
Vol. 31 (2000) ACTA PHYSICA POLONICA B No 12
SHARDS OF BROKEN SYMMETRY:TOPOLOGICAL DEFECTS AS TRACESOF THE PHASE TRANSITION DYNAMICS�W.H. Zurek, L.M.A. Bettenourt, J. DziarmagaTheoretial Division, Los Alamos National LaboratoryLos Alamos NM 87545, USAand N.D. AntunesDépt. de Physique Théorique, Université de Genève24 quai E. Ansermet, CH 1211, Genève 4, Switzerland(Reeived Otober 6, 2000)We disuss the origin of topologial defets in phase transitions andanalyze their role as a �diagnosti tool� in the study of the non-equilibriumdynamis of symmetry breaking. Homogeneous seond order phase transi-tions are the fous of our attention, but the same paradigm is applied tothe ross-over and inhomogeneous transitions. The disrepany betweenthe experimental results in 3He and 4He is disussed in the light of reentnumerial studies. The possible role of the Ginzburg regime in determiningthe vortex line density for the ase of a quenh in 4He is raised and tenta-tively dismissed. The di�erene in the antiipated origin of the dominantsignal in the two (3He and 4He) ases is pointed out and the resulting on-sequenes for the subsequent deay of vortiity are noted. The possibility ofa signi�ant disrepany between the e�etive �eld theory and (quantum)kineti theory desriptions of the order parameter is brie�y touhed upon,using atomi Bose�Einstein ondensates as an example.PACS numbers: 05.70.Fh 1. IntrodutionThe theory of the reation of topologial defets appeals to models ofritial dynamis and to our understanding of the proesses whih ourwhen phase transitions take plae. Consequently, topologial defets anbe used as �symptoms�, marosopi manifestations of underlying physialproesses, whih in turn an help diagnose the nature of ritial dynamis.� Presented at the XL Craow Shool of Theoretial Physis, Zakopane, Poland,June 3�11, 2000. The paper is based on the material published in Ref. [41℄.(2937)



2938 W.H. Zurek et al.For �rst order phase transitions there is little doubt that nuleation �a proess understood for over half a entury � is an essentially aurate,universal yet simple model. A similarly simple model of the dynamis ofseond order phase transitions was proposed muh more reently [1�3℄. Oneof its impliations is the ability to predit the size of the ordered pathes ofthe new lower symmetry phase, right from its ineption. This allows one toalulate the initial density of topologial defets through the estimate putforward in the seminal paper by Kibble [4,5℄. It may also lead to a revisionof the senarios for baryogenesis and hiral symmetry restoration [6, 7℄, aswell as other related phenomena (suh as the A�B 3He transition, see [8,9℄).Some of the preditions based on the new paradigm have been suessfullytested and re�ned in numerial experiments [10�14℄. More importantly thepredition of opious vortex prodution in super�uid phase transitions hasbeen experimentally veri�ed in 3He by two very di�erent strategies in twodistint parameter regimes [15,16℄. The situation in 4He [17℄ and the initialindiations from high temperature superondutors [18℄ are, however, at bestinonlusive. Indeed there are still di�erenes onerning analyti estimatesof the initial density of defets in the underdamped ase [19,20℄, even in 1D.The aim of this paper is two-fold: We shall start with a brief summary ofthe paradigm on whih the emerging understanding of seond order phasetransitions is based. We shall then explore its extrapolations and investi-gate the experimental, numerial and analyti evidene for and against thismehanism, in various settings. This paper is not really an introdutorysurvey to the extent to whih our letures were. We have deided that theexisting literature (inluding the reviews of Zurek [21℄ and Eltsov, Krusiusand Volovik [22℄ as well as the other papers mentioned above and below)already serves this purpose. Rather we aim to perform a �reonnaissane byfore� of what is likely to be the most interesting �proving grounds� for theideas summarized brie�y in the following setion.2. Critial dynamis and defet formationSeond order transitions fall into universality lasses whih are hara-terized by the behavior of the healing length � and the relaxation time �(among other quantities) as a funtion of the relative temperature"(T ) = T � TT : (1)Thus, � � j"j��z and � � j"j�� diverge in the viinity of " = 0, where �and z are universal ritial exponents. A very spei� model whih repre-sents a large lass of seond order phase transitions is the so-alled Landau�Ginzburg theory. There, the dynamis of the order parameter is thought to



Shards of Broken Symmetry : : : 2939e�etively obey a Langevin equation of the form:�'+ � _'� 2r2'+ 12 ��'3 +m2�� = O(t; x) : (2)Above, � haraterizes the visosity in the system, while , � are onstantoe�ients. The mass term m2 an depend expliitly on time. Moreover,the orrelation funtion for the noisehO(t; x)O(t0; x0)i = 2��Æ(x� x0)Æ(t � t0) ; (3)inludes the temperature parameter � , whih an vary. The hange of m2,e.g. m2 = m20"(t) or of � or both, may preipitate the phase transition.We shall assume that in the viinity of the ritial temperature "(t) obeysa simple relation "(t) = t�Q : (4)In that ase the dynamis of the order parameter an be approximatelydivided into the adiabati and impulse regimes [2, 3℄, with the boundarywhih ours at time t̂ when the relaxation time of the order parameterequals the harateristi time on whih "(t) hanges:�("(t̂)) = "(t̂)_"(t̂) = t̂ : (5)The timesale on whih the order parameter will reat to hanges of "(t)depends on whether _' or �' dominates. For the Landau�Ginzburg theory, inthe two ases � _' = ��20j"j ; � �' = ��0j"j2 ; (6)respetively, where �0 = 1=m0, andm0 is the mass term in Eq. (2), evaluatedfor T = 0 (i.e. for " = �1).Using "(t) = t=�Q, we an now solve for t̂, to obtain:t̂ _' = ��0p��Q ; t̂ �' = ��2=30 �1=3Q : (7)To estimate the sale of the domains whih ould have beome uniformthrough dynamis in the adiabati regime, we should need:"̂ _' = �s��2o�Q ; "̂ �' = ����2o�Q �2=3 : (8)



2940 W.H. Zurek et al.The harateristi sale is then given by �̂ = �0=pj"̂j, whih yields:�̂ _' = �0 �2Q��20 !1=4 ; �̂ �' = �0��Q�0 �1=3 : (9)The initial density of defets an now be estimated using an argument dueto Kibble [4℄, whih will imply a �̂-sized unit of defet per �̂ sized volume,i.e. n � 1=�̂2 for vortex strings in two spatial dimensions.The above alulation is based on the assumption that the order pa-rameter approximates its equilibrium on�guration until �t̂, at whih pointit eases to evolve dynamially (although noise and damping ontinue un-abated). The dynamial evolution restarts at +t̂, below the ritial point,but by then it may be too late to undo non-trivial topologial arrangementsof ' inherited from above T.This same paradigm deides when the overdamped or underdamped es-timates are relevant. For, in view of the above argument, it is essential todeide whether the dynamis of the order parameter is overdamped at t̂, i.e.whether � _'jt̂ > �'jt̂ : (10)This an be evaluated diretly from Eq. (2) with the help of the aboveestimates for t̂ and "̂, and leads to the inequality:(��0)3 > �0�Q : (11)Numerial studies have by now on�rmed this paradigm. The salingswhih we obtained follow theoretial preditions both when the quenh isindued by an expliit hange of the mass term in Eq. (2) [10�12℄ and whenthe temperature of the noise � is adjusted, but m set to a onstant [13℄.Moreover, the swith from the overdamped to the underdamped behaviorours where expeted, and with the onsequenes onsistent with the salingimplied by the paradigm Eqs. (8)�(11) [10�12℄. The same reasoning an beof ourse repeated using other values of ritial exponents relevant for otherases [23℄, whih has been already done in some ases [13, 21℄.While the salings aord well with the theoretial preditions, the spe-i� density of defets n is lower than the appropriate inverse power of �̂n = 1�f2�̂�2 ; (12)where f is always more than unity, and usually in the range 8�15 [10�13℄.We shall return to its estimates later in this paper.



Shards of Broken Symmetry : : : 29413. Crossover transitionsAn interesting ase of transitions whih does not onform to the seond-order universality lass ours when the ritial saling behavior of the heal-ing length and of the relaxation time �tapers o�� (i.e. is fully analyti) verynear to " = 0. For instane a hypothetial relaxation time and healing lengthdependenes � = �0(j"j+�) ; � = �0pj"j+ Æ ; (13)illustrate suh a rossover transition.Examples of rossover phenomena are ubiquitous. One of the most inter-esting ases omes from the study of the eletroweak standard model, where,for Higgs masses not yet exluded by experiment, the transition appears tobe a rossover [24℄. A rossover transition may also our in the presene ofimpurities, anisotropies, weak external �elds, or �nite size saling, instead ofthe expeted ritial behavior of the ideal model. It also substitutes ritialbehavior when non-perturbative �utuations exist in the spetrum of thetheory whih are favored entropially and an destroy long range order. Anexample of the latter is a ��4 theory or a (short-range) Ising model in onespatial dimension.Thus, � and � in the one-dimensional ases investigated numerially[10, 11℄ as examples of the seond order phase transition are expeted totaper o� in the immediate viinity of the ritial temperature. Presumablythis ours for very small values of � and Æ, so that the saling behaviorenountered in the viinity of "̂ is not a�eted. Nevertheless, it is interestingto investigate what does the paradigm predit in the ase of suh rossovertransformations.We follow the footsteps of the argument outlined in the preeding setion,and obtain t̂ by solving : �("(t̂)) = t̂ ; (14)whih now leads to the quadrati equationjt̂j2 + jt̂j��Q � �0�Q = 0 : (15)Consequently jt̂j = ���Q + �Qq�2 + 4�0�Q2 ; (16)and j"̂j = ��2 + 12s�2 + 4�0�Q ; (17)where we have piked the physially relevant root of Eq. (15).



2942 W.H. Zurek et al.We note that in the limit of a `real' seond order phase transition (�! 0)we reover the old result, Eq. (8), providing that the hange of notation (�0now used to be ��20 in Eq. (8)) is aknowledged. On the other hand, whenthe quenh is very slow and �2 � 4�0=�Q, "! ��0=�Q, whih itself is smallompared with � (and, presumably also Æ sine � � Æ an be expeted).Consequently for relatively rapid quenhes�̂ = �0r� �0�Q�1=2 + Æ ; (18)whih approahes Eq. (9) for su�iently small Æ. In the other limit�̂ = �0pÆ ; (19)and the size of the oherent domains of the order parameter saturates.We note that the above disussion should be regarded more as an ex-erise in extending the paradigm rather than as a generially valid theory,appliable to all rossover phase transitions. In partiular, in some asesseond order transitions may hange into rossovers when an external biaswhih in�uenes the hoies of the broken symmetry vauum is introdued.In suh ases the externally imposed (rather than spontaneous) symmetrybreaking will favor a partiular vauum and will lead to a suppression oftopologial defet prodution [20℄, [7℄).Moreover, in ase of the rossover transitions the in�uene of the Ginzburgregime may need to be arefully examined as its role in the generation andsurvival of topologial defets is still a subjet of dispute.4. Inhomogeneous transitionsHomogeneous quenhes are a onvenient idealization and may be a goodapproximation in some ases. However, in reality, the hange of thermody-nami parameters is unlikely to be ideally uniform:(1) Experiments arried out in 3He [15, 16℄, where a small volume of su-per�uid is re-heated to normal state, and subsequently rapidly oolsto the temperature of the surrounding super�uid, are a good exam-ple of an inhomogeneous quenh: The normal region shrinks from theoutside. Yet, topologial defets are reated, thus suggesting that thephases of distint domains within the re-heated region are seletedindependently.



Shards of Broken Symmetry : : : 2943(2) Another example are relativisti heavy ion ollisions where, aordingto Bjorken senario [25℄, a �nite volume of quark�gluon plasma anbe reated. The plasma expands in the diretion of ollision and oolsfrom the outside in the perpendiular diretion. The phase transi-tion in this ase an be �rst or seond order (or a smooth rossover)depending on the parameters of the ollision.(3) Any generi experiment based on pressure and/or temperature quenhis to some degree inhomogeneous beause of �nite veloity of soundand �nite heat ondutane.The mass parameter "(t; ~r), varying in both time and spae, must be on-sidered in defet formation. As a onsequene, loations entering the brokensymmetry phase �rst ould ommuniate their hoie of the new vauum asthe phase ordered region spreads in the wake of the phase transition front.When this proess dominates, symmetry breaking in various, even distant,loations is no longer ausally independent. The domain where the phasetransition ourred �rst may impose its hoie on the rest of the volume, thussuppressing or even halting prodution of topologial defets. This happensif veloity of the ritial front is less than ertain harateristi veloity.4.1. Seond order transitionThe harateristi veloity in an overdamped transition an be estimatedas follows: The freeze-out healing length is set at t̂ as �̂ = �0 (�Q=�0)1=4. Atthe same instant the relaxation time is �̂ = (�Q�0)1=2. These two sales anbe ombined [2℄ to give a veloity salev̂ = �̂̂� = v0� �0�Q�1=4 ; (20)where v0 = �0=�0.The density of defets N as a funtion of ritial front veloity is expetedto hange qualitatively at v̂. Above v̂ the homogeneous estimates shouldhold. Below v̂ the density should be suppressed. Kibble and Volovik [26℄suggested that N � v=v̂ for small v < v̂. Dziarmaga, Laguna and Zurek [27℄argued that N is exponentially suppressed below v̂. There is qualitative dif-ferene between the two proposals. The former option suggests that howeverone makes a quenh one will always get some defets, the latter implies thatif one's inhomogeneous quenh is su�iently slow one will get no defets atall. In what follows we will quantify what �su�iently slow� means.a. Deay of the False Vauum. As a simple warm up exerise, let usonsider deay of a false symmetri vauum to a true symmetry broken



2944 W.H. Zurek et al.ground state in a one-dimensional dissipative '4 model�2t '+ � �t'� �2x'+ 12 ('3 � "') = 0 ; (21)where '(t; x) is a real order parameter and " measures the degree of symme-try breaking i.e. m2 = �". Without loosing generality, we look for a solu-tion '(t; x) whih interpolates between '(t;�1) = �p" and '(t;+1) = 0.Suh a solution an not be stati. It is a stationary half-kink'(t; x) = �p" 1 + exp"p"2 (x� vtt)p1� v2t #!�1 (22)moving with harateristi veloityvt = "1 +� 2�3p"�2#�1=2 �!1� 3p"2� : (23)It is worth noting that the deay veloity vt inreases with ".b. Shok Wave. Our shok wave inhomogeneous quenh model onsistsof a sharp �pressure front� propagating with veloity v; that is,�2t '+ � �t'� �2x'+ 12('3 � "(t; x)') = O(t; x) ; (24)where "(t; x) = Sign�t� xv� (25)is the relative temperature and O(t; x) is a Gaussian white noise of temper-ature � with orrelations given by Eq. (3).There are two qualitatively di�erent regimes:(1) v > vt, the phase front propagates faster than the false vauum andeay. The half-kink (22) lags behind the front (25); a superooledsymmetri phase grows with veloity v � vt. The superooled phaseannot last for long; it is unstable, and the noise makes it deay intothe true vauum.(2) v < vt, the phase front is slow enough for a half-kink to move in stepwith the front, '(t; x) = Hv(x � vt). The symmetri vauum deaysinto one de�nite non-symmetri vaua. The hoie is determined bythe boundary ondition at x ! �1. No topologial defets are pro-dued in this regime. The stationary solution Hv(x � vt) is stableagainst small perturbations [27℄.



Shards of Broken Symmetry : : : 2945These expetations are borne out by the numerial study of kink forma-tion in [27℄. Numerial results are presented in Fig. 1.. Linear Front. Let us onsider now a system in whih the inhomoge-neous quenh takes plae via linear transition"(t; x) = t� xv�Q : (26)In the absene of noise, the propagating front is followed by a stationaryhalf-kink. This half-kink moves somewhat behind the front. Its loationis determined by the plae where the threshold veloity (23) is equal tothe front veloity, vt["(t; x)℄ = v. The distane between the front and thehalf-kink inreases as v3. This distane gives the size of the superooledregion. When the superooled region is narrow then it is stable againstsmall perturbations so that no defets are produed. Ifv > vt � 0�1 + �3=2�1=2Q11:7 1A�1=2 �!1� 3:42� � ��Q�1=4 � 4:07v̂ ; (27)then the region is broad enough to be unstable [27℄ and the prodution ofdefets is no longer suppressed.
(a) (b)

Fig. 1. (a) � density of kinks n as a funtion of veloity v for the shok wave(25) with � = 1 (overdamped system). In this overdamped regime, the pre-dited threshold veloity is vt = 0:83. The plots from top to bottom orre-spond to � = 10�1; 10�2; 10�4; 10�6; 10�8; 10�10. At low � , we get a learut-o� veloity at v � 0:8, whih is onsistent with the predition. (b) � den-sity of kinks n as a funtion of veloity v for the linear inhomogeneous quenh,Eq. (26), with �Q = 64 and � = 1. The predited threshold is vt = 0:77.This ut-o� is ahieved for low � . The plots from top to bottom orrespondto � = 10�1; 10�2; 10�4; 10�6; 10�8; 10�10.



2946 W.H. Zurek et al.This predition is on�rmed by the numerial study of linear quenhesin Ref. [27℄, ompare Fig. 1. However, the threshold veloity apparentlygradually dereases with inreasing noise temperature � . This derease ofthe threshold for kink formation is due to the thermal nuleation of kinks.Quantitative estimates for this e�et are given in [28℄.4.2. First order transitionWe assume the transition is strongly �rst order and that it goes by bubblenuleation. To be more spei� we onsider a toy model in 3 dimensions�t' = r2'� a'+ b'3 � '5 +O ; (28)where ' is real order parameter. The e�etive potential is of the '6 type.Provided that b2 > 4a, it has symmetri minimum at ' = 0 and two sym-metry broken minima at ' = �'m � �q(b+pb2 � 4a)=2. We assumethat b;  are onstant and that symmetry breaking transition is driven by adereasing below its ritial value a = 3b2=16. At a = a all three minimaare degenerate.d. Deay of the False Vauum. Suppose that a < a. Let us onsiderdeay of the false symmetri vauum to the true symmetry broken phasein a one dimensional version of the model Eq. (28). We look for a solutionwhih interpolates between ' = 'm for x ! �1 and ' = 0 for x ! +1.The solution is a stationary half-kink H(x� vtt) moving with veloityvt = �b+ 2pb2 � 4ap3 (29)whih has an envelope funtionH(x) = 'mq1 + exp�x2 ; (30)where � =p4=3'2m. This way the false ' = 0 vauum deays into the true' = 'm vauum in the absene of noise. The deay veloity vt is zero fora = a, it inreases with inreasing superooling or with dereasing a.e. Shok Wave. In the shok wave model a sharp front propagates withveloity v a = a ��a Sign�t� xv� : (31)Similarly as for seond order transitions there are two regimes:



Shards of Broken Symmetry : : : 2947(1) v > vt, the pressure front propagates faster than the false vauum andeay. The half-kink lags behind the front. The superooled phasein between them grows linearly with time. The phase is unstable,it deays by bubble nuleation just as for a homogeneous transition.Homogeneous estimates of defet density apply in this ase.(2) v < vt, the half-kink is faster. It moves in step with the front whileits tail penetrating into the symmetri phase. There is no superooledphase where bubbles ould be nuleated. The symmetri phase goessmoothly into one of the symmetry broken phases.f. Linear Front. Let the inhomogeneous quenh proeed by a linear frontmoving with veloity v a = a � t� xv�Q : (32)The half-kink follows the ritial front staying at a ertain distane behindit. The distane D is suh that the half-kink veloity vt, whih dependson the loal value of a, is equal to the front veloity v, vt(a) = v. Withinreasing v the half-kink settles at inreasing values of loal a. Close to theritial front the radius of the ritial bubble is in�nite and at the same timethe nuleation rate is in�nitely small. As we go away from the front in thediretion of the half-kink the ritial radius shrinks. At a ertain distane Lfrom the front the energy of the ritial bubble beomes omparable to thetemperature � . At this point bubble nuleation beomes possible. If L < Dbubbles an be nuleated in the superooled region between the front andthe half-kink. If L > D then there is no bubble nuleation and no defetsan be born in the superooled area.Now we estimate the ritial veloity suh that L = D. The half-kink isloated at suh an a that vt(a) = v. L = D providing that for this a theenergy of the ritial bubble E(a) is equal to temperature � . The ritialbubble is a metastable spherially symmetri stati solution of Eq. (28) with,say, 'm vauum inside and 0 vauum outside its wall. Its energy an be easilyestimated when the width of its wall is negligible as ompared to its radiusR(a). An approximate solution is given by H[r�R(a)℄, where the ritialradius is R(a) = p12�b+ 2pb2 � 4a : (33)The energy of the ritial bubble E(a) has a negative volume ontribu-tion, (4�R3=3)V ('m), and a positive surfae tension term,(4�R2)Z dx [H 0(x)℄2 :



2948 W.H. Zurek et al.When the solution of vt(a) = v is put into E(a) and then the equationE(a) = � is solved, one obtains a ritial veloityvr = ��b(3b2 � 6b+ 162)43� �1=3 (34)for L = D. For v > vr bubbles an nuleate in between the half-kink andthe front and thus the neessary ondition for topologial defets produtionis satis�ed.The formula for vr, Eq. (34), is still a rude lower estimate for theritial veloity. In fat it is not su�ient to nuleate some bubbles. Indi-vidual bubbles would oalese with the half-kink without any hane to trapany nontrivial winding number. The bubbles should be nuleated in largenumbers or have enough time to grow so that they an mutually oalesebefore merging with the half-kink. Still, the argument whih leads to vrdemonstrates that there is a threshold veloity for defet formation.4.3. Higher dimensionsThe theory an be generalized to higher dimensions and to a omplexorder parameter in a straightforward manner. Its major result is that asubthreshold inhomogeneous quenh does not produe any variation of theorder parameter in the diretion normal to the front. This exludes anypossibility of prodution of vortex loops or losed membranes entirely on-tained in the bulk, as well as of any pointlike defets. Some extended defetsan grow into the bulk provided their seeds were reated at this edge of thesystem where the symmetry was broken �rst. In �rst approximation suh,say, vorties grow into the bulk, following the passing front, while keepingtheir diretion normal to the front. In the end we do not get any haotitangle of strings and string loops but parallel �ombed� vorties. There aretwo important perturbations to this �ombed� piture:(1) Thermal �utuations make the strings look more random but withoutbaktraking and with string tension tending to smooth the small sale�utuations. The ends of the strings and antistrings at the ritialfront are wandering around. Eventually an end of a string and of anantistring may meet so that the strings join into a half-loop with itsboth ends attahed to the initial edge of the system. String tensionshrinks the half-loop to the edge where it unwinds.(2) A muh more e�ient fator to remove vorties from the bulk are theirmutual interations. Global parallel string and antistring attrat oneanother so that their ends at the ritial front do not seek eah other



Shards of Broken Symmetry : : : 2949at random but tend to fuse in a deterministi way. This mehanismmakes the number of strings in the bulk deay with inreasing distanebetween the front and the initial edge.The fators (1) and (2) lead to a piture in whih the ritial frontinitially draws some parallel strings and antistrings from the edge, then thestrings reombine by joining ends and shrinking bak to the edge. In theend only the net surplus of strings (or antistrings) is left in the bulk.These ideas are supported by experiments:(1) Dislinations produed during a quenh from disordered to nematiphase in liquid rystals [29℄. This is a weakly �rst order transition.In early attempts to make osmologial experiments in liquid rystalsthe dislinations were observed to grow approximately ombed, joinends and shrink to the initial edge. Later on it was realized that thesequenhes were not homogeneous enough [30℄.(2) Czohralski method of growing monorystals, whih is widely used togrow silion monorystals neessary for mirohips. In this method,disovered in the thirties, a surfae of liquid material is touhed witha monorystal template. As the template is slowly lifted up it dragsa olumn of rystal out of the ontainer. The top part of the olumnis old while its bottom part is at the melting temperature � thetransition is inhomogeneous. If the template is lifted slowly enough,then no defets of the rystal lattie are produed whih might spoilthe monorystal.To onlude this setion: in an inhomogeneous quenh there is a thresh-old veloity vt of the ritial front. Above the threshold defets are produedlike in a homogeneous quenh. Below the threshold one gets no defets; in-stead a lean monorystal or a �disoriented hiral ondensate� is grown witha vauum whih may be uniform over signi�ant distanes, but whih di�ersfrom the true vauum.5. Defet formation and the Ginzburg regimeReently a new 4He experiment [17℄ was devised, improving on the ap-paratus used earlier by MClintok et al. [31℄ to implement a super�uidtransition in 4He through a sudden pressure quenh. The orrespondingresults are rather surprising. They show no evidene for the formation oftopologial defets at the antiipated levels, ontrary to expetations basedboth on the old experiment [31℄, the theory1 and the 3He data [15,16℄. The1 Although a fator f >� 10 in the formula for the string density n � 1=(f�̂)2 ouldexplain the new results and seems onsistent with reent numerial studies [13℄.



2950 W.H. Zurek et al.disrepany with the earlier 4He quenh data is now seen as the evideneof mehanial stirring in the �rst version of the experiment. Neverthelessto address the disrepany with 3He it was suggested [32℄ that beause theGinzburg regime in 4He extends over a broad range of temperatures aroundthe �-line, large sale �utuations may be able to unwind and alter theon�guration of the order parameter (in ontrast to 3He) while the quenhproeeds.The Ginzburg temperature is de�ned through the loss of ability of theorder parameter to hop, through thermal ativation, over the potential bar-rier between broken symmetry vaua. Thus one might worry with Karraand Rivers [32℄ that when the defet densities are eventually measured, at amuh later time, little or no string would have survived unwinding throughthermal ativation. In this setion we investigate this possibility and moregenerally report a numerial study of the e�et of thermal �utuations ontopologial defet formation and evolution.Originally the Ginzburg temperature TG was suggested to be the timeof formation of topologial defets [4℄, sine, at lower temperatures, ther-mal �utuations would be unable to overome the potential energy barrierassoiated with the defet's topologial stability.In reality the situation is more omplex. In equilibrium at any giventemperature T (inluding of ourse temperatures in the Ginzburg regime)a range of string on�gurations will exist. However, long strings an onlyexist in equilibrium stritly above T [33℄.To freeze them out, i.e., to form them, energy (assoiated with the stringtension) must be extrated from the system. This neessarily breaks timeinvariane and will lead to loally preferred nonequilibrium �eld on�gu-rations. Subsequently the system will order over larger and larger spatialsales, leading to mutual string annihilation.The initial density of defets entering this stage of evolution is omputedby the theory of Setion 2. This density is set at an e�etive temperature�"̂, whih in 4He is well within the estimates for the width of the Ginzburgregime. By ontrast, in 3He the Ginzburg temperature is small omparedto the typial "̂. What happens to the initial densities of string when thesystem is exposed to temperatures in the Ginzburg regime for an extendedamount of time?In order to investigate this issue we need a quantitative de�nition of TG.In tune with the arguments given above onsider a volume of harateristisize �(T ), the orrelation length, and a theory with two energetially degen-erate minima of an e�etive potential V (�), separated by a potential barrier�V . The rate for the �eld to hange oherently from one minimum to theother per unit volume due to thermal ativation is exp [��V=kBT ℄. For ane�etive potential of the form (obtained, e.g. perturbatively at 1-loop)V (�) = �12m2(T )'2 + �'4 ; (35)



Shards of Broken Symmetry : : : 2951�V = m(T )44� . For a volume �3, we de�ne TG suh that the probability ofoveroming the potential barrier is of order unity:TG : �V (TG)TG �3(TG) = 1 , �TGm(TG) = 14 : (36)This de�nition however has some aveats, for instane, an e�etive potentialof the form Eq. (35) is only valid for the mean �eld and not on smallersales. A more areful aounting of sales leads to di�erent results [34℄,whih show an enhanement of the hoping probability. Thus, the fator of1=4 in Eq. (36) should not be taken at fae value.A more rigorous de�nition arises from the range of temperatures below Tfor whih �utuations are large and onsequently where perturbative �nitetemperature �eld theory fails to be useful. In order to set up a perturbativesheme at �nite temperature from an initial 3 + 1 dimensional quantum�eld theory one implements dimensional redution whih is valid providedthe temperature is high ompared to all mass sales. As a onsequene theoupling of the dimensionally redued 3D �eld theory beomes dimensionful,i.e. � ! �T = �3. In order to proeed one has to identify an appropriatedimensionless oupling. This is done by taking �T=m(T ). The Ginzburgregime is entered when this 3D e�etive oupling beomes strong, in theviinity of the ritial point, namelyTG : �TGm(TG) = 1 : (37)To ompute TG one needs the saling of m(T ) in the ritial domain. Wewrite m2(T ) = m20"� , with " being the redued temperature " = jT�TT j.Thus "G = �0:18 for � = 0:5. This mean-�eld estimate produes anupper bound in T for TG (and lower bound for � = 1=T ). For realisti 3Dexponents, � = 0:67, we obtain "G = �0:25. The �rst riterion, based onthe hopping of a orrelation sized volume, results in higher values of TG.This brings about a relatively large unertainty in the value of TG, whih is18�25% below T.5.1. Strings survive the Ginzburg regimeIn order to investigate the role of the Ginzburg temperature in the dy-namis of defet formation we deliberately expose the system to a heat bathat temperature "i, within the Ginzburg regime and below. We repeat thisproedure for a range of time intervals �t, after whih the bath temperatureis taken to zero. This set of temperature trajetories is shown in Fig. 2. Weare attempting to emulate the worst ase senario of an experimental quenh
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Fig. 2. Temperature trajetories for testing the e�et of exposure to the Ginzburgregime on string densities. The system is �rst thermalized at a high temperatureand then plaed in ontat with a heat bath at an intermediate temperature "ibelow T, for a time interval �t.

Fig. 3. The string density measured at a later time t� �t vs intermediate temper-ature "i. From top to bottom the three plots orrespond to �t = 10; 20; 50, duringwhih the system remained in ontat with a heat bath at Ti. There is no visiblerole played by intermediate temperatures within the Ginzburg regime.



Shards of Broken Symmetry : : : 2953where the temperature or pressure are dropped monotonially but where thesystem makes a long stopover within the Ginzburg regime.We would expet that, if the Ginzburg regime indeed produed enhaneddeay of strings, then the string densities measured at later times should besmaller the longer the time the system spent within the range T � T � TG.We have measured the �nal string densities at a time t� �t. Our resultsfor the �nal string densities as a funtion of intermediate temperature "i and�t are summarized in �gure 3. There is no apparent e�et of the Ginzburgregime in reduing string densities at formation.If any trend is visible from �gure 3 it is the opposite, namely that thelower "i, the less string is measured at later times. This is onsistent withthe relaxation of the string network, resulting in vortex annihilation on-trolled by the string tension (whih is smaller near T) and with results thethermodynamis of vortex strings [33℄.5.2. Memory of the order parameter on�guration near TAn independent test on the possible role of thermal �utuations in a�et-ing string densities onsists in reheating a quenhed system to a temperaturearound T (both below and above it) and ooling it again. This proess teststhe memory of the order parameter as well as that of other related quan-tities (see also [12℄), suh as defets. These temperature ("(t)) trajetoriesare illustrated in Fig. 4(a).We are partiularly interested in investigating under what irumstanesthermal �utuations an a�et the large sale on�guration of the orderparameter.We de�ne the unequal-time orrelation funtionh'(x; trh)'(x; t + trh)i = N 2Xj=1Xi 'j(xi; trh)'j(xi; t+ trh) ; (38)where N is an irrelevant normalization fator. Note that the orrelationfuntion h'(x; trh)'(x; t + trh)i annot be omplex as we have summed overthe �eld's omponents. This orrelator has several interesting properties.For short times it displays a harateristi time, whih desribes the deayof orrelations over very small spatial sales. This is the initial transient inFig. 4(b). For later times the residual orrelation omes from the motion ofthe order parameter (the �eld volume average). This average an be eitherpositive or negative but, if thermal, will onverge to zero at and above T.Now, we are interested in determining whether the �nal �eld on�gu-ration over large spatial sales is orrelated to the on�guration prior toreheating. Fig. 4 shows that only if one rosses T, by more than +"̂, is the
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(b)

Fig. 4. (a) � dependene of the bath temperature � in time. After being quenhedin temperature (�Q = 80) the system is reheated at the same rate to a temperature�f = 0:469; 0:256; 0:061;�0:068 (top to bottom) `and ooled again. (b) � theorrelation funtion between the �eld at the time just before reheating and at latertimes, h'i(trh; x)'i(t+ trh; x)i is plotted. There is a universal short time transientfor the deorrelation of the �eld over small sales while the long time tails of theorrelation funtion desribe hange over the mean �elds. All four trajetories rossthe Ginzburg regime, but only those reahing or rossing +�̂ display a signi�antmemory loss.memory of the initial quenhed on�guration erased (see in partiular thetwo trajetories reahing higher temperatures in omparison to the others).For these trajetories the �eld orrelations reah zero and after reheatingevolve to a value manifestly di�erent from that prior to reheating.For trajetories within the Ginzburg regime, that do not ross T, thehange in the on�guration of the order parameter as measured by Eq. (38)is small. In partiular the �eld on�guration existing before reheating isapproximately reovered as the �elds are ooled. The same is true for thestring densities, inluding those of long strings.Thus we are led to onlude (see also [33℄) that even prolonged exposureof a quenhed �eld on�guration to the Ginzburg regime has little onse-quenes in hanging the order parameter on�gurations emerging at �"̂, andassoiated string densities. In addition we have shown that to truly destroya quenhed �eld on�guration existing below �"̂, one has to expose the sys-



Shards of Broken Symmetry : : : 2955tem to temperatures well above T. In partiular for any partiular quenhtrajetory, a temperature of T � T + "̂, must be reahed and maintainedfor a time � t̂ in order to erase memory of the initial on�guration.These results fully support the theory of Setion 2 for the ritial dy-namis of seond order transitions and all known thermodynami results forvortex strings in O(N) theories. Thus we expet the results of this setion toarry over from our models to the Lanaster 4He experiments. The resultsof Ref. [17℄ in these experiments annot therefore be attributed to the e�etsof Ginzburg regime in 4He.In the next setion we o�er an alternative explanation.6. What is being observed in the 3He and 4He experimentsThe several experiments in Helium, and more reently in superondu-tors, testing the theory of defet formation rely on substantially di�erentproesses to indue the phase transition and measure defets.In this setion we analyze, in the light of our own theoretial results, howexperimental proedures an lead to the detetion of substantially di�erentdefet densities.Two partiular fators play a deisive role in the value of the topologialdefet density measured � the time and proedure of measurement afterthe quenh and the initial/�nal state of the system.6.1. The Lanaster experiments in 4HeIn the Lanaster experiments in 4He the defet density is measuredthrough the attenuation of a seond sound signal (a heat pulse). This probean only detet densities above a ertain threshold (if the theory of Se-tion 2 is used f � 10 would be required, whih is at odds with the results ofthe numerial studies [10, 12℄ and espeially [13℄). Moreover, the density atformation has to be extrapolated from the data obtained at relatively latetimes � the signal is noisy shortly after the quenh [17℄.After being formed by the ritial dynamis of the phase transition vortexstrings deay away, as the system orders and ools. This deay has beenmodeled by Vinen's Equation _n = �n2 ; (39)where n is the length of string per unit volume, i.e. the string length density, > 0. This model has been observed in the same experiment to desribevery well the deay of vortiity indued initially through a �uid �ow.Vortiity reated thermally is potentially di�erent from that formed un-der an external �ow. We know from several theoretial and numerial in-



2956 W.H. Zurek et al.diations that a thermal distribution of vorties lose to the transition isomprised of both long strings and small loops, see Fig. 5.

Fig. 5. The deay of vortiity under a quenh. Initially the defet network inludesboth long strings and small loops. At late times the network oarsens and onlylong strings remain, see also Fig. 6.These two populations deay very di�erently in the wake of the quenh.Without any mehanism for stabilization the loops tend to disappear in afast transient. In ontrast the long strings loose some of their small salestruture but survive, and will ultimately set the deay pattern desribedby the Vinen equation.It is the surviving long strings � eventually measured � that will pro-vide the experimental signal in the 4He experiments. This is shown in Figs. 5and 6. As the system is quenhed from higher temperatures or pressures, aninitial string network omprised of strings of all lengths looses its loops andsettles to a muh slower deay trend dominated by long strings.The ruial question then is whether enough long string would persist atthe time of measurement to yield a positive signal.
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Fig. 6. String length l distributions Ld(l), taken between +t̂ and the �time offormation� (hj�ji = 0:95), for �Q = 64. Data sets denoted by (?,4,2, �) orrespondto inreasingly later times. Lines show the integral distributions, e.g. L�(l) =P1l l0Ld�(l0)dl0. It is lear that at late times only long strings survive.We have performed a very similar proedure in a numerial �experi-ment� [13℄. We observed that at long times string densities ould be mea-sured that agreed extremely well with all features of the theory. Our def-inition of long times was intimately onneted to the ompletion of thephase transition expressed in the expetation values of the order param-eter hj�ji ' 0:9�0.975. The e�etive f measured then was in the rangef = 11�16. All our indiations are that the Lanaster 4He experiment per-forms its measurements muh later (up to 2 orders of magnitude) than wedo, thus leading to even smaller string densities. Suh string densities ouldevade detetion under the seond sound experimental probe, whih may leadto the negative result [17℄.The other possibility is that the annihilation of a network of vorties aris-ing from a rapid quenh may proeed at a rate di�erent than for the networkprodued by turbulent �ow. Clearly, in ase of turbulent �ow there may be



2958 W.H. Zurek et al.orrelation between the orientation of nearby vorties. By ontrast, vortiesreated by quenh are antiorrelated (see, e.g., disussion in Setion 4 ofRef. [21℄). It seems plausible that annihilation of vorties would be faster inthat ase. In order to measure a positive signal in these irumstanes themeasurements would have to be made sooner, after a muh faster quenh,or with a higher sensitivity.6.2. Experiments in 3HeIn ontrast to the experiments in 4He desribed above whih appearsensitive to the �in�nite� string, experiments in 3He have pursued two in-dependent strategies both of whih allow one to stabilize and detet defetloops of various sizes: either vortiity is stabilized and ampli�ed by the �owand then measured diretly using nulear magneti resonane (the Helsinkiexperiment) or it is inferred from a ertain amount of missing energy (theGrenoble and Lanaster 3He experiments). Of these two proedures the �rstis more diret � vortiity formed during the quenh is fored to migrate tothe enter of the ontainer, through the existene of a subritial rotationveloity, where it is deteted. This permits loops of string of length largerthan a known threshold to survive deay and results naturally in a higherdensity, i.e. the defet density is measured e�etively very shortly after thetransition takes plae and need not be limited the �in�nitely long string�.As a onsequene, muh smaller values of f and larger string densities aremeasured than in the 4He experimental setting.Both remaining 3He experiments end at a region of the phase diagramfar from the transition � 3He being very muh older than in the Helsinkiexperiment. A lower e�etive temperature results in the e�etive absene ofdamping mehanisms whih in turn leads to the preservation of even smallvortex loops. Dissipation mehanisms rely on the presene of quasipartiles.Thus, when the medium is very old, energy dissipation will slow exponen-tially and vorties an be stabilized by a oherent �ow resulting from theirmotion through the super�uid. We expet therefore the string populationin all 3He experiments to be mostly in the form of relatively small loops. InHelsinki, the largest loops are stabilized by the slow rotation of the wholesystem, and their density an be extrapolated to the smaller loops, leadingto the total onsistent with the Grenoble and Lanaster experiments, where� one may guess � all of the loops survive for a long time in the abseneof dissipation.The lifetime of these loops is thus expeted to be muh longer than that ofthermal loops formed at a quenh through the �-line in 4He. As a result thelong time deay of vortiity may also be very di�erent in these two ases asthe former orresponds to an ensemble of moving loops, at relative distanes



Shards of Broken Symmetry : : : 2959muh larger than their typial radius, but the latter ontains strings of allsizes, where the mean distane between strings is omparable to their length.This onjetured piture, supported in part by numerial studies, leadsto the onlusion that both experimental settings in 3He should lead to apositive result, ompatible with a relatively small value of f relevant for allloops (we get f ' 4, when n � 1=(�̂f)2 is used to �t early data in Fig. 6),whereas in 4He the smallness of the signal at the time of �rst measure-ment makes the detetion more di�ult and at present below the sensitivitythreshold. 7. DisussionThe mehanism we desribed early on in this paper is based on theanalysis of the behavior of the order parameter '. The order parameteris learly a phenomenologial entity and the equations that govern its evo-lution are approximate and in many ases postulated rather than derived.On the other hand the underlying physis is usually very spei�. It may,for instane, involve atoms of some partiular isotope suh as 4He. Thus,in priniple, one ould formulate an exat mirosopi theory of partiularseond order phase transformations. However, in all of the experimentallyaessible ases disussed above suh a fundamental theory is simply tooompliated to lead to useful onlusions. The super�uid transition in 4Heis a good example: Strong interations in 4He make it impossible to proeedrigorously all the way starting at the mirosopi level. Analysis of relatedissues in the �eld theoreti ontext is also di�ult [35℄. Reently howevera new system has beome experimentally aessible: Atomi Bose�EinsteinCondensates (BEC's) undergo the seond-order phase transition at muhlower densities. Natural approximation shemes an be therefore suggested,and the exat mirosopi theory an be studied in greater detail than forthe �old� super�uids.We shall not attempt to review the theoretial or experimental situationin BEC's. Good reviews already exist (see e.g. [36℄). Our aim is simply topoint out that questions onerning the formation of topologial defets anbe posed and analyzed within a muh more fundamental formalism, whih isexpliitly quantum. The approximations start from the Shrödinger, equa-tion and lead in a ontrolled manner to master equations for the densityoperator of the ondensing system. Further approximations result in a quan-tum kineti theory. Preliminary analysis of these issues [37℄ allows one toreover the key saling relations and the key preditions we have desribedin Setion 2. Indeed, time dependent Landau�Ginzburg theory follows as anapproximation to some of the terms whih one obtains from the mirosopitreatments. On the other hand, the mirosopi theory ontains additional



2960 W.H. Zurek et al.terms, whih alter preditions onerning the formation of topologial de-fets. Limited studies [37℄ indiate that the predited densities of the vortexlines or of the winding numbers would be smaller than those based on thesalings of the order parameter (see Setion 2 of this paper). Moreover,orretions seem to be more signi�ant as the ratio �0=�Q dereases.The possibility of experimental studies of defet formation in BECquenhes nevertheless exists and may lead to exiting insights into the prob-lem.Superondutors may be the other useful testing ground. Indeed, twoexperiments have been already reported [18℄, with the laim of on�itingresults, whih seemed to depend on the geometry. Rapid ooling produedno detetable signal in a high-temperature �lm, although it is far from learwhether any was expeted. The original laim that the e�et was ruled outat the �� 103 level� was based on an overly optimisti predition, whihdid not reognize that the total �ux expeted to arise in the experimentallystudied geometry sales as n1=4, i.e. only with the fourth root of the totalnumber of defets (rather than with the square root; see Setion 4 of Ref. [21℄for disussion).The revised predition is lose to the laimed sensitivity of the exper-iment, and given the unertainties in the ritial exponents of the high-temperature superondutor, as well as the possibility of imperfet trappingof the defets, et. it is unfortunately impossible to extrat useful onstraintsfrom the existing negative experiment.The experiment arried out by the same group, in the loop geometry has,on the other hand, yielded positive results. This experiment also operatesnear the edge of detetability. It detets the �ux indued by a loop whih isarti�ially broken into a large number N of superonduting setions, whihare then rapidly reonneted. The predited �ux should have a Gaussiandistribution with a random diretion and intensity orresponding to � � pN�ux quanta [21℄, suh signals appear to have been indeed found [18℄.The available experimental results an be therefore desribed as onfus-ing. In liquid rystals the results seem to be the perhaps least ambiguous,but they onern a (weakly) �rst order transition. In super�uids, 3He is stillthe strongest ase for the mehanism, espeially sine the results between allthe experiments (arried out in quite di�erent parameter regimes, and usingvery di�erent tehniques) are onsistent. On the other hand the relevaneof the Helsinki experiment for the osmologial senario has been reentlyquestioned by numerial experiments [38℄ whih indiate that the vorti-ity generated in suh settings may be indued by the �ow imposed in theHelsinki experiment to failitate the proess of their detetion. These sim-ulations were arried out under a very idealized set of assumptions (whihinluded very small �utuations and axial symmetry) and onlusions of



Shards of Broken Symmetry : : : 2961Ref. [38℄ appear to be inonsistent with the experiment [39℄, but muh moreremains to be done to larify this issue. Indeed, a fully 3-D study withlarge �utuations is under way [40℄. Further experimental and numerialstudies to investigate the role of rotation in stabilizing vortex loops and toexplore the impliations for the A�B phase transition, et., are neverthelessessential.The existing 4He data are learly disappointing, but not at odds with amore onservative theoretial estimate. Moreover as we have argued abovethere may be a way to reonile estimates of vortex line density obtainedfrom 3He and 4He experiments, even without any speial appeal to theGinzburg regime [32℄ or to quantum kineti theory.Finally the �rst experimental reonnaissane into quenhes in superon-dutors is preliminary in its nature and ambiguous in its results.In the meantime, numerial studies have on�rmed and re�ned the basiindiations of the theory of order parameter dynamis.One may be therefore justi�ed in the expetation of an exiting but un-ertain future. A lot is at stake, inluding the understanding of the phasetransition dynamis, nature of the order parameter and other olletive ob-servables of quantum many body systems and perhaps even the relationbetween the quantum and the lassial.REFERENCES[1℄ W.H. Zurek, Experimental Cosmology: Strings in Super�uid Helium, LosAlamos preprint LA-UR-84-3818.[2℄ W.H. Zurek, Nature 317, 505 (1985).[3℄ W.H. Zurek, Ata Phys. Pol. B24, 1301 (1993).[4℄ T.W.B. Kibble, J. Phys. A 9, 1387 (1976).[5℄ T.W.B. Kibble, Phys. Rep. 67, 183 (1980).[6℄ A.J. Gill, hep-ph/9706327.[7℄ J. Dziarmaga, Phys. Rev. Lett. 81, 5485 (1998); J. Dziarmaga, M. Sadzikowski,Phys. Rev. Lett. 82, 4192 (1999).[8℄ G. Volovik, Czeh J. Phys. 46, 3048 (1996).[9℄ Y.M. Bunkov, O.D. Timofeevskaya, Phys. Rev. Lett. 80, 1308 (1998).[10℄ P. Laguna, W.H. Zurek, Phys. Rev. Lett. 78, 2519 (1997).[11℄ P. Laguna, W.H. Zurek, Phys. Rev. D58, 5021 (1998).[12℄ A. Yates, W.H. Zurek, Phys. Rev. Lett. 80, 5477 (1998).[13℄ N.D. Antunes, L.M.A. Bettenourt, W.H. Zurek, Phys. Rev. Lett. 82, 2824(1999).
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