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We discuss the origin of topological defects in phase transitions and
analyze their role as a “diagnostic tool” in the study of the non-equilibrium
dynamics of symmetry breaking. Homogeneous second order phase transi-
tions are the focus of our attention, but the same paradigm is applied to
the cross-over and inhomogeneous transitions. The discrepancy between
the experimental results in *He and “He is discussed in the light of recent
numerical studies. The possible role of the Ginzburg regime in determining
the vortex line density for the case of a quench in *He is raised and tenta-
tively dismissed. The difference in the anticipated origin of the dominant
signal in the two (*He and *He) cases is pointed out and the resulting con-
sequences for the subsequent decay of vorticity are noted. The possibility of
a significant discrepancy between the effective field theory and (quantum)
kinetic theory descriptions of the order parameter is briefly touched upon,
using atomic Bose-Einstein condensates as an example.

PACS numbers: 05.70.Fh

1. Introduction

The theory of the creation of topological defects appeals to models of
critical dynamics and to our understanding of the processes which occur
when phase transitions take place. Consequently, topological defects can
be used as “symptoms”, macroscopic manifestations of underlying physical
processes, which in turn can help diagnose the nature of critical dynamics.

* Presented at the XL Cracow School of Theoretical Physics, Zakopane, Poland,
June 3-11, 2000. The paper is based on the material published in Ref. [41].
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For first order phase transitions there is little doubt that nucleation —
a process understood for over half a century — is an essentially accurate,
universal yet simple model. A similarly simple model of the dynamics of
second order phase transitions was proposed much more recently [1-3]. One
of its implications is the ability to predict the size of the ordered patches of
the new lower symmetry phase, right from its inception. This allows one to
calculate the initial density of topological defects through the estimate put
forward in the seminal paper by Kibble [4,5]. It may also lead to a revision
of the scenarios for baryogenesis and chiral symmetry restoration [6,7], as
well as other related phenomena (such as the A-B 3He transition, see [8,9]).
Some of the predictions based on the new paradigm have been successfully
tested and refined in numerical experiments [10-14]. More importantly the
prediction of copious vortex production in superfluid phase transitions has
been experimentally verified in 3He by two very different strategies in two
distinct parameter regimes [15,16]. The situation in “He [17] and the initial
indications from high temperature superconductors [18| are, however, at best
inconclusive. Indeed there are still differences concerning analytic estimates
of the initial density of defects in the underdamped case [19,20], even in 1D.
The aim of this paper is two-fold: We shall start with a brief summary of
the paradigm on which the emerging understanding of second order phase
transitions is based. We shall then explore its extrapolations and investi-
gate the experimental, numerical and analytic evidence for and against this
mechanism, in various settings. This paper is not really an introductory
survey to the extent to which our lectures were. We have decided that the
existing literature (including the reviews of Zurek [21] and Eltsov, Krusius
and Volovik [22] as well as the other papers mentioned above and below)
already serves this purpose. Rather we aim to perform a “reconnaissance by
force” of what is likely to be the most interesting “proving grounds” for the
ideas summarized briefly in the following section.

2. Critical dynamics and defect formation

Second order transitions fall into universality classes which are charac-
terized by the behavior of the healing length ¢ and the relaxation time 7
(among other quantities) as a function of the relative temperature

T-T.
=

e(T) (1)
Thus, 7 ~ |e| V% and & ~ |e|™¥ diverge in the vicinity of ¢ = 0, where v
and z are universal critical exponents. A very specific model which repre-
sents a large class of second order phase transitions is the so-called Landau—
Ginzburg theory. There, the dynamics of the order parameter is thought to
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effectively obey a Langevin equation of the form:
g +n9 — Vi + 5 [N +mPg] = O(t,x). (2)

Above, i characterizes the viscosity in the system, while ¢, A are constant
coefficients. The mass term m? can depend explicitly on time. Moreover,
the correlation function for the noise

(O(t, )0, 2")) = 20nO6(x — 2')o(t — 1), (3)

includes the temperature parameter @, which can vary. The change of m?,
e.g. m? = mie(t) or of O or both, may precipitate the phase transition.
We shall assume that in the vicinity of the critical temperature £(¢) obeys

a simple relation
e(t) = —. (4)

In that case the dynamics of the order parameter can be approximately
divided into the adiabatic and impulse regimes [2, 3|, with the boundary
which occurs at time ¢ when the relaxation time of the order parameter
equals the characteristic time on which e(#) changes:

. e( .
T(e(t) = —= =1t. )
M) =55 )
The timescale on which the order parameter will react to changes of £(t)
depends on whether ¢ or ¢ dominates. For the Landau-Ginzburg theory, in
the two cases

>
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respectively, where 79 = 1/mg, and my is the mass term in Eq. (2), evaluated
for T =0 (i.e. for e = —1).
Using e(t) = t/7g, we can now solve for ¢, to obtain:

By =4moyirg,  ip=2r "1y’ (7)

To estimate the scale of the domains which could have become uniform
through dynamics in the adiabatic regime, we should need:

[ 12 2\ 2/3
A nr, A nr,
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The characteristic scale is then given by & = & /+/|€], which yields:

X -2\ /4 R S\ 1/3
£¢=£o<n—%> ; £¢=5o<f) . 9)

The initial density of defects can now be estimated using an argument due
to Kibble [4], which will imply a £-sized unit of defect per € sized volume,
i.e.n~1/ 52 for vortex strings in two spatial dimensions.

The above calculation is based on the assumption that the order pa-
rameter approximates its equilibrium configuration until —#, at which point
it ceases to evolve dynamically (although noise and damping continue un-
abated). The dynamical evolution restarts at 4, below the critical point,
but by then it may be too late to undo non-trivial topological arrangements
of ¢ inherited from above T.

This same paradigm decides when the overdamped or underdamped es-
timates are relevant. For, in view of the above argument, it is essential to
decide whether the dynamics of the order parameter is overdamped at ¢, i.e.
whether

i > i (10)

This can be evaluated directly from Eq. (2) with the help of the above
estimates for ¢ and &, and leads to the inequality:

(n70)® > = (11)
TQ

Numerical studies have by now confirmed this paradigm. The scalings
which we obtained follow theoretical predictions both when the quench is
induced by an explicit change of the mass term in Eq. (2) [10-12] and when
the temperature of the noise @ is adjusted, but m set to a constant [13].
Moreover, the switch from the overdamped to the underdamped behavior
occurs where expected, and with the consequences consistent with the scaling
implied by the paradigm Egs. (8)-(11) [10-12|. The same reasoning can be
of course repeated using other values of critical exponents relevant for other
cases [23], which has been already done in some cases [13,21].

While the scalings accord well with the theoretical predictions, the spe-
cific density of defects n is lower than the appropriate inverse power of £

1

22\’
(77¢)
where f is always more than unity, and usually in the range 8-15 [10-13].
We shall return to its estimates later in this paper.

n =

(12)
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3. Crossover transitions

An interesting case of transitions which does not conform to the second-
order universality class occurs when the critical scaling behavior of the heal-
ing length and of the relaxation time “tapers off” (i.e. is fully analytic) very
near to ¢ = 0. For instance a hypothetical relaxation time and healing length
dependences

P B (13)

e[+ 2) NEETA
illustrate such a crossover transition.

Examples of crossover phenomena are ubiquitous. One of the most inter-
esting cases comes from the study of the electroweak standard model, where,
for Higgs masses not yet excluded by experiment, the transition appears to
be a crossover [24]. A crossover transition may also occur in the presence of
impurities, anisotropies, weak external fields, or finite size scaling, instead of
the expected critical behavior of the ideal model. It also substitutes critical
behavior when non-perturbative fluctuations exist in the spectrum of the
theory which are favored entropically and can destroy long range order. An
example of the latter is a A¢* theory or a (short-range) Ising model in one
spatial dimension.

Thus, 7 and ¢ in the one-dimensional cases investigated numerically
[10, 11] as examples of the second order phase transition are expected to
taper off in the immediate vicinity of the critical temperature. Presumably
this occurs for very small values of A and §, so that the scaling behavior
encountered in the vicinity of € is not affected. Nevertheless, it is interesting
to investigate what does the paradigm predict in the case of such crossover

transformations.
We follow the footsteps of the argument outlined in the preceding section,

and obtain £ by solving :
7(e(t)) =1, (14)

which now leads to the quadratic equation

|t]? + |t|ATg — ToTg = 0. (15)
Consequently
R —ATQ + 79 AZ + %
il = g , (16)
and

—-A 1 4719
A - 2 1
€] = 5 +21/A +TQ, (17)

where we have picked the physically relevant root of Eq. (15).
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We note that in the limit of a ‘real’ second order phase transition (A — 0)
we recover the old result, Eq. (8), providing that the change of notation (g
now used to be n7¢ in Eq. (8)) is acknowledged. On the other hand, when
the quench is very slow and A? > 471y /7¢, € — A7y/7g, which itself is small
compared with A (and, presumably also ¢ since A ~ § can be expected).
Consequently for relatively rapid quenches

£o

S 18
(= (18)
()" +o
which approaches Eq. (9) for sufficiently small §. In the other limit
f= (19)

Ve

and the size of the coherent domains of the order parameter saturates.

We note that the above discussion should be regarded more as an ex-
ercise in extending the paradigm rather than as a generically valid theory,
applicable to all crossover phase transitions. In particular, in some cases
second order transitions may change into crossovers when an external bias
which influences the choices of the broken symmetry vacuum is introduced.
In such cases the externally imposed (rather than spontaneous) symmetry
breaking will favor a particular vacuum and will lead to a suppression of
topological defect production [20], [7]).

Moreover, in case of the crossover transitions the influence of the Ginzburg
regime may need to be carefully examined as its role in the generation and
survival of topological defects is still a subject of dispute.

4. Inhomogeneous transitions

Homogeneous quenches are a convenient idealization and may be a good
approximation in some cases. However, in reality, the change of thermody-
namic parameters is unlikely to be ideally uniform:

(1) Experiments carried out in *He [15,16], where a small volume of su-
perfluid is re-heated to normal state, and subsequently rapidly cools
to the temperature of the surrounding superfluid, are a good exam-
ple of an inhomogeneous quench: The normal region shrinks from the
outside. Yet, topological defects are created, thus suggesting that the
phases of distinct domains within the re-heated region are selected
independently.
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(2) Another example are relativistic heavy ion collisions where, according
to Bjorken scenario [25], a finite volume of quark—gluon plasma can
be created. The plasma expands in the direction of collision and cools
from the outside in the perpendicular direction. The phase transi-
tion in this case can be first or second order (or a smooth crossover)
depending on the parameters of the collision.

(3) Any generic experiment based on pressure and/or temperature quench
is to some degree inhomogeneous because of finite velocity of sound
and finite heat conductance.

The mass parameter (¢, 7¥), varying in both time and space, must be con-
sidered in defect formation. As a consequence, locations entering the broken
symmetry phase first could communicate their choice of the new vacuum as
the phase ordered region spreads in the wake of the phase transition front.
When this process dominates, symmetry breaking in various, even distant,
locations is no longer causally independent. The domain where the phase
transition occurred first may impose its choice on the rest of the volume, thus
suppressing or even halting production of topological defects. This happens
if velocity of the critical front is less than certain characteristic velocity.

4.1. Second order transition

The characteristic velocity in an overdamped transition can be estimated
as follows: The freeze-out healing length is set at  as £ = & (1g/7m0)"/4. At
the same instant the relaxation time is 7 = (TQT())I/Q. These two scales can
be combined [2] to give a velocity scale

; 1/4
@:é:vo <T—°> , (20)

where vy = &/ 70.

The density of defects IV as a function of critical front velocity is expected
to change qualitatively at ©. Above ¥ the homogeneous estimates should
hold. Below ¢ the density should be suppressed. Kibble and Volovik [26]
suggested that N ~ v/0 for small v < 9. Dziarmaga, Laguna and Zurek [27]
argued that N is exponentially suppressed below ¢. There is qualitative dif-
ference between the two proposals. The former option suggests that however
one makes a quench one will always get some defects, the latter implies that
if one’s inhomogeneous quench is sufficiently slow one will get no defects at
all. In what follows we will quantify what “sufficiently slow” means.

a. Decay of the False Vacuum. As a simple warm up exercise, let us
consider decay of a false symmetric vacuum to a true symmetry broken
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ground state in a one-dimensional dissipative ¢* model
Gp +nop — 950+ 3(¢° —ep) =0, (21)

where (¢, x) is a real order parameter and £ measures the degree of symme-
try breaking i.e. m? = —e. Without loosing generality, we look for a solu-
tion ¢(t, ) which interpolates between ¢(t, —o0) = —/e and (¢, +00) = 0.

Such a solution can not be static. It is a stationary half-kink

1
Ve (z — Utt)] > (22)

2 \/1-2?

p(t,z) = —e (1 + exp

moving with characteristic velocity

0 \ 2 ~1/2 3/
n n—00 €

1+ (=L ~° Ve 2
" <3ﬁ> ] 2n 23)

It is worth noting that the decay velocity v, increases with €.

vV =

b. Shock Wave. Our shock wave inhomogeneous quench model consists
of a sharp “pressure front” propagating with velocity v; that is,

o +nop — D+ 5(¢* — e(t,2) p) = O(t, 1), (24)

where

e(t,z) = Sign (t - %) (25)

is the relative temperature and O(t,z) is a Gaussian white noise of temper-
ature © with correlations given by Eq. (3).
There are two qualitatively different regimes:

(1) v > vy, the phase front propagates faster than the false vacuum can
decay. The half-kink (22) lags behind the front (25); a supercooled
symmetric phase grows with velocity v — v;. The supercooled phase
cannot last for long; it is unstable, and the noise makes it decay into
the true vacuum.

(2) v < vy, the phase front is slow enough for a half-kink to move in step
with the front, ¢(t,2) = Hy(z — vt). The symmetric vacuum decays
into one definite non-symmetric vacua. The choice is determined by
the boundary condition at x — —oo. No topological defects are pro-
duced in this regime. The stationary solution H,(x — vt) is stable
against small perturbations [27].
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These expectations are borne out by the numerical study of kink forma-
tion in [27]. Numerical results are presented in Fig. 1.

c. Linear Front. Let us consider now a system in which the inhomoge-
neous quench takes place via linear transition

z

e(t,z) = L. (26)
7Q

In the absence of noise, the propagating front is followed by a stationary
half-kink. This half-kink moves somewhat behind the front. Its location
is determined by the place where the threshold velocity (23) is equal to
the front velocity, vy[e(t,z)] = v. The distance between the front and the
half-kink increases as v3. This distance gives the size of the supercooled
region. When the supercooled region is narrow then it is stable against

small perturbations so that no defects are produced. If

—-1/2

3/2,1/2 1/4
v o= 142 2o 342 0 N _ yore (27)
11.7 n TQ

then the region is broad enough to be unstable [27] and the production of
defects is no longer suppressed.

Fig.1. (a) — density of kinks n as a function of velocity v for the shock wave
(25) with n = 1 (overdamped system). In this overdamped regime, the pre-
dicted threshold velocity is v; = 0.83. The plots from top to bottom corre-
spond to © = 1071, 1072, 1074, 107%, 1078, 1071°. At low O, we get a clear
cut-off velocity at v ~ 0.8, which is consistent with the prediction. (b) — den-
sity of kinks n as a function of velocity v for the linear inhomogeneous quench,
Eq. (26), with 79 = 64 and n = 1. The predicted threshold is v, = 0.77.
This cut-off is achieved for low ©@. The plots from top to bottom correspond
to ©® =107, 1072, 1074, 107, 10=8, 10~19.
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This prediction is confirmed by the numerical study of linear quenches
in Ref. [27], compare Fig. 1. However, the threshold velocity apparently
gradually decreases with increasing noise temperature ©. This decrease of
the threshold for kink formation is due to the thermal nucleation of kinks.
Quantitative estimates for this effect are given in [28].

4.2. First order transition

We assume the transition is strongly first order and that it goes by bubble
nucleation. To be more specific we consider a toy model in 3 dimensions

Orp = V2<p—a<p+b<p3 —cgo5 + O, (28)

where ¢ is real order parameter. The effective potential is of the ¢°® type.
Provided that b> > 4ac, it has symmetric minimum at ¢ = 0 and two sym-

metry broken minima at ¢ = ¢, = :l:\/(b +vb? — 4ac)/2c. We assume

that b, c are constant and that symmetry breaking transition is driven by a
decreasing below its critical value a, = 3b2 /16¢. At a = a. all three minima
are degenerate.

d. Decay of the False Vacuum. Suppose that a < a.. Let us consider
decay of the false symmetric vacuum to the true symmetry broken phase
in a one dimensional version of the model Eq. (28). We look for a solution
which interpolates between ¢ = ¢, for + - —oco0 and ¢ = 0 for z — +4o0.
The solution is a stationary half-kink H (z — v4t) moving with velocity

_ —b+2vVb? —dac

v 29
: NeT (29)

which has an envelope function
H(z) = ——2m (30)

P I
/1 + XgCC\({E

where a = /4c/3¢?2,. This way the false ¢ = 0 vacuum decays into the true
© = @ vacuum in the absence of noise. The decay velocity v, is zero for
a = a, it increases with increasing supercooling or with decreasing a.

e. Shock Wave. In the shock wave model a sharp front propagates with
velocity v

a = ac. — Aa Sign (t - %) . (31)

Similarly as for second order transitions there are two regimes:



Shards of Broken Symmetry ... 2947

(1) v > vy, the pressure front propagates faster than the false vacuum can
decay. The half-kink lags behind the front. The supercooled phase
in between them grows linearly with time. The phase is unstable,
it decays by bubble nucleation just as for a homogeneous transition.
Homogeneous estimates of defect density apply in this case.

(2) v < vy, the half-kink is faster. It moves in step with the front while
its tail penetrating into the symmetric phase. There is no supercooled
phase where bubbles could be nucleated. The symmetric phase goes
smoothly into one of the symmetry broken phases.

f. Linear Front. Let the inhomogeneous quench proceed by a linear front

moving with velocity v

a=a.— L. (32)

7Q

The half-kink follows the critical front staying at a certain distance behind
it. The distance D is such that the half-kink velocity vy, which depends
on the local value of a, is equal to the front velocity v, v(a) = v. With
increasing v the half-kink settles at increasing values of local a. Close to the
critical front the radius of the critical bubble is infinite and at the same time
the nucleation rate is infinitely small. As we go away from the front in the
direction of the half-kink the critical radius shrinks. At a certain distance L
from the front the energy of the critical bubble becomes comparable to the
temperature @. At this point bubble nucleation becomes possible. If L < D
bubbles can be nucleated in the supercooled region between the front and
the half-kink. If L > D then there is no bubble nucleation and no defects
can be born in the supercooled area.

Now we estimate the critical velocity such that L = D. The half-kink is
located at such an a that v(a) = v. L = D providing that for this a the
energy of the critical bubble E(a) is equal to temperature ©. The critical
bubble is a metastable spherically symmetric static solution of Eq. (28) with,
say, (¢m, vacuum inside and 0 vacuum outside its wall. Its energy can be easily
estimated when the width of its wall is negligible as compared to its radius
R¢(a). An approximate solution is given by H[r — R.(a)], where the critical
radius is

12¢
b+ 22 — dac

The energy of the critical bubble E(a) has a negative volume contribu-
tion, (47R3/3)V (¢m), and a positive surface tension term,

Re(a) (33)

(47R?) / dz [H' ()]? .



2948 W.H. ZUREK ET AL.

When the solution of v:(a) = v is put into F(a) and then the equation
E(a) = O is solved, one obtains a critical velocity

4¢3 0 (34)

<7rb(3b2 — 6bc + 16¢2) ) 3
Ver =

for L = D. For v > ve bubbles can nucleate in between the half-kink and
the front and thus the necessary condition for topological defects production
is satisfied.

The formula for ve, Eq. (34), is still a crude lower estimate for the
critical velocity. In fact it is not sufficient to nucleate some bubbles. Indi-
vidual bubbles would coalesce with the half-kink without any chance to trap
any nontrivial winding number. The bubbles should be nucleated in large
numbers or have enough time to grow so that they can mutually coalesce
before merging with the half-kink. Still, the argument which leads to v
demonstrates that there is a threshold velocity for defect formation.

4.3. Higher dimensions

The theory can be generalized to higher dimensions and to a complex
order parameter in a straightforward manner. Its major result is that a
subthreshold inhomogeneous quench does not produce any variation of the
order parameter in the direction normal to the front. This excludes any
possibility of production of vortex loops or closed membranes entirely con-
tained in the bulk, as well as of any pointlike defects. Some extended defects
can grow into the bulk provided their seeds were created at this edge of the
system where the symmetry was broken first. In first approximation such,
say, vortices grow into the bulk, following the passing front, while keeping
their direction normal to the front. In the end we do not get any chaotic
tangle of strings and string loops but parallel “combed” vortices. There are
two important perturbations to this “combed” picture:

(1) Thermal fluctuations make the strings look more random but without
backtracking and with string tension tending to smooth the small scale
fluctuations. The ends of the strings and antistrings at the critical
front are wandering around. Eventually an end of a string and of an
antistring may meet so that the strings join into a half-loop with its
both ends attached to the initial edge of the system. String tension
shrinks the half-loop to the edge where it unwinds.

(2) A much more efficient factor to remove vortices from the bulk are their
mutual interactions. Global parallel string and antistring attract one
another so that their ends at the critical front do not seek each other
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at random but tend to fuse in a deterministic way. This mechanism
makes the number of strings in the bulk decay with increasing distance
between the front and the initial edge.

The factors (1) and (2) lead to a picture in which the critical front
initially draws some parallel strings and antistrings from the edge, then the
strings recombine by joining ends and shrinking back to the edge. In the
end only the net surplus of strings (or antistrings) is left in the bulk.

These ideas are supported by experiments:

(1) Disclinations produced during a quench from disordered to nematic
phase in liquid crystals [29]. This is a weakly first order transition.
In early attempts to make cosmological experiments in liquid crystals
the disclinations were observed to grow approximately combed, join
ends and shrink to the initial edge. Later on it was realized that these
quenches were not homogeneous enough [30].

(2) Czochralski method of growing monocrystals, which is widely used to
grow silicon monocrystals necessary for microchips. In this method,
discovered in the thirties, a surface of liquid material is touched with
a monocrystal template. As the template is slowly lifted up it drags
a column of crystal out of the container. The top part of the column
is cold while its bottom part is at the melting temperature — the
transition is inhomogeneous. If the template is lifted slowly enough,
then no defects of the crystal lattice are produced which might spoil
the monocrystal.

To conclude this section: in an inhomogeneous quench there is a thresh-
old velocity vy of the critical front. Above the threshold defects are produced
like in a homogeneous quench. Below the threshold one gets no defects; in-
stead a clean monocrystal or a “disoriented chiral condensate” is grown with
a vacuum which may be uniform over significant distances, but which differs
from the true vacuum.

5. Defect formation and the Ginzburg regime

Recently a new *He experiment [17] was devised, improving on the ap-
paratus used earlier by McClintock et al. [31] to implement a superfluid
transition in “He through a sudden pressure quench. The corresponding
results are rather surprising. They show no evidence for the formation of
topological defects at the anticipated levels, contrary to expectations based
both on the old experiment [31], the theory! and the 3He data [15,16]. The

! Although a factor f & 10 in the formula for the string density n ~ 1/(f€)? could
explain the new results and seems consistent with recent numerical studies [13].
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discrepancy with the earlier “He quench data is now seen as the evidence
of mechanical stirring in the first version of the experiment. Nevertheless
to address the discrepancy with 3He it was suggested [32] that because the
Ginzburg regime in *He extends over a broad range of temperatures around
the A-line, large scale fluctuations may be able to unwind and alter the
configuration of the order parameter (in contrast to *He) while the quench
proceeds.

The Ginzburg temperature is defined through the loss of ability of the
order parameter to hop, through thermal activation, over the potential bar-
rier between broken symmetry vacua. Thus one might worry with Karra
and Rivers [32] that when the defect densities are eventually measured, at a
much later time, little or no string would have survived unwinding through
thermal activation. In this section we investigate this possibility and more
generally report a numerical study of the effect of thermal fluctuations on
topological defect formation and evolution.

Originally the Ginzburg temperature T was suggested to be the time
of formation of topological defects [4], since, at lower temperatures, ther-
mal fluctuations would be unable to overcome the potential energy barrier
associated with the defect’s topological stability.

In reality the situation is more complex. In equilibrium at any given
temperature T (including of course temperatures in the Ginzburg regime)
a range of string configurations will exist. However, long strings can only
exist in equilibrium strictly above T; [33].

To freeze them out, i.e., to form them, energy (associated with the string
tension) must be extracted from the system. This necessarily breaks time
invariance and will lead to locally preferred nonequilibrium field configu-
rations. Subsequently the system will order over larger and larger spatial
scales, leading to mutual string annihilation.

The initial density of defects entering this stage of evolution is computed
by the theory of Section 2. This density is set at an effective temperature
—£, which in *He is well within the estimates for the width of the Ginzburg
regime. By contrast, in *He the Ginzburg temperature is small compared
to the typical €. What happens to the initial densities of string when the
system is exposed to temperatures in the Ginzburg regime for an extended
amount of time?

In order to investigate this issue we need a quantitative definition of T(.
In tune with the arguments given above consider a volume of characteristic
size £(T), the correlation length, and a theory with two energetically degen-
erate minima of an effective potential V' (¢), separated by a potential barrier
AV. The rate for the field to change coherently from one minimum to the
other per unit volume due to thermal activation is exp [-AV/kgT]. For an
effective potential of the form (obtained, e.g. perturbatively at 1-loop)

V(9) = —gm*(T)¢* + A", (35)
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AV = mg)4. For a volume &3, we define T such that the probability of

overcoming the potential barrier is of order unity:

ETe)=1 & 73(2’2) = i. (36)

AV(Tg)

Ta :
G TG

This definition however has some caveats, for instance, an effective potential
of the form Eq. (35) is only valid for the mean field and not on smaller
scales. A more careful accounting of scales leads to different results [34],
which show an enhancement of the hoping probability. Thus, the factor of
1/4 in Eq. (36) should not be taken at face value.

A more rigorous definition arises from the range of temperatures below T,
for which fluctuations are large and consequently where perturbative finite
temperature field theory fails to be useful. In order to set up a perturbative
scheme at finite temperature from an initial 3 + 1 dimensional quantum
field theory one implements dimensional reduction which is valid provided
the temperature is high compared to all mass scales. As a consequence the
coupling of the dimensionally reduced 3D field theory becomes dimensionful,
1.e. A = AT = A3. In order to proceed one has to identify an appropriate
dimensionless coupling. This is done by taking NT'/m(T). The Ginzburg
regime is entered when this 3D effective coupling becomes strong, in the
vicinity of the critical point, namely

AT
m(Tg)

TG : =1. (37)

To compute T one needs the scaling of m(T) in the critical domain. We

write m?(T) = m2e”, with ¢ being the reduced temperature & = |T;CTC |.
Thus eqg = —0.18 for v = 0.5. This mean-field estimate produces an

upper bound in T' for T (and lower bound for g = 1/T). For realistic 3D

exponents, v = 0.67, we obtain eq = —0.25. The first criterion, based on

the hopping of a correlation sized volume, results in higher values of Tg.
This brings about a relatively large uncertainty in the value of Tq, which is
18-25% below T.

5.1. Strings survive the Ginzburg regime

In order to investigate the role of the Ginzburg temperature in the dy-
namics of defect formation we deliberately expose the system to a heat bath
at temperature ¢;, within the Ginzburg regime and below. We repeat this
procedure for a range of time intervals At, after which the bath temperature
is taken to zero. This set of temperature trajectories is shown in Fig. 2. We
are attempting to emulate the worst case scenario of an experimental quench
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Fig.2. Temperature trajectories for testing the effect of exposure to the Ginzburg

regime on string densities.

The system is first thermalized at a high temperature

and then placed in contact with a heat bath at an intermediate temperature ¢;
below T, for a time interval At.
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Fig. 3. The string density measured at a later time ¢ > At vs intermediate temper-
ature €;. From top to bottom the three plots correspond to At = 10, 20, 50, during
which the system remained in contact with a heat bath at T;. There is no visible

role played by intermediat

e temperatures within the Ginzburg regime.
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where the temperature or pressure are dropped monotonically but where the
system makes a long stopover within the Ginzburg regime.

We would expect that, if the Ginzburg regime indeed produced enhanced
decay of strings, then the string densities measured at later times should be
smaller the longer the time the system spent within the range T, > T > 1.

We have measured the final string densities at a time ¢ > Az. Our results
for the final string densities as a function of intermediate temperature ¢; and
At are summarized in figure 3. There is no apparent effect of the Ginzburg
regime in reducing string densities at formation.

If any trend is visible from figure 3 it is the opposite, namely that the
lower ¢;, the less string is measured at later times. This is consistent with
the relaxation of the string network, resulting in vortex annihilation con-
trolled by the string tension (which is smaller near T¢) and with results the
thermodynamics of vortex strings [33].

5.2. Memory of the order parameter configuration near T,

An independent test on the possible role of thermal fluctuations in affect-
ing string densities consists in reheating a quenched system to a temperature
around T¢ (both below and above it) and cooling it again. This process tests
the memory of the order parameter as well as that of other related quan-
tities (see also [12]), such as defects. These temperature (e(¢)) trajectories
are illustrated in Fig. 4(a).

We are particularly interested in investigating under what circumstances
thermal fluctuations can affect the large scale configuration of the order
parameter.

We define the unequal-time correlation function

2
<(,0(1U, trh)@(ma t+ trh)) =N Z Z (Pj(xia trh)(Pj (iEZ’, t+ trh) ) (38)
j=1 i

where N is an irrelevant normalization factor. Note that the correlation
function (p(z, tm)e(z,t + tyn)) cannot be complex as we have summed over
the field’s components. This correlator has several interesting properties.
For short times it displays a characteristic time, which describes the decay
of correlations over very small spatial scales. This is the initial transient in
Fig. 4(b). For later times the residual correlation comes from the motion of
the order parameter (the field volume average). This average can be either
positive or negative but, if thermal, will converge to zero at and above T¢.
Now, we are interested in determining whether the final field configu-
ration over large spatial scales is correlated to the configuration prior to
reheating. Fig. 4 shows that only if one crosses T, by more than +¢£, is the
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Fig.4. (a) — dependence of the bath temperature € in time. After being quenched
in temperature (7¢ = 80) the system is reheated at the same rate to a temperature
er = 0.469,0.256,0.061, —0.068 (top to bottom) ‘and cooled again. (b) — the
correlation function between the field at the time just before reheating and at later
times, {@;(tmn,z)pi(t + tmn,x)) is plotted. There is a universal short time transient
for the decorrelation of the field over small scales while the long time tails of the
correlation function describe change over the mean fields. All four trajectories cross
the Ginzburg regime, but only those reaching or crossing +¢ display a significant
memory loss.

memory of the initial quenched configuration erased (see in particular the
two trajectories reaching higher temperatures in comparison to the others).
For these trajectories the field correlations reach zero and after reheating
evolve to a value manifestly different from that prior to reheating.

For trajectories within the Ginzburg regime, that do not cross T¢, the
change in the configuration of the order parameter as measured by Eq. (38)
is small. In particular the field configuration existing before reheating is
approximately recovered as the fields are cooled. The same is true for the
string densities, including those of long strings.

Thus we are led to conclude (see also [33]) that even prolonged exposure
of a quenched field configuration to the Ginzburg regime has little conse-
quences in changing the order parameter configurations emerging at —é, and
associated string densities. In addition we have shown that to truly destroy
a quenched field configuration existing below —&, one has to expose the sys-
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tem to temperatures well above T¢. In particular for any particular quench
trajectory, a temperature of T' ~ T, + £, must be reached and maintained
for a time ~ # in order to erase memory of the initial configuration.

These results fully support the theory of Section 2 for the critical dy-
namics of second order transitions and all known thermodynamic results for
vortex strings in O(N) theories. Thus we expect the results of this section to
carry over from our models to the Lancaster He experiments. The results
of Ref. [17] in these experiments cannot therefore be attributed to the effects
of Ginzburg regime in *He.

In the next section we offer an alternative explanation.

6. What is being observed in the 3He and “He experiments

The several experiments in Helium, and more recently in superconduc-
tors, testing the theory of defect formation rely on substantially different
processes to induce the phase transition and measure defects.

In this section we analyze, in the light of our own theoretical results, how
experimental procedures can lead to the detection of substantially different
defect densities.

Two particular factors play a decisive role in the value of the topological
defect density measured — the time and procedure of measurement after
the quench and the initial /final state of the system.

6.1. The Lancaster experiments in * He

In the Lancaster experiments in ‘He the defect density is measured
through the attenuation of a second sound signal (a heat pulse). This probe
can only detect densities above a certain threshold (if the theory of Sec-
tion 2 is used f < 10 would be required, which is at odds with the results of
the numerical studies [10, 12| and especially [13]). Moreover, the density at
formation has to be extrapolated from the data obtained at relatively late
times — the signal is noisy shortly after the quench [17].

After being formed by the critical dynamics of the phase transition vortex
strings decay away, as the system orders and cools. This decay has been
modeled by Vinen’s Equation

n = _’YnQ ) (39)

where n is the length of string per unit volume, i.e. the string length density,
v > 0. This model has been observed in the same experiment to describe
very well the decay of vorticity induced initially through a fluid flow.
Vorticity created thermally is potentially different from that formed un-
der an external flow. We know from several theoretical and numerical in-
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dications that a thermal distribution of vortices close to the transition is
comprised of both lone strines and small loops, see Fig. 5.
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Fig. 5. The decay of vorticity under a quench. Initially the defect network includes
both long strings and small loops. At late times the network coarsens and only
long strings remain, see also Fig. 6.

These two populations decay very differently in the wake of the quench.
Without any mechanism for stabilization the loops tend to disappear in a
fast transient. In contrast the long strings loose some of their small scale
structure but survive, and will ultimately set the decay pattern described
by the Vinen equation.

It is the surviving long strings — eventually measured — that will pro-
vide the experimental signal in the *He experiments. This is shown in Figs. 5
and 6. As the system is quenched from higher temperatures or pressures, an
initial string network comprised of strings of all lengths looses its loops and
settles to a much slower decay trend dominated by long strings.

The crucial question then is whether enough long string would persist at
the time of measurement to yield a positive signal.
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Fig.6. String length I distributions Ld(1), taken between +# and the “time of
formation” ({|¢|) = 0.95), for 7¢ = 64. Data sets denoted by (x,A,0, e) correspond
to increasingly later times. Lines show the integral distributions, e.g. Lo(l) =
> ULde(')dl'. Tt is clear that at late times only long strings survive.

We have performed a very similar procedure in a numerical “experi-
ment” [13]. We observed that at long times string densities could be mea-
sured that agreed extremely well with all features of the theory. Our def-
inition of lomg times was intimately connected to the completion of the
phase transition expressed in the expectation values of the order param-
eter (|¢|) ~ 0.9-0.975. The effective f measured then was in the range
f = 11-16. All our indications are that the Lancaster *He experiment per-
forms its measurements much later (up to 2 orders of magnitude) than we
do, thus leading to even smaller string densities. Such string densities could
evade detection under the second sound experimental probe, which may lead
to the negative result [17].

The other possibility is that the annihilation of a network of vortices aris-

ing from a rapid quench may proceed at a rate different than for the network
produced by turbulent flow. Clearly, in case of turbulent flow there may be
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correlation between the orientation of nearby vortices. By contrast, vortices
created by quench are anticorrelated (see, e.g., discussion in Section 4 of
Ref. [21]). Tt seems plausible that annihilation of vortices would be faster in
that case. In order to measure a positive signal in these circumstances the
measurements would have to be made sooner, after a much faster quench,
or with a higher sensitivity.

6.2. Experiments in 3 He

In contrast to the experiments in *He described above which appear
sensitive to the “infinite” string, experiments in *He have pursued two in-
dependent strategies both of which allow one to stabilize and detect defect
loops of various sizes: either vorticity is stabilized and amplified by the flow
and then measured directly using nuclear magnetic resonance (the Helsinki
experiment) or it is inferred from a certain amount of missing energy (the
Grenoble and Lancaster *He experiments). Of these two procedures the first
is more direct — vorticity formed during the quench is forced to migrate to
the center of the container, through the existence of a subcritical rotation
velocity, where it is detected. This permits loops of string of length larger
than a known threshold to survive decay and results naturally in a higher
density, 7.e. the defect density is measured effectively very shortly after the
transition takes place and need not be limited the “infinitely long string”.
As a consequence, much smaller values of f and larger string densities are
measured than in the *He experimental setting.

Both remaining *He experiments end at a region of the phase diagram
far from the transition — 3He being very much colder than in the Helsinki
experiment. A lower effective temperature results in the effective absence of
damping mechanisms which in turn leads to the preservation of even small
vortex loops. Dissipation mechanisms rely on the presence of quasiparticles.
Thus, when the medium is very cold, energy dissipation will slow exponen-
tially and vortices can be stabilized by a coherent flow resulting from their
motion through the superfluid. We expect therefore the string population
in all *He experiments to be mostly in the form of relatively small loops. In
Helsinki, the largest loops are stabilized by the slow rotation of the whole
system, and their density can be extrapolated to the smaller loops, leading
to the total consistent with the Grenoble and Lancaster experiments, where
— one may guess — all of the loops survive for a long time in the absence
of dissipation.

The lifetime of these loops is thus expected to be much longer than that of
thermal loops formed at a quench through the A-line in He. As a result the
long time decay of vorticity may also be very different in these two cases as
the former corresponds to an ensemble of moving loops, at relative distances
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much larger than their typical radius, but the latter contains strings of all
sizes, where the mean distance between strings is comparable to their length.

This conjectured picture, supported in part by numerical studies, leads
to the conclusion that both experimental settings in 3He should lead to a
positive result, compatible with a relatively small value of f relevant for all
loops (we get f ~ 4, when n ~ 1/(£f)? is used to fit early data in Fig. 6),
whereas in “*He the smallness of the signal at the time of first measure-
ment makes the detection more difficult and at present below the sensitivity
threshold.

7. Discussion

The mechanism we described early on in this paper is based on the
analysis of the behavior of the order parameter ¢. The order parameter
is clearly a phenomenological entity and the equations that govern its evo-
lution are approximate and in many cases postulated rather than derived.
On the other hand the underlying physics is usually very specific. It may,
for instance, involve atoms of some particular isotope such as *He. Thus,
in principle, one could formulate an exact microscopic theory of particular
second order phase transformations. However, in all of the experimentally
accessible cases discussed above such a fundamental theory is simply too
complicated to lead to useful conclusions. The superfluid transition in *He
is a good example: Strong interactions in *He make it impossible to proceed
rigorously all the way starting at the microscopic level. Analysis of related
issues in the field theoretic context is also difficult [35]. Recently however
a new system has become experimentally accessible: Atomic Bose-Einstein
Condensates (BEC’s) undergo the second-order phase transition at much
lower densities. Natural approximation schemes can be therefore suggested,
and the exact microscopic theory can be studied in greater detail than for
the “old” superfluids.

We shall not attempt to review the theoretical or experimental situation
in BEC’s. Good reviews already exist (see e.g. [36]). Our aim is simply to
point out that questions concerning the formation of topological defects can
be posed and analyzed within a much more fundamental formalism, which is
explicitly quantum. The approximations start from the Schrodinger, equa-
tion and lead in a controlled manner to master equations for the density
operator of the condensing system. Further approximations result in a quan-
tum kinetic theory. Preliminary analysis of these issues [37] allows one to
recover the key scaling relations and the key predictions we have described
in Section 2. Indeed, time dependent Landau—Ginzburg theory follows as an
approximation to some of the terms which one obtains from the microscopic
treatments. On the other hand, the microscopic theory contains additional
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terms, which alter predictions concerning the formation of topological de-
fects. Limited studies [37] indicate that the predicted densities of the vortex
lines or of the winding numbers would be smaller than those based on the
scalings of the order parameter (see Section 2 of this paper). Moreover,
corrections seem to be more significant as the ratio 79/7g decreases.

The possibility of experimental studies of defect formation in BEC
quenches nevertheless exists and may lead to exciting insights into the prob-
lem.

Superconductors may be the other useful testing ground. Indeed, two
experiments have been already reported [18], with the claim of conflicting
results, which seemed to depend on the geometry. Rapid cooling produced
no detectable signal in a high-temperature film, although it is far from clear
whether any was expected. The original claim that the effect was ruled out
at the “~ 103 level” was based on an overly optimistic prediction, which
did not recognize that the total flux expected to arise in the experimentally
studied geometry scales as n'/%, i.e. only with the fourth root of the total
number of defects (rather than with the square root; see Section 4 of Ref. [21]
for discussion).

The revised prediction is close to the claimed sensitivity of the exper-
iment, and given the uncertainties in the critical exponents of the high-
temperature superconductor, as well as the possibility of imperfect trapping
of the defects, etc. it is unfortunately impossible to extract useful constraints
from the existing negative experiment.

The experiment carried out by the same group, in the loop geometry has,
on the other hand, yielded positive results. This experiment also operates
near the edge of detectability. It detects the flux induced by a loop which is
artificially broken into a large number N of superconducting sections, which
are then rapidly reconnected. The predicted flux should have a Gaussian
distribution with a random direction and intensity corresponding to o ~ v/ N
flux quanta [21], such signals appear to have been indeed found [18].

The available experimental results can be therefore described as confus-
ing. In liquid crystals the results seem to be the perhaps least ambiguous,
but they concern a (weakly) first order transition. In superfluids, 2He is still
the strongest case for the mechanism, especially since the results between all
the experiments (carried out in quite different parameter regimes, and using
very different techniques) are consistent. On the other hand the relevance
of the Helsinki experiment for the cosmological scenario has been recently
questioned by numerical experiments [38] which indicate that the vortic-
ity generated in such settings may be induced by the flow imposed in the
Helsinki experiment to facilitate the process of their detection. These sim-
ulations were carried out under a very idealized set of assumptions (which
included very small fluctuations and axial symmetry) and conclusions of
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Ref. [38] appear to be inconsistent with the experiment [39], but much more
remains to be done to clarify this issue. Indeed, a fully 3-D study with
large fluctuations is under way [40]. Further experimental and numerical
studies to investigate the role of rotation in stabilizing vortex loops and to
explore the implications for the A-B phase transition, etc., are nevertheless
essential.

The existing *He data are clearly disappointing, but not at odds with a
more conservative theoretical estimate. Moreover as we have argued above
there may be a way to reconcile estimates of vortex line density obtained
from He and *He experiments, even without any special appeal to the
Ginzburg regime [32] or to quantum kinetic theory.

Finally the first experimental reconnaissance into quenches in supercon-
ductors is preliminary in its nature and ambiguous in its results.

In the meantime, numerical studies have confirmed and refined the basic
indications of the theory of order parameter dynamics.

One may be therefore justified in the expectation of an exciting but un-
certain future. A lot is at stake, including the understanding of the phase
transition dynamics, nature of the order parameter and other collective ob-
servables of quantum many body systems and perhaps even the relation
between the quantum and the classical.

REFERENCES

[1] W.H. Zurek, Experimental Cosmology: Strings in Superfluid Helium, Los
Alamos preprint LA-UR-84-3818.

[2] W.H. Zurek, Nature 317, 505 (1985).

[3] W.H. Zurek, Acta Phys. Pol. B24, 1301 (1993).
[4] T.W.B. Kibble, J. Phys. A 9, 1387 (1976).

[5] T.W.B. Kibble, Phys. Rep. 67, 183 (1980).

[6] A.J. Gill, hep-ph/9706327.

[7] J. Dziarmaga, Phys. Rev. Lett. 81, 5485 (1998); J. Dziarmaga, M. Sadzikowski,
Phys. Rev. Lett. 82, 4192 (1999).

[8] G. Volovik, Czech J. Phys. 46, 3048 (1996).

[9] Y.M. Bunkov, O.D. Timofeevskaya, Phys. Rev. Lett. 80, 1308 (1998).
[10] P. Laguna, W.H. Zurek, Phys. Rev. Lett. 78, 2519 (1997).
[11] P. Laguna, W.H. Zurek, Phys. Rev. D58, 5021 (1998).
[12] A. Yates, W.H. Zurek, Phys. Rev. Lett. 80, 5477 (1998).

[13] N.D. Antunes, L.M.A. Bettencourt, W.H. Zurek, Phys. Rev. Lett. 82, 2824
(1999).



2962 W.H. ZUREK ET AL.

[14] G.J. Stephens, E.A. Calzetta, B.L. Hu, S.A. Ramsey, Phys. Rev. D59, 045009
(1999).

[15] C. Batierle et al., Nature 382, 332 (1996).

[16] V.M.H. Ruutu et al., Nature 382, 334 (1996); V.M.H. Ruutu et al. Phys. Rev.
Lett. 80, 1465 (1998).

[17] M.E. Dodd et al., Phys. Rev. Lett., 81, 3703 (1998).

[18] R. Carmi, E. Polturak, Phys. Rev. B60, 7595 (1999); R. Carmi, E. Polturak,
G. Koren, Phys. Rev. Lett. 84, 4966 (2000).

[19] G.D. Lythe, Anales de Fisica 4, 55 (1998).

[20] J. Dziarmaga, Phys. Rev. Lett. 81, 1551 (1998).

[21] W.H. Zurek, Phys. Rep. 276, 177 (1996).

[22] V.B. Eltsov, M. Krusius, G.E. Volovik, cond-mat/9809125.

[23] P.C. Hohenberg, B.L. Halperin, Rev. Mod. Phys. 43, 435 (1977).

[24] K. Kajantie, M. Laine, K. Rummukainen, M. Shaposhnikov, Phys. Rev. Lett.
77, 2887 (1996).

[25] J.D. Bjorken, Phys. Rev. D 27, 140 (1983).

[26] T.W.B. Kibble, G.E. Volovik, Zh. Eksp. Teor. Fiz. 65, 96 (1997).

[27] J. Dziarmaga, P. Laguna, W.H. Zurek, Phys. Rev. Lett. 82, 4749 (1999).
[28] N.B. Kopnin, E.V. Thuneberg, Phys. Rev. Lett. 83, 116 (1999).

[29] I. Chuang, R. Diirrer, N. Turok, B. Yurke, Science 251, 1336 (1991);
M.J. Bowick, L. Chander, E.A. Schiff, A.M. Srivastava, Science 263, 943
(1994).

[30] B. Yurke, private communication.
[31] P.C. Hendry et al., Nature 368, 315 (1994).
[32] G. Karra, R.J. Rivers, Phys. Rev. Lett. 81, 3707 (1998).

[33] N.D. Antunes, L.M.A. Bettencourt, M. Hindmarsh, Phys. Rev. Lett. 80, 908
(1998); N.D. Antunes, L.M.A. Bettencourt, Phys. Rev. Lett. 81, 3083 (1998);
L.M.A. Bettencourt, N.D. Antunes, W.H. Zurek, Phys. Rev. D62, 5005 (2000).

[34] L.M.A. Bettencourt, Phys. Lett. B356, 297 (1995).

[35] D. Boyanovsky, H. de Vega, R. Holman, Non-Equilibrium Phase Transitions
in Condensed Matter and Cosmology: Spinodal Decomposition, Condensates
and Defects, in Ref. [41].

[36] W. Ketterle, D.S. Durfee, D.M. Stamper-Kurn, cond-mat/9904034.

[37] J.R. Anglin, W.H. Zurek, Phys. Rev. Lett. 83, 1707 (1999 ).

[38] I.S. Aranson, N.B. Kopnin, V.M. Vinokur, Phys. Rev. Lett. 83, 2600 (1999).
[39] G.E. Volovik, Physica B280, 122 (2000).

[40] L.M.A. Bettencourt, W.H. Zurek, in preparation.

[41] Y.M. Bunkov, H. Godfrin, Topological Defects and the Nonequilibrium Dy-
namics of Symmetry Breaking Phase Transitions, Kluwer, Dordrecht 2000.



