amount of impurities. This means that, e.g., the correlation
length & diverges as |&* — &|™” when the parameter & characterizing the
impurities approaches the critical value &*.

To account for impurities, we include a term [§]

Lo =1(@)|¢(z) (73)

in the bosonic theory (49), where () is a space-dependent random field
with a Gaussian distribution

Pl =exp |2 [ 4(@)] (74)

characterized by the impurity strength « (& alluded to above is a rescaled
version of ). Notice that the random field does not depend on time. This is
because it is introduced to mimic impurities, which are randomly distributed
in space, not in time.

We shall treat the impurities in the so-called quenched approximation [§],
where the average of an observable O(¢*, ¢) is obtained as follows

O = [ PHIHOG 9. (75)

Y
with (O(¢*, ¢))y indicating the grand-canonical average for a given impurity
configuration. That is to say, first the ensemble average is taken for fixed 1,

and only after that the averaging over the random field is carried out.
In terms of the shifted field (54), the random term (73) becomes

Lo = (@) (|o* + |9* + dod™ + F59). (76)
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The first two terms lead to an irrelevant change in the chemical potential,
so that only the last two terms need to be considered, which can be cast in
the matrix form

Lo=1(x)d)d, D)= < @2 ) (77)

The integral over @ is Gaussian in the Bogoliubov approximation and
therefore easily performed to yield an additional term to the effective action

Su==3 [ #(@)8} Golw — douly). (79)
T,y

where the correlation function (G is the inverse of the matrix Mj introduced
in Eq. (56). To proceed, we pass to the Fourier representation:

Go(z —y) = [ e @V Gy(k), (79)
/
Yz) = / (k) (0)
k

The contribution to the effective action then appears in the form

So = —%/|¢(k)|2d3$G(0,k)d30. (81)
k

Since the random field is Gaussian distributed, the average over this field
representing quenched impurities yields:

([¥(k)?) = 500, (82)

with (2 the volume of the system. The remaining integral over the loop
momentum in Eq. (81) is readily carried out to yield in arbitrary space
dimensions the contribution to the Lagrangian

1 d\ m\d4/2 - - N
(o) =5 (1-5) (5) 190l 6Xnldol® — pm)"* e (83)

2 2/ \2x¢
The divergence in the limit d — 2 shows that also in the presence of impu-
rities, the two-dimensional case is special. This expression can be used to
obtain the additional depletion due to impurities. To this end, we differen-
tiate it with respect to the chemical potential, giving [20,21]

OLa) _ 27700 (2-9)

_ d/2d/2—2 _d/2—1
g = o 32 md/ AT Ry T (84)




Superconductor—Insulator Quantum Phase Transitions 2919

where we recall that ng = |@g|? denotes the (constant) number density of
particles residing in the condensate. Because this contribution is positive,
it amounts to an additional depletion of the condensate. The divergence in
the limit Ag — 0 for d < 4 signals the collapse of the system with impurities
when the interparticle repulsion is removed.

To determine the superfluid mass density ps in the presence of impurities,
we replace, as in the last exercise of Sec. 3.4, up with pes defined in Eq. (71)
and 10y with 19y — (u — vg) - (—2V) in the contribution (81) to the effective
action. Differentiating it with respect to the externally imposed velocity,
—u, we find to linear order in the difference u — vq:

g = psVs + g, (85)

with the superfluid and normal mass density [21]

4 4
Ps =m <n — Ena) ,  pn= amﬁoé. (86)

As expected, ps # mn in the presence of impurities. Moreover, the normal
mass density is a factor 4/d larger than the mass density mn, knocked out of
the condensate by the impurities. For d = 3 this gives the factor % first found
in Ref. [22]. As argued there, this indicates that part of the zero-momentum
state belongs not to the condensate, but to the normal fluid. Being trapped
by the impurities, the fraction (4 — d)/d X n, of the zero-momentum state
is localized.

This is an important conclusion as it shows that the phenomenon of
localization can be accounted for in the Bogoliubov theory of superfluidity
by including a random field, without necessarily destroying that state.

4. Phase-only theory

In this section we show that the Bogoliubov theory, which we obtained
in the composite boson limit after integrating out the fermionic degrees of
freedom from the theory of superconductivity, contains only one degree of
freedom, viz. the phase of the order parameter. Physically, it describes the
Goldstone mode of the spontaneously broken global U(1) symmetry. In
the context of superconductivity, this mode is called Anderson—Bogoliubov
mode. The Bogoliubov theory may therefore, at least in the superfluid state,
be represented by a phase-only effective theory. We continue to account for
the 1/r Coulomb potential in the effective theory and give general scaling
arguments for the physical quantities represented by that theory.
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4.1. Derivation

It was first shown by Beliaev [23]| that the gaplessness of the single-
particle spectrum first found by Bogoliubov at the classical level persists at
the one-loop order and later proven by Hugenholtz and Pines [24] to hold
to all orders in perturbation theory. In fact, as was proven by Gavoret and
Noziéres [25], the Bogoliubov spectrum is identical to that of the Goldstone
mode accompanying the spontaneous breakdown of the global U(1) symme-
try, thus explaining its gaplessness.

Also from the perspective of degrees of freedom, this conclusion makes
sense. Although the normal phase is described by a complex ¢-field, having
two components, it contains only one degree of freedom [26]. This is because
the energy E(k) ~ k? is always positive. As a result, only positive energies
appear in the Fourier decomposition of the field, and one needs — as is well
known from standard quantum mechanics — a complex field to describe a
single spinless particle. In the superfluid phase, on the other hand, where
E?%(k) ~ E?, the Fourier decomposition contains positive as well as negative
energies so that a single real field suffices to describe this mode. In other
words, although the number of fields is different, the number of degrees of
freedom is the same in both phases. This implies that the superfluid state
can be described by a phase-only theory as it captures all the degrees of
freedom, ignoring vortices for the moment which are easily incorporated in
the theory as will be discussed in the next section.

To obtain the phase-only theory, we set, c¢f. Eq. (54)

$(a) = ") (¢ + ) , (87)

with ¢(z) a background field representing the Goldstone mode accompa-
nying the spontaneous symmetry breakdown of the global U(1) symmetry.
Inserting this in the Lagrangian (49) and expanding it, we obtain

LY = Vo — |§o|?U — U($od* + d5d) — Anldol*(God* + F5d)%  (88)

where the field U(z) stands for the combination

+ 5 Vo) (59)

U(z) = doyp(x)
In deriving Eq. (88), we used the mean-field equation up = 2Ag|¢o|>. We
continue to integrate out the tilde field (which is tantamount to substituting
its field equation back into the Lagrangian) to obtain the phase-only theory

Lop = —i(2) + %U(m)%U(x) , (90)
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where we ignored the irrelevant constant term Vp and substituted
|#o|?(= 7o) = 7 to this order. Using the mean-field equation again, we
can write the coefficient of the last term as:

11 17

1
4Xg  2me2 2

n’k, (91)

with ¢ the speed of sound introduced in Eq. (63). Standard thermodynamics
relates ¢ to the compressibility x via

"= m;Lc2 ' (92)
The phase-only theory (90) can thus be cast in the equivalent form
1 1 1 2
Lot = =1 [0 + 5 (V2| + g v+ (V2] L (09

which turns out to be exact [27].

The theory describes a sound wave, with the dimensionless phase field ¢
representing the Goldstone mode of the spontaneously broken global U(1)
symmetry. It has the gapless spectrum E?(k) = ¢?k®. The effective the-
ory gives, ignoring vortices for the moment, a complete description of the
superfluid at low energies and small momenta. When one goes to higher en-
ergies and momenta, additional terms with higher-order derivatives should
be included in the effective theory, but it remains a phase-only theory.

4.2. Coulomb potential

It is straightforward to generalize the result (90) to include long-ranged
interactions. A case of particular interest to us is the 3-dimensional Coulomb
potential

e
Viw) =L, (04)
|z|
whose Fourier transform in d space dimensions reads
2
V(k) =212 [L(d - 1)] W?ﬁ . (95)

Here, q stands for the electric charge, which in the case of Cooper pairs is

twice the electron charge. The simple contact interaction Linz=—MAp [ |¢() |4
&

in Eq. (49) is now replaced by

L =5 [ W)V (@ - )it u)P (%)

T,y
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The rationale for using the 3-dimensional Coulomb potential, even when
considering charges confined to move in a lower dimensional space, is that
the electromagnetic interaction remains 3-dimensional. The effective theory
then becomes after passing over to the Fourier representation

_ 1 1
Leg = —nU (k) + §U(k0, k)WU(k(M ~k), (97)
and leads to the spectrum
2 d—1_(d—1)/2 1 [1 nq° . 3-d
B2 (k) =207 a0 [5(d = 1)] - [k (98)

For d = 3, this yields the famous plasma mode, with an energy gap given
by the plasma frequency wg = 47nq?/m. For d = 2 on the other hand, the

spectrum behaves as F(k) \/W , implying that the mode it describes is
much harder that the sound wave with the spectrum E(k) o |k| obtained
for the system without the 1/r Coulomb interaction included.

To appreciate under which circumstances the Coulomb interaction be-
comes important, we note that for electronic systems 1/|x| ~ kp for di-
mensional reasons and the fermion number density n ~ kg, where kp is the
Fermi momentum. The ratio of the Coulomb interaction energy to the Fermi
energy e€p = k% /2m is therefore proportional to n~1/4. This means that the
lower the electron number density is, the more important the Coulomb in-
teraction becomes.

4.8. Hyperscaling

Let us consider the two terms in the effective theory (93) quadratic in
the Goldstone field ¢ and write them in the most general form [28]

1 P 1 _
L8 = —525(Ve)’ + 30000, (99)

The coefficient pg is the superfluid mass density, which is, as we saw in the
previous section, a response function and in general does not equal mn. The
other coefficient,

9 on

Nk =—, 100
rn (100)

can be related to the (0,0)-component of the polarization tensor ITyy. This
can be understood by noting that an electromagnetic field is included via the
minimal substitution 8, — 0, + qA,, with A, the electromagnetic vector
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potential. Since the polarization tensor (times ¢?) is obtained by differen-
tiating the effective theory twice with respect to the vector potential, we

obtain
lim IToo(0,k) = 2%k, (101)
|k|—0
where, as is typical for response functions, the energy transfer is put to
zero before the momentum transfer k is. Equation (99) leads to the general
expression for the speed of sound

2 Ps
= —. 102
m2n?k (102)
The singular behavior of the system close to the critical point is encoded
in the phase-only theory. Simple dimensional analysis shows that near the
phase transition it scales as

Lo ~ &4+ (103)

while
(V)2 ~ €72, (00p)? ~ &2 ~ 7%, (104)

with & the correlation time and z the dynamic exponent. Combining these
hyperscaling arguments, and remembering that the mass parameter is inessen-
tial with regards to the critical behavior, one arrives [28| at the scaling laws
for the two coefficients appearing in the effective theory (99):

ps ~ ETWAFE2) g g (dm2) (105)

The first conclusion is consistent with the universal jump predicted by Nelson
and Kosterlitz [29] which corresponds to taking z =0 and d = 2.

In the presence of impurities it is believed that the compressibility stays
finite at the critical point, implying z = d [28]. This remarkably simple
argument thus predicts an exact and nontrivial value for the dynamic expo-
nent.

Without impurities, the dynamic exponent is z = 2 [17]. This agrees
with what one naively expects, given that in the nonrelativistic theory (49)
we started with, one time derivative appears in combination with two space
derivatives, idy + V2/2m. This last argument should, however, be treated
with care when applied to the phase-only theory (93). In that theory, the
time and space derivatives appear in a symmetrical form, yet z is in general
not unity, as we just saw. The difference is that in the effective theory,
the relative coefficient ¢? scales according to Eq. (102) with the scaling laws
(105) as

@~ 202, (106)
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while the relative coefficient m in the microscopic theory does not scale.
Incidentally, the (quantum) XY model has a dynamic exponent z = 1, so
that ¢ in that case does not scale.

In experiments on charged systems, instead of the superfluid mass den-
sity, usually the conductivity o is measured. To see the relation between the
two, we introduce a vector potential in the effective theory by replacing Vo
with Vi — ¢A in Eq. (99), and allow the superfluid mass density to vary in
space and time. The term in the action quadratic in A then becomes after
passing to the Fourier representation

1 ¢?
Se =5k [ ARRE®A®). (107)
k
The electromagnetic current,
0Ss
oy 95 1
30 = 5505 (108)

obtained from this action can be written as

J(k) = o(k)E(k), (109)
with the conductivity
2
.q” ps(k)

essentially given by the superfluid mass density. So if we know the scaling
of the electric charge, we can determine the scaling of the conductivity.

With the 1/r Coulomb potential included, the quadratic terms in the
effective theory (97) may, after passing to the Fourier representation, be
cast in the general form

2) _1/(p ||
£ =3 (L - i) 1o (1)

where ¢’ is the redefined charge parameter
¢? =217 D2 L - 1)] ¢ (112)

The charge is connected to the (0, 0)-component of the polarization tensor
via .
—1
12 1 |k|

=1 _. 113
IkI\EIO Iy (0, k) (113)

q



Superconductor—Insulator Quantum Phase Transitions 2925

A simple hyperscaling argument like the one given above for the case without
Coulomb interaction shows that near the transition, the charge scales as [30]

g%~ (114)

independent of the number of space dimensions d. It then follows from
Eq. (110) that the conductivity scales as

o~ g3 (dF2) (115)

Exercise: Give an alternative derivation of the result (114), using Eq. (101).

In the presence of random impurities, the charge is expected to be finite
at the transition, so that z = 1 [30]. This is again an exact result, which
replaces the value z = d of an impure system without Coulomb interaction.
The prediction was first confirmed for impure superconducting films [2], and
has subsequently also been observed in other 2-dimensional systems such 2-
dimensional Josephson-junction arrays [31], quantum Hall systems [32], and
2-dimensional electron systems [33]. We will refer to a Quantum Critical
Point with a 1/r Coulomb interaction as CQCP. In the vicinity of such a
critical point, the conductivity scales as [34]

- (116)

implying that in two space dimensions, the conductivity is a marginal oper-
ator which remains finite at the CQCP.

4.4. Scaling of magnetic vector potential

Let us finish this section by determining the scaling of the magnetic
vector potential. We start with the observation that close to a CQCP, the
electric field E scales as E ~ & 1~ ~ ¢+ (for a review, see Ref. [35]).
Thus conductivity measurements [33, 36| close to a CQCP collapse onto
a single curve when plotted as function of the dimensionless combination
16|t /B where as before § = K — K.) measures the distance from the
critical point K., and v is the correlation length exponent, £ ~ |6|7”. (For
a field-controlled transition, K stands for the applied magnetic field, while
for a density-controlled transition it stands for the charge-carrier density.)
The scaling of the electric field with the correlation length expresses the
more fundamental result that the anomalous scaling dimension d4 of the
magnetic vector potential A is unity, da = 1.
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Because the magnetic vector potential always appears in the gauge-
invariant combination V — gA, the anomalous scaling dimension of the elec-
tric charge ¢ of the charge carriers times the vector potential is unity too,
d,A = 1. Writing the anomalous scaling dimension of the vector potential as
asum dg = d% + 1na of its canonical scaling dimension d% = 3(d+z —2),
obtained by simple power counting, and (half) the critical exponent 74,
describing how the correlation function decays at the critical point, we con-
clude that d; = d(q) — %r]A. Here, dg = 1—d% stands for the canonical scaling
dimension of the electric charge. Now, for a 1/r Coulomb potential, the
charge scales according to Eq. (114) as g% ~ ¢'7% independent of the num-
ber d of space dimensions [30]. Combined with the previous result, this fixes
the value of the exponent 174 in terms of the number of space dimensions
and the dynamic exponent:

na=>5—d—2z. (117)

Since in the presence of impurities, the electric charge is finite at a CQCP,
leading to z = 1, it follows that n4 = 1 in two space dimensions.

As we shall see in the next section, this exponent becomes important
when considering the interaction between vortices close to the CQCP.

4.5. Ezxperimental status

For a critical discussion of the experimental status of the phase-only
theory, see Ref. [37]. A more recent discussion can be found in Ref. [38].

According to the phase-only theory discussed here, no electronic excita-
tions exist in the critical region. However, electron tunneling measurements
on superconducting films of varying thickness apparently probed the energy
gap of these excitations [39]. Moreover, the gap was found to approach
zero as the transition to the insulating state is approached. Similar ex-
periments [40] for the field-tuned transition showed the presence of a large
number of electronic excitations near the Fermi energy, thus raising doubts
about the applicability of the phase-only theory.

Experimental support for the presence of electron pairs in the insulating
state comes from Hall effect studies on superconducting films, which show
two critical fields [41]. The lower critical field is seen in the longitudinal
resistance and is believed to mark the superconductor—insulator transition.
The higher critical field is seen in the transverse or Hall resistance and
is believed to signal the crossover from a bosonic to a fermionic insulator
without pairing. At the higher critical field, the longitudinal resistance has
its maximum.

The critical exponents determined in earlier experiments on the super-
conductor—insulator transition [2,36] had the value z = 1 for the dynamic
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exponent, in accord with the prediction in Ref. [1], and v = 1.3 for the cor-
relation length exponent. More recent studies [42], however, find agreement
with these results only for the transition tuned by changing the film thick-
ness. For the field-tuned transition the value zrv = 0.7 was found instead,
which is about half the value one expects. The cause for this discrepancy
is not clear. It implies that, contrary to common believe, the critical expo-
nents depend on how the phase transition is crossed, by tuning the field or
the film thickness.

Clearly, more experimental and theoretical studies are required to fully
understand the superconductor—insulator transition, and to establish to what
extend the phase-only theory is applicable.

5. Duality

One of the most intriguing results found in experiments on quantum
phase transitions in superconducting films, as well as in 2-dimensional
Josephson-junction arrays [31], quantum Hall systems [43], and 2-dimension-
al electron systems [33] is the striking similarity in the current—voltage (I-V)
characteristics on both sides of the transition. By interchanging the I and V
axes in one phase, an I-V characteristic of that phase at a given value of the
applied magnetic field (in superconducting films, 2-dimensional Josephson-
junction arrays, and quantum Hall systems) or charge carrier density (in
2-dimensional electron systems) can be mapped onto an I-V characteristic
of the other phase at a different value of the magnetic field or charge-carrier
density. This reflection symmetry hints at a deep connection between the
conduction mechanisms in the two phases that can be understood by in-
voking a duality transformation [1,44]|. Whereas the conducting phase is
most succinctly described in terms of charge carriers of the system, the in-
sulating phase is best formulated in terms of vortices. At zero temperature,
these topological defects should, just like the charge carriers, be thought
of as quantum point particles. The duality transformation links the two
descriptions, which turn out to be very similar.

5.1. Vortices

Let us now include vortices in the phase-only theory. This is achieved
by introducing the so-called plastic field @E via the minimal substitution
5Mgo — (%(p + <p5 [45]. The plastic field is defined such that its curl gives
a delta function at the location of the vortices. Specifically, in two space
dimensions, where vortices are point objects, located at the positions x¢
say:

Vx ol =-2rY d(x -z, (118)
o
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while in three dimensions, where vortices are line objects, located along the
curves C, say:

V xpl = —2772/(1:130‘ d(x —x%). (119)
a o

Let us concentrate on static phenomena so that we can ignore the time
derivatives in the effective theory (99). When besides vortices also the mag-
netic vector potential is included, the effective theory becomes in three di-
mensions

@  1ps p 2 1 2
‘Ceff —_§W(V<P—‘P _qA) _§(VXA) ) (120)
or after the canonical transformation gA — qA — ¢":
@ 1 ps g 1 P\2
Lg =5 3(Ve—qA)" = (VxA-B"), (121)

where the plastic field BY stands for

BY = —@, Z/dmo‘ oz — ), (122)
« Ca

with @y = 27 /q the magnetic flux quantum in units where the speed of light
and Planck’s constant 7 are set to unity. [In two dimensions, this plastic
field is a scalar and stands for

BY = -3 é(z —z), (123)

as follows from Eq. (118).]

After integrating out the phase field ¢ in Eq. (121), we obtain the mag-
netic part of the effective action Spag. Written as a functional integral over
the magnetic vector potential, it reads in the Coulomb gauge V-A =0

; 1 2 11
1Smag . P
e g_/exp z/[—i(VXA—B) —§—>\2A2 : (124)

T

with A the magnetic penetration depth. The mass term, with A\~2 =¢?ps/m?,
is generated through the Anderson—Higgs mechanism in the process of inte-
grating out the phase mode ¢.

With this construction, we can now calculate the interaction between two
vortices. To facilitate the calculation in the case of a superconducting film
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below, we linearize the first term in Eq. (124) by introducing an auxiliary
field h via a Hubbard—Stratonovich transformation:

—L(VxA-B")?5i(VxA-BP) h-1h" (125)

The original form is regained after integrating out the auxiliary field again.
After integrating out the magnetic vector potential, we arrive at a form
appropriate for a dual description in terms of magnetic vortices rather than
electric charges [46]

giSmag :/exp z/ [—%)\Q(Vxﬁ) _%ﬁ _iﬁ'BP] : (126)
fL x

Physically, h, which satisfies the condition V-h = 0, represents (1 t1mes) the
fluctuating local induction. The vortices described by BY couple to h with
a coupling constant g = @¢/X independent of the electric charge. Observe
the close similarity between the original (124) and the dual form (126). This
becomes even more so when an external electric current j¥ is coupled to the
A field by including a term —A - 5¥ in Eq. (124), and B describing the
vortices is set to zero there.

Finally, also integrating out the local induction, one obtains the well-
known Biot—Savart law for the interaction potential Smag = — [ 'V between

two static vortices in a bulk superconductor [47],

Vi) = 5 | Br@Gk-y)B )

2 “R/A
g 1 2 €

= =— dl™-dl
4 // R

Cy Co
2

— Y (X o("Y 127

= -5t m(z) ] +o(5) (127)
where we ignored the self-interaction. In Eq. (127), G(x) is the vortex—
—vortex correlation function with Fourier transform G(k) = 1/(k? + A2,
R denotes the distance between the differential lengths di' and dI?, L is the
length of each of the two vortices, and « is Euler’s constant. For distances
smaller than the magnetic penetration depth, which is the length scale for
variations in the electric current and the magnetic field, the interaction is
logarithmic as in a superfluid. If the system size is smaller than A, it will
replace the penetration depth as infra-red cutoff in the logarithm, and there
will be no reference to the electric charge anymore.
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To describe magnetic vortices in a film of thickness w [48], the bulk
result (126) has to be adjusted in two ways to account for the fact that both
the vortices and the screening currents, which produce the second term in
(126), are confined to the plane. This is achieved by including a Dirac delta
function wd(z3) in the second and third term. Instead of Eq. (126), we then
arrive at the interaction potential [47, 48]

1
Vi) = 5 [ Bhenoie -y B
T1,Y,
9 T 2
= 2L |In| — O— 128
27T|:n<4)\L>+,Y:|+ 3 ) (128)
where BY = —®, > §(z, — x%) describes the vortices in the film with

coordinates &, A\ = A?/w is the transverse magnetic penetration depth,
g2 = @2/, the coupling constant squared, and

Gi(zy) = /GL(fBL,iﬂs)

— /eikL'”’LGL(kL,O), (129)
ki

with G| (k1,0) =2/k (2k; + A "). For small distances, the interaction is
seen to be identical to that in a bulk superconductor [48|, and also to that
in a superfluid film. As in the bulk, the vortex coupling constant g, in the
film is independent of the electric charge.

The logarithmic interaction between vortices we found in Eq. (128) ap-
pears to pose a severe problem to the duality picture we alluded to in the
introduction of this section as the charges interact via a 1/r Coulomb po-
tential. The difference should spoil the experimentally observed reflection
symmetry in the I-V characteristics. However, it should be realized that
the results derived in this subsection are valid only in the mean-field region,
where n4 = 0. In the critical region governed by a CQCP, the value of this
exponent was found in Sec. 4.4 to be unity. As we will now demonstrate,
this leads to a qualitative change in the interaction potential between two
vortices from logarithmic in the mean-field region to 1/r in the vicinity of
the CQCP.
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5.2. Changing vortez interaction

Close to a CQCP we have to include the field renormalization factor Z4
in the vortex—vortex correlation function G| appearing in the expression
(128) for the vortex interaction. It then becomes

2 Z A

Gk ,0)=—— "4
J_( 1y ) kLQkL‘i‘)\Il’

(130)

with Z4 ~ kiA. Because the magnetic vector potential and the local induc-
tion renormalize in the same way, their renormalization factor is identical.
Due to this extra factor, the interaction between two vortices in the film
takes the form of a 1/r Coulomb potential [49]

2
_91a
2mr’

Vi(r) (131)
where a is some microscopic length scale which accompanies the renormal-
ization factor Z4 for dimensional reasons [50].

The absence of any reference to the electric charge in the renormalized
and bare interaction (at least for small enough systems) implies that the
same results should be derivable from our starting theory (120) with ¢ set
to zero. By directly integrating out the Anderson—-Bogoliubov mode, and
ignoring the momentum dependence of pg, which is valid outside the criti-
cal region, one easily reproduces the bare interaction potential (128). The
renormalized interaction (131) is obtained by realizing that according to Eq.
(105), ps ~ k for d = 2 and z = 1. In other words, the extra factor of k|
that came in via the renormalization factor Z4 in our first calculation to
produce the 1/r potential, comes in via pg here.

One might wonder if perhaps also the Coulomb interaction between elec-
tric charges changes in the vicinity of a CQCP. We do not expect this to
happen. Since the 1/r Coulomb interaction is genuine 3-dimensional, this
interaction cannot be affected too much by what happens in the film, which
constitutes a mere slice of 3-dimensional space. The reason that the interac-
tion between vortices is susceptible to the presence of a CQCP, is that this
interaction is a result of currents around the vortex cores which are confined
to the plane.

A similar change in the r-dependence of the interaction between two
vortices upon entering a critical region has been observed numerically in the
3-dimensional Ginzburg-Landau model [51]. Near the charged fixed point
of that theory, ng = 1 [52], as in our case.

This is a very pleasing coincidence as the (24 1)-dimensional Ginzburg—
—Landau model constitutes the dual formulation of the system.
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5.3. Dual theory

The dynamics of the charged degrees of freedom is described by the effec-
tive Lagrangian (99) with the speed of sound given by Eq. (102). In accord
with the above findings, we have ignored the coupling to the magnetic vector
potential, so that the effective theory essentially describes a superfluid.

In the dual formulation, the roles of charges and vortices are inter-
changed. And the Anderson-Bogoliubov mode mediating the interaction
between two vortices is represented as a photon associated with a fictitious
gauge field a,, i.e. aﬂgo ~ e,ma a). In 2 4+ 1 dimensions, this identification
makes sense as a photon has only one transverse d1rect10n and thus only one
degree of freedom. It therefore represents the same number of degrees of
freedom as does the Anderson—Bogoliubov mode.

The elementary excitations of the dual theory are the vortices, described
by a complex scalar field . Specifically, the dual theory of Eq. (99) turns
out to be the Ginzburg-Landau model [44-46,53|

Laval = =1 S + 0 — igap)p|* — m[p[* — uly[, (132)

with f,, = (itay — 5,,(1“, m,, a mass parameter, and « the strength of the
self-coupling. Both the gauge part as well as the matter part of the dual
theory are of a relativistic form. The gauge part is because the effective
theory (99), obtained after ignoring nonlinear terms, is Lorentz invariant.
The matter part is because vortices of positive and negative circulation can
annihilate, and can also be created. In this sense they behave as relativistic
particles. As was pointed out in Ref. [44], the speed of “light” in the gauge
and matter part need not to be identical and will in general differ.

The interaction potential (128) between two external vortices is now
being interpreted as the 2-dimensional Coulomb potential between charges.
The observation concerning the critical behavior of the Ginzburg-Landau
model implies that the qualitative change in V(r) upon entering the critical
region is properly represented in the dual formulation.

Whereas in the conducting phase, the charges are condensed, in the
insulating phase, the vortices are condensed [1|. In the dual theory, the
vortex condensate is represented by a nonzero expectation value of the 1)
field, which in turn leads via the Anderson-Higgs mechanism to a mass
term for the gauge field a,. Because (e,,20,a))? ~ (9,p)?, the mass term
az with two derivatives less implies that the Anderson—Bogoliubov mode
has acquired an energy gap. That is to say, the phase where the vortices are
condensed is incompressible and indeed an insulator. Since electric charges
are seen by the dual theory as flux quanta, they are expelled from the system
as long as the dual theory is in the Meissner state. Above the critical field
h =V xa = h, they start penetrating the system and form an Abrikosov
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lattice. In the original formulation, this corresponds to a Wigner crystal
of the charges. Finally, when more charges are added and the dual field
reaches the critical value h,, the lattice melts and the charges condense in
the superfluid phase described by the effective theory (99).
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