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STRIPE PHASESIN HIGH-TEMPERATURE SUPERCONDUCTORS�Andrzej M. Ole±Institute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polande-mail: amoles�if.uj.edu.pl(Reeived November 14, 2000)We review reent results obtained for the stripe phases in the Hubbardmodel. The experimentally observed half-�lled (01) stripes with the �llingof one hole per two domain wall atoms are stabilized by eletron orrela-tion e�ets. We show that the metalli stripe phases obtained using thedynamial mean-�eld approximation are stabilized by a pseudogap and arequalitatively di�erent from insulating stripes derived from the one-partile(Hartree�Fok) simulations. They reprodue the doping dependene of thesize of magneti domains in (01) stripe phases and agree with the experi-mental data of angle resolved photoemission for La2�xSrxCuO4.PACS numbers: 74.72.�h, 71.27.+a, 79.60.�i, 71.10.Fd1. Mott insulators and stripe phasesNumerous fasinating phenomena, suh as various types of ompetingmagnetially ordered phases, metal-insulator transitions, and high-tempe-rature superondutivity observed in transition metal oxides, are ausedby the olletive behavior of strongly orrelated eletrons [1℄. It was re-ognized �rst by Mott that the large loal eletron�eletron interation Umight dominate over the kineti energy / t, and ould ause eletron lo-alization in a half-�lled band with eletron density n = 1 per atom, thusexplaining a new type of insulating state, the so-alled Mott insulator [2℄.In this state part of the degrees of freedom is removed, as the harge �utu-ations are suppressed, and the problem of fermions on a lattie redues tothe spin problem, in the simplest ase desribed by the Heisenberg modelwith a nearest-neighbor antiferromagneti (AF) kineti exhange interation� Presented at the XL Craow Shool of Theoretial Physis, Zakopane, PolandJune 3�11, 2000. (2963)



2964 A.M. Ole±J > 0. Therefore, if no other degree of freedom is present and the lattie isnonfrustrated, Mott insulators have an AF long-range order in the groundstate. Suh a state would be stable on a three-dimensional ubi lattie,realized by the transition metal oxides with perovskite strutures, but fre-quently further ompliations suh as orbital degeneray our, leading tothe e�etive interations that are more di�ult to desribe, and may favorqualitatively new magneti states [3℄. Fortunately, the parent ompounds ofthe High-Temperature Superonduting Oxides (HTSO), suh as La2CuO4and YBa2Cu3O6, are simpler � they have CuO2 planes as a ommon stru-tural element, well separated from all other ions due to large lattie distor-tions, and orbital degeneray is removed. Suh planes an be desribed byan e�etive two-dimensional (2D) model of eletrons interating on a squarelattie, the Hubbard model.In addition to the Mott insulating state itself, a more di�ult and hal-lenging subjet has been to desribe and understand orrelated metalliphases near the Mott insulator. In this regime the harge �utuations ourin addition to the spin �utuations, and give rise to the anomalous metalliphase [4℄. Suh a situation ours for instane in La2�xSrxCuO4, where thedoping by divalent Sr ions dereases the eletron density to n = 1 � x < 1,and holes doped to an antiferromagnet an move only in a restrited spae,de�ned by the onstraint of no double oupany due to large U . In HTSOthis metalli phase is unstable in a very spetaular way � the system be-omes superonduting at low temperature. Here we will not address theentral and outstanding question onerning the mehanism of superon-dutivity, but disuss the qualitatively new phenomenon whih ours inthe normal phase � the instability towards a novel type of harge and mag-netially ordered state, the so-alled stripe phase [5℄.As one of very few preditions in the theory of high temperature super-ondutivity, the stripes were found in Hartree�Fok (HF) alulations on�nite latties desribed by the Hubbard model [6℄, well before their experi-mental on�rmation [7℄. Suh states result from the ompetition between thesuperexhange interations / J = 4t2=U (t is here an e�etive parameterfor the Cu�Cu hopping whih may be derived from the realisti harge-transfer model, where a more quantitative analysis of the superexhange Jis possible [8℄), whih stabilizes the AF long-range order in the undopedmaterials [9℄, and the kineti energy of holes / t whih are doped to this AFstate. This physial situation is desribed by the e�etive Hamiltonian, theso-alled t�J model, derived many years ago [10℄ and now used for a generidesription of the phenomena in doped AF insulators, inter alia also for theholes moving in doped CuO2 planes [11℄. On one hand, the magneti energyis gained when the eletrons oupy the neighboring sites and the spins orderas in the Néel state, while on the other hand, the holes an move muh easier



Stripe Phases in High-Temperature Superondutors 2965when the AF order is suppressed, at least loally in this part of a CuO2 planewhere the holes are moving. In the extreme ase when the loal Coulombinteration is very large U ! 1, this leads to the polaroni mehanism offerromagneti (FM) order whih is stabilized by a single hole/eletron dopedto a half-�lled system, known as the Nagaoka theorem [12℄. This ase is spe-ial, as the magneti interations / t2=U vanish, and the kineti energy isoptimized in the FM phase. At large but �nite U a ompromise betweenthese two energies has to be reahed, and semilassially they an be gainedin di�erent regions of a sample, with holons ondensing in losed trajetorieswhih gain the energy from quantum �utuations [13℄. This gives thereforea phase separation whih manifests itself in a form of a stripe phase: the AFdomains are separated by nonmagneti lines, the one-dimensional (1D) do-main walls. The kineti energy is then best when the density of doped holesin a Domain Wall (DW) is large, and the AF domains are almost identialto the AF order in a Mott insulator [14, 15℄.This phase separation into a stripe phase is very general and ours invarious transition metal oxides [1, 16℄. The modulations in magnetizationdensity have been deteted in neutron sattering [7℄, and it was shown thatthey orrespond to the AF domains separated by the DW's, qualitativelylooking as those of Fig. 1. Here we will disuss the stripe phases only forHTSO, where stati stripes were observed in La1:6�xNd0:4SrxCuO4 [7℄. Thissubjet is of great interest at present, and it is hoped that their investigationswill help to understand the instabilities of doped Mott insulators, and therole of stripes in the high-temperature superondutivity. Arguments weregiven that the stripes suppress the superondutivity [17,18℄, and indeed thestati stripes our only in the La-based ompounds, where the transitiontemperature T is lower than in the Y- or Bi-based superondutors.
(b) (11) phase(01) phase

+ - + -

(a)Fig. 1. Shemati strutures of stripe phases with the �lling of one hole per twoDW's atoms (half-�lled DW's) at doping x = 1=8: (a) (01) phase, and (b) (11)phase. Arrows stand for "- and #-moments in the stripe phase, with their lengthproportional to the loal magnetization (3); irles indiate the positions oupiedby holes. Two types of magneti domains are indiated by + and �, respetively.



2966 A.M. Ole±The stripe phases were obtained in HF alulations performed on theHubbard model [6,19,20℄, t�J model [21℄, and more realisti harge-transfermodels [22, 23℄. The most stable strutures obtained in the HF approxima-tion have the density of one doped hole per one atom in a DW, orrespondingto �lled stripes [20℄. Suh stripe phases were indeed observed in the nik-elates [24℄. On the ontrary, it has been established experimentally in theuprates that one doped hole stabilizes two harge unit ells in a stripe stru-ture, i.e., the magneti states whih form in CuO2 planes of HTSO are half-�lled stripes, with one hole per two DW atoms [7℄. Two stripe phases withthis �lling and the magneti unit ells onsisting of 16 atoms, representedby two AF domains whih are separated by two DW's with four holes in8� 4 lusters, orresponding to x = 1=8 doping, are shown shematially inFig. 1. The piture is somewhat idealized, as the holes will partly deloalizein reality, and ould also give equal densities and no magneti moments atall DW atoms, as shown also by the numerial examples disussed in Ses. 3and 5. The �lled stripe phases would aommodate twie as many holes forthe same luster sizes and domain strutures, and would orrespond insteadto x = 1=4 doping. It may be expeted that the kineti energy is quite dif-ferent depending on the shape of magneti domains and on the parametersof the mirosopi model, and one has to determine the stable density andmagnetization distributions in order to deide whether any of the two phasesshown in Fig. 1, or any other phase, is the ground state on�guration.The above disrepany between the theory and experiment shows thatthe lassial instability is qualitatively inorret in the uprates, quantum�utuations play an important role in stripe phases, and one is fored togo beyond the HF approximation, and treat expliitly loal eletron or-relations. A few methods whih inlude eletron orrelations, suh as:the Density Matrix Renormalization Group (DMRG) for the t�J model[25℄, slave-boson mean �eld approah [26℄, variational wave funtions de-sribed by the loal ansatz [27, 28℄, Exat Diagonalization (ED) of �nitelusters [17℄, Monte-Carlo simulations applied to a spin-fermion model [29℄,analyti expansions of the wave funtion [30, 31℄, Dynamial Mean-FieldTheory (DMFT) [32℄, and luster perturbation theory [33℄, have been usedreently to investigate the stable ground states of stripe phases. It was aspetaular suess of these methods that the half-�lled stripe phases wereobtained in all of them for the relevant parameters whih model the HTSO.The spetral properties of stripe phases are also of great interest, as thestripes have measurable onsequenes in photoemission [34�36℄. If eletronorrelations are important, large orretions to the eletroni struture, andto the gaps whih stabilize the stripe phases in HF, are expeted. It has beenshown by reent numerial [17, 33, 37, 38℄ and semianalyti [31℄ studies thatthe stripe superstruture indues drasti hanges of the spetral weight dis-



Stripe Phases in High-Temperature Superondutors 2967tribution. Partiularly intriguing are suh observations as non-Fermi liquiddependene of the hemial potential on the doping [39℄, and the existeneof a pseudogap whih opens at the Fermi level in a broad regime of dop-ing [36℄. In addition, �at quasipartile (QP) states have been observed nearthe X = (�; 0) point in La2�xSrxCuO4 [36℄. It will be shown that thesefeatures an be reprodued in the spetral funtions obtained using an ap-propriate extension of the DMFT [40℄.The rest of this paper is organized as follows. In Se. 2 we present themirosopi reasons of stability of stripe phases in lassial (HF) states anddisuss the limitations of this approah. Better solutions an be obtainedvariationally, and we present in Se. 3 an example of a variational wavefuntion and show that it gives indeed stable half-�lled stripes, with thesame �lling and orientation as observed experimentally. While this approahallows to investigate only the orrelation energy and the struture of groundstates, eletron orrelations are also important for the dynamial orrelationsseen in photoemission. They may be studied when a DMFT is generalized tothe stripe phase [32℄, as presented in Se. 4. Using this method, we analyzedin Se. 5 the sequene of stable stripe phases with inreasing hole dopingx, and their spetral properties. The summary and some open problemsrelated to stripe physis are presented in Se. 6.2. Solitoni mehanism of stripe formationThe realisti harge-transfer model for eletroni states in CuO2 planes ofHTSO whih inludes Cu(3dx2�y2) and O(2px(y)) orbitals may be replaed bya simpler e�etive Hubbard model whih desribes the interating eletronson a square lattie oupied by Cu ions [41, 42℄,H = � Xmi;nj;� tmi;njaymi�anj� + UXmi nmi"nmi# : (1)In the stripe phase the 2D square lattie is overed by N superells ontain-ing L sites eah. aymi� are reation operators for a hole at site fmig, labeledby two indies: the superell index m, and the index within the stripe unitell i = 1; :::; L, while nmi� = aymi�ami� is the eletron number operator.The usually disussed Hubbard model (1) inludes only the hopping ele-ments between nearest neighbors tmi;nj = t, but in the superondutinguprates it is derived from a realisti harge-transfer model, either by theell method [41℄, or by the downfolding proedure, and therefore also �nitehopping elements between seond (tmi;nj = t0) and third (tmi;nj = t00) neigh-bors are of importane. The eletrons interat by strong on-site Coulombinteration U ' 12t.



2968 A.M. Ole±In the HF approximation the interating term is replaed by the poten-tials / U whih at on eletron densities [6, 20℄:Unmi"nmi# ' U(hnmi"inmi# + nmi"hnmi#i � hnmi"ihnmi#i): (2)The potentials onsist of a nonmagneti part / Uni, where ni = hnmi" +nmi#i is an eletron density, and a magneti part / Umi, wheremi = hnmi" � nmi#i = 2hSzi i (3)is a loal magnetization. Therefore, the eletroni struture has to be solvedself-onsistently with loal magneti potentials, or stati selfenergy [6℄,�HFi� = Uni�� = 12U(ni + ���mi) ; (4)where ni�� = hnmi��i with �� = �� is the eletron density in stripe superell,and �� = �1 for � ="; #. At half �lling the eletron density is uniform (ni =1), and the ground state is AF, with the magnetization m > 0 alternatingbetween two sublatties A and B: mi = �m for i 2 A;B. In the simplestase of t0 = t00 = 0, the one-partile energy is given by "k = �2t(os kx +os ky), and the AF bands are easily obtained [43℄,E�k = 12 ("k + "k+Q)� 12 �("k � "k+Q)2 + (Um)2�1=2 ; (5)where Q = (�; �) is the nesting vetor in a 2D square lattie (i.e., "k+Q =�"k). Thus, if U � t, large potentials �12U (4), de�ned with respetto the nonmagneti uniform bakground, split the eletroni struture (5)into oupied and empty states whih are separated by a large gap � U ,resulting in a Mott�Hubbard insulator. The AF subbands (5) simulate inthe one-partile alulation the inoherent states of the Lower Hubbard Band(LHB) and Upper Hubbard Band (UHB) of a strongly orrelated eletronsystem [44℄, respetively.The situation hanges when holes are doped to an antiferromagnet.Consider �rst a single hole introdued by doping into an AF bakground[Fig. 2(a)℄. If one spin is removed, one arrives at a many-body problemof a hole moving in an AF bakground whih gives qualitatively new QPstates aompanied by inoherent proesses at higher energies [45℄. In orderto understand qualitatively the mehanism whih favors stripes at higherdoping, it is however enough to onsider only a small luster onsisting ofthree atoms. This hoie would be of ourse unrealisti for a single hole inan antiferromagnet, but in a stripe phase the symmetry is loally broken,and onsidering the (01) stripe phase of Fig. 1 one an �rst investigate theenergy gain in the diretion perpendiular to a DW itself. Thus, a luster



Stripe Phases in High-Temperature Superondutors 2969onsisting of three atoms and a hole in the middle is a simplest unit, repre-senting either a line �lled by holes in an antiferromagnet [Fig. 2(a)℄, or a holeon a DW, plaed between two AF domains [Fig. 2(b)℄. Thereby, we assumethat the eletrons annot move due to large Coulomb interation U � t,and thus the hole in on�ned only to the onsidered three atoms. If a #-spinis replaed by a hole in an antiferromagnet, as in Fig. 2(a), the situation ina resulting three-atom luster is very simple � two "-spin eletrons may befound in one of three possible on�gurations: f" 0 "g, f0 " "g, and f" " 0g,and thus this polaroni state gives the total energyEP = �p2t ; (6)while the interation energy U does not ontribute.If a hole oupies a DW instead, it may again deloalize over the mole-ular model of Fig. 2(b), whih leads to similar three on�gurations to thoseonsidered for the polaron ase: f" 0 #g, f0 " #g, and f" # 0g, but in ad-dition, three on�gurations with one site doubly oupied, and three otheron�gurations with the interhanged "- and #-spins, an be reahed by thehole hopping. The latter on�gurations are aessible via double oupan-ies, and thus the energy an be found in a perturbative way. As a result,the energy is lower for this solitoni solution than in the polaroni ase,ES = �p2t� 4t2U : (7)Therefore, in the regime of large U , the DW is always more stable than aline of polarons in an AF bakground.
(b)

U U

(a)Fig. 2. Energy levels for the eletrons with "-spin (full lines) and #-spin (dashedlines) in a 2D antiferromagnet along x axis: (a) a hole added to a single AF domain;(b) a hole on the DW separating two AF domains in (01) stripe phase. The spinsform an AF struture, while the holes repeat themselves along y diretion. Addinga seond eletron at an oupied site osts the Coulomb energy U .



2970 A.M. Ole±In reality further orretions to the energies appear in both situationsdue to the interations with the AF bakground, but the prinipal reasonstanding beyond the stripe formation is already identi�ed by the above sim-ple onsideration [20℄. If the holes oupy nonmagneti DW's, additionalproesses are allowed in seond order / t2=U whih lower the energy ofthis struture with respet to the polaroni defets, where the analogousexitations are bloked by the Pauli priniple. This also suggests that the(01) stripes are primarily stabilized by the hopping element perpendiularto the diretion of the DW's. For this reason, (01) stripe strutures an beadditionally stabilized by lattie deformations whih pin to the DW's, andgive a nonperturbative renormalization of the seond order energy gain ofthe solitoni solution (7), as analyzed in more detail in Ref. [20℄. This resultis ounterintuitive, as naively one might expet that the doped holes �ll a1D band, with a dispersion "1Dk = �2t os ky; (8)determined by the hopping along the DW diretion [46℄, and this mightdeide about the stripe stability.In order to understand why the stripes with �lled DW's are more stablethan those with half-�lled DW's in the HF approah, it is instrutive to in-vestigate the eletroni struture of a doped antiferromagnet. The bands aredetermined by the stable distribution of eletron densities fni�g whih givethe HF potentials (4). While the magneti potentials (4) are still presentwithin the AF domains, and will thus give the eletroni bands in the (o-upied) LHB and in the (empty) UHB, these splittings are absent for theatoms on a nonmagneti line whih separates two AF domains. Therefore,a band whih is built up mainly by the states of the DW atoms appearswithin a Mott�Hubbard gap [20℄. This band is spin degenerate and maytherefore aommodate two eletrons per one atom of a DW. It annot be�lled by one eletron per site, as then it would be again unstable againstmagneti order, giving as a result a uniform AF phase of a Mott insulator,with the eletroni struture onsidered above (5). On the ontrary, if theDW is �lled by holes, this band ontains no eletrons and is separated by asmall gap / t from the oupied states of the LHB. The Fermi energy � liesin this gap, and in this way an insulating state with the �lling of one dopedhole per one DW atom is stabilized.A very interesting question to ask now is whether any other than �lledDW's might be stable in the HF approximation. The �lling of one holeper two DW atoms, whih was observed in the uprates [7℄, orresponds toa quarter-�lled band, whih rosses the Fermi energy � at k = (�; �=4),(�=4; �=4), and other equivalent points. Therefore, suh a state would bemetalli and as suh ould not be even loally stable in HF. However, there



Stripe Phases in High-Temperature Superondutors 2971are still ways of stabilizing this �lling by quadrupling of the unit ell alongthe DW's whih opens a new gap in the quarter-�lled band, preisely at thepositions of the above rossing points. Indeed, when a spin-density wave(SDW) or a harge-density wave (CDW) with a periodiity of four atomsalong the y diretion is formed, suh a gap opens at �, and the stripes withhalf-�lled DW's are loally stable [20℄. Unfortunately, they an never bethe most stable strutures in HF for a very simple reason whih an beunderstood by omparing the eletroni strutures of both types of stripephases. In fat, the band whih aommodates the doped holes splits intotwo almost �at subbands for the half-�lled stripes, with either a SDW or aCDW along the DW's, and with almost no global shift of these subbandswith respet to the enter of the Mott�Hubbard gap. As only the uppersubband is �lled by holes, the total energy alulated per one doped holeis always higher in the half-�lled stripe phase than that obtained when theDW is �lled.The observation that stable solutions are self-onsistently obtained byplaing the hemial potential � in the middle of a gap gives a generalmehanism of stripe phases in HF. Therefore, the stripe phases obtainedin HF are always insulating . Reently, the eletroni strutures of di�erentstripe phases were investigated in detail by Markiewiz [37℄. Partial �llingof the bands within the Mott�Hubbard gap and pseudogaps whih form atthe Fermi energy were found to be general onsequenes of stripe ordering,in qualitative agreement with the results of photoemission experiments [47℄.However, the onsidered strutures with partly �lled DW's were only loallystable, similar for the stripes with half-�lled DW's onsidered above. Thesame trend was also observed in the harge-transfer model [16℄.Stripes may be seen as topologial defets in an antiferromagnet, stabi-lized by the kineti energy of doped holes. Their stability has a solitoniorigin with nonmagneti DW atoms, as shown both for small lusters [20℄,and for a 1D in�nite system desribed by the Hubbard model [48℄. Althoughno evidene was presented yet, it seems that the degeneray of 3d orbitalsmight plays a role in stabilizing the �lled stripes in nikelates and man-ganites [1℄. In ontrast, orbital degeneray is absent in the uprates, andthe quantum �utuations for spins s = 12 are expeted to be larger than inother more lassial ompounds, where the spins are larger. In addition, alsothe eletron orrelation e�ets are partiularly large in this ase. We givearguments in the next Setion that the analysis of the eletroni struturealone annot resolve the question of stripe stability and show that eletronorrelations are responsible for stabilizing the half-�lled stripes in HTSO.



2972 A.M. Ole±3. Variational wave funtionsIt is easy to understand why the eletron orrelations play suh an impor-tant role in the physial properties of stripe phases. The HF approximationworks well in the regime of large U only for the polarized (magneti) states,and thus the orrelation orretions are small for the atoms within the AFdomains. The situation is quite di�erent on the nonmagneti DW's � herethe orrelation energy is large. Using the experiene from the itinerant mag-netism, where the orrelation orretions are largest when the nonmagnetiatoms are lose to half �lling (n = 1) [49℄, it beomes lear that more orrela-tion energy an be gained by reduing the double oupany in the half-�lledthan in the �lled stripe phases.A variational treatment of the Hubbard model was �rst introdued byGutzwiller, who formulated a systemati method of improving the HF wavefuntion j�0i by implementing loal orrelations [50℄. A reent extention ofthis method to the polaroni solutions and stripe phases has demonstratedthat the half-�lled DW's are stabilized by the orrelation e�ets, and thistrend is even more pronouned when the intersite Coulomb interations arepresent [26℄. Here the results of another approah whih makes use of anexponential Loal Ansatz (LA) for the orrelated ground state [51℄,j	0i = exp �Xmi �iOmi! j�0i ; (9)will be disussed. This method aptures the leading ontribution to theorrelation energy in the present systems with nonhomogeneous density dis-tribution of doped holes. The loal operators,Omi = nmi"nmi# � hnmi"ihnmi#i ; (10)are introdued to redue the amplitudes of the on�gurations with doublyoupied sites, and �i are the orresponding variational parameters. Theaverages h� � �i are determined, as usually, by averaging over the HF groundstate funtion j�0i. By onstrution, the loal operators desribe the orre-lations whih go beyond the HF state j�0i, and hOmii = 0. For onveniene,we de�ne the loal doped hole and the loal magnetization density at sitei = 1; :::; L in the orrelated ground state j	0i as follows,nhi;LA = h	0j1� (nmi" + nmi#)j	0ih	0j	0i ; (11)hSzi iLA = jh	0j12 (nmi" � nmi#)j	0ijh	0j	0i : (12)



Stripe Phases in High-Temperature Superondutors 2973The breaking of symmetry is thereby assumed with respet to the z-th spinomponent, Szmi = 12(nmi"�nmi#). This onstrution allows to use a losed-shell version of the HF wave funtion j�0i with the fatorization of the Slaterdeterminant into up-spin and down-spin parts.The variational parameters f�ig are determined by minimizing the totalenergy in the orrelated ground state,E0 = h	0jHj	0ih	0j	0i : (13)After expanding the exponential fators in the wave funtions j	0i (9) up tolinear order in �i, the stationary values of the variational parameters f�0i g atthe saddle point an be easily determined by minimizing the energy (13) [51℄.The above proedure is valid provided that any third and higher order or-retions, like / h(nmi"�hnmi"i)3i, are small and an be negleted [51℄. Thisondition is well satis�ed in the symmetry-broken states with AF order on-sidered in the present study. More details on the energy minimization in theLA method may be found in Refs. [49℄ and [51℄.The LA was used to investigate the stability of stripe phases by onsid-ering di�erent starting density distributions and di�erent topology of theDW's in �nite 8� 8 superells with periodi boundary onditions [27℄. Anyself-onsistent solution found in the variational LA is a loal minimum of thetotal energy (13). Its absolute stability may be investigated by alulatingthe energy gain per one doped hole, as introdued in Ref. [20℄,ESh(x) = 1Nh �ES0 (x)�EAF� ; (14)where Nh is the number of doped holes in the onsidered luster. Here ES0 (x)is the energy obtained for the stable stripe phase at doping x, and EAF isthe referene energy of an undoped AF state in a Mott insulator (at x = 0),both found within the LA method.The stripe phase, obtained as the ground state of a doped antiferromag-net by the above energy analysis, is haraterized by the density (11) andmagnetization (12) distribution. In the Hubbard model with the �rst neigh-bor hopping one �nds (01) stripe phases as the lowest energy strutures in abroad range of parameters [27℄. For a (01) stripe phase with vertial DW's,one may label the atoms in the (magneti) unit ell (whih onsists of asingle row) by lx = 1; :::; L, while the atoms from di�erent superells are la-beled by ly, i.e., a pair of indies fmig in Eq. (1) is here replaed by (lx; ly).It is then more onvenient to introdue the quantities integrated along the



2974 A.M. Ole±diretion parallel to the DW's [25℄:nh(lx) = 1� 1Ly LyXly=1 
n(lx;ly);" + n(lx;ly);#� ; (15)S�(lx) = 1Ly LyXly=1(�1)lx+ly 12 
n(lx;ly);" � n(lx;ly);#� ; (16)where we have used the doped-hole density, nh(lx) = 1�hn(lx;ly);"+n(lx;ly);#i,instead of the loal eletron density n(lx;ly) = hn(lx;ly);" + n(lx;ly);#i, to har-aterize the stable harge distribution. A site-dependent fator (�1)lx+ly inEq. (16) ompensates the modulation of the AF struture within a singledomain. Therefore, the harge and magnetization distribution in the (01)stripe phase is fully desribed by the average density along the (10) dire-tion, given by nh(lx) and S�(lx), respetively. A similar proedure may beintrodued to investigate the density and magnetization distribution in (11)stripe phases.In the present paper we show for illustration the ground states obtainedfor hole doping x = 1=8 with two sets of parameters whih were derived fromthe eletroni struture [42℄: (i) t0 = �0:11t, t00 = 0:04t, and (ii) t0 = �0:30t,t00 = 0:20t. They orrespond to La2�xSrxCuO4 (LSCO) and YBa2Cu3O6+x(YBCO) ompounds, respetively. In both ases the stripe strutures havebeen found in the ground state. Although a stripe struture with magnetiDW's was found in HF for the LSCO parameters, a di�erent (01) stripephase with nonmagneti DW's is obtained in the LA method [Fig. 3(a)℄. Thisshows that the orrelation energy gains are indeed larger for nonmagnetiatoms, and suh solutions are stabilized when eletron orretions are treatedexpliitly. This (01) phase is stable in a broad range of U , inluding U ' 10twhih is representative for LSCO ompounds. It is expeted that this phasewill be stable also at U > 10t, as the obtained results are less reliable in thisregime due to the performed expansion in f�ig parameters. Interestingly, adi�erent stripe phase with diagonal (11) and FM DW's is more stable forthe YBCO parameters [Fig. 3(b)℄. This phase is learly stabilized by a largeseond order hopping t0 whih leads to a kineti energy gain when the spinsare aligned within the walls. A more areful analysis is needed to establishwhether this phase is onsistent with an observation of diagonal stripes inYBa2Cu3O6:4 [52℄.The harge and magnetization distribution obtained for the stripe phasesstable at U = 10t are shown for both sets of parameters in Fig. 4. Inthe ase of (01) phase realized for the LSCO parameters [Fig. 4(a)℄, theAF domains onsist of three atoms and have almost unredued harge (15)
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Fig. 4. Charge nh(lx) (15) (�lled irles) and spin S�(lx) (16) (open squares) densitydistributions [28℄, as obtained for the half-�lled (01) and (11) stripes of Fig. 3 atU = 10t for: La2�xSrxCuO4 (left) and YBa2Cu3O6+x (right).and magnetization (16) density from the respetive values found in the AFinsulator at x = 0. This state is indeed lose to the idealized piture shownin Fig. 1(a). In ontrast, the (11) phase obtained for the YBCO parameters[Fig. 4(b)℄, is somewhat di�erent from Fig. 1(b) � the DW's found fromthe variational alulation are FM, with two neighboring magneti momentspointing in the same diretion, and in this way give a hange of phase in the



2976 A.M. Ole±staggered magnetization between two AF domains, observed in the variationof S�(lx+ly) along the diretion perpendiular to the AF domains. It may beexpeted that more smooth density and magnetization distributions wouldbe obtained, if the LA wave funtion (9) would be improved by a variationaloptimization of the density distribution along with the weights of doublyoupied on�gurations in the orrelated ground state.The examples shown in Figs. 3 and 4, and the results of Ref. [27℄, demon-strate that loal eletron orrelations beyond the HF states stabilize thehalf-�lled stripe phases in a broad range of parameters. They are onsistentwith the results obtained in other methods introdued to treat the stati or-relation e�ets: the DMRG of White and Salapino [25℄, and the mean-�eldslave-boson tehnique [26℄. Although it has been argued that the long-rangeCoulomb interations might help to stabilize the stripe order [26℄, the evi-dene has aumulated that the on-site interations alone su�e to obtainstable half-�lled stripe phases [25, 27, 30�33℄.4. Dynamial mean-�eld theory for stripe phasesThe ase whih is most intensely investigated theoretially in the dopingby x = 1=8 holes, perhaps due to the observation of distint stati stripes inLa1:6�xNd0:4SrxCuO4 [7℄, whih are stable around this hole onentration.However, the stripes our also away from x = 1=8, both in the underdopedand in the overdoped regime [53, 54℄. In order to understand the evolutionof stripe phases with inreasing hole onentration x in the Hubbard model,it is neessary to investigate also other onentrations and look for stablestripe solutions in larger superells adequate for the underdoped regime. Areent generalization of the DMFT method [32℄ allows to treat stripe phases,and to address this question in a systemati way.The entral idea of the DMFT is that the dynamial orrelations ina fermioni system may be well desribed by a loal selfenergy [40℄. Thedynami selfenergy as a funtion of ! is then determined self-onsistentlywith the e�etive medium to whih it ouples, similar to the onventionalmean-�eld treatment of the Ising model, where a single variable, loal mag-netization hSzi, is determined self-onsistently at �nite temperature T . Bothapproahes beome exat in in�nite spatial dimension d ! 1: the mean-�eld theory beause the quantum �utuations vanish in this limit, whilethe DMFT beause the diagrams in the perturbation theory beome lo-al [55, 56℄. In the past the loal form of selfenergy was assumed by ne-gleting the momentum onservation in seond order perturbation theory,and was shown to give very reliable results, apturing more than 95% of theorrelation energy in three dimensions [57℄. Motivated by this suess, herethe loal selfenergy will be used to desribe the dynamis in a 2D model



Stripe Phases in High-Temperature Superondutors 2977of doped antiferromagnets. Although this assumption seems to be ratherdrasti as ombining d =1 with d = 2, we argue that the atual qualitativeresults and a favorable quantitative omparison with some available rigorousproperties, justify it a posteriori . In fat, it has been shown before that oneobtains the orret dispersion and spetral weights of the QP states in theHubbard model at half-�lling (n = 1) within the DMFT, if the on-site spin�utuations and the renormalization of U due to harge �utuations are in-luded in the loal selfenergy [58℄. This approah has demonstrated that anaurate treatment of spin and harge �utuations is neessary to desribeorretly the dynamial properties in magneti phases. Using this experienewith the AF Mott insulator, the DMFT method has been reently general-ized to treat nonhomogeneous phases with large superells enountered instripe phases of HTSO [32℄, as we present below.The spetral properties of the Hubbard model (1) may be found fromthe Green funtion de�ned for imaginary time � = it,Gmi;nj;�(�) = ��(�)hami�(�)aynj�(0)i + �(��)haynj�(0)ami�(�)i; (17)whih depends on the superell indies m and n, on the indies within thesuperell i and j, and on the spin index �. Using the periodiity of a stripephase one �nds its Fourier transform, Gij�(k; i!�), whih depends of thefermioni Matsubara frequenies !� = (2� +1)�T , with T being a �titioustemperature, playing a role of a low-energy uto� [40℄. Therefore, the Greenfuntion is given by an (L� L) matrix,G�1ij�(k; i!�) = (i!� + �)Æij � hij(k)��i�(i!�)Æij ; (18)with the site- and spin-dependent loal selfenergy [40, 55℄,�i�(i!�) = �HFi� +�Di�(i!�): (19)The selfenergy is labeled by the site index within a stripe superell, andonsists of a HF (stati) potential �HFi� (4), and a dynami part �Di�(i!�),whih desribes eletron orrelations and is determined in the DMFT. Thekineti energy hij(k) in Eq. (18) is obtained for the stripe lattie periodiitywith superells of L atoms as an (L� L) matrix,hij(k) =Xn exp[�ik(R0i �Rnj)℄t0i;nj : (20)For simpliity, we will onsider the model (1) with nearest-neighbor hoppingonly, t0i;nj = �t, and thus the matrix (20) has a tridiagonal form.



2978 A.M. Ole±The loal Green funtions for eah nonequivalent site i = 1; :::; L arealulated from the diagonal elements of the Green's funtion matrix (18),Gi�(i!�) = 1N Xk Gii�(k; i!�) : (21)The DMFT equations lead thus to a self-onsistent problem at site i,G0i�(i!�)�1 = G�1i� (i!�) +�i�(i!�) ; (22)where G0i�(i!�) is the e�etive medium (bath) Green funtion at site i, whihdepends on the harge and magnetization density at this site i and, viathe bath, on the density distribution at its neighboring sites. In the pres-ene of magneti order the loal Green funtions (18) are determined self-onsistently together with loal HF potentials (4), with the onstraint forthe total density within the stripe superell,1L LXi=1;� ni� = n : (23)This approah to the stripe phase within the DMFT method is thereforeanalogous to that reently introdued by Pottho� and Nolting for a Mottmetal-insulator transition in thin �lms [59℄.The self-onsistent problem posed by Eqs. (22) requires the knowledge ofboth parts of selfenergy (19): (i) the HF part �HFi� , and (ii) the dynamialpart �Di�(i!�). The latter has to be either derived in a perturbative wayby summing up lasses of diagrams, or may be determined numerially bysolving the orrelation problem on a single atom [40℄. In the present ase thesite-dependent selfenergy has been found using an ED algorithm of Ca�areland Krauth [60℄. This proedure is motivated by its high auray whih isespeially needed in the magneti systems, where numerous magneti phasesompete with eah other. The main advantage of this method is that itgives unbiased results for the selfenergy and thus inludes the leading partof the dynamial proesses whih are responsible for a many-body behaviorof interating eletrons. It is also very well suited to study the ground statesof orrelated systems, in ontrast to quantum Monte-Carlo methods whihan provide reliable information only at rather high temperatures (T ' 0:3t),and therefore annot be used to investigate the properties of stripe phases.Also the earlier studies of stripe phases based on the perturbative formulafor the selfenergy whih inludes the spin �utuations appeared to be notaurate enough at low temperatures [61℄, preisely in the regime wherethese phases are stable. In fat, the stripes melt at temperatures T ' 70 K,



Stripe Phases in High-Temperature Superondutors 2979and it is therefore di�ult to obtain the low temperature limit with su�ientauray, when the �nite-temperature formalism is used [61℄.In the ED method of Ca�arel and Krauth a Single-Impurity AndersonModel (SIAM) hybridized with a �nite set of orbitals is solved with theLanzos algorithm at T = 0. This non-perturbative approah treats there-fore loal spin and harge �utuations exatly, and gives the rigorous formof the selfenergy in the limit of in�nite dimension d ! 1 [40, 56℄. In auniform system a lattie problem is mapped onto an e�etive SIAM, whihis next solved self-onsistently with the surrounding lattie. This method iswell suited to investigate the spetral properties of stripe phases, when theabove mapping is performed independently for eah nonequivalent site in astripe superell, and leads to L di�erent impurity models for i = 1; :::; L:H(i)imp=X� "�dyi�i�+ns�1Xk=1 "(i)k�ayk�ak�+ns�1Xk=1�V (i)k� ayk�i�+V (i)�k� yi�ak��#+Uni"ni#;(24)with L self-onsisteny onditions (22). Eah impurity model inludes ns�1e�etive orbitals labeled by k = 1; :::; ns� 1, whih stand for the ondutionband and ouple to the impurity atom, where the orrelation problem issolved.Unlike in a real a �nite luster, here the ondution-band orbital energies"(i)k� and the hybridization elements V (i)k� are the e�etive parameters. In orderto start the iteration it is onvenient to solve �rst the noninterating (U = 0)impurity Green funtion G0i�;ns(i!�), whih is given by the following form foratom i, G0i�;ns(i!�)�1 = i!� � �d � ns�1Xk=1 �V (i)k� �2i!� � "(i)k� : (25)The ruial step is the solution of the SIAM for i = 1; :::; L using the Lanzosalgorithm to get the impurity selfenergies �i�(i!�) whih are required forthe next yle. Therefore, the numerial e�ort inreases linearly with thesize of the magneti unit ell L in the stripe phase.After solving of the e�etive luster problem, the loal Green funtionsGi�(i!�) are determined. Self-onsisteny is implemented by extrating fromEq. (22) the new selfenergy (19), and next Eq. (18) for Gij�(k; i!�) is usedto start the next iteration. Finally, the parameters of the e�etive SIAMf"(i)k�; V (i)k� g are obtained by �tting the noninterating problem representedby the bath Green funtion G0i�(i!�) to the atual Green funtion G0i�;ns(i!�)(25) on the imaginary energy axis, with the latter funtion obtained for the�nite-orbital problem posed by the SIAM. The best hoie is obtained by



2980 A.M. Ole±minimizing the ost funtion [59, 60℄,�2i = 1�max + 1 �maxX�=0 ��G0i�;ns(i!�)�1 � G0i�(i!�)�1�� ; (26)for eah impurity problem labeled by i. This method uses a drasti approx-imation for a ondution band whih is represented just by a �nite set ofns � 1 e�etive orbitals. Of ourse, one ould reprodue an exat resultfor an in�nite system only in the limit of ns ! 1. However, the onver-gene with the inreasing luster size is very fast, and reliable results for ametal-insulator transition in the Hubbard model ould be obtained by solv-ing relatively small lusters with ns < 10 [60℄. The onvergene is of similarquality also in the present problem, and the results obtained with ns = 8will be presented in the next Setion.Apart from the stati properties suh as density (15) and magnetization(16) distribution, the Green funtions (18) allow to determine the spetralfuntion, A(k; !) = � 1� 1LN Im Xmi;nj;� e�ik(Rmi�Rnj)Gmi;nj;�(!) : (27)This quantity will be used below to analyze the mehanism of stability andthe momentum dependene of the photoemission spetra in stripe phases.5. Stripe phases as one-dimensional metalsWe will be interested here in a generi piture whih follows from theDMFT approah and thus the numerial examples will be limited to thesimplest ase, to the Hubbard Hamiltonian (1) with nearest-neighbor hop-ping only. This hoie is su�iently lose to the realisti parameters ofLa2�xSrxCuO4 [42℄. Stripe phases in the doped Hubbard model were foundusing the above ED method within the DMFT by an extensive numerialsearh for self-onsistent solutions with the lowest energy, starting from dif-ferent initial onditions appropriate for various type of polaron and stripeordering [32℄. The �nite 8 � 8 and larger latties with periodi boundaryonditions used for these alulations aommodated always at least eightstripe superells with the periodi boundary onditions, whih are su�-ient to approximate the stripe phases stable in the thermodynami limit.Here we summarize the results obtained for U = 12t, a value represen-tative for La2�xSrxCuO4 ompounds, whih reprodues the experimentalratio of t=J = 3 [11℄, with J = 4t2=U . At low doping one might expet iso-lated polarons whih were found before in the HF studies [6, 20℄. However,the polarons are unstable in the present DMFT alulations and instead



Stripe Phases in High-Temperature Superondutors 2981a uniform AF state with a gradually redued magnetization in the weaklydoped regime of x < 0:03 was found. This suggests that the HF approahoverestimates the loal density hanges in the doped systems, and agreesqualitatively with the experimentally observed AF long-range order in theweakly doped regime up to x ' 0:02, reported for La2�xSrxCuO4 [9,62,63℄.The stripes were found to be stable in a broad range of hole doping0:03 < x < 0:2 using the DMFT. The DW's are populated by the doped holeswith the �lling orresponding to half-�lled stripes in the stable phases, butthe density distribution is more smooth than in the orresponding HF statesorreted by the LA method, for all ases disussed in Se. 3. First, nearthe undoped AF Mott insulator, the (11) stripes with large superells arestabilized for 0:03 < x � 0:05 by a (weak) CDW superimposed with a SDWalong the wall. These states have very large superells onsisting typially of� 160 atoms, and are haraterized by the extended DW's with the lustersof four sites along x axis, j0i� j"i�j0i� j#i, on eah (11) DW itself, and theAF domains between them. They demonstrate a generi tendeny towardsphase separation within a doped antiferromagnet into hole-poor and hole-rih regions [5℄, and may be seen as a ompromise between the uniform AForder and (01) stripes whih our only at higher doping.Site-entered vertial stripes, with half-�lled DW's, were found to be themost stable strutures in a broad range of doping 0:05 < x < 0:17. Thesize of AF domains, separated by a line of nonmagneti atoms, is �rst large(seven atoms at x = 1=16), but shrinks with the inreasing doping down tothree atoms at x = 1=8. Beyond x = 1=8 one �nds up to x ' 0:17 a lok-ine�et of the same struture with a harge (magneti) unit ell onsistingof four (eight) sites, and the AF domains with three atoms along the xdiretion. Two examples of the (01) strutures stable at x = 1=12 and 0.15are shown in Fig. 5. Although the hole density has distint maxima at theDW's, the holes are more deloalized than in the HF alulations [6, 19℄,and in the LA method [27℄, disussed in Se. 3. This result agrees with theslave-boson alulations [26℄, and with numerial DMRG [25℄, where alsomore smooth density variations were obtained than in the orrespondingHF states. Moreover, the density distribution is quite stable around theDW's in the underdoped regime, with ni ' 0:850 and ni ' 0:830, at dopingx = 1=16 and x = 1=8, respetively, and a rather small doping at the entralsites in the AF domains (ni ' 0:97 in the ase of x = 1=16 shown in Fig. 5).On the ontrary, for the doping x > 1=8 the hole density inreases fastwithin the AF domains. For instane, ni ' 0:92 and 0.88 was found at theentral atom in the AF domains for x = 1=8 and x = 0:15, respetively.Finally, as a result of inreasing hole density within the AF domainsand the dereasing amplitude of the SDW shown along the x diretion inFig. 5, at doping x > 0:17 kinks and antikinks along the DW's develop,



2982 A.M. Ole±
0.4330.153 0.192 0.315

0 4 8 12 16 20 24
lx

−0.50

−0.25

0.00

0.25

0.50

0.00

0.05

0.10

0.15

0.20

n h
(l

x)

0.00

0.05

0.10

0.15

0.20

0 4 8 12 16
lx

−0.50

−0.25

0.00

0.25

0.50

S
π(

l x
)

0.100

0.125

0.150

0.175

0.200

0.100

0.125

0.150

0.175

0.200
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Stripe Phases in High-Temperature Superondutors 2983entered to bond-entered (01) stripes. The gradual transition between threedi�erent stripe phases is also seen in the values of energy per one doped holeESh(x), found now from Eq. (14) within the DMFT method (Fig. 6). Theenergy inreases monotonially as a funtion of doping x, showing that the(11) and (01) stripe phases disussed above are stable against marosopiphase separation. The energy di�erene between the site-entered and bond-entered stripe phases is typially small, e.g. �ESh � 0:05t for x ' 1=8.One observes also a dereasing exitation energy with inreasing x whihindiates that the stripe phases are gradually destabilized with inreasingdoping. Therefore, one expets strong transverse stripe �utuations in thebond-entered phases [64℄, not inluded in the DMFT approah, whih ouldstabilize them a bit more against the site-entered stripes. It has been arguedthat suh �utuations might enhane superonduting orrelations in theground state [65℄.In ontrast, the energy of the uniform paramagneti phase per one hole,EPh (x), determined in a similar way to Eq. (14), has a minimum at xm '0:16, with EPh (xm) ' �2:23t (�1:94t) for U = 12t (U = 8t). This indiates ageneri tendeny of this phase towards phase separation [5℄, as a lower energyan be obtained at doping x < 0:16 just by separating the sample into hole-poor and hole-rih regimes, following the Maxwell onstrution. This showsthat the stripe phases are a natural onsequene of this instability, and theenergy per hole found in them ESh(Æ) is just somewhat lower than the energyof the paramagneti phase at its minimum, EPh (xm). Doping beyond xm soondestabilizes the stripes due to the inreasing spin and harge �utuations, asdisussed above, and the energies ESh(x) and EPh (x) ome lose to eah otherand merge above x = 0:20. This estimate agrees well with the observedgradual disappearane of harge inhomogeneities in La2�xSrxCuO4 abovethe optimal doping [66℄.The stripe superstruture is learly seen in the harge and spin responseas the harateristi maxima of the respetive struture fators. Using thesame notation as in Eqs. (15) and (16), the harge distribution may bedesribed by the Fourier transform of the stati hole-hole orrelation funtionin the reiproal spae,C(k) = 1LN X(lx;ly) e�i(kxlx+kyly) 
1� n(0;0)� 
1� n(lx;ly)� : (28)For a stripe phase the summation is performed over the 2D lattie of Nsuperells ontaining L sites eah. Here k = (kx; ky) is a vetor fromthe �rst Brillouin zone. This funtion may be measured in elasti X-raysattering and has harateristi maxima at Q = (�4��; 0) for the verti-al (01) stripes. In experiment, however, a superposition of (01) and (10)



2984 A.M. Ole±phases from di�erent CuO2 planes is observed, and thus the maxima aresymmetrially distributed around the � = (0; 0) point at Q = (�4��; 0)and Q = (0;�4��) (see Fig. 7).
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Fig. 7. Maxima of the magneti struture fator S(k) (�lled symbols) and hargestruture fator C(k) (empty symbols) for the (01)/(10) stripe phases shown inFig. 5. The peaks obtained for x = 1=12 and 0.15 are indiated by diamonds andirles, respetively. Inreasing doping x orresponds to the inreasing splitting ofthe neutron (X-ray) peaks in S(k) [C(k)℄ with respet to the M (� ) point.The neutron sattering measures magneti orrelations in real spaewhih are desribed by the magneti struture fator,S(k) = 1LN X(lx;ly) e�i(kxlx+kyly) DSz(0;0)EDSz(lx;ly)E : (29)Experimentally the stripes were observed as the shift of the neutron peak/ �, whih moves away from a single AF maximum of S(k) at theM = (�; �)point for x = 0 to four symmetri points around M (Fig. 7): Qs = [(1 �2�)�; �℄ and Qs = [�; (1�2�)�℄, if x > 0. These two values orrespond againto a superposition of (01) and (10) stripe phases. This result shows that thestripes in the uprates are indeed (10) type, in ontrast to the diagonal(11) stripes observed in the nikelates [24℄. The value of � was found tobe inreasing with hole doping x, with � ' x at x < 1=8 [7, 9, 53℄. If themagneti (harge) unit ell dereases with doping x, as reported above, thesplitting of the maxima of S(k) [C(k)℄ around the M (� ) point inreases.The DMFT alulations of Ref. [32℄ give a linear dependene of theneutron peak splitting on doping, � / x, in the range of low doping, x � 1=8,and a onstant value � = 1=8 for x > 1=8 [Fig. 8(a)℄. Suh a rossoverbehavior was observed in the experiments of Yamada et al. [53℄, and indiates



Stripe Phases in High-Temperature Superondutors 2985a unique stability of half-�lled DW's in the (01) stripe phase, as obtainedin the HF studies [20℄. For the strutures with diagonal extended DW'sobtained at low doping x < 0:06 the maxima of S(k) found at Qs = [(1 �2�d)�; (1 � 2�d)�℄, with �d ' x=p2, agree perfetly well with the reentneutron experiments of Wakimoto et al. [54℄. Although these strutures areso di�erent from the (01) phases at higher doping, it is remarkable that theorresponding values of �d follow the same linear dependene on x.The analysis of the total density of states obtained by summing up thespetral funtions over the Brillouin zone leads to a onlusion that the hem-ial potential shifts downwards with hole doping, �� / �x2 [Fig. 8(b)℄, inagreement with the Monte-Carlo simulations of the 2D Hubbard model [67℄.Therefore, the harge suseptibility is enhaned in the limit of x ! 0, re-produing a universal property of the Mott�Hubbard metal-insulator tran-sition [67℄. Whether or not this behavior is observed in experiment is stillontroversial. The data points obtained by Ino et al. [39℄ have rather largeerror bars, but seem to be instead more onsistent with a weak derease of� with inreasing x in the range of stripe phases x � 0:15, followed by aquite rapid drop when the stripes start to melt. This might be related to thehange of the Fermi surfae shape around x = 0:15 doping, whih violatesthe Luttinger theorem in the underdoped regime [68℄. In any ase, the ob-served behavior indiates that the weakly-doped uprates are in a regime ofanomalous metalli phase, and a diret transition from a Luttinger liquid toa superondutor ours under dereasing temperature [69℄. This non-Fermiliquid regime has numerous onsequenes for several transport properties ofthe normal phase [4, 70℄, whih have been observed in the same regime ofdoping, where the stripe phases are stable in La2�xSrxCuO4.The main advantage of using the DMFT is that it allows also to inves-tigate the spetral funtions A(k; !) (27) of the stripe phases. The DMFTgives a strong renormalization of the Mott�Hubbard gap from its HF value,and modi�es the struture of the Hubbard subbands. If a single hole isdoped, a QP peak is found lose to �, with a dispersion familiar from thet�J model [58℄. This dispersion suggests that the hole doping would our�rst at the X = (�; 0) point, if the QP band remains unhanged under dop-ing, and the Fermi energy enters the LHB. On the ontrary, the low-energyspetral properties at ! ' � are determined by the many-body proesses inthe doped Hubbard model, and by the spetral weight transferred from theUHB [44℄. Therefore, the obtained photoemission spetra (for ! � �) at lowdoping x onsist of two distint features: the inoherent part of the LHB,extending in a range of �6t < ! � � < �2t, with a large intensity around! � � ' �4:8t, and a QP part in a range of �0:7t < ! � � < 0. The latterdispersive feature is learly seen in Fig. 9; it is similar to that found for asingle hole [58℄, has a dispersion � 2J (here J=t = 4t=U = 1=3), and omes
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(a) (b)Fig. 8. Evolution of the stripe phases with inreasing hole doping x, as found inDMFT with U = 12t: (a) shift � of the maxima of the magneti struture fatorS(k), and the data points of Yamada et al. [53℄ (empty irles) and Wakimotoet al. [54℄ (empty squares); (b) shift of the hemial potential ��=t (points) andthe quadrati �t ��=t = aÆ2 with a = �15:57 (dashed line), and the experimentaldata of Ino et al. [39℄ for t = 0:25 eV (empty irles). Filled symbols show: diagonal(11) SDW stripes with Qs = [(1�p2�)�; (1�p2�)�℄ (squares), and vertial (01)site-entered (irles) and bond-entered (triangles), with Qs = [(1� 2�)�; �℄.lose to � at the X point, but stays well below � at the remaining pointsof the AF Brillouin zone, and along the Y �� and ��S diretions. Due tothe stripe superstruture one �nds that the diretions ��X and ��Y arenonequivalent.The states at ! � � > 0 are quite di�erent. Here one �nds a largedispersion � 2t between the points whih belong to the boundary of theAF Brillouin zone (X, Y , and S) and the M point. This large dispersionis reminisent of the free propagation along the DW's given by Eq. (8), butis now strongly renormalized by the many-body proesses: the dispersionalong the X�M diretion is redued by a fator lose to two, while a similardispersion ours as well along the Y �M diretion, in spite of its absene inthe free 1D band (8). A partiularly interesting situation is observed nearthe X point, where the quasi-1D eletroni struture of the site-entered(01) stripe phase merges with the QP band below �, and gives a �at bandaround the X point. The spetral weight stays below � at the X point,while it rosses the Fermi energy � just at the k = (�; �=4) point, as fora quarter-�lled 1D band (8). Remarkably, both features were observed inreent angle-resolved photoemission (ARPES) experiments [34�36℄. On theontrary, the free 1D band (8) annot ontribute at the Y point [37℄, andone observes a gap between the spin-polaron QP band with dispersion � 2J ,and the states at ! � � > 0. Also along the ��M diretion the spetrahange drastially from those found in a one-partile approah. At thek = (�=4; �=4) point, where [as at k = (0; �=4)℄ the 1D band would ross
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2988 A.M. Ole±a hole moving in an AF domain, and the renormalized 1D-band above �are universal as long as the (01) stripes remain stable strutures. The dif-ferenes to the low-doping regime are of quantitative nature only. First ofall, the �at QP at the X point moves to the Fermi level when the �lling ofthe DW's inreases beyond half �lling in the range of doping x > 1=8. Thelarge spetral weight at the X point gives also some 'shadows' at the Y andS points, but the gaps are still seen at the latter two points. The featureabove � has a larger spetral weight and resembles a band with a similardispersion along the X�M and X�M diretion.By integrating the spetra over the Brillouin zone, one �nds a density ofstates with a pseudogap at the Fermi level. This pseudogap is pinned to �when the hole doping x inreases, and the (01) stripes beome more dense.It may be therefore onsidered to be the reason of stability of the (01) stripestrutures beyond the HF piture. Indeed, this pseudogap is gradually �lledby spetral weight, and �nally disappears when the stripe order melts withinreasing hole doping x. One ould attempt to understand the results ofthe DMFT by simulating the eletroni struture in HF, using the magnetipotentials (4). In ontrast to the HF approximation, however, the value ofthe Coulomb interation U does not remain onstant in the DMFT, but isrenormalized by the loal dynamis to a value [71, 72℄,�Ui = U1 + U�ppi (0) ; (30)where the partile�partile vertex �ppi is determined by the Weiss �eld,�ppi (0) = (kBT )X� G0i"(i!�)G0i#(�i!�) : (31)Therefore, one an analyze the eletroni struture of tight-binding eletronsmoving on a 2D lattie within a site-dependent magneti potential / �Uiwhih orresponds to the stripe struture,H = �t Xmi;nj;� aymi�anj� �Xmi eiQRmiVmi(nmi" � nmi"); (32)using the same notation as in Eq. (1). Loal magneti potentialsV(ix;iy) � eiQR(ix;iy) �U(ix;iy)jhSz(ix;iy)ij ; (33)alternate due to the phase fator eiQR(ix;iy) when iy is varied for vertial(01) stripe phases, with Q = [(1�2�)�; �℄. These potentials may be treatedas external parameters, and the eletroni struture of the (01) phases is



Stripe Phases in High-Temperature Superondutors 2989then parametrized by a set of values fVixg, with V0 = 0. They play aruial role and determine whether the system is metalli or insulating . Letus label by V1 and V2 the potentials at the �rst and seond neighbors ofthe DW, respetively. It has been found by the numerial analysis thatthe photoemission weight vanishes at � for the k = (�=4; �=4) point anda gap opens, if a ondition for the potentials lose to the DW, V2 � 2V1,is satis�ed [32℄. Indeed, the magneti potentials hange so rapidly in theweakly doped regime x < 1=8, but not for large doping x > 1=8; for instaneat x = 1=12 the spin densities found in the DMFT and the renormalizedvalues of �Ui lead to V2 ' 2:07t and V1 ' 0:99t. The strong renormalizationof spin (and harge) densities next to the DW's with respet to the HFvalues is due to harge �utuations inluded in the DMFT, and demonstratesthat loal orrelations are responsible for the ARPES spetra observed inHTSO [34�36℄. 6. Summary and open problemsThe presented results of the alulations performed beyond the HF ap-proximation: the LA method for the ground state [27℄, and the DMFT bothfor the ground state and for the spetral properties [32℄, demonstrate thatthe orrelation e�ets are of ruial importane, and are observed in theARPES spetra La2�xSrxCuO4 at low and intermediate doping. It is quiteremarkable that the sequene of stripe phases, with (11) stripes followed by(01) stripes, the latter with dereasing and then onstant size of the AF do-mains under inreasing hole doping x, ould be obtained within the DMFTalulations, in perfet agreement with the experimental �ndings.While the tendeny towards harge and spin separation in a form of stripephases may be understood as a ompromise whih follows from optimizingthe kineti energy / t and the magneti energy / J at the same time, thedetailed mehanism of this instability is still under investigation. First ofall, the HF studies have lari�ed that the largest kineti energy gains areobtained due to the hopping elements t? perpendiular to the (01) stripesby the solitoni mehanism [20℄, while the elements tk parallel to the (01)stripes are less important for their stability. Therefore, it may be expetedthat the stripe ordering will always tune the diretion of the DW's along aweaker hopping in the anisotropi model, realizing the ondition t? > tk,and indeed this trend was on�rmed by reent numerial simulations withinthe t�J model [73℄. In ontrast, there are more parallel AF bonds thanperpendiular to the diretion of the (nonmagneti) DW's, and thereforean inreasing superexhange parallel to the DW's Jk will have a stabilizinge�et on the (01) stripes. The situation onerning the (11) stripes is not yetexplored � in order to demonstrate the universality of the above mehanism



2990 A.M. Ole±it would be worthwhile to show that here the seond neighbor hopping t0aross the (11) stripes and exhange elements J 0 along them would havesimilar e�ets on the stability of the (11) stripe phase.It is quite remarkable that the spetral funtions obtained for the (01)stripe phases in the DMFT have only a very weak relation to the HF bandstruture, but are similar to the experimental observations. The spetradisussed in Se. 5 show an interesting superposition of the spin-polaronQP states with a dispersion of � 2J , and a broader dispersion of the statesabove �, suggested by a 1D metalli behavior along the nonmagneti DW's.Suh experimental features at low energies j!��j < J as: (i) no signi�antspetral weight at the � = (0; 0) point; (ii) �at QP state at the X = (�; 0)point, and its absene at the Y = (�; 0) point, leading to a still distint �atstrutures at both these points when the (01) and (10) stripes ontributewith equal intensity in experiment; (iii) also signi�ant, but dispersive andweaker QP state at S = (�=2; �=2) point, with a distint gap separating thephotoemission (! < �) and inverse photoemission (! > �) part, agree wellwith the experimental observations [34�36℄.The low-energy spetral weights obtained in photoemission at the X[k = (�; 0)℄ and S [k = (�=2; �=2)℄ points are shown below the phase dia-gram of Fig. 11. While the weight at the X point gradually inreases withinreasing hole onentration x, it vanishes at the S point below x = 1=8,and only in the regime of x > 1=8 the gap at this point is gradually �lled. Inontrast, the gap does not open at the S point in the weakly doped regimeof Bi2Sr2CaCu2O8+y, where a sharp peak is observed at � both in under-doped and overdoped ompounds [74℄. Our results show that this di�erenefollows from the stati stripes whih stabilize only in La2�xSrxCuO4, butnot in Bi2Sr2CaCu2O8+y. Note that the derease of the spetral weight ofthe LHB in the superonduting phase (SC) shown in Fig. 11 is exagger-ated, and a weaker dependene on x was derived by analyzing the stronglyorrelated regime of the Hubbard model [44℄.The phenomenon of stripe melting in the x > 1=8 doping regime isvery intriguing. Inreasing hole density enhanes the quantum �utuationsand deloalizes the site-entered stripes, produing instead bond-enteredstripes [32℄, and more units of bond-entered stripes are likely to be gen-erated as the stripes beome more dynami. Reently it has been arguedthat the photoemission experiments should be able to distinguish betweenboth types of (01) stripes, and the ARPES results around x = 1=8 dopingin La2�xSrxCuO4 suggest that the site-entered stripes are observed. It isnot very likely, however, that suh experiments would help to understandthe stripe melting, as the phenomenon is dynami by itself, and experi-mental resolution might not be su�ient. Enhaned density of doped holesin the regime of stripe melting ould promote the ordering of kinks, aus-
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2992 A.M. Ole±instabilities in this lass of uprates are loser to those observed in the nik-elates, as laimed reently [23℄.The possible role of stripes in the phenomenon of superondutivity ispuzzling. The stati stripes are stable only in the normal phase ofLa2�xSrxCuO4 ompounds [Fig. 11(a)℄, where the values of T are lowest.This alone suggests that the stripe instability ompetes with the super-onduting instability, but it might also be that the �utuating stripes aredi�erent, and support the superonduting �utuations in a quantum stringliquid [77℄. The stable stripes in the normal phase of La2�xSrxCuO4 givea pseudogap in the density of states [Fig. 11(b)℄, while a pseudogap wasobserved in pratially all the HTSO, where it explains the transport andthermodynami properties in the high-temperature regime [11, 70℄. As thepseudogap is so universal, it would be interesting to understand better itsorigin in those situations where stati stripes ould not be observed so far.As the most important onlusion of the DMFT studies [32℄, the verti-ally (or horizontally) ordered stripe phases are metalli along the diretionof the nonmagneti DW's, in ontrast to the HF stripes whih are alwaysinsulating, with a small gap at the Fermi level. The HF gap is smearedout into a pseudogap by the dynamial �utuations whih our due to theoupling of the holes moving along the stripes to spin �utuations withinthe AF domains.It is a pleasure to thank Marus Flek and Jan Zaanen for a friendlyollaboration and for numerous stimulating disussions, and A. Ino for hisagreement for presenting Fig. 11 in the present paper. Valuable disussionswith O.K. Andersen, A.I. Lihtenstein, B. Normand, and K. Ro±iszewskiare also kindly aknowledged. This work was supported by the Polish StateCommittee for Sienti� Researh (KBN), Projet No. 2 P03B 055 20.REFERENCES[1℄ M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).[2℄ N.F. Mott,Metal-Insulator Transitions, Taylor and Franis, London, Philadel-phia, 1990.[3℄ A.M. Ole±, M. Cuoo, N.B. Perkins, Letures on the Physis of Highly Corre-lated Eletron Systems IV, edited by F. Manini, AIP Conf. Pro., Vol. 527,New York 2000.[4℄ C.M. Varma, P.B. Littlewood, S. Shmitt-Rink, E. Abrahams, A.E. Ruken-stein, Phys. Rev. Lett. 63, 1996 (1989); O. Parollet, A. Georges, Phys. Rev.B59, 5341 (1999); V.J. Emery, E. Fradkin, S.A. Kivelson, T.C. Lubensky,Phys. Rev. Lett. 85, 2160 (2000).[5℄ V.J. Emery, S.A. Kivelson, H.Q. Lin, Phys. Rev. Lett. 64, 475 (1990);V.J. Emery, S.A. Kivelson, Physia C209, 597 (1993).
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