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We review recent results obtained for the stripe phases in the Hubbard
model. The experimentally observed half-filled (01) stripes with the filling
of one hole per two domain wall atoms are stabilized by electron correla-
tion effects. We show that the metallic stripe phases obtained using the
dynamical mean-field approximation are stabilized by a pseudogap and are
qualitatively different from insulating stripes derived from the one-particle
(Hartree—Fock) simulations. They reproduce the doping dependence of the
size of magnetic domains in (01) stripe phases and agree with the experi-
mental data of angle resolved photoemission for Las_;Sr, CuQy.

PACS numbers: 74.72.-h, 71.27.+a, 79.60.-, 71.10.Fd

1. Mott insulators and stripe phases

Numerous fascinating phenomena, such as various types of competing
magnetically ordered phases, metal-insulator transitions, and high-tempe-
rature superconductivity observed in transition metal oxides, are caused
by the collective behavior of strongly correlated electrons [1]. It was rec-
ognized first by Mott that the large local electron—electron interaction U
might dominate over the kinetic energy o #, and could cause electron lo-
calization in a half-filled band with electron density n» = 1 per atom, thus
explaining a new type of insulating state, the so-called Mott insulator [2].
In this state part of the degrees of freedom is removed, as the charge fluctu-
ations are suppressed, and the problem of fermions on a lattice reduces to
the spin problem, in the simplest case described by the Heisenberg model
with a nearest-neighbor antiferromagnetic (AF) kinetic exchange interaction
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J > 0. Therefore, if no other degree of freedom is present and the lattice is
nonfrustrated, Mott insulators have an AF long-range order in the ground
state. Such a state would be stable on a three-dimensional cubic lattice,
realized by the transition metal oxides with perovskite structures, but fre-
quently further complications such as orbital degeneracy occur, leading to
the effective interactions that are more difficult to describe, and may favor
qualitatively new magnetic states [3]. Fortunately, the parent compounds of
the High-Temperature Superconducting Oxides (HTSO), such as LagCuQOy4
and YBasCusOg, are simpler — they have CuO4 planes as a common struc-
tural element, well separated from all other ions due to large lattice distor-
tions, and orbital degeneracy is removed. Such planes can be described by
an effective two-dimensional (2D) model of electrons interacting on a square
lattice, the Hubbard model.

In addition to the Mott insulating state itself, a more difficult and chal-
lenging subject has been to describe and understand correlated metallic
phases near the Mott insulator. In this regime the charge fluctuations occur
in addition to the spin fluctuations, and give rise to the anomalous metallic
phase [4]. Such a situation occurs for instance in Lag_,;Sr, CuOy4, where the
doping by divalent Sr ions decreases the electron density ton =1—z < 1,
and holes doped to an antiferromagnet can move only in a restricted space,
defined by the constraint of no double occupancy due to large U. In HTSO
this metallic phase is unstable in a very spectacular way — the system be-
comes superconducting at low temperature. Here we will not address the
central and outstanding question concerning the mechanism of supercon-
ductivity, but discuss the qualitatively new phenomenon which occurs in
the normal phase — the instability towards a novel type of charge and mag-
netically ordered state, the so-called stripe phase [5].

As one of very few predictions in the theory of high temperature super-
conductivity, the stripes were found in Hartree-Fock (HF) calculations on
finite lattices described by the Hubbard model [6], well before their experi-
mental confirmation |7]. Such states result from the competition between the
superexchange interactions oc J = 4t2/U (t is here an effective parameter
for the Cu—Cu hopping which may be derived from the realistic charge-
transfer model, where a more quantitative analysis of the superexchange J
is possible [8]), which stabilizes the AF long-range order in the undoped
materials [9], and the kinetic energy of holes o ¢ which are doped to this AF
state. This physical situation is described by the effective Hamiltonian, the
so-called t—J model, derived many years ago [10] and now used for a generic
description of the phenomena in doped AF insulators, inter alia also for the
holes moving in doped CuOs planes [11]. On one hand, the magnetic energy
is gained when the electrons occupy the neighboring sites and the spins order
as in the Néel state, while on the other hand, the holes can move much easier
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when the AF order is suppressed, at least locally in this part of a CuOs plane
where the holes are moving. In the extreme case when the local Coulomb
interaction is very large U — oo, this leads to the polaronic mechanism of
ferromagnetic (FM) order which is stabilized by a single hole/electron doped
to a half-filled system, known as the Nagaoka theorem [12]. This case is spe-
cial, as the magnetic interactions ox #2/U vanish, and the kinetic energy is
optimized in the FM phase. At large but finite U a compromise between
these two energies has to be reached, and semiclassically they can be gained
in different regions of a sample, with holons condensing in closed trajectories
which gain the energy from quantum fluctuations [13]. This gives therefore
a phase separation which manifests itself in a form of a stripe phase: the AF
domains are separated by nonmagnetic lines, the one-dimensional (1D) do-
main walls. The kinetic energy is then best when the density of doped holes
in a Domain Wall (DW) is large, and the AF domains are almost identical
to the AF order in a Mott insulator [14,15].

This phase separation into a stripe phase is very general and occurs in
various transition metal oxides [1,16]. The modulations in magnetization
density have been detected in neutron scattering [7], and it was shown that
they correspond to the AF domains separated by the DW’s, qualitatively
looking as those of Fig. 1. Here we will discuss the stripe phases only for
HTSO, where static stripes were observed in Laj ¢ ;Ndg 4Sr; CuOy4 [7]. This
subject is of great interest at present, and it is hoped that their investigations
will help to understand the instabilities of doped Mott insulators, and the
role of stripes in the high-temperature superconductivity. Arguments were
given that the stripes suppress the superconductivity [17,18], and indeed the
static stripes occur only in the La-based compounds, where the transition
temperature 7. is lower than in the Y- or Bi-based superconductors.
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Fig.1. Schematic structures of stripe phases with the filling of one hole per two
DW'’s atoms (half-filled DW’s) at doping = 1/8: (a) (01) phase, and (b) (11)
phase. Arrows stand for - and |-moments in the stripe phase, with their length
proportional to the local magnetization (3); circles indicate the positions occupied
by holes. Two types of magnetic domains are indicated by + and —, respectively.
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The stripe phases were obtained in HF calculations performed on the
Hubbard model [6,19,20], t—J model [21], and more realistic charge-transfer
models [22,23]. The most stable structures obtained in the HF approxima-
tion have the density of one doped hole per one atom in a DW, corresponding
to filled stripes [20]. Such stripe phases were indeed observed in the nick-
elates [24]. On the contrary, it has been established experimentally in the
cuprates that one doped hole stabilizes two charge unit cells in a stripe struc-
ture, i.e., the magnetic states which form in CuQOs planes of HTSO are half-
filled stripes, with one hole per two DW atoms [7]. Two stripe phases with
this filling and the magnetic unit cells consisting of 16 atoms, represented
by two AF domains which are separated by two DW’s with four holes in
8 x 4 clusters, corresponding to x = 1/8 doping, are shown schematically in
Fig. 1. The picture is somewhat idealized, as the holes will partly delocalize
in reality, and could also give equal densities and no magnetic moments at
all DW atoms, as shown also by the numerical examples discussed in Secs. 3
and 5. The filled stripe phases would accommodate twice as many holes for
the same cluster sizes and domain structures, and would correspond instead
to z = 1/4 doping. It may be expected that the kinetic energy is quite dif-
ferent depending on the shape of magnetic domains and on the parameters
of the microscopic model, and one has to determine the stable density and
magnetization distributions in order to decide whether any of the two phases
shown in Fig. 1, or any other phase, is the ground state configuration.

The above discrepancy between the theory and experiment shows that
the classical instability is qualitatively incorrect in the cuprates, quantum
fluctuations play an important role in stripe phases, and one is forced to
go beyond the HF approximation, and treat explicitly local electron cor-
relations. A few methods which include electron correlations, such as:
the Density Matrix Renormalization Group (DMRG) for the #J model
[25], slave-boson mean field approach [26], variational wave functions de-
scribed by the local ansatz [27,28], Exact Diagonalization (ED) of finite
clusters [17], Monte-Carlo simulations applied to a spin-fermion model [29],
analytic expansions of the wave function [30,31], Dynamical Mean-Field
Theory (DMFT) [32], and cluster perturbation theory [33], have been used
recently to investigate the stable ground states of stripe phases. It was a
spectacular success of these methods that the half-filled stripe phases were
obtained in all of them for the relevant parameters which model the HTSO.

The spectral properties of stripe phases are also of great interest, as the
stripes have measurable consequences in photoemission [34-36]. If electron
correlations are important, large corrections to the electronic structure, and
to the gaps which stabilize the stripe phases in HF', are expected. It has been
shown by recent numerical [17,33,37,38] and semianalytic [31] studies that
the stripe superstructure induces drastic changes of the spectral weight dis-
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tribution. Particularly intriguing are such observations as non-Fermi liquid
dependence of the chemical potential on the doping [39], and the existence
of a pseudogap which opens at the Fermi level in a broad regime of dop-
ing [36]. In addition, flat quasiparticle (QP) states have been observed near
the X = (m,0) point in Lay_,;Sry;CuOy4 [36]. It will be shown that these
features can be reproduced in the spectral functions obtained using an ap-
propriate extension of the DMFT [40].

The rest of this paper is organized as follows. In Sec. 2 we present the
microscopic reasons of stability of stripe phases in classical (HF) states and
discuss the limitations of this approach. Better solutions can be obtained
variationally, and we present in Sec. 3 an example of a variational wave
function and show that it gives indeed stable half-filled stripes, with the
same filling and orientation as observed experimentally. While this approach
allows to investigate only the correlation energy and the structure of ground
states, electron correlations are also important for the dynamical correlations
seen in photoemission. They may be studied when a DMFT is generalized to
the stripe phase [32], as presented in Sec. 4. Using this method, we analyzed
in Sec. 5 the sequence of stable stripe phases with increasing hole doping
x, and their spectral properties. The summary and some open problems
related to stripe physics are presented in Sec. 6.

2. Solitonic mechanism of stripe formation

The realistic charge-transfer model for electronic states in CuOy planes of
HTSO which includes Cu(3d,>_,») and O(2p,y)) orbitals may be replaced by
a simpler effective Hubbard model which describes the interacting electrons
on a square lattice occupied by Cu ions [41,42],

H=- Z tmiﬂjajniaanja + UZ Tmit Tmi, - (1)

mi,ng,o mi

In the stripe phase the 2D square lattice is covered by N supercells contain-
ing L sites each. ajm.a are creation operators for a hole at site {mi}, labeled
by two indices: the supercell index m, and the index within the stripe unit
cell © = 1,..., L, while n,,; = a;'nigamw is the electron number operator.
The usually discussed Hubbard model (1) includes only the hopping ele-
ments between nearest neighbors #,,;,; = ¢, but in the superconducting
cuprates it is derived from a realistic charge-transfer model, either by the
cell method [41], or by the downfolding procedure, and therefore also finite
hopping elements between second (¢min; = t') and third (¢ n; = t") neigh-
bors are of importance. The electrons interact by strong on-site Coulomb
interaction U ~ 12¢.
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In the HF approximation the interacting term is replaced by the poten-
tials o« U which act on electron densities [6,20]:

Unmittmil ~ U((Mmit)miy + Pomit(Mmil) — (Mmit) (Mmi) ) (2)

The potentials consist of a nonmagnetic part o< Un;, where n; = (npir +
Nmil) is an electron density, and a magnetic part o« Um,, where

M = (Nmit — Nmiy) = 2(S7) (3)

is a local magnetization. Therefore, the electronic structure has to be solved
self-consistently with local magnetic potentials, or static selfenergy [6],

Ez{{rF =Un;; = %U(nz + A\sm;) , (4)

where n;5 = (nmiz) with ¢ = —o is the electron density in stripe supercell,
and A\, = £1 for 0 =7, ]. At half filling the electron density is uniform (n; =
1), and the ground state is AF, with the magnetization m > 0 alternating
between two sublattices A and B: m; = +m for i € A, B. In the simplest
case of t' = t" = 0, the one-particle energy is given by e = —2t(cos k; +
cos ky), and the AF bands are easily obtained [43],

1/2
Bf =L (en+enrQ) £ 1 [en— s’ + Om22 . (5)

where Q = (m,m) is the nesting vector in a 2D square lattice (i.e., egyrQ =
—eg). Thus, if U > t, large potentials j:%U (4), defined with respect
to the nonmagnetic uniform background, split the electronic structure (5)
into occupied and empty states which are separated by a large gap ~ U,
resulting in a Mott—Hubbard insulator. The AF subbands (5) simulate in
the one-particle calculation the incoherent states of the Lower Hubbard Band
(LHB) and Upper Hubbard Band (UHB) of a strongly correlated electron
system [44], respectively.

The situation changes when holes are doped to an antiferromagnet.
Consider first a single hole introduced by doping into an AF background
[Fig. 2(a)]. If one spin is removed, one arrives at a many-body problem
of a hole moving in an AF background which gives qualitatively new QP
states accompanied by incoherent processes at higher energies [45]. In order
to understand qualitatively the mechanism which favors stripes at higher
doping, it is however enough to consider only a small cluster consisting of
three atoms. This choice would be of course unrealistic for a single hole in
an antiferromagnet, but in a stripe phase the symmetry is locally broken,
and considering the (01) stripe phase of Fig. 1 one can first investigate the
energy gain in the direction perpendicular to a DW itself. Thus, a cluster
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consisting of three atoms and a hole in the middle is a simplest unit, repre-
senting either a line filled by holes in an antiferromagnet [Fig. 2(a)], or a hole
on a DW, placed between two AF domains [Fig. 2(b)]. Thereby, we assume
that the electrons cannot move due to large Coulomb interaction U > ft,
and thus the hole in confined only to the considered three atoms. If a |-spin
is replaced by a hole in an antiferromagnet, as in Fig. 2(a), the situation in
a resulting three-atom cluster is very simple — two f-spin electrons may be
found in one of three possible configurations: {1 01}, {0 1T 1}, and {1 1 0},
and thus this polaronic state gives the total energy

—V2t, (6)

while the interaction energy U does not contribute.

If a hole occupies a DW instead, it may again delocalize over the molec-
ular model of Fig. 2(b), which leads to similar three configurations to those
considered for the polaron case: {1 0 |}, {0 1 |}, and {1 | 0}, but in ad-
dition, three configurations with one site doubly occupied, and three other
configurations with the interchanged 1- and |-spins, can be reached by the
hole hopping. The latter configurations are accessible via double occupan-
cies, and thus the energy can be found in a perturbative way. As a result,
the energy is lower for this solitonic solution than in the polaronic case,

42
ESZ—\/ﬁt—%. (7)

Therefore, in the regime of large U, the DW is always more stable than a
line of polarons in an AF background.

Fig.2. Energy levels for the electrons with $-spin (full lines) and |-spin (dashed
lines) in a 2D antiferromagnet along x axis: (a) a hole added to a single AF domain;
(b) a hole on the DW separating two AF domains in (01) stripe phase. The spins
form an AF structure, while the holes repeat themselves along y direction. Adding
a second electron at an occupied site costs the Coulomb energy U.



2970 A.M. OLES

In reality further corrections to the energies appear in both situations
due to the interactions with the AF background, but the principal reason
standing beyond the stripe formation is already identified by the above sim-
ple consideration [20]. If the holes occupy nonmagnetic DW’s, additional
processes are allowed in second order oc #2/U which lower the energy of
this structure with respect to the polaronic defects, where the analogous
excitations are blocked by the Pauli principle. This also suggests that the
(01) stripes are primarily stabilized by the hopping element perpendicular
to the direction of the DW’s. For this reason, (01) stripe structures can be
additionally stabilized by lattice deformations which pin to the DW’s, and
give a nonperturbative renormalization of the second order energy gain of
the solitonic solution (7), as analyzed in more detail in Ref. [20]. This result
is counterintuitive, as naively one might expect that the doped holes fill a
1D band, with a dispersion

er’ = —2tcosk,, (8)

determined by the hopping along the DW direction [46], and this might
decide about the stripe stability.

In order to understand why the stripes with filled DW’s are more stable
than those with half-filled DW’s in the HF approach, it is instructive to in-
vestigate the electronic structure of a doped antiferromagnet. The bands are
determined by the stable distribution of electron densities {n;,} which give
the HF potentials (4). While the magnetic potentials (4) are still present
within the AF domains, and will thus give the electronic bands in the (oc-
cupied) LHB and in the (empty) UHB, these splittings are absent for the
atoms on a nonmagnetic line which separates two AF domains. Therefore,
a band which is built up mainly by the states of the DW atoms appears
within a Mott—Hubbard gap [20]. This band is spin degenerate and may
therefore accommodate two electrons per one atom of a DW. It cannot be
filled by one electron per site, as then it would be again unstable against
magnetic order, giving as a result a uniform AF phase of a Mott insulator,
with the electronic structure considered above (5). On the contrary, if the
DW is filled by holes, this band contains no electrons and is separated by a
small gap o ¢ from the occupied states of the LHB. The Fermi energy pu lies
in this gap, and in this way an insulating state with the filling of one doped
hole per one DW atom is stabilized.

A very interesting question to ask now is whether any other than filled
DW’s might be stable in the HF approximation. The filling of one hole
per two DW atoms, which was observed in the cuprates [7], corresponds to
a quarter-filled band, which crosses the Fermi energy p at k = (m,7/4),
(w/4,7/4), and other equivalent points. Therefore, such a state would be
metallic and as such could not be even locally stable in HF. However, there
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are still ways of stabilizing this filling by quadrupling of the unit cell along
the DW’s which opens a new gap in the quarter-filled band, precisely at the
positions of the above crossing points. Indeed, when a spin-density wave
(SDW) or a charge-density wave (CDW) with a periodicity of four atoms
along the y direction is formed, such a gap opens at u, and the stripes with
half-filled DW’s are locally stable [20]. Unfortunately, they can never be
the most stable structures in HF for a very simple reason which can be
understood by comparing the electronic structures of both types of stripe
phases. In fact, the band which accommodates the doped holes splits into
two almost flat subbands for the half-filled stripes, with either a SDW or a
CDW along the DW’s, and with almost no global shift of these subbands
with respect to the center of the Mott—Hubbard gap. As only the upper
subband is filled by holes, the total energy calculated per one doped hole
is always higher in the half-filled stripe phase than that obtained when the
DW is filled.

The observation that stable solutions are self-consistently obtained by
placing the chemical potential y in the middle of a gap gives a general
mechanism of stripe phases in HF. Therefore, the stripe phases obtained
in HF are always insulating. Recently, the electronic structures of different
stripe phases were investigated in detail by Markiewicz [37]. Partial filling
of the bands within the Mott—Hubbard gap and pseudogaps which form at
the Fermi energy were found to be general consequences of stripe ordering,
in qualitative agreement with the results of photoemission experiments [47].
However, the considered structures with partly filled DW’s were only locally
stable, similar for the stripes with half-filled DW’s considered above. The
same trend was also observed in the charge-transfer model [16].

Stripes may be seen as topological defects in an antiferromagnet, stabi-
lized by the kinetic energy of doped holes. Their stability has a solitonic
origin with nonmagnetic DW atoms, as shown both for small clusters [20],
and for a 1D infinite system described by the Hubbard model [48]. Although
no evidence was presented yet, it seems that the degeneracy of 3d orbitals
might plays a role in stabilizing the filled stripes in nickelates and man-
ganites [1]. In contrast, orbital degeneracy is absent in the cuprates, and
the quantum fluctuations for spins s = % are expected to be larger than in
other more classical compounds, where the spins are larger. In addition, also
the electron correlation effects are particularly large in this case. We give
arguments in the next Section that the analysis of the electronic structure
alone cannot resolve the question of stripe stability and show that electron
correlations are responsible for stabilizing the half-filled stripes in HTSO.
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3. Variational wave functions

It is easy to understand why the electron correlations play such an impor-
tant role in the physical properties of stripe phases. The HF approximation
works well in the regime of large U only for the polarized (magnetic) states,
and thus the correlation corrections are small for the atoms within the AF
domains. The situation is quite different on the nonmagnetic DW’s — here
the correlation energy is large. Using the experience from the itinerant mag-
netism, where the correlation corrections are largest when the nonmagnetic
atoms are close to half filling (n = 1) [49], it becomes clear that more correla-
tion energy can be gained by reducing the double occupancy in the half-filled
than in the filled stripe phases.

A variational treatment of the Hubbard model was first introduced by
Gutzwiller, who formulated a systematic method of improving the HF wave
function |®y) by implementing local correlations [50]. A recent extention of
this method to the polaronic solutions and stripe phases has demonstrated
that the half-filled DW’s are stabilized by the correlation effects, and this
trend is even more pronounced when the intersite Coulomb interactions are
present [26]. Here the results of another approach which makes use of an
exponential Local Ansatz (LA) for the correlated ground state [51],

|W0 —exp( an mz) |¢O (9)

will be discussed. This method captures the leading contribution to the
correlation energy in the present systems with nonhomogeneous density dis-
tribution of doped holes. The local operators,

Omi = NmitMmi) — <nsz> <nmz¢> ) (10)

are introduced to reduce the amplitudes of the configurations with doubly
occupied sites, and 7; are the corresponding variational parameters. The
averages (---) are determined, as usually, by averaging over the HF ground
state function |@g). By construction, the local operators describe the corre-
lations which go beyond the HF state |®g), and (O,,;) = 0. For convenience,
we define the local doped hole and the local magnetization density at site
i =1,...,L in the correlated ground state |¥) as follows,

<’~p0|1 — (’nmiT + nmzi)WO)
. — 11

: Nmit — Mms
(S5)1a = | (Wol5( (Ll?T0|%) Vo)l (12)
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The breaking of symmetry is thereby assumed with respect to the z-th spin
component, S7 . = %(nsz — Nypiy)- This construction allows to use a closed-
shell version of the HF wave function |®) with the factorization of the Slater
determinant into up-spin and down-spin parts.

The variational parameters {7;} are determined by minimizing the total
energy in the correlated ground state,

_ {(W|H |¥)
Fo= (Wo|wo) (13)

After expanding the exponential factors in the wave functions |¥) (9) up to
linear order in 7;, the stationary values of the variational parameters {1’} at
the saddle point can be easily determined by minimizing the energy (13) [51].
The above procedure is valid provided that any third and higher order cor-
rections, like o< ((mit — (nmit))?), are small and can be neglected [51]. This
condition is well satisfied in the symmetry-broken states with AF order con-
sidered in the present study. More details on the energy minimization in the
LA method may be found in Refs. [49] and [51].

The LA was used to investigate the stability of stripe phases by consid-
ering different starting density distributions and different topology of the
DW’s in finite 8 x 8 supercells with periodic boundary conditions [27]. Any
self-consistent solution found in the variational LA is a local minimum of the
total energy (13). Its absolute stability may be investigated by calculating
the energy gain per one doped hole, as introduced in Ref. [20],

E3(x) [E5(x) — Ear] , (14)

1
=N
where N}, is the number of doped holes in the considered cluster. Here ES (z)
is the energy obtained for the stable stripe phase at doping z, and Ear is
the reference energy of an undoped AF state in a Mott insulator (at z = 0),
both found within the LA method.

The stripe phase, obtained as the ground state of a doped antiferromag-
net by the above energy analysis, is characterized by the density (11) and
magnetization (12) distribution. In the Hubbard model with the first neigh-
bor hopping one finds (01) stripe phases as the lowest energy structures in a
broad range of parameters [27]. For a (01) stripe phase with vertical DW’s,
one may label the atoms in the (magnetic) unit cell (which consists of a
single row) by I, = 1, ..., L, while the atoms from different supercells are la-
beled by 1, i.e., a pair of indices {mi} in Eq. (1) is here replaced by (Iz,1,).
It is then more convenient to introduce the quantities integrated along the
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direction parallel to the DW’s [25]:

L
1 Yy
np(ls) = 1— I D ()t + 1)) (15)
I—1
Sr(lz) = —y Z l”ll‘— (Pl )t = il o)) (16)
l—1

where we have used the doped-hole density, np(lz) = 1—{(n(, 1,)4 T7(10.1,),1)
instead of the local electron density n(, 1,) = (R@,.1,).4 T P1p0y),l ) tO char-
acterize the stable charge distribution. A site-dependent factor (—1)=*% in
Eq. (16) compensates the modulation of the AF structure within a single
domain. Therefore, the charge and magnetization distribution in the (01)
stripe phase is fully described by the average density along the (10) direc-
tion, given by ny(l;) and S;(l;), respectively. A similar procedure may be
introduced to investigate the density and magnetization distribution in (11)
stripe phases.

In the present paper we show for illustration the ground states obtained
for hole doping x = 1/8 with two sets of parameters which were derived from
the electronic structure [42]: (i) ¢ = —0.11¢, ¢ = 0.04¢, and (4i) ¢ = —0.30¢,
t"” = 0.20t. They correspond to Lag_;Sr,CuO4 (LSCO) and YBasCu3Og,
(YBCO) compounds, respectively. In both cases the stripe structures have
been found in the ground state. Although a stripe structure with magnetic
DW’s was found in HF for the LSCO parameters, a different (01) stripe
phase with nonmagnetic DW’s is obtained in the LA method [Fig. 3(a)|. This
shows that the correlation energy gains are indeed larger for nonmagnetic
atoms, and such solutions are stabilized when electron corrections are treated
explicitly. This (01) phase is stable in a broad range of U, including U ~ 10¢
which is representative for LSCO compounds. It is expected that this phase
will be stable also at U > 10¢, as the obtained results are less reliable in this
regime due to the performed expansion in {7;} parameters. Interestingly, a
different stripe phase with diagonal (11) and FM DW’s is more stable for
the YBCO parameters [Fig. 3(b)]. This phase is clearly stabilized by a large
second order hopping #' which leads to a kinetic energy gain when the spins
are aligned within the walls. A more careful analysis is needed to establish
whether this phase is consistent with an observation of diagonal stripes in
YBaQCu306.4 [52].

The charge and magnetization distribution obtained for the stripe phases
stable at U = 10t are shown for both sets of parameters in Fig. 4. In
the case of (01) phase realized for the LSCO parameters [Fig. 4(a)], the
AF domains consist of three atoms and have almost unreduced charge (15)
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Fig.3. Energy per doped hole Ej/t in the stable stripe phases (14) obtained in
HF (top) and in LA (bottom) method [28]. Part (a) shows stable phases for the
parameters of Las_,Sr, CuOy (' = —0.11¢, t" = 0.04¢ [42]): vertical nonmagnetic
DW’s (¢©); diagonal AF DW’s (V); vertical DW’s with quadrupling of unit cell (x);
and polaron structures with FM intersecting diagonal DW’s (x). Part (b) shows
stable phases for the parameters of YBa,CuzOg4, (t' = —0.30¢, ¢ = 0.20¢ [42]):
vertical FM DW’s (0O); vertical magnetic DW’s with quadrupling of unit cell (<©);
diagonal FM DW'’s (%); and polaron structures with FM intersecting diagonal DW’s
(x). Except for polaron structures, all DW’s are half-filled.
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Fig.4. Charge np,(l;) (15) (filled circles) and spin S, (I;) (16) (open squares) density
distributions [28], as obtained for the half-filled (01) and (11) stripes of Fig. 3 at
U = 10t for: Las_,Sr,CuO4 (left) and YBasCu3Ogy, (right).

and magnetization (16) density from the respective values found in the AF
insulator at z = 0. This state is indeed close to the idealized picture shown
in Fig. 1(a). In contrast, the (11) phase obtained for the YBCO parameters
[Fig. 4(b)], is somewhat different from Fig. 1(b) — the DW’s found from
the variational calculation are FM, with two neighboring magnetic moments
pointing in the same direction, and in this way give a change of phase in the
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staggered magnetization between two AF domains, observed in the variation
of Sy (ly+1,) along the direction perpendicular to the AF domains. It may be
expected that more smooth density and magnetization distributions would
be obtained, if the LA wave function (9) would be improved by a variational
optimization of the density distribution along with the weights of doubly
occupied configurations in the correlated ground state.

The examples shown in Figs. 3 and 4, and the results of Ref. [27], demon-
strate that local electron correlations beyond the HF states stabilize the
half-filled stripe phases in a broad range of parameters. They are consistent
with the results obtained in other methods introduced to treat the static cor-
relation effects: the DMRG of White and Scalapino [25], and the mean-field
slave-boson technique [26]. Although it has been argued that the long-range
Coulomb interactions might help to stabilize the stripe order [26], the evi-
dence has accumulated that the on-site interactions alone suffice to obtain
stable half-filled stripe phases [25,27,30-33|.

4. Dynamical mean-field theory for stripe phases

The case which is most intensely investigated theoretically in the doping
by z = 1/8 holes, perhaps due to the observation of distinct static stripes in
Lay g—;Ndg.4Sr;CuOy4 [7], which are stable around this hole concentration.
However, the stripes occur also away from z = 1/8, both in the underdoped
and in the overdoped regime [53,54]|. In order to understand the evolution
of stripe phases with increasing hole concentration z in the Hubbard model,
it is necessary to investigate also other concentrations and look for stable
stripe solutions in larger supercells adequate for the underdoped regime. A
recent generalization of the DMFT method [32] allows to treat stripe phases,
and to address this question in a systematic way.

The central idea of the DMFT is that the dynamical correlations in
a fermionic system may be well described by a local selfenergy [40]. The
dynamic selfenergy as a function of w is then determined self-consistently
with the effective medium to which it couples, similar to the conventional
mean-field treatment of the Ising model, where a single variable, local mag-
netization (S#), is determined self-consistently at finite temperature T'. Both
approaches become exact in infinite spatial dimension d — oco: the mean-
field theory because the quantum fluctuations vanish in this limit, while
the DMFT because the diagrams in the perturbation theory become lo-
cal [55,56]. In the past the local form of selfenergy was assumed by ne-
glecting the momentum conservation in second order perturbation theory,
and was shown to give very reliable results, capturing more than 95% of the
correlation energy in three dimensions [57]. Motivated by this success, here
the local selfenergy will be used to describe the dynamics in a 2D model
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of doped antiferromagnets. Although this assumption seems to be rather
drastic as combining d = oo with d = 2, we argue that the actual qualitative
results and a favorable quantitative comparison with some available rigorous
properties, justify it a posteriori. In fact, it has been shown before that one
obtains the correct dispersion and spectral weights of the QP states in the
Hubbard model at half-filling (n = 1) within the DMFT, if the on-site spin
fluctuations and the renormalization of U due to charge fluctuations are in-
cluded in the local selfenergy [58]. This approach has demonstrated that an
accurate treatment of spin and charge fluctuations is necessary to describe
correctly the dynamical properties in magnetic phases. Using this experience
with the AF Mott insulator, the DMFT method has been recently general-
ized to treat nonhomogeneous phases with large supercells encountered in
stripe phases of HTSO [32], as we present below.

The spectral properties of the Hubbard model (1) may be found from
the Green function defined for imaginary time 7 = it,

Gmignio(T) = =0(T ) (@i (T)al ;5 (0)) + 0(=7){alj, (0)amis (1)), (17)

which depends on the supercell indices m and n, on the indices within the
supercell 2 and j, and on the spin index o. Using the periodicity of a stripe
phase one finds its Fourier transform, Gjjs(k,iw,), which depends of the
fermionic Matsubara frequencies w, = (2v + 1)nT, with T being a fictitious
temperature, playing a role of a low-energy cutoff [40]. Therefore, the Green
function is given by an (L x L) matrix,

G_l (k, iw,,) = (’iwy + M)éij — hij (k) — Zia(iw,,)éij, (18)

ijo
with the site- and spin-dependent local selfenergy [40,55],
o (iwy) = SEF + 22 (iw,). (19)

The selfenergy is labeled by the site index within a stripe supercell, and
consists of a HF (static) potential XIF (4), and a dynamic part X2 (iw,),
which describes electron correlations and is determined in the DMFT. The
kinetic energy h;;(k) in Eq. (18) is obtained for the stripe lattice periodicity
with supercells of L atoms as an (L x L) matrix,

hij(k) = exp[—ik(Ro;i — Ruj)]toin; - (20)

For simplicity, we will consider the model (1) with nearest-neighbor hopping
only, t0;n; = —t, and thus the matrix (20) has a tridiagonal form.
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The local Green functions for each nonequivalent site ¢ = 1,..., L are
calculated from the diagonal elements of the Green’s function matrix (18),

Gio (iwy) = % S Giio (ki) (21)
k

The DMFT equations lead thus to a self-consistent problem at site 7,
gz(')a(iwl/) ! = Gi;l (iwl/) + Ei(f (iwl/) ) (22)

where G (iw,) is the effective medium (bath) Green function at site 4, which
depends on the charge and magnetization density at this site ¢+ and, via
the bath, on the density distribution at its neighboring sites. In the pres-
ence of magnetic order the local Green functions (18) are determined self-
consistently together with local HF potentials (4), with the constraint for
the total density within the stripe supercell,

L L
Z Nig =M. (23)
i=1,0

This approach to the stripe phase within the DMFT method is therefore
analogous to that recently introduced by Potthoff and Nolting for a Mott
metal-insulator transition in thin films [59].

The self-consistent problem posed by Eqs. (22) requires the knowledge of
both parts of selfenergy (19): (i) the HF part XHF and (i) the dynamical
part XD (iw,). The latter has to be either derived in a perturbative way
by summing up classes of diagrams, or may be determined numerically by
solving the correlation problem on a single atom [40]. In the present case the
site-dependent selfenergy has been found using an ED algorithm of Caffarel
and Krauth [60]. This procedure is motivated by its high accuracy which is
especially needed in the magnetic systems, where numerous magnetic phases
compete with each other. The main advantage of this method is that it
gives unbiased results for the selfenergy and thus includes the leading part
of the dynamical processes which are responsible for a many-body behavior
of interacting electrons. It is also very well suited to study the ground states
of correlated systems, in contrast to quantum Monte-Carlo methods which
can provide reliable information only at rather high temperatures (T ~ 0.3t),
and therefore cannot be used to investigate the properties of stripe phases.
Also the earlier studies of stripe phases based on the perturbative formula
for the selfenergy which includes the spin fluctuations appeared to be not
accurate enough at low temperatures [61], precisely in the regime where
these phases are stable. In fact, the stripes melt at temperatures T' ~ 70 K,

il
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and it is therefore difficult to obtain the low temperature limit with sufficient
accuracy, when the finite-temperature formalism is used [61].

In the ED method of Caffarel and Krauth a Single-Impurity Anderson
Model (STAM) hybridized with a finite set of orbitals is solved with the
Lanczos algorithm at 7' = (0. This non-perturbative approach treats there-
fore local spin and charge fluctuations exactly, and gives the rigorous form
of the selfenergy in the limit of infinite dimension d — oo [40,56]. In a
uniform system a lattice problem is mapped onto an effective STAM, which
is next solved self-consistently with the surrounding lattice. This method is
well suited to investigate the spectral properties of stripe phases, when the
above mapping is performed independently for each nonequivalent site in a
stripe supercell, and leads to L different impurity models for s =1, ..., L:

ns—1 ) ns—1 . .
Hi(rlrzpzz Edcgacia + Z 61(;30,20(1]604—2 (Vk((zf) al]::aciﬂ +Vk([7;)*c;raako) +U’n’iTnZ¢7
o k=1 k=1
(24)

with L self-consistency conditions (22). Each impurity model includes ng—1
effective orbitals labeled by k = 1,...,ns — 1, which stand for the conduction
band and couple to the impurity atom, where the correlation problem is
solved.

Unlike in a real a finite cluster, here the conduction-band orbital energies
553 and the hybridization elements Vk(? are the effective parameters. In order
to start the iteration it is convenient to solve first the noninteracting (U = 0)
impurity Green function G¥  (iw,), which is given by the following form for

i0,Ns
atom ’i,
ns—1 (V )

(1)

k=1 Wy — Eka

(25)

gzoa,ns (in)il =Wy, — €d —

The crucial step is the solution of the STAM for 7 = 1, ..., L using the Lanczos
algorithm to get the impurity selfenergies Y, (iw,) which are required for
the next cycle. Therefore, the numerical effort increases linearly with the
size of the magnetic unit cell L in the stripe phase.

After solving of the effective cluster problem, the local Green functions
Gy (iwy) are determined. Self-consistency is implemented by extracting from
Eq. (22) the new selfenergy (19), and next Eq. (18) for Gjjs(k,iw,) is used
to start the next iteration. Finally, the parameters of the effective SIAM

{51(2, Vk(?} are obtained by fitting the noninteracting problem represented

by the bath Green function GY) (iw,) to the actual Green function Q?U’ns (twy)

(25) on the imaginary energy axis, with the latter function obtained for the
finite-orbital problem posed by the STAM. The best choice is obtained by
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minimizing the cost function |59, 60],

1 Vmax

D |G, i)™t = Gl i) '] (26)
=0

2
X = Vmax 1 1
v=
for each impurity problem labeled by ¢. This method uses a drastic approx-
imation for a conduction band which is represented just by a finite set of
ng — 1 effective orbitals. Of course, one could reproduce an exact result
for an infinite system only in the limit of ny — oc. However, the conver-
gence with the increasing cluster size is very fast, and reliable results for a
metal-insulator transition in the Hubbard model could be obtained by solv-
ing relatively small clusters with ny < 10 [60]. The convergence is of similar
quality also in the present problem, and the results obtained with ny = 8
will be presented in the next Section.

Apart from the static properties such as density (15) and magnetization
(16) distribution, the Green functions (18) allow to determine the spectral
function,

Alk,w) = g, > e KB B G i o(w) (27)
) - r LN - mi,ng,c .
mi,nj,o
This quantity will be used below to analyze the mechanism of stability and
the momentum dependence of the photoemission spectra in stripe phases.

5. Stripe phases as one-dimensional metals

We will be interested here in a generic picture which follows from the
DMFT approach and thus the numerical examples will be limited to the
simplest case, to the Hubbard Hamiltonian (1) with nearest-neighbor hop-
ping only. This choice is sufficiently close to the realistic parameters of
Lag_;Sr,;CuQy [42]. Stripe phases in the doped Hubbard model were found
using the above ED method within the DMFT by an extensive numerical
search for self-consistent solutions with the lowest energy, starting from dif-
ferent initial conditions appropriate for various type of polaron and stripe
ordering [32]. The finite 8 x 8 and larger lattices with periodic boundary
conditions used for these calculations accommodated always at least eight
stripe supercells with the periodic boundary conditions, which are suffi-
cient to approximate the stripe phases stable in the thermodynamic limit.
Here we summarize the results obtained for U = 12¢, a value represen-
tative for Las_,Sr,CuQO4 compounds, which reproduces the experimental
ratio of t/J = 3 [11], with J = 4#2/U. At low doping one might expect iso-
lated polarons which were found before in the HF studies [6,20]. However,
the polarons are unstable in the present DMFT calculations and instead
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a uniform AF state with a gradually reduced magnetization in the weakly
doped regime of x < 0.03 was found. This suggests that the HF approach
overestimates the local density changes in the doped systems, and agrees
qualitatively with the experimentally observed AF long-range order in the
weakly doped regime up to z ~ 0.02, reported for Lag_,Sr;CuOy4 [9,62,63].

The stripes were found to be stable in a broad range of hole doping
0.03 < z < 0.2 using the DMFT. The DW’s are populated by the doped holes
with the filling corresponding to half-filled stripes in the stable phases, but
the density distribution is more smooth than in the corresponding HF states
corrected by the LA method, for all cases discussed in Sec. 3. First, near
the undoped AF Mott insulator, the (11) stripes with large supercells are
stabilized for 0.03 < z < 0.05 by a (weak) CDW superimposed with a SDW
along the wall. These states have very large supercells consisting typically of
~ 160 atoms, and are characterized by the extended DW’s with the clusters
of four sites along z axis, |0)— |1) —[0)— ||), on each (11) DW itself, and the
AF domains between them. They demonstrate a generic tendency towards
phase separation within a doped antiferromagnet into hole-poor and hole-
rich regions [5], and may be seen as a compromise between the uniform AF
order and (01) stripes which occur only at higher doping.

Site-centered vertical stripes, with half-filled DW’s, were found to be the
most stable structures in a broad range of doping 0.05 < x < 0.17. The
size of AF domains, separated by a line of nonmagnetic atoms, is first large
(seven atoms at x = 1/16), but shrinks with the increasing doping down to
three atoms at z = 1/8. Beyond z = 1/8 one finds up to z ~ 0.17 a lock-in
effect of the same structure with a charge (magnetic) unit cell consisting
of four (eight) sites, and the AF domains with three atoms along the z
direction. Two examples of the (01) structures stable at z = 1/12 and 0.15
are shown in Fig. 5. Although the hole density has distinct maxima at the
DW’s, the holes are more delocalized than in the HF calculations [6,19],
and in the LA method [27], discussed in Sec. 3. This result agrees with the
slave-boson calculations [26], and with numerical DMRG [25], where also
more smooth density variations were obtained than in the corresponding
HF states. Moreover, the density distribution is quite stable around the
DW’s in the underdoped regime, with n; ~ 0.850 and n; ~ 0.830, at doping
x =1/16 and = = 1/8, respectively, and a rather small doping at the central
sites in the AF domains (n; ~ 0.97 in the case of z = 1/16 shown in Fig. 5).
On the contrary, for the doping z > 1/8 the hole density increases fast
within the AF domains. For instance, n; ~ 0.92 and 0.88 was found at the
central atom in the AF domains for z = 1/8 and z = 0.15, respectively.

Finally, as a result of increasing hole density within the AF domains
and the decreasing amplitude of the SDW shown along the x direction in
Fig. 5, at doping z > 0.17 kinks and antikinks along the DW’s develop,
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Fig.5. Vertical site-centered (01) stripe phases obtained in DMFT for z = 1/12
(left) and = = 0.15 (right) at U = 12t [32]. Top part shows doped hole (circles) and
magnetization (arrows) densities; their spatial variations are represented by np(l;)
(empty squares) and Sz (I;) (filled circles) in the lower part.
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Fig.6. Energy per doped hole Ej/t in the stable stripe phases (filled symbols),
in the respective excited states (empty symbols), and in a uniform paramagnetic
phase (pluses), as obtained in DMFT at U = 12¢. The stable stripe phases are
found at x < 0.20, as explained in the text: diagonal (11) structures (squares),
site-centered (01) stripe phase shown in Fig. 5 (circles), and bond-centered (01)
stripe phases (triangles).

the bond-centered (01) stripe phases with pairs of magnetic atoms on the
DW’s similar to those of White and Scalapino [25] are energetically favored,
and the stripe structure gradually melts. This new type of stripe phases,
not found in the HF calculations, indicates a smooth crossover from the site-
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centered to bond-centered (01) stripes. The gradual transition between three
different stripe phases is also seen in the values of energy per one doped hole
E3(z), found now from Eq. (14) within the DMFT method (Fig. 6). The
energy increases monotonically as a function of doping x, showing that the
(11) and (01) stripe phases discussed above are stable against macroscopic
phase separation. The energy difference between the site-centered and bond-
centered stripe phases is typically small, e.g. AEE ~ 0.05¢ for x ~ 1/8.
One observes also a decreasing excitation energy with increasing z which
indicates that the stripe phases are gradually destabilized with increasing
doping. Therefore, one expects strong transverse stripe fluctuations in the
bond-centered phases [64], not included in the DMFT approach, which could
stabilize them a bit more against the site-centered stripes. It has been argued
that such fluctuations might enhance superconducting correlations in the
ground state [65].

In contrast, the energy of the uniform paramagnetic phase per one hole,
EF(z), determined in a similar way to Eq. (14), has a minimum at z,, =~
0.16, with E} (z,,) ~ —2.23t (—1.94¢) for U = 12¢ (U = 8t). This indicates a
generic tendency of this phase towards phase separation [5], as a lower energy
can be obtained at doping x < 0.16 just by separating the sample into hole-
poor and hole-rich regimes, following the Maxwell construction. This shows
that the stripe phases are a natural consequence of this instability, and the
energy per hole found in them E,%(é) is just somewhat lower than the energy
of the paramagnetic phase at its minimum, E} (,,). Doping beyond z,, soon
destabilizes the stripes due to the increasing spin and charge fluctuations, as
discussed above, and the energies E5(z) and EF () come close to each other
and merge above r = 0.20. This estimate agrees well with the observed
gradual disappearance of charge inhomogeneities in Lag ,Sr;CuO4 above
the optimal doping [66].

The stripe superstructure is clearly seen in the charge and spin response
as the characteristic maxima of the respective structure factors. Using the
same notation as in Eqs. (15) and (16), the charge distribution may be
described by the Fourier transform of the static hole-hole correlation function
in the reciprocal space,

1 .
Clk) =15 Do e O —ng) (L=ng,u)) . (28)
(Lzly)

For a stripe phase the summation is performed over the 2D lattice of N
supercells containing L sites each. Here k = (kg,ky) is a vector from
the first Brillouin zone. This function may be measured in elastic X-ray
scattering and has characteristic maxima at Q, = (+4nn,0) for the verti-
cal (01) stripes. In experiment, however, a superposition of (01) and (10)
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phases from different CuOs planes is observed, and thus the maxima are
symmetrically distributed around the I' = (0,0) point at Q, = (%4n~,0)
and Q, = (0, £4nm) (see Fig. 7).
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Fig. 7. Maxima of the magnetic structure factor S(k) (filled symbols) and charge
structure factor C(k) (empty symbols) for the (01)/(10) stripe phases shown in
Fig. 5. The peaks obtained for = 1/12 and 0.15 are indicated by diamonds and
circles, respectively. Increasing doping x corresponds to the increasing splitting of
the neutron (X-ray) peaks in S(k) [C(k)] with respect to the M (I") point.

The neutron scattering measures magnetic correlations in real space
which are described by the magnetic structure factor,

1 .
S(k) = (lzl:)e—z(kzlz-l-kyly) <5(zo’0)> <5(zlz’ly)>_ (29)
Tty

Experimentally the stripes were observed as the shift of the neutron peak
o 1, which moves away from a single AF maximum of S(k) at the M = (7, )
point for z = 0 to four symmetric points around M (Fig. 7): Q, = [(1 £
2n)m, ] and Q = [, (142n)7], if x > 0. These two values correspond again
to a superposition of (01) and (10) stripe phases. This result shows that the
stripes in the cuprates are indeed (10) type, in contrast to the diagonal
(11) stripes observed in the nickelates [24]. The value of n was found to
be increasing with hole doping z, with n ~ z at z < 1/8 [7,9,53]. If the
magnetic (charge) unit cell decreases with doping z, as reported above, the
splitting of the maxima of S(k) [C(k)] around the M (I") point increases.
The DMFT calculations of Ref. [32] give a linear dependence of the
neutron peak splitting on doping, n o z, in the range of low doping, z < 1/8,
and a constant value n = 1/8 for z > 1/8 [Fig. 8(a)]. Such a crossover
behavior was observed in the experiments of Yamada et al. [53], and indicates
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a unique stability of half-filled DW’s in the (01) stripe phase, as obtained
in the HF studies [20]. For the structures with diagonal extended DW'’s
obtained at low doping z < 0.06 the maxima of S(k) found at Q, = [(1 £
2nq)7, (1 & 2n4)w], with ng ~ x/v/2, agree perfectly well with the recent
neutron experiments of Wakimoto et al. [54]. Although these structures are
so different from the (01) phases at higher doping, it is remarkable that the
corresponding values of 7y follow the same linear dependence on z.

The analysis of the total density of states obtained by summing up the
spectral functions over the Brillouin zone leads to a conclusion that the chem-
ical potential shifts downwards with hole doping, Ap oc —z? [Fig. 8(b)], in
agreement with the Monte-Carlo simulations of the 2D Hubbard model [67].
Therefore, the charge susceptibility is enhanced in the limit of z — 0, re-
producing a universal property of the Mott—Hubbard metal-insulator tran-
sition [67]. Whether or not this behavior is observed in experiment is still
controversial. The data points obtained by Ino et al. [39] have rather large
error bars, but seem to be instead more consistent with a weak decrease of
i with increasing z in the range of stripe phases z < 0.15, followed by a
quite rapid drop when the stripes start to melt. This might be related to the
change of the Fermi surface shape around z = 0.15 doping, which violates
the Luttinger theorem in the underdoped regime [68]. In any case, the ob-
served behavior indicates that the weakly-doped cuprates are in a regime of
anomalous metallic phase, and a direct transition from a Luttinger liquid to
a superconductor occurs under decreasing temperature [69]. This non-Fermi
liquid regime has numerous consequences for several transport properties of
the normal phase [4, 70], which have been observed in the same regime of
doping, where the stripe phases are stable in Lag_;Sr,CuQOy.

The main advantage of using the DMFT is that it allows also to inves-
tigate the spectral functions A(k,w) (27) of the stripe phases. The DMFT
gives a strong renormalization of the Mott—Hubbard gap from its HF value,
and modifies the structure of the Hubbard subbands. If a single hole is
doped, a QP peak is found close to u, with a dispersion familiar from the
t—J model [58|. This dispersion suggests that the hole doping would occur
first at the X = (m,0) point, if the QP band remains unchanged under dop-
ing, and the Fermi energy enters the LHB. On the contrary, the low-energy
spectral properties at w ~ p are determined by the many-body processes in
the doped Hubbard model, and by the spectral weight transferred from the
UHB [44]. Therefore, the obtained photoemission spectra (for w < ) at low
doping z consist of two distinct features: the incoherent part of the LHB,
extending in a range of —6t < w — p < —2t, with a large intensity around
w— =~ —4.8t, and a QP part in a range of —0.7t < w — p < 0. The latter
dispersive feature is clearly seen in Fig. 9; it is similar to that found for a
single hole [58], has a dispersion ~ 2.J (here J/t = 4t/U = 1/3), and comes
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Fig.8. Evolution of the stripe phases with increasing hole doping z, as found in
DMFT with U = 12¢: (a) shift  of the maxima of the magnetic structure factor
S(k), and the data points of Yamada et al. [53] (empty circles) and Wakimoto
et al. [54] (empty squares); (b) shift of the chemical potential Au/t (points) and
the quadratic fit Ap/t = ad? with a = —15.57 (dashed line), and the experimental
data of Ino et al. [39] for t = 0.25 eV (empty circles). Filled symbols show: diagonal
(11) SDW stripes with Q, = [(1 £ v/2n)m, (1 £ v/2n)7] (squares), and vertical (01)
site-centered (circles) and bond-centered (triangles), with Q, = [(1 % 2n)7, 7]

close to p at the X point, but stays well below p at the remaining points
of the AF Brillouin zone, and along the Y-I" and I'-S directions. Due to
the stripe superstructure one finds that the directions I'-X and I'-Y are
nonequivalent.

The states at w — p > 0 are quite different. Here one finds a large
dispersion ~ 2t between the points which belong to the boundary of the
AF Brillouin zone (X, Y, and S) and the M point. This large dispersion
is reminiscent of the free propagation along the DW’s given by Eq. (8), but
is now strongly renormalized by the many-body processes: the dispersion
along the X—M direction is reduced by a factor close to two, while a similar
dispersion occurs as well along the Y-M direction, in spite of its absence in
the free 1D band (8). A particularly interesting situation is observed near
the X point, where the quasi-1D electronic structure of the site-centered
(01) stripe phase merges with the QP band below u, and gives a flat band
around the X point. The spectral weight stays below p at the X point,
while it crosses the Fermi energy u just at the k = (m,7/4) point, as for
a quarter-filled 1D band (8). Remarkably, both features were observed in
recent angle-resolved photoemission (ARPES) experiments [34-36]. On the
contrary, the free 1D band (8) cannot contribute at the Y point [37], and
one observes a gap between the spin-polaron QP band with dispersion ~ 2J,
and the states at w — 4 > 0. Also along the I'-M direction the spectra
change drastically from those found in a one-particle approach. At the
k = (w/4,7/4) point, where [as at k = (0,7/4)] the 1D band would cross
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r X M Y r M
Fig.9. Spectral function A(k,w) of the stripe phase at « = 1/12 with U = 12t,

as obtained along the main directions of the 2D Brillouin zone, with I = (0, 0),
X =(m0),Y =(0,7), M = (m,7), and S = (n/2,7/2) [32].

the Fermi energy, almost no spectral weight is found. Instead, a spin-polaron
QP appears around this point, still well below pu, but approaching the Fermi
energy along the I'-S direction. At the S point itself the QP stays well
below p, and no spectral weight appears at the Fermi level, giving again a gap
between the occupied and unoccupied part of the LHB. This behavior agrees
quantitatively with the observed ARPES spectra for Lag_,Sr,CuO4 [35,36]
and Lamgng.GSrg.lgCuOLl [34]

At higher doping z ~ 0.15 essentially a similar picture is obtained
(Fig. 10), supporting the view that the spin-polaron QP band arising from

r X M Y r M
Fig. 10. Spectral function A(k,w) of the stripe phase at = 0.15 (U = 12t) [32].
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a hole moving in an AF domain, and the renormalized 1D-band above p
are universal as long as the (01) stripes remain stable structures. The dif-
ferences to the low-doping regime are of quantitative nature only. First of
all, the flat QP at the X point moves to the Fermi level when the filling of
the DW’s increases beyond half filling in the range of doping = > 1/8. The
large spectral weight at the X point gives also some 'shadows’ at the Y and
S points, but the gaps are still seen at the latter two points. The feature
above u has a larger spectral weight and resembles a band with a similar
dispersion along the X-M and X—-M direction.

By integrating the spectra over the Brillouin zone, one finds a density of
states with a pseudogap at the Fermi level. This pseudogap is pinned to u
when the hole doping x increases, and the (01) stripes become more dense.
It may be therefore considered to be the reason of stability of the (01) stripe
structures beyond the HF picture. Indeed, this pseudogap is gradually filled
by spectral weight, and finally disappears when the stripe order melts with
increasing hole doping . One could attempt to understand the results of
the DMFT by simulating the electronic structure in HF, using the magnetic
potentials (4). In contrast to the HF approximation, however, the value of
the Coulomb interaction U does not remain constant in the DMFT, but is
renormalized by the local dynamics to a value [71,72],

_ U
U= ——7—, 30
C 1+ UX(0) 30
where the particle-particle vertex x?” is determined by the Weiss field,
X7(0) = (kBT) Y G (iwy) Gy (—itwy,) - (31)

7

Therefore, one can analyze the electronic structure of tight-binding electrons
moving on a 2D lattice within a site-dependent magnetic potential o Uj
which corresponds to the stripe structure,

H =t Z a’jniaanja - ZeiQRmi Vmi(nmiT - nmiT)’ (32)

mi,ng,o ma

using the same notation as in Eq. (1). Local magnetic potentials

QR iy i) [T
(i) = €0 T (SE, 50 (33)
alternate due to the phase factor ¢'@Riziy) when iy is varied for vertical
(01) stripe phases, with @ = [(1£2n)~, 7]. These potentials may be treated
as external parameters, and the electronic structure of the (01) phases is
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then parametrized by a set of values {V; }, with V; = 0. They play a
crucial role and determine whether the system is metallic or insulating. Let
us label by Vi and V5 the potentials at the first and second neighbors of
the DW, respectively. It has been found by the numerical analysis that
the photoemission weight vanishes at u for the k = (n/4,7/4) point and
a gap opens, if a condition for the potentials close to the DW, Vo > 2V,
is satisfied [32]. Indeed, the magnetic potentials change so rapidly in the
weakly doped regime z < 1/8, but not for large doping x > 1/8; for instance
at x = 1/12 the spin densities found in the DMFT and the renormalized
values of U; lead to Vo ~ 2.07t and V; ~ 0.99¢. The strong renormalization
of spin (and charge) densities next to the DW’s with respect to the HF
values is due to charge fluctuations included in the DMFT, and demonstrates
that local correlations are responsible for the ARPES spectra observed in
HTSO [34-36].

6. Summary and open problems

The presented results of the calculations performed beyond the HF ap-
proximation: the LA method for the ground state [27], and the DMFT both
for the ground state and for the spectral properties [32], demonstrate that
the correlation effects are of crucial importance, and are observed in the
ARPES spectra Las_,Sr,CuOy4 at low and intermediate doping. It is quite
remarkable that the sequence of stripe phases, with (11) stripes followed by
(01) stripes, the latter with decreasing and then constant size of the AF do-
mains under increasing hole doping x, could be obtained within the DMFT
calculations, in perfect agreement with the experimental findings.

While the tendency towards charge and spin separation in a form of stripe
phases may be understood as a compromise which follows from optimizing
the kinetic energy o ¢ and the magnetic energy o J at the same time, the
detailed mechanism of this instability is still under investigation. First of
all, the HF studies have clarified that the largest kinetic energy gains are
obtained due to the hopping elements ¢, perpendicular to the (01) stripes
by the solitonic mechanism [20], while the elements #| parallel to the (01)
stripes are less important for their stability. Therefore, it may be expected
that the stripe ordering will always tune the direction of the DW’s along a
weaker hopping in the anisotropic model, realizing the condition ¢, > %,
and indeed this trend was confirmed by recent numerical simulations within
the t—J model [73]. In contrast, there are more parallel AF bonds than
perpendicular to the direction of the (nonmagnetic) DW’s; and therefore
an increasing superexchange parallel to the DW’s J), will have a stabilizing
effect on the (01) stripes. The situation concerning the (11) stripes is not yet
explored — in order to demonstrate the universality of the above mechanism
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it would be worthwhile to show that here the second neighbor hopping #'
across the (11) stripes and exchange elements J' along them would have
similar effects on the stability of the (11) stripe phase.

It is quite remarkable that the spectral functions obtained for the (01)
stripe phases in the DMFT have only a very weak relation to the HF band
structure, but are similar to the experimental observations. The spectra
discussed in Sec. 5 show an interesting superposition of the spin-polaron
QP states with a dispersion of ~ 2J, and a broader dispersion of the states
above pu, suggested by a 1D metallic behavior along the nonmagnetic DW’s.
Such experimental features at low energies |w — pu| < J as: (i) no significant
spectral weight at the I" = (0,0) point; (i7) flat QP state at the X = (mr,0)
point, and its absence at the Y = (,0) point, leading to a still distinct flat
structures at both these points when the (01) and (10) stripes contribute
with equal intensity in experiment; (4i%) also significant, but dispersive and
weaker QP state at S = (7/2,7/2) point, with a distinct gap separating the
photoemission (w < p) and inverse photoemission (w > p) part, agree well
with the experimental observations [34-36].

The low-energy spectral weights obtained in photoemission at the X
[ = (m,0)] and S [k = (7w/2,7/2)] points are shown below the phase dia-
gram of Fig. 11. While the weight at the X point gradually increases with
increasing hole concentration z, it vanishes at the S point below x = 1/8,
and only in the regime of z > 1/8 the gap at this point is gradually filled. In
contrast, the gap does not open at the S point in the weakly doped regime
of BisSrpCaCus0g4,, where a sharp peak is observed at p both in under-
doped and overdoped compounds [74]. Our results show that this difference
follows from the static stripes which stabilize only in Lao_,Sr;CuQy4, but
not in BipSroCaCuz0sg4,. Note that the decrease of the spectral weight of
the LHB in the superconducting phase (SC) shown in Fig. 11 is exagger-
ated, and a weaker dependence on z was derived by analyzing the strongly
correlated regime of the Hubbard model [44].

The phenomenon of stripe melting in the x > 1/8 doping regime is
very intriguing. Increasing hole density enhances the quantum fluctuations
and delocalizes the site-centered stripes, producing instead bond-centered
stripes [32], and more units of bond-centered stripes are likely to be gen-
erated as the stripes become more dynamic. Recently it has been argued
that the photoemission experiments should be able to distinguish between
both types of (01) stripes, and the ARPES results around z = 1/8 doping
in Lag_,Sr,CuOy4 suggest that the site-centered stripes are observed. It is
not very likely, however, that such experiments would help to understand
the stripe melting, as the phenomenon is dynamic by itself, and experi-
mental resolution might not be sufficient. Enhanced density of doped holes
in the regime of stripe melting could promote the ordering of kinks, caus-
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Fig.11. Part (a): Schematic phase diagram of Las_,Sr,CuQO4 compounds (top),
and the evolution of spectral weight with hole doping in the LHB at k = (7, 0) and
k = (w/2,7/2) [36]. Part (b) shows in a schematic way the modification of spectral
weight distribution from an AF Insulator (AFI) around a semiconductor-metal
transition (SIT) to a stripe phase with 1D conductivity, or to a superconductor
(SC). This figure was obtained due to the courtesy of A. Ino.

ing the stripe phase to tilt. Such states, unlike the instability towards the
bond-ordered stripes, are observable in neutron scattering as tilting of the
maxima of S(k) away from the (10) and (01) directions in the reciprocal
space [75]. Indeed, such tilted DW’s were recently observed in a number of
cuprates [63,76].

Summarizing, we have shown that the instability towards stripe phases,
found first in the HF studies [6], is robust and not only survives when the
electron correlation effects are treated explicitly, but gives results which
agree with experiments. The qualitative physics established by the HF stud-
ies applies in a broad range of parameters, also when the Hubbard model is
extended either by a further neighbor hopping terms, or to a charge-transfer
model. These extensions should be further explored in the future studies
in order to clarify the tendency towards stripe formation in different classes
of HTSO. Although it has been shown in Sec. 3 that the second neighbor
hopping # may change the most stable structures from (01) to (11) stripes,
this point was not yet studied in more sophisticated methods, such as the
DMFT. In this context, it would be of interest to derive the parameters of
the effective Hubbard model for the electron doped cuprates and to study
the relevant regime in order to understand better whether indeed the stripe
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instabilities in this class of cuprates are closer to those observed in the nick-
elates, as claimed recently [23].

The possible role of stripes in the phenomenon of superconductivity is
puzzling. The static stripes are stable only in the normal phase of
Lag_4SrzCuOy4 compounds [Fig. 11(a)], where the values of T, are lowest.
This alone suggests that the stripe instability competes with the super-
conducting instability, but it might also be that the fluctuating stripes are
different, and support the superconducting fluctuations in a quantum string
liquid [77]. The stable stripes in the normal phase of Las_,Sr,CuQOy give
a pseudogap in the density of states [Fig. 11(b)]|, while a pseudogap was
observed in practically all the HTSO, where it explains the transport and
thermodynamic properties in the high-temperature regime [11,70]. As the
pseudogap is so universal, it would be interesting to understand better its
origin in those situations where static stripes could not be observed so far.

As the most important conclusion of the DMFT studies [32], the verti-
cally (or horizontally) ordered stripe phases are metallic along the direction
of the nonmagnetic DW’s, in contrast to the HF stripes which are always
insulating, with a small gap at the Fermi level. The HF gap is smeared
out into a pseudogap by the dynamical fluctuations which occur due to the
coupling of the holes moving along the stripes to spin fluctuations within
the AF domains.
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collaboration and for numerous stimulating discussions, and A. Ino for his
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with O.K. Andersen, A.I. Lichtenstein, B. Normand, and K. Ro$ciszewski
are also kindly acknowledged. This work was supported by the Polish State
Committee for Scientific Research (KBN), Project No. 2 P03B 055 20.
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