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STRIPE PHASESIN HIGH-TEMPERATURE SUPERCONDUCTORS�Andrzej M. Ole±Institute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polande-mail: amoles�if.uj.edu.pl(Re
eived November 14, 2000)We review re
ent results obtained for the stripe phases in the Hubbardmodel. The experimentally observed half-�lled (01) stripes with the �llingof one hole per two domain wall atoms are stabilized by ele
tron 
orrela-tion e�e
ts. We show that the metalli
 stripe phases obtained using thedynami
al mean-�eld approximation are stabilized by a pseudogap and arequalitatively di�erent from insulating stripes derived from the one-parti
le(Hartree�Fo
k) simulations. They reprodu
e the doping dependen
e of thesize of magneti
 domains in (01) stripe phases and agree with the experi-mental data of angle resolved photoemission for La2�xSrxCuO4.PACS numbers: 74.72.�h, 71.27.+a, 79.60.�i, 71.10.Fd1. Mott insulators and stripe phasesNumerous fas
inating phenomena, su
h as various types of 
ompetingmagneti
ally ordered phases, metal-insulator transitions, and high-tempe-rature super
ondu
tivity observed in transition metal oxides, are 
ausedby the 
olle
tive behavior of strongly 
orrelated ele
trons [1℄. It was re
-ognized �rst by Mott that the large lo
al ele
tron�ele
tron intera
tion Umight dominate over the kineti
 energy / t, and 
ould 
ause ele
tron lo-
alization in a half-�lled band with ele
tron density n = 1 per atom, thusexplaining a new type of insulating state, the so-
alled Mott insulator [2℄.In this state part of the degrees of freedom is removed, as the 
harge �u
tu-ations are suppressed, and the problem of fermions on a latti
e redu
es tothe spin problem, in the simplest 
ase des
ribed by the Heisenberg modelwith a nearest-neighbor antiferromagneti
 (AF) kineti
 ex
hange intera
tion� Presented at the XL Cra
ow S
hool of Theoreti
al Physi
s, Zakopane, PolandJune 3�11, 2000. (2963)



2964 A.M. Ole±J > 0. Therefore, if no other degree of freedom is present and the latti
e isnonfrustrated, Mott insulators have an AF long-range order in the groundstate. Su
h a state would be stable on a three-dimensional 
ubi
 latti
e,realized by the transition metal oxides with perovskite stru
tures, but fre-quently further 
ompli
ations su
h as orbital degenera
y o

ur, leading tothe e�e
tive intera
tions that are more di�
ult to des
ribe, and may favorqualitatively new magneti
 states [3℄. Fortunately, the parent 
ompounds ofthe High-Temperature Super
ondu
ting Oxides (HTSO), su
h as La2CuO4and YBa2Cu3O6, are simpler � they have CuO2 planes as a 
ommon stru
-tural element, well separated from all other ions due to large latti
e distor-tions, and orbital degenera
y is removed. Su
h planes 
an be des
ribed byan e�e
tive two-dimensional (2D) model of ele
trons intera
ting on a squarelatti
e, the Hubbard model.In addition to the Mott insulating state itself, a more di�
ult and 
hal-lenging subje
t has been to des
ribe and understand 
orrelated metalli
phases near the Mott insulator. In this regime the 
harge �u
tuations o

urin addition to the spin �u
tuations, and give rise to the anomalous metalli
phase [4℄. Su
h a situation o

urs for instan
e in La2�xSrxCuO4, where thedoping by divalent Sr ions de
reases the ele
tron density to n = 1 � x < 1,and holes doped to an antiferromagnet 
an move only in a restri
ted spa
e,de�ned by the 
onstraint of no double o

upan
y due to large U . In HTSOthis metalli
 phase is unstable in a very spe
ta
ular way � the system be-
omes super
ondu
ting at low temperature. Here we will not address the
entral and outstanding question 
on
erning the me
hanism of super
on-du
tivity, but dis
uss the qualitatively new phenomenon whi
h o

urs inthe normal phase � the instability towards a novel type of 
harge and mag-neti
ally ordered state, the so-
alled stripe phase [5℄.As one of very few predi
tions in the theory of high temperature super-
ondu
tivity, the stripes were found in Hartree�Fo
k (HF) 
al
ulations on�nite latti
es des
ribed by the Hubbard model [6℄, well before their experi-mental 
on�rmation [7℄. Su
h states result from the 
ompetition between thesuperex
hange intera
tions / J = 4t2=U (t is here an e�e
tive parameterfor the Cu�Cu hopping whi
h may be derived from the realisti
 
harge-transfer model, where a more quantitative analysis of the superex
hange Jis possible [8℄), whi
h stabilizes the AF long-range order in the undopedmaterials [9℄, and the kineti
 energy of holes / t whi
h are doped to this AFstate. This physi
al situation is des
ribed by the e�e
tive Hamiltonian, theso-
alled t�J model, derived many years ago [10℄ and now used for a generi
des
ription of the phenomena in doped AF insulators, inter alia also for theholes moving in doped CuO2 planes [11℄. On one hand, the magneti
 energyis gained when the ele
trons o

upy the neighboring sites and the spins orderas in the Néel state, while on the other hand, the holes 
an move mu
h easier
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ally in this part of a CuO2 planewhere the holes are moving. In the extreme 
ase when the lo
al Coulombintera
tion is very large U ! 1, this leads to the polaroni
 me
hanism offerromagneti
 (FM) order whi
h is stabilized by a single hole/ele
tron dopedto a half-�lled system, known as the Nagaoka theorem [12℄. This 
ase is spe-
ial, as the magneti
 intera
tions / t2=U vanish, and the kineti
 energy isoptimized in the FM phase. At large but �nite U a 
ompromise betweenthese two energies has to be rea
hed, and semi
lassi
ally they 
an be gainedin di�erent regions of a sample, with holons 
ondensing in 
losed traje
torieswhi
h gain the energy from quantum �u
tuations [13℄. This gives thereforea phase separation whi
h manifests itself in a form of a stripe phase: the AFdomains are separated by nonmagneti
 lines, the one-dimensional (1D) do-main walls. The kineti
 energy is then best when the density of doped holesin a Domain Wall (DW) is large, and the AF domains are almost identi
alto the AF order in a Mott insulator [14, 15℄.This phase separation into a stripe phase is very general and o

urs invarious transition metal oxides [1, 16℄. The modulations in magnetizationdensity have been dete
ted in neutron s
attering [7℄, and it was shown thatthey 
orrespond to the AF domains separated by the DW's, qualitativelylooking as those of Fig. 1. Here we will dis
uss the stripe phases only forHTSO, where stati
 stripes were observed in La1:6�xNd0:4SrxCuO4 [7℄. Thissubje
t is of great interest at present, and it is hoped that their investigationswill help to understand the instabilities of doped Mott insulators, and therole of stripes in the high-temperature super
ondu
tivity. Arguments weregiven that the stripes suppress the super
ondu
tivity [17,18℄, and indeed thestati
 stripes o

ur only in the La-based 
ompounds, where the transitiontemperature T
 is lower than in the Y- or Bi-based super
ondu
tors.
(b) (11) phase(01) phase

+ - + -

(a)Fig. 1. S
hemati
 stru
tures of stripe phases with the �lling of one hole per twoDW's atoms (half-�lled DW's) at doping x = 1=8: (a) (01) phase, and (b) (11)phase. Arrows stand for "- and #-moments in the stripe phase, with their lengthproportional to the lo
al magnetization (3); 
ir
les indi
ate the positions o

upiedby holes. Two types of magneti
 domains are indi
ated by + and �, respe
tively.



2966 A.M. Ole±The stripe phases were obtained in HF 
al
ulations performed on theHubbard model [6,19,20℄, t�J model [21℄, and more realisti
 
harge-transfermodels [22, 23℄. The most stable stru
tures obtained in the HF approxima-tion have the density of one doped hole per one atom in a DW, 
orrespondingto �lled stripes [20℄. Su
h stripe phases were indeed observed in the ni
k-elates [24℄. On the 
ontrary, it has been established experimentally in the
uprates that one doped hole stabilizes two 
harge unit 
ells in a stripe stru
-ture, i.e., the magneti
 states whi
h form in CuO2 planes of HTSO are half-�lled stripes, with one hole per two DW atoms [7℄. Two stripe phases withthis �lling and the magneti
 unit 
ells 
onsisting of 16 atoms, representedby two AF domains whi
h are separated by two DW's with four holes in8� 4 
lusters, 
orresponding to x = 1=8 doping, are shown s
hemati
ally inFig. 1. The pi
ture is somewhat idealized, as the holes will partly delo
alizein reality, and 
ould also give equal densities and no magneti
 moments atall DW atoms, as shown also by the numeri
al examples dis
ussed in Se
s. 3and 5. The �lled stripe phases would a

ommodate twi
e as many holes forthe same 
luster sizes and domain stru
tures, and would 
orrespond insteadto x = 1=4 doping. It may be expe
ted that the kineti
 energy is quite dif-ferent depending on the shape of magneti
 domains and on the parametersof the mi
ros
opi
 model, and one has to determine the stable density andmagnetization distributions in order to de
ide whether any of the two phasesshown in Fig. 1, or any other phase, is the ground state 
on�guration.The above dis
repan
y between the theory and experiment shows thatthe 
lassi
al instability is qualitatively in
orre
t in the 
uprates, quantum�u
tuations play an important role in stripe phases, and one is for
ed togo beyond the HF approximation, and treat expli
itly lo
al ele
tron 
or-relations. A few methods whi
h in
lude ele
tron 
orrelations, su
h as:the Density Matrix Renormalization Group (DMRG) for the t�J model[25℄, slave-boson mean �eld approa
h [26℄, variational wave fun
tions de-s
ribed by the lo
al ansatz [27, 28℄, Exa
t Diagonalization (ED) of �nite
lusters [17℄, Monte-Carlo simulations applied to a spin-fermion model [29℄,analyti
 expansions of the wave fun
tion [30, 31℄, Dynami
al Mean-FieldTheory (DMFT) [32℄, and 
luster perturbation theory [33℄, have been usedre
ently to investigate the stable ground states of stripe phases. It was aspe
ta
ular su

ess of these methods that the half-�lled stripe phases wereobtained in all of them for the relevant parameters whi
h model the HTSO.The spe
tral properties of stripe phases are also of great interest, as thestripes have measurable 
onsequen
es in photoemission [34�36℄. If ele
tron
orrelations are important, large 
orre
tions to the ele
troni
 stru
ture, andto the gaps whi
h stabilize the stripe phases in HF, are expe
ted. It has beenshown by re
ent numeri
al [17, 33, 37, 38℄ and semianalyti
 [31℄ studies thatthe stripe superstru
ture indu
es drasti
 
hanges of the spe
tral weight dis-
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ularly intriguing are su
h observations as non-Fermi liquiddependen
e of the 
hemi
al potential on the doping [39℄, and the existen
eof a pseudogap whi
h opens at the Fermi level in a broad regime of dop-ing [36℄. In addition, �at quasiparti
le (QP) states have been observed nearthe X = (�; 0) point in La2�xSrxCuO4 [36℄. It will be shown that thesefeatures 
an be reprodu
ed in the spe
tral fun
tions obtained using an ap-propriate extension of the DMFT [40℄.The rest of this paper is organized as follows. In Se
. 2 we present themi
ros
opi
 reasons of stability of stripe phases in 
lassi
al (HF) states anddis
uss the limitations of this approa
h. Better solutions 
an be obtainedvariationally, and we present in Se
. 3 an example of a variational wavefun
tion and show that it gives indeed stable half-�lled stripes, with thesame �lling and orientation as observed experimentally. While this approa
hallows to investigate only the 
orrelation energy and the stru
ture of groundstates, ele
tron 
orrelations are also important for the dynami
al 
orrelationsseen in photoemission. They may be studied when a DMFT is generalized tothe stripe phase [32℄, as presented in Se
. 4. Using this method, we analyzedin Se
. 5 the sequen
e of stable stripe phases with in
reasing hole dopingx, and their spe
tral properties. The summary and some open problemsrelated to stripe physi
s are presented in Se
. 6.2. Solitoni
 me
hanism of stripe formationThe realisti
 
harge-transfer model for ele
troni
 states in CuO2 planes ofHTSO whi
h in
ludes Cu(3dx2�y2) and O(2px(y)) orbitals may be repla
ed bya simpler e�e
tive Hubbard model whi
h des
ribes the intera
ting ele
tronson a square latti
e o

upied by Cu ions [41, 42℄,H = � Xmi;nj;� tmi;njaymi�anj� + UXmi nmi"nmi# : (1)In the stripe phase the 2D square latti
e is 
overed by N super
ells 
ontain-ing L sites ea
h. aymi� are 
reation operators for a hole at site fmig, labeledby two indi
es: the super
ell index m, and the index within the stripe unit
ell i = 1; :::; L, while nmi� = aymi�ami� is the ele
tron number operator.The usually dis
ussed Hubbard model (1) in
ludes only the hopping ele-ments between nearest neighbors tmi;nj = t, but in the super
ondu
ting
uprates it is derived from a realisti
 
harge-transfer model, either by the
ell method [41℄, or by the downfolding pro
edure, and therefore also �nitehopping elements between se
ond (tmi;nj = t0) and third (tmi;nj = t00) neigh-bors are of importan
e. The ele
trons intera
t by strong on-site Coulombintera
tion U ' 12t.



2968 A.M. Ole±In the HF approximation the intera
ting term is repla
ed by the poten-tials / U whi
h a
t on ele
tron densities [6, 20℄:Unmi"nmi# ' U(hnmi"inmi# + nmi"hnmi#i � hnmi"ihnmi#i): (2)The potentials 
onsist of a nonmagneti
 part / Uni, where ni = hnmi" +nmi#i is an ele
tron density, and a magneti
 part / Umi, wheremi = hnmi" � nmi#i = 2hSzi i (3)is a lo
al magnetization. Therefore, the ele
troni
 stru
ture has to be solvedself-
onsistently with lo
al magneti
 potentials, or stati
 selfenergy [6℄,�HFi� = Uni�� = 12U(ni + ���mi) ; (4)where ni�� = hnmi��i with �� = �� is the ele
tron density in stripe super
ell,and �� = �1 for � ="; #. At half �lling the ele
tron density is uniform (ni =1), and the ground state is AF, with the magnetization m > 0 alternatingbetween two sublatti
es A and B: mi = �m for i 2 A;B. In the simplest
ase of t0 = t00 = 0, the one-parti
le energy is given by "k = �2t(
os kx +
os ky), and the AF bands are easily obtained [43℄,E�k = 12 ("k + "k+Q)� 12 �("k � "k+Q)2 + (Um)2�1=2 ; (5)where Q = (�; �) is the nesting ve
tor in a 2D square latti
e (i.e., "k+Q =�"k). Thus, if U � t, large potentials �12U (4), de�ned with respe
tto the nonmagneti
 uniform ba
kground, split the ele
troni
 stru
ture (5)into o

upied and empty states whi
h are separated by a large gap � U ,resulting in a Mott�Hubbard insulator. The AF subbands (5) simulate inthe one-parti
le 
al
ulation the in
oherent states of the Lower Hubbard Band(LHB) and Upper Hubbard Band (UHB) of a strongly 
orrelated ele
tronsystem [44℄, respe
tively.The situation 
hanges when holes are doped to an antiferromagnet.Consider �rst a single hole introdu
ed by doping into an AF ba
kground[Fig. 2(a)℄. If one spin is removed, one arrives at a many-body problemof a hole moving in an AF ba
kground whi
h gives qualitatively new QPstates a

ompanied by in
oherent pro
esses at higher energies [45℄. In orderto understand qualitatively the me
hanism whi
h favors stripes at higherdoping, it is however enough to 
onsider only a small 
luster 
onsisting ofthree atoms. This 
hoi
e would be of 
ourse unrealisti
 for a single hole inan antiferromagnet, but in a stripe phase the symmetry is lo
ally broken,and 
onsidering the (01) stripe phase of Fig. 1 one 
an �rst investigate theenergy gain in the dire
tion perpendi
ular to a DW itself. Thus, a 
luster
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onsisting of three atoms and a hole in the middle is a simplest unit, repre-senting either a line �lled by holes in an antiferromagnet [Fig. 2(a)℄, or a holeon a DW, pla
ed between two AF domains [Fig. 2(b)℄. Thereby, we assumethat the ele
trons 
annot move due to large Coulomb intera
tion U � t,and thus the hole in 
on�ned only to the 
onsidered three atoms. If a #-spinis repla
ed by a hole in an antiferromagnet, as in Fig. 2(a), the situation ina resulting three-atom 
luster is very simple � two "-spin ele
trons may befound in one of three possible 
on�gurations: f" 0 "g, f0 " "g, and f" " 0g,and thus this polaroni
 state gives the total energyEP = �p2t ; (6)while the intera
tion energy U does not 
ontribute.If a hole o

upies a DW instead, it may again delo
alize over the mole
-ular model of Fig. 2(b), whi
h leads to similar three 
on�gurations to those
onsidered for the polaron 
ase: f" 0 #g, f0 " #g, and f" # 0g, but in ad-dition, three 
on�gurations with one site doubly o

upied, and three other
on�gurations with the inter
hanged "- and #-spins, 
an be rea
hed by thehole hopping. The latter 
on�gurations are a

essible via double o

upan-
ies, and thus the energy 
an be found in a perturbative way. As a result,the energy is lower for this solitoni
 solution than in the polaroni
 
ase,ES = �p2t� 4t2U : (7)Therefore, in the regime of large U , the DW is always more stable than aline of polarons in an AF ba
kground.
(b)

U U

(a)Fig. 2. Energy levels for the ele
trons with "-spin (full lines) and #-spin (dashedlines) in a 2D antiferromagnet along x axis: (a) a hole added to a single AF domain;(b) a hole on the DW separating two AF domains in (01) stripe phase. The spinsform an AF stru
ture, while the holes repeat themselves along y dire
tion. Addinga se
ond ele
tron at an o

upied site 
osts the Coulomb energy U .



2970 A.M. Ole±In reality further 
orre
tions to the energies appear in both situationsdue to the intera
tions with the AF ba
kground, but the prin
ipal reasonstanding beyond the stripe formation is already identi�ed by the above sim-ple 
onsideration [20℄. If the holes o

upy nonmagneti
 DW's, additionalpro
esses are allowed in se
ond order / t2=U whi
h lower the energy ofthis stru
ture with respe
t to the polaroni
 defe
ts, where the analogousex
itations are blo
ked by the Pauli prin
iple. This also suggests that the(01) stripes are primarily stabilized by the hopping element perpendi
ularto the dire
tion of the DW's. For this reason, (01) stripe stru
tures 
an beadditionally stabilized by latti
e deformations whi
h pin to the DW's, andgive a nonperturbative renormalization of the se
ond order energy gain ofthe solitoni
 solution (7), as analyzed in more detail in Ref. [20℄. This resultis 
ounterintuitive, as naively one might expe
t that the doped holes �ll a1D band, with a dispersion "1Dk = �2t 
os ky; (8)determined by the hopping along the DW dire
tion [46℄, and this mightde
ide about the stripe stability.In order to understand why the stripes with �lled DW's are more stablethan those with half-�lled DW's in the HF approa
h, it is instru
tive to in-vestigate the ele
troni
 stru
ture of a doped antiferromagnet. The bands aredetermined by the stable distribution of ele
tron densities fni�g whi
h givethe HF potentials (4). While the magneti
 potentials (4) are still presentwithin the AF domains, and will thus give the ele
troni
 bands in the (o
-
upied) LHB and in the (empty) UHB, these splittings are absent for theatoms on a nonmagneti
 line whi
h separates two AF domains. Therefore,a band whi
h is built up mainly by the states of the DW atoms appearswithin a Mott�Hubbard gap [20℄. This band is spin degenerate and maytherefore a

ommodate two ele
trons per one atom of a DW. It 
annot be�lled by one ele
tron per site, as then it would be again unstable againstmagneti
 order, giving as a result a uniform AF phase of a Mott insulator,with the ele
troni
 stru
ture 
onsidered above (5). On the 
ontrary, if theDW is �lled by holes, this band 
ontains no ele
trons and is separated by asmall gap / t from the o

upied states of the LHB. The Fermi energy � liesin this gap, and in this way an insulating state with the �lling of one dopedhole per one DW atom is stabilized.A very interesting question to ask now is whether any other than �lledDW's might be stable in the HF approximation. The �lling of one holeper two DW atoms, whi
h was observed in the 
uprates [7℄, 
orresponds toa quarter-�lled band, whi
h 
rosses the Fermi energy � at k = (�; �=4),(�=4; �=4), and other equivalent points. Therefore, su
h a state would bemetalli
 and as su
h 
ould not be even lo
ally stable in HF. However, there
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ell alongthe DW's whi
h opens a new gap in the quarter-�lled band, pre
isely at thepositions of the above 
rossing points. Indeed, when a spin-density wave(SDW) or a 
harge-density wave (CDW) with a periodi
ity of four atomsalong the y dire
tion is formed, su
h a gap opens at �, and the stripes withhalf-�lled DW's are lo
ally stable [20℄. Unfortunately, they 
an never bethe most stable stru
tures in HF for a very simple reason whi
h 
an beunderstood by 
omparing the ele
troni
 stru
tures of both types of stripephases. In fa
t, the band whi
h a

ommodates the doped holes splits intotwo almost �at subbands for the half-�lled stripes, with either a SDW or aCDW along the DW's, and with almost no global shift of these subbandswith respe
t to the 
enter of the Mott�Hubbard gap. As only the uppersubband is �lled by holes, the total energy 
al
ulated per one doped holeis always higher in the half-�lled stripe phase than that obtained when theDW is �lled.The observation that stable solutions are self-
onsistently obtained bypla
ing the 
hemi
al potential � in the middle of a gap gives a generalme
hanism of stripe phases in HF. Therefore, the stripe phases obtainedin HF are always insulating . Re
ently, the ele
troni
 stru
tures of di�erentstripe phases were investigated in detail by Markiewi
z [37℄. Partial �llingof the bands within the Mott�Hubbard gap and pseudogaps whi
h form atthe Fermi energy were found to be general 
onsequen
es of stripe ordering,in qualitative agreement with the results of photoemission experiments [47℄.However, the 
onsidered stru
tures with partly �lled DW's were only lo
allystable, similar for the stripes with half-�lled DW's 
onsidered above. Thesame trend was also observed in the 
harge-transfer model [16℄.Stripes may be seen as topologi
al defe
ts in an antiferromagnet, stabi-lized by the kineti
 energy of doped holes. Their stability has a solitoni
origin with nonmagneti
 DW atoms, as shown both for small 
lusters [20℄,and for a 1D in�nite system des
ribed by the Hubbard model [48℄. Althoughno eviden
e was presented yet, it seems that the degenera
y of 3d orbitalsmight plays a role in stabilizing the �lled stripes in ni
kelates and man-ganites [1℄. In 
ontrast, orbital degenera
y is absent in the 
uprates, andthe quantum �u
tuations for spins s = 12 are expe
ted to be larger than inother more 
lassi
al 
ompounds, where the spins are larger. In addition, alsothe ele
tron 
orrelation e�e
ts are parti
ularly large in this 
ase. We givearguments in the next Se
tion that the analysis of the ele
troni
 stru
turealone 
annot resolve the question of stripe stability and show that ele
tron
orrelations are responsible for stabilizing the half-�lled stripes in HTSO.
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tionsIt is easy to understand why the ele
tron 
orrelations play su
h an impor-tant role in the physi
al properties of stripe phases. The HF approximationworks well in the regime of large U only for the polarized (magneti
) states,and thus the 
orrelation 
orre
tions are small for the atoms within the AFdomains. The situation is quite di�erent on the nonmagneti
 DW's � herethe 
orrelation energy is large. Using the experien
e from the itinerant mag-netism, where the 
orrelation 
orre
tions are largest when the nonmagneti
atoms are 
lose to half �lling (n = 1) [49℄, it be
omes 
lear that more 
orrela-tion energy 
an be gained by redu
ing the double o

upan
y in the half-�lledthan in the �lled stripe phases.A variational treatment of the Hubbard model was �rst introdu
ed byGutzwiller, who formulated a systemati
 method of improving the HF wavefun
tion j�0i by implementing lo
al 
orrelations [50℄. A re
ent extention ofthis method to the polaroni
 solutions and stripe phases has demonstratedthat the half-�lled DW's are stabilized by the 
orrelation e�e
ts, and thistrend is even more pronoun
ed when the intersite Coulomb intera
tions arepresent [26℄. Here the results of another approa
h whi
h makes use of anexponential Lo
al Ansatz (LA) for the 
orrelated ground state [51℄,j	0i = exp �Xmi �iOmi! j�0i ; (9)will be dis
ussed. This method 
aptures the leading 
ontribution to the
orrelation energy in the present systems with nonhomogeneous density dis-tribution of doped holes. The lo
al operators,Omi = nmi"nmi# � hnmi"ihnmi#i ; (10)are introdu
ed to redu
e the amplitudes of the 
on�gurations with doublyo

upied sites, and �i are the 
orresponding variational parameters. Theaverages h� � �i are determined, as usually, by averaging over the HF groundstate fun
tion j�0i. By 
onstru
tion, the lo
al operators des
ribe the 
orre-lations whi
h go beyond the HF state j�0i, and hOmii = 0. For 
onvenien
e,we de�ne the lo
al doped hole and the lo
al magnetization density at sitei = 1; :::; L in the 
orrelated ground state j	0i as follows,nhi;LA = h	0j1� (nmi" + nmi#)j	0ih	0j	0i ; (11)hSzi iLA = jh	0j12 (nmi" � nmi#)j	0ijh	0j	0i : (12)
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t to the z-th spin
omponent, Szmi = 12(nmi"�nmi#). This 
onstru
tion allows to use a 
losed-shell version of the HF wave fun
tion j�0i with the fa
torization of the Slaterdeterminant into up-spin and down-spin parts.The variational parameters f�ig are determined by minimizing the totalenergy in the 
orrelated ground state,E0 = h	0jHj	0ih	0j	0i : (13)After expanding the exponential fa
tors in the wave fun
tions j	0i (9) up tolinear order in �i, the stationary values of the variational parameters f�0i g atthe saddle point 
an be easily determined by minimizing the energy (13) [51℄.The above pro
edure is valid provided that any third and higher order 
or-re
tions, like / h(nmi"�hnmi"i)3i, are small and 
an be negle
ted [51℄. This
ondition is well satis�ed in the symmetry-broken states with AF order 
on-sidered in the present study. More details on the energy minimization in theLA method may be found in Refs. [49℄ and [51℄.The LA was used to investigate the stability of stripe phases by 
onsid-ering di�erent starting density distributions and di�erent topology of theDW's in �nite 8� 8 super
ells with periodi
 boundary 
onditions [27℄. Anyself-
onsistent solution found in the variational LA is a lo
al minimum of thetotal energy (13). Its absolute stability may be investigated by 
al
ulatingthe energy gain per one doped hole, as introdu
ed in Ref. [20℄,ESh(x) = 1Nh �ES0 (x)�EAF� ; (14)where Nh is the number of doped holes in the 
onsidered 
luster. Here ES0 (x)is the energy obtained for the stable stripe phase at doping x, and EAF isthe referen
e energy of an undoped AF state in a Mott insulator (at x = 0),both found within the LA method.The stripe phase, obtained as the ground state of a doped antiferromag-net by the above energy analysis, is 
hara
terized by the density (11) andmagnetization (12) distribution. In the Hubbard model with the �rst neigh-bor hopping one �nds (01) stripe phases as the lowest energy stru
tures in abroad range of parameters [27℄. For a (01) stripe phase with verti
al DW's,one may label the atoms in the (magneti
) unit 
ell (whi
h 
onsists of asingle row) by lx = 1; :::; L, while the atoms from di�erent super
ells are la-beled by ly, i.e., a pair of indi
es fmig in Eq. (1) is here repla
ed by (lx; ly).It is then more 
onvenient to introdu
e the quantities integrated along the
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tion parallel to the DW's [25℄:nh(lx) = 1� 1Ly LyXly=1 
n(lx;ly);" + n(lx;ly);#� ; (15)S�(lx) = 1Ly LyXly=1(�1)lx+ly 12 
n(lx;ly);" � n(lx;ly);#� ; (16)where we have used the doped-hole density, nh(lx) = 1�hn(lx;ly);"+n(lx;ly);#i,instead of the lo
al ele
tron density n(lx;ly) = hn(lx;ly);" + n(lx;ly);#i, to 
har-a
terize the stable 
harge distribution. A site-dependent fa
tor (�1)lx+ly inEq. (16) 
ompensates the modulation of the AF stru
ture within a singledomain. Therefore, the 
harge and magnetization distribution in the (01)stripe phase is fully des
ribed by the average density along the (10) dire
-tion, given by nh(lx) and S�(lx), respe
tively. A similar pro
edure may beintrodu
ed to investigate the density and magnetization distribution in (11)stripe phases.In the present paper we show for illustration the ground states obtainedfor hole doping x = 1=8 with two sets of parameters whi
h were derived fromthe ele
troni
 stru
ture [42℄: (i) t0 = �0:11t, t00 = 0:04t, and (ii) t0 = �0:30t,t00 = 0:20t. They 
orrespond to La2�xSrxCuO4 (LSCO) and YBa2Cu3O6+x(YBCO) 
ompounds, respe
tively. In both 
ases the stripe stru
tures havebeen found in the ground state. Although a stripe stru
ture with magneti
DW's was found in HF for the LSCO parameters, a di�erent (01) stripephase with nonmagneti
 DW's is obtained in the LA method [Fig. 3(a)℄. Thisshows that the 
orrelation energy gains are indeed larger for nonmagneti
atoms, and su
h solutions are stabilized when ele
tron 
orre
tions are treatedexpli
itly. This (01) phase is stable in a broad range of U , in
luding U ' 10twhi
h is representative for LSCO 
ompounds. It is expe
ted that this phasewill be stable also at U > 10t, as the obtained results are less reliable in thisregime due to the performed expansion in f�ig parameters. Interestingly, adi�erent stripe phase with diagonal (11) and FM DW's is more stable forthe YBCO parameters [Fig. 3(b)℄. This phase is 
learly stabilized by a largese
ond order hopping t0 whi
h leads to a kineti
 energy gain when the spinsare aligned within the walls. A more 
areful analysis is needed to establishwhether this phase is 
onsistent with an observation of diagonal stripes inYBa2Cu3O6:4 [52℄.The 
harge and magnetization distribution obtained for the stripe phasesstable at U = 10t are shown for both sets of parameters in Fig. 4. Inthe 
ase of (01) phase realized for the LSCO parameters [Fig. 4(a)℄, theAF domains 
onsist of three atoms and have almost unredu
ed 
harge (15)
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ting diagonal DW's (�). Part (b) showsstable phases for the parameters of YBa2Cu3O6+x (t0 = �0:30t, t00 = 0:20t [42℄):verti
al FM DW's (2); verti
al magneti
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ell (3);diagonal FM DW's (?); and polaron stru
tures with FM interse
ting diagonal DW's(�). Ex
ept for polaron stru
tures, all DW's are half-�lled.
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Fig. 4. Charge nh(lx) (15) (�lled 
ir
les) and spin S�(lx) (16) (open squares) densitydistributions [28℄, as obtained for the half-�lled (01) and (11) stripes of Fig. 3 atU = 10t for: La2�xSrxCuO4 (left) and YBa2Cu3O6+x (right).and magnetization (16) density from the respe
tive values found in the AFinsulator at x = 0. This state is indeed 
lose to the idealized pi
ture shownin Fig. 1(a). In 
ontrast, the (11) phase obtained for the YBCO parameters[Fig. 4(b)℄, is somewhat di�erent from Fig. 1(b) � the DW's found fromthe variational 
al
ulation are FM, with two neighboring magneti
 momentspointing in the same dire
tion, and in this way give a 
hange of phase in the



2976 A.M. Ole±staggered magnetization between two AF domains, observed in the variationof S�(lx+ly) along the dire
tion perpendi
ular to the AF domains. It may beexpe
ted that more smooth density and magnetization distributions wouldbe obtained, if the LA wave fun
tion (9) would be improved by a variationaloptimization of the density distribution along with the weights of doublyo

upied 
on�gurations in the 
orrelated ground state.The examples shown in Figs. 3 and 4, and the results of Ref. [27℄, demon-strate that lo
al ele
tron 
orrelations beyond the HF states stabilize thehalf-�lled stripe phases in a broad range of parameters. They are 
onsistentwith the results obtained in other methods introdu
ed to treat the stati
 
or-relation e�e
ts: the DMRG of White and S
alapino [25℄, and the mean-�eldslave-boson te
hnique [26℄. Although it has been argued that the long-rangeCoulomb intera
tions might help to stabilize the stripe order [26℄, the evi-den
e has a

umulated that the on-site intera
tions alone su�
e to obtainstable half-�lled stripe phases [25, 27, 30�33℄.4. Dynami
al mean-�eld theory for stripe phasesThe 
ase whi
h is most intensely investigated theoreti
ally in the dopingby x = 1=8 holes, perhaps due to the observation of distin
t stati
 stripes inLa1:6�xNd0:4SrxCuO4 [7℄, whi
h are stable around this hole 
on
entration.However, the stripes o

ur also away from x = 1=8, both in the underdopedand in the overdoped regime [53, 54℄. In order to understand the evolutionof stripe phases with in
reasing hole 
on
entration x in the Hubbard model,it is ne
essary to investigate also other 
on
entrations and look for stablestripe solutions in larger super
ells adequate for the underdoped regime. Are
ent generalization of the DMFT method [32℄ allows to treat stripe phases,and to address this question in a systemati
 way.The 
entral idea of the DMFT is that the dynami
al 
orrelations ina fermioni
 system may be well des
ribed by a lo
al selfenergy [40℄. Thedynami
 selfenergy as a fun
tion of ! is then determined self-
onsistentlywith the e�e
tive medium to whi
h it 
ouples, similar to the 
onventionalmean-�eld treatment of the Ising model, where a single variable, lo
al mag-netization hSzi, is determined self-
onsistently at �nite temperature T . Bothapproa
hes be
ome exa
t in in�nite spatial dimension d ! 1: the mean-�eld theory be
ause the quantum �u
tuations vanish in this limit, whilethe DMFT be
ause the diagrams in the perturbation theory be
ome lo-
al [55, 56℄. In the past the lo
al form of selfenergy was assumed by ne-gle
ting the momentum 
onservation in se
ond order perturbation theory,and was shown to give very reliable results, 
apturing more than 95% of the
orrelation energy in three dimensions [57℄. Motivated by this su

ess, herethe lo
al selfenergy will be used to des
ribe the dynami
s in a 2D model
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tors 2977of doped antiferromagnets. Although this assumption seems to be ratherdrasti
 as 
ombining d =1 with d = 2, we argue that the a
tual qualitativeresults and a favorable quantitative 
omparison with some available rigorousproperties, justify it a posteriori . In fa
t, it has been shown before that oneobtains the 
orre
t dispersion and spe
tral weights of the QP states in theHubbard model at half-�lling (n = 1) within the DMFT, if the on-site spin�u
tuations and the renormalization of U due to 
harge �u
tuations are in-
luded in the lo
al selfenergy [58℄. This approa
h has demonstrated that ana

urate treatment of spin and 
harge �u
tuations is ne
essary to des
ribe
orre
tly the dynami
al properties in magneti
 phases. Using this experien
ewith the AF Mott insulator, the DMFT method has been re
ently general-ized to treat nonhomogeneous phases with large super
ells en
ountered instripe phases of HTSO [32℄, as we present below.The spe
tral properties of the Hubbard model (1) may be found fromthe Green fun
tion de�ned for imaginary time � = it,Gmi;nj;�(�) = ��(�)hami�(�)aynj�(0)i + �(��)haynj�(0)ami�(�)i; (17)whi
h depends on the super
ell indi
es m and n, on the indi
es within thesuper
ell i and j, and on the spin index �. Using the periodi
ity of a stripephase one �nds its Fourier transform, Gij�(k; i!�), whi
h depends of thefermioni
 Matsubara frequen
ies !� = (2� +1)�T , with T being a �
titioustemperature, playing a role of a low-energy 
uto� [40℄. Therefore, the Greenfun
tion is given by an (L� L) matrix,G�1ij�(k; i!�) = (i!� + �)Æij � hij(k)��i�(i!�)Æij ; (18)with the site- and spin-dependent lo
al selfenergy [40, 55℄,�i�(i!�) = �HFi� +�Di�(i!�): (19)The selfenergy is labeled by the site index within a stripe super
ell, and
onsists of a HF (stati
) potential �HFi� (4), and a dynami
 part �Di�(i!�),whi
h des
ribes ele
tron 
orrelations and is determined in the DMFT. Thekineti
 energy hij(k) in Eq. (18) is obtained for the stripe latti
e periodi
itywith super
ells of L atoms as an (L� L) matrix,hij(k) =Xn exp[�ik(R0i �Rnj)℄t0i;nj : (20)For simpli
ity, we will 
onsider the model (1) with nearest-neighbor hoppingonly, t0i;nj = �t, and thus the matrix (20) has a tridiagonal form.
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al Green fun
tions for ea
h nonequivalent site i = 1; :::; L are
al
ulated from the diagonal elements of the Green's fun
tion matrix (18),Gi�(i!�) = 1N Xk Gii�(k; i!�) : (21)The DMFT equations lead thus to a self-
onsistent problem at site i,G0i�(i!�)�1 = G�1i� (i!�) +�i�(i!�) ; (22)where G0i�(i!�) is the e�e
tive medium (bath) Green fun
tion at site i, whi
hdepends on the 
harge and magnetization density at this site i and, viathe bath, on the density distribution at its neighboring sites. In the pres-en
e of magneti
 order the lo
al Green fun
tions (18) are determined self-
onsistently together with lo
al HF potentials (4), with the 
onstraint forthe total density within the stripe super
ell,1L LXi=1;� ni� = n : (23)This approa
h to the stripe phase within the DMFT method is thereforeanalogous to that re
ently introdu
ed by Pottho� and Nolting for a Mottmetal-insulator transition in thin �lms [59℄.The self-
onsistent problem posed by Eqs. (22) requires the knowledge ofboth parts of selfenergy (19): (i) the HF part �HFi� , and (ii) the dynami
alpart �Di�(i!�). The latter has to be either derived in a perturbative wayby summing up 
lasses of diagrams, or may be determined numeri
ally bysolving the 
orrelation problem on a single atom [40℄. In the present 
ase thesite-dependent selfenergy has been found using an ED algorithm of Ca�areland Krauth [60℄. This pro
edure is motivated by its high a

ura
y whi
h isespe
ially needed in the magneti
 systems, where numerous magneti
 phases
ompete with ea
h other. The main advantage of this method is that itgives unbiased results for the selfenergy and thus in
ludes the leading partof the dynami
al pro
esses whi
h are responsible for a many-body behaviorof intera
ting ele
trons. It is also very well suited to study the ground statesof 
orrelated systems, in 
ontrast to quantum Monte-Carlo methods whi
h
an provide reliable information only at rather high temperatures (T ' 0:3t),and therefore 
annot be used to investigate the properties of stripe phases.Also the earlier studies of stripe phases based on the perturbative formulafor the selfenergy whi
h in
ludes the spin �u
tuations appeared to be nota

urate enough at low temperatures [61℄, pre
isely in the regime wherethese phases are stable. In fa
t, the stripes melt at temperatures T ' 70 K,
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tors 2979and it is therefore di�
ult to obtain the low temperature limit with su�
ienta

ura
y, when the �nite-temperature formalism is used [61℄.In the ED method of Ca�arel and Krauth a Single-Impurity AndersonModel (SIAM) hybridized with a �nite set of orbitals is solved with theLan
zos algorithm at T = 0. This non-perturbative approa
h treats there-fore lo
al spin and 
harge �u
tuations exa
tly, and gives the rigorous formof the selfenergy in the limit of in�nite dimension d ! 1 [40, 56℄. In auniform system a latti
e problem is mapped onto an e�e
tive SIAM, whi
his next solved self-
onsistently with the surrounding latti
e. This method iswell suited to investigate the spe
tral properties of stripe phases, when theabove mapping is performed independently for ea
h nonequivalent site in astripe super
ell, and leads to L di�erent impurity models for i = 1; :::; L:H(i)imp=X� "�d
yi�
i�+ns�1Xk=1 "(i)k�ayk�ak�+ns�1Xk=1�V (i)k� ayk�
i�+V (i)�k� 
yi�ak��#+Uni"ni#;(24)with L self-
onsisten
y 
onditions (22). Ea
h impurity model in
ludes ns�1e�e
tive orbitals labeled by k = 1; :::; ns� 1, whi
h stand for the 
ondu
tionband and 
ouple to the impurity atom, where the 
orrelation problem issolved.Unlike in a real a �nite 
luster, here the 
ondu
tion-band orbital energies"(i)k� and the hybridization elements V (i)k� are the e�e
tive parameters. In orderto start the iteration it is 
onvenient to solve �rst the nonintera
ting (U = 0)impurity Green fun
tion G0i�;ns(i!�), whi
h is given by the following form foratom i, G0i�;ns(i!�)�1 = i!� � �d � ns�1Xk=1 �V (i)k� �2i!� � "(i)k� : (25)The 
ru
ial step is the solution of the SIAM for i = 1; :::; L using the Lan
zosalgorithm to get the impurity selfenergies �i�(i!�) whi
h are required forthe next 
y
le. Therefore, the numeri
al e�ort in
reases linearly with thesize of the magneti
 unit 
ell L in the stripe phase.After solving of the e�e
tive 
luster problem, the lo
al Green fun
tionsGi�(i!�) are determined. Self-
onsisten
y is implemented by extra
ting fromEq. (22) the new selfenergy (19), and next Eq. (18) for Gij�(k; i!�) is usedto start the next iteration. Finally, the parameters of the e�e
tive SIAMf"(i)k�; V (i)k� g are obtained by �tting the nonintera
ting problem representedby the bath Green fun
tion G0i�(i!�) to the a
tual Green fun
tion G0i�;ns(i!�)(25) on the imaginary energy axis, with the latter fun
tion obtained for the�nite-orbital problem posed by the SIAM. The best 
hoi
e is obtained by



2980 A.M. Ole±minimizing the 
ost fun
tion [59, 60℄,�2i = 1�max + 1 �maxX�=0 ��G0i�;ns(i!�)�1 � G0i�(i!�)�1�� ; (26)for ea
h impurity problem labeled by i. This method uses a drasti
 approx-imation for a 
ondu
tion band whi
h is represented just by a �nite set ofns � 1 e�e
tive orbitals. Of 
ourse, one 
ould reprodu
e an exa
t resultfor an in�nite system only in the limit of ns ! 1. However, the 
onver-gen
e with the in
reasing 
luster size is very fast, and reliable results for ametal-insulator transition in the Hubbard model 
ould be obtained by solv-ing relatively small 
lusters with ns < 10 [60℄. The 
onvergen
e is of similarquality also in the present problem, and the results obtained with ns = 8will be presented in the next Se
tion.Apart from the stati
 properties su
h as density (15) and magnetization(16) distribution, the Green fun
tions (18) allow to determine the spe
tralfun
tion, A(k; !) = � 1� 1LN Im Xmi;nj;� e�ik(Rmi�Rnj)Gmi;nj;�(!) : (27)This quantity will be used below to analyze the me
hanism of stability andthe momentum dependen
e of the photoemission spe
tra in stripe phases.5. Stripe phases as one-dimensional metalsWe will be interested here in a generi
 pi
ture whi
h follows from theDMFT approa
h and thus the numeri
al examples will be limited to thesimplest 
ase, to the Hubbard Hamiltonian (1) with nearest-neighbor hop-ping only. This 
hoi
e is su�
iently 
lose to the realisti
 parameters ofLa2�xSrxCuO4 [42℄. Stripe phases in the doped Hubbard model were foundusing the above ED method within the DMFT by an extensive numeri
alsear
h for self-
onsistent solutions with the lowest energy, starting from dif-ferent initial 
onditions appropriate for various type of polaron and stripeordering [32℄. The �nite 8 � 8 and larger latti
es with periodi
 boundary
onditions used for these 
al
ulations a

ommodated always at least eightstripe super
ells with the periodi
 boundary 
onditions, whi
h are su�-
ient to approximate the stripe phases stable in the thermodynami
 limit.Here we summarize the results obtained for U = 12t, a value represen-tative for La2�xSrxCuO4 
ompounds, whi
h reprodu
es the experimentalratio of t=J = 3 [11℄, with J = 4t2=U . At low doping one might expe
t iso-lated polarons whi
h were found before in the HF studies [6, 20℄. However,the polarons are unstable in the present DMFT 
al
ulations and instead
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ondu
tors 2981a uniform AF state with a gradually redu
ed magnetization in the weaklydoped regime of x < 0:03 was found. This suggests that the HF approa
hoverestimates the lo
al density 
hanges in the doped systems, and agreesqualitatively with the experimentally observed AF long-range order in theweakly doped regime up to x ' 0:02, reported for La2�xSrxCuO4 [9,62,63℄.The stripes were found to be stable in a broad range of hole doping0:03 < x < 0:2 using the DMFT. The DW's are populated by the doped holeswith the �lling 
orresponding to half-�lled stripes in the stable phases, butthe density distribution is more smooth than in the 
orresponding HF states
orre
ted by the LA method, for all 
ases dis
ussed in Se
. 3. First, nearthe undoped AF Mott insulator, the (11) stripes with large super
ells arestabilized for 0:03 < x � 0:05 by a (weak) CDW superimposed with a SDWalong the wall. These states have very large super
ells 
onsisting typi
ally of� 160 atoms, and are 
hara
terized by the extended DW's with the 
lustersof four sites along x axis, j0i� j"i�j0i� j#i, on ea
h (11) DW itself, and theAF domains between them. They demonstrate a generi
 tenden
y towardsphase separation within a doped antiferromagnet into hole-poor and hole-ri
h regions [5℄, and may be seen as a 
ompromise between the uniform AForder and (01) stripes whi
h o

ur only at higher doping.Site-
entered verti
al stripes, with half-�lled DW's, were found to be themost stable stru
tures in a broad range of doping 0:05 < x < 0:17. Thesize of AF domains, separated by a line of nonmagneti
 atoms, is �rst large(seven atoms at x = 1=16), but shrinks with the in
reasing doping down tothree atoms at x = 1=8. Beyond x = 1=8 one �nds up to x ' 0:17 a lo
k-ine�e
t of the same stru
ture with a 
harge (magneti
) unit 
ell 
onsistingof four (eight) sites, and the AF domains with three atoms along the xdire
tion. Two examples of the (01) stru
tures stable at x = 1=12 and 0.15are shown in Fig. 5. Although the hole density has distin
t maxima at theDW's, the holes are more delo
alized than in the HF 
al
ulations [6, 19℄,and in the LA method [27℄, dis
ussed in Se
. 3. This result agrees with theslave-boson 
al
ulations [26℄, and with numeri
al DMRG [25℄, where alsomore smooth density variations were obtained than in the 
orrespondingHF states. Moreover, the density distribution is quite stable around theDW's in the underdoped regime, with ni ' 0:850 and ni ' 0:830, at dopingx = 1=16 and x = 1=8, respe
tively, and a rather small doping at the 
entralsites in the AF domains (ni ' 0:97 in the 
ase of x = 1=16 shown in Fig. 5).On the 
ontrary, for the doping x > 1=8 the hole density in
reases fastwithin the AF domains. For instan
e, ni ' 0:92 and 0.88 was found at the
entral atom in the AF domains for x = 1=8 and x = 0:15, respe
tively.Finally, as a result of in
reasing hole density within the AF domainsand the de
reasing amplitude of the SDW shown along the x dire
tion inFig. 5, at doping x > 0:17 kinks and antikinks along the DW's develop,
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entered (01)stripe phases (triangles).the bond-
entered (01) stripe phases with pairs of magneti
 atoms on theDW's similar to those of White and S
alapino [25℄ are energeti
ally favored,and the stripe stru
ture gradually melts. This new type of stripe phases,not found in the HF 
al
ulations, indi
ates a smooth 
rossover from the site-
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entered to bond-
entered (01) stripes. The gradual transition between threedi�erent stripe phases is also seen in the values of energy per one doped holeESh(x), found now from Eq. (14) within the DMFT method (Fig. 6). Theenergy in
reases monotoni
ally as a fun
tion of doping x, showing that the(11) and (01) stripe phases dis
ussed above are stable against ma
ros
opi
phase separation. The energy di�eren
e between the site-
entered and bond-
entered stripe phases is typi
ally small, e.g. �ESh � 0:05t for x ' 1=8.One observes also a de
reasing ex
itation energy with in
reasing x whi
hindi
ates that the stripe phases are gradually destabilized with in
reasingdoping. Therefore, one expe
ts strong transverse stripe �u
tuations in thebond-
entered phases [64℄, not in
luded in the DMFT approa
h, whi
h 
ouldstabilize them a bit more against the site-
entered stripes. It has been arguedthat su
h �u
tuations might enhan
e super
ondu
ting 
orrelations in theground state [65℄.In 
ontrast, the energy of the uniform paramagneti
 phase per one hole,EPh (x), determined in a similar way to Eq. (14), has a minimum at xm '0:16, with EPh (xm) ' �2:23t (�1:94t) for U = 12t (U = 8t). This indi
ates ageneri
 tenden
y of this phase towards phase separation [5℄, as a lower energy
an be obtained at doping x < 0:16 just by separating the sample into hole-poor and hole-ri
h regimes, following the Maxwell 
onstru
tion. This showsthat the stripe phases are a natural 
onsequen
e of this instability, and theenergy per hole found in them ESh(Æ) is just somewhat lower than the energyof the paramagneti
 phase at its minimum, EPh (xm). Doping beyond xm soondestabilizes the stripes due to the in
reasing spin and 
harge �u
tuations, asdis
ussed above, and the energies ESh(x) and EPh (x) 
ome 
lose to ea
h otherand merge above x = 0:20. This estimate agrees well with the observedgradual disappearan
e of 
harge inhomogeneities in La2�xSrxCuO4 abovethe optimal doping [66℄.The stripe superstru
ture is 
learly seen in the 
harge and spin responseas the 
hara
teristi
 maxima of the respe
tive stru
ture fa
tors. Using thesame notation as in Eqs. (15) and (16), the 
harge distribution may bedes
ribed by the Fourier transform of the stati
 hole-hole 
orrelation fun
tionin the re
ipro
al spa
e,C(k) = 1LN X(lx;ly) e�i(kxlx+kyly) 
1� n(0;0)� 
1� n(lx;ly)� : (28)For a stripe phase the summation is performed over the 2D latti
e of Nsuper
ells 
ontaining L sites ea
h. Here k = (kx; ky) is a ve
tor fromthe �rst Brillouin zone. This fun
tion may be measured in elasti
 X-rays
attering and has 
hara
teristi
 maxima at Q
 = (�4��; 0) for the verti-
al (01) stripes. In experiment, however, a superposition of (01) and (10)



2984 A.M. Ole±phases from di�erent CuO2 planes is observed, and thus the maxima aresymmetri
ally distributed around the � = (0; 0) point at Q
 = (�4��; 0)and Q
 = (0;�4��) (see Fig. 7).
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Fig. 7. Maxima of the magneti
 stru
ture fa
tor S(k) (�lled symbols) and 
hargestru
ture fa
tor C(k) (empty symbols) for the (01)/(10) stripe phases shown inFig. 5. The peaks obtained for x = 1=12 and 0.15 are indi
ated by diamonds and
ir
les, respe
tively. In
reasing doping x 
orresponds to the in
reasing splitting ofthe neutron (X-ray) peaks in S(k) [C(k)℄ with respe
t to the M (� ) point.The neutron s
attering measures magneti
 
orrelations in real spa
ewhi
h are des
ribed by the magneti
 stru
ture fa
tor,S(k) = 1LN X(lx;ly) e�i(kxlx+kyly) DSz(0;0)EDSz(lx;ly)E : (29)Experimentally the stripes were observed as the shift of the neutron peak/ �, whi
h moves away from a single AF maximum of S(k) at theM = (�; �)point for x = 0 to four symmetri
 points around M (Fig. 7): Qs = [(1 �2�)�; �℄ and Qs = [�; (1�2�)�℄, if x > 0. These two values 
orrespond againto a superposition of (01) and (10) stripe phases. This result shows that thestripes in the 
uprates are indeed (10) type, in 
ontrast to the diagonal(11) stripes observed in the ni
kelates [24℄. The value of � was found tobe in
reasing with hole doping x, with � ' x at x < 1=8 [7, 9, 53℄. If themagneti
 (
harge) unit 
ell de
reases with doping x, as reported above, thesplitting of the maxima of S(k) [C(k)℄ around the M (� ) point in
reases.The DMFT 
al
ulations of Ref. [32℄ give a linear dependen
e of theneutron peak splitting on doping, � / x, in the range of low doping, x � 1=8,and a 
onstant value � = 1=8 for x > 1=8 [Fig. 8(a)℄. Su
h a 
rossoverbehavior was observed in the experiments of Yamada et al. [53℄, and indi
ates
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tors 2985a unique stability of half-�lled DW's in the (01) stripe phase, as obtainedin the HF studies [20℄. For the stru
tures with diagonal extended DW'sobtained at low doping x < 0:06 the maxima of S(k) found at Qs = [(1 �2�d)�; (1 � 2�d)�℄, with �d ' x=p2, agree perfe
tly well with the re
entneutron experiments of Wakimoto et al. [54℄. Although these stru
tures areso di�erent from the (01) phases at higher doping, it is remarkable that the
orresponding values of �d follow the same linear dependen
e on x.The analysis of the total density of states obtained by summing up thespe
tral fun
tions over the Brillouin zone leads to a 
on
lusion that the 
hem-i
al potential shifts downwards with hole doping, �� / �x2 [Fig. 8(b)℄, inagreement with the Monte-Carlo simulations of the 2D Hubbard model [67℄.Therefore, the 
harge sus
eptibility is enhan
ed in the limit of x ! 0, re-produ
ing a universal property of the Mott�Hubbard metal-insulator tran-sition [67℄. Whether or not this behavior is observed in experiment is still
ontroversial. The data points obtained by Ino et al. [39℄ have rather largeerror bars, but seem to be instead more 
onsistent with a weak de
rease of� with in
reasing x in the range of stripe phases x � 0:15, followed by aquite rapid drop when the stripes start to melt. This might be related to the
hange of the Fermi surfa
e shape around x = 0:15 doping, whi
h violatesthe Luttinger theorem in the underdoped regime [68℄. In any 
ase, the ob-served behavior indi
ates that the weakly-doped 
uprates are in a regime ofanomalous metalli
 phase, and a dire
t transition from a Luttinger liquid toa super
ondu
tor o

urs under de
reasing temperature [69℄. This non-Fermiliquid regime has numerous 
onsequen
es for several transport properties ofthe normal phase [4, 70℄, whi
h have been observed in the same regime ofdoping, where the stripe phases are stable in La2�xSrxCuO4.The main advantage of using the DMFT is that it allows also to inves-tigate the spe
tral fun
tions A(k; !) (27) of the stripe phases. The DMFTgives a strong renormalization of the Mott�Hubbard gap from its HF value,and modi�es the stru
ture of the Hubbard subbands. If a single hole isdoped, a QP peak is found 
lose to �, with a dispersion familiar from thet�J model [58℄. This dispersion suggests that the hole doping would o

ur�rst at the X = (�; 0) point, if the QP band remains un
hanged under dop-ing, and the Fermi energy enters the LHB. On the 
ontrary, the low-energyspe
tral properties at ! ' � are determined by the many-body pro
esses inthe doped Hubbard model, and by the spe
tral weight transferred from theUHB [44℄. Therefore, the obtained photoemission spe
tra (for ! � �) at lowdoping x 
onsist of two distin
t features: the in
oherent part of the LHB,extending in a range of �6t < ! � � < �2t, with a large intensity around! � � ' �4:8t, and a QP part in a range of �0:7t < ! � � < 0. The latterdispersive feature is 
learly seen in Fig. 9; it is similar to that found for asingle hole [58℄, has a dispersion � 2J (here J=t = 4t=U = 1=3), and 
omes
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(a) (b)Fig. 8. Evolution of the stripe phases with in
reasing hole doping x, as found inDMFT with U = 12t: (a) shift � of the maxima of the magneti
 stru
ture fa
torS(k), and the data points of Yamada et al. [53℄ (empty 
ir
les) and Wakimotoet al. [54℄ (empty squares); (b) shift of the 
hemi
al potential ��=t (points) andthe quadrati
 �t ��=t = aÆ2 with a = �15:57 (dashed line), and the experimentaldata of Ino et al. [39℄ for t = 0:25 eV (empty 
ir
les). Filled symbols show: diagonal(11) SDW stripes with Qs = [(1�p2�)�; (1�p2�)�℄ (squares), and verti
al (01)site-
entered (
ir
les) and bond-
entered (triangles), with Qs = [(1� 2�)�; �℄.
lose to � at the X point, but stays well below � at the remaining pointsof the AF Brillouin zone, and along the Y �� and ��S dire
tions. Due tothe stripe superstru
ture one �nds that the dire
tions ��X and ��Y arenonequivalent.The states at ! � � > 0 are quite di�erent. Here one �nds a largedispersion � 2t between the points whi
h belong to the boundary of theAF Brillouin zone (X, Y , and S) and the M point. This large dispersionis reminis
ent of the free propagation along the DW's given by Eq. (8), butis now strongly renormalized by the many-body pro
esses: the dispersionalong the X�M dire
tion is redu
ed by a fa
tor 
lose to two, while a similardispersion o

urs as well along the Y �M dire
tion, in spite of its absen
e inthe free 1D band (8). A parti
ularly interesting situation is observed nearthe X point, where the quasi-1D ele
troni
 stru
ture of the site-
entered(01) stripe phase merges with the QP band below �, and gives a �at bandaround the X point. The spe
tral weight stays below � at the X point,while it 
rosses the Fermi energy � just at the k = (�; �=4) point, as fora quarter-�lled 1D band (8). Remarkably, both features were observed inre
ent angle-resolved photoemission (ARPES) experiments [34�36℄. On the
ontrary, the free 1D band (8) 
annot 
ontribute at the Y point [37℄, andone observes a gap between the spin-polaron QP band with dispersion � 2J ,and the states at ! � � > 0. Also along the ��M dire
tion the spe
tra
hange drasti
ally from those found in a one-parti
le approa
h. At thek = (�=4; �=4) point, where [as at k = (0; �=4)℄ the 1D band would 
ross
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tral fun
tion A(k; !) of the stripe phase at x = 1=12 with U = 12t,as obtained along the main dire
tions of the 2D Brillouin zone, with � = (0; 0),X = (�; 0), Y = (0; �), M = (�; �), and S = (�=2; �=2) [32℄.the Fermi energy, almost no spe
tral weight is found. Instead, a spin-polaronQP appears around this point, still well below �, but approa
hing the Fermienergy along the ��S dire
tion. At the S point itself the QP stays wellbelow �, and no spe
tral weight appears at the Fermi level, giving again a gapbetween the o

upied and uno

upied part of the LHB. This behavior agreesquantitatively with the observed ARPES spe
tra for La2�xSrxCuO4 [35,36℄and La1:28Nd0:6Sr0:12CuO4 [34℄.At higher doping x ' 0:15 essentially a similar pi
ture is obtained(Fig. 10), supporting the view that the spin-polaron QP band arising from
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tion A(k; !) of the stripe phase at x = 0:15 (U = 12t) [32℄.



2988 A.M. Ole±a hole moving in an AF domain, and the renormalized 1D-band above �are universal as long as the (01) stripes remain stable stru
tures. The dif-feren
es to the low-doping regime are of quantitative nature only. First ofall, the �at QP at the X point moves to the Fermi level when the �lling ofthe DW's in
reases beyond half �lling in the range of doping x > 1=8. Thelarge spe
tral weight at the X point gives also some 'shadows' at the Y andS points, but the gaps are still seen at the latter two points. The featureabove � has a larger spe
tral weight and resembles a band with a similardispersion along the X�M and X�M dire
tion.By integrating the spe
tra over the Brillouin zone, one �nds a density ofstates with a pseudogap at the Fermi level. This pseudogap is pinned to �when the hole doping x in
reases, and the (01) stripes be
ome more dense.It may be therefore 
onsidered to be the reason of stability of the (01) stripestru
tures beyond the HF pi
ture. Indeed, this pseudogap is gradually �lledby spe
tral weight, and �nally disappears when the stripe order melts within
reasing hole doping x. One 
ould attempt to understand the results ofthe DMFT by simulating the ele
troni
 stru
ture in HF, using the magneti
potentials (4). In 
ontrast to the HF approximation, however, the value ofthe Coulomb intera
tion U does not remain 
onstant in the DMFT, but isrenormalized by the lo
al dynami
s to a value [71, 72℄,�Ui = U1 + U�ppi (0) ; (30)where the parti
le�parti
le vertex �ppi is determined by the Weiss �eld,�ppi (0) = (kBT )X� G0i"(i!�)G0i#(�i!�) : (31)Therefore, one 
an analyze the ele
troni
 stru
ture of tight-binding ele
tronsmoving on a 2D latti
e within a site-dependent magneti
 potential / �Uiwhi
h 
orresponds to the stripe stru
ture,H = �t Xmi;nj;� aymi�anj� �Xmi eiQRmiVmi(nmi" � nmi"); (32)using the same notation as in Eq. (1). Lo
al magneti
 potentialsV(ix;iy) � eiQR(ix;iy) �U(ix;iy)jhSz(ix;iy)ij ; (33)alternate due to the phase fa
tor eiQR(ix;iy) when iy is varied for verti
al(01) stripe phases, with Q = [(1�2�)�; �℄. These potentials may be treatedas external parameters, and the ele
troni
 stru
ture of the (01) phases is
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tors 2989then parametrized by a set of values fVixg, with V0 = 0. They play a
ru
ial role and determine whether the system is metalli
 or insulating . Letus label by V1 and V2 the potentials at the �rst and se
ond neighbors ofthe DW, respe
tively. It has been found by the numeri
al analysis thatthe photoemission weight vanishes at � for the k = (�=4; �=4) point anda gap opens, if a 
ondition for the potentials 
lose to the DW, V2 � 2V1,is satis�ed [32℄. Indeed, the magneti
 potentials 
hange so rapidly in theweakly doped regime x < 1=8, but not for large doping x > 1=8; for instan
eat x = 1=12 the spin densities found in the DMFT and the renormalizedvalues of �Ui lead to V2 ' 2:07t and V1 ' 0:99t. The strong renormalizationof spin (and 
harge) densities next to the DW's with respe
t to the HFvalues is due to 
harge �u
tuations in
luded in the DMFT, and demonstratesthat lo
al 
orrelations are responsible for the ARPES spe
tra observed inHTSO [34�36℄. 6. Summary and open problemsThe presented results of the 
al
ulations performed beyond the HF ap-proximation: the LA method for the ground state [27℄, and the DMFT bothfor the ground state and for the spe
tral properties [32℄, demonstrate thatthe 
orrelation e�e
ts are of 
ru
ial importan
e, and are observed in theARPES spe
tra La2�xSrxCuO4 at low and intermediate doping. It is quiteremarkable that the sequen
e of stripe phases, with (11) stripes followed by(01) stripes, the latter with de
reasing and then 
onstant size of the AF do-mains under in
reasing hole doping x, 
ould be obtained within the DMFT
al
ulations, in perfe
t agreement with the experimental �ndings.While the tenden
y towards 
harge and spin separation in a form of stripephases may be understood as a 
ompromise whi
h follows from optimizingthe kineti
 energy / t and the magneti
 energy / J at the same time, thedetailed me
hanism of this instability is still under investigation. First ofall, the HF studies have 
lari�ed that the largest kineti
 energy gains areobtained due to the hopping elements t? perpendi
ular to the (01) stripesby the solitoni
 me
hanism [20℄, while the elements tk parallel to the (01)stripes are less important for their stability. Therefore, it may be expe
tedthat the stripe ordering will always tune the dire
tion of the DW's along aweaker hopping in the anisotropi
 model, realizing the 
ondition t? > tk,and indeed this trend was 
on�rmed by re
ent numeri
al simulations withinthe t�J model [73℄. In 
ontrast, there are more parallel AF bonds thanperpendi
ular to the dire
tion of the (nonmagneti
) DW's, and thereforean in
reasing superex
hange parallel to the DW's Jk will have a stabilizinge�e
t on the (01) stripes. The situation 
on
erning the (11) stripes is not yetexplored � in order to demonstrate the universality of the above me
hanism



2990 A.M. Ole±it would be worthwhile to show that here the se
ond neighbor hopping t0a
ross the (11) stripes and ex
hange elements J 0 along them would havesimilar e�e
ts on the stability of the (11) stripe phase.It is quite remarkable that the spe
tral fun
tions obtained for the (01)stripe phases in the DMFT have only a very weak relation to the HF bandstru
ture, but are similar to the experimental observations. The spe
tradis
ussed in Se
. 5 show an interesting superposition of the spin-polaronQP states with a dispersion of � 2J , and a broader dispersion of the statesabove �, suggested by a 1D metalli
 behavior along the nonmagneti
 DW's.Su
h experimental features at low energies j!��j < J as: (i) no signi�
antspe
tral weight at the � = (0; 0) point; (ii) �at QP state at the X = (�; 0)point, and its absen
e at the Y = (�; 0) point, leading to a still distin
t �atstru
tures at both these points when the (01) and (10) stripes 
ontributewith equal intensity in experiment; (iii) also signi�
ant, but dispersive andweaker QP state at S = (�=2; �=2) point, with a distin
t gap separating thephotoemission (! < �) and inverse photoemission (! > �) part, agree wellwith the experimental observations [34�36℄.The low-energy spe
tral weights obtained in photoemission at the X[k = (�; 0)℄ and S [k = (�=2; �=2)℄ points are shown below the phase dia-gram of Fig. 11. While the weight at the X point gradually in
reases within
reasing hole 
on
entration x, it vanishes at the S point below x = 1=8,and only in the regime of x > 1=8 the gap at this point is gradually �lled. In
ontrast, the gap does not open at the S point in the weakly doped regimeof Bi2Sr2CaCu2O8+y, where a sharp peak is observed at � both in under-doped and overdoped 
ompounds [74℄. Our results show that this di�eren
efollows from the stati
 stripes whi
h stabilize only in La2�xSrxCuO4, butnot in Bi2Sr2CaCu2O8+y. Note that the de
rease of the spe
tral weight ofthe LHB in the super
ondu
ting phase (SC) shown in Fig. 11 is exagger-ated, and a weaker dependen
e on x was derived by analyzing the strongly
orrelated regime of the Hubbard model [44℄.The phenomenon of stripe melting in the x > 1=8 doping regime isvery intriguing. In
reasing hole density enhan
es the quantum �u
tuationsand delo
alizes the site-
entered stripes, produ
ing instead bond-
enteredstripes [32℄, and more units of bond-
entered stripes are likely to be gen-erated as the stripes be
ome more dynami
. Re
ently it has been arguedthat the photoemission experiments should be able to distinguish betweenboth types of (01) stripes, and the ARPES results around x = 1=8 dopingin La2�xSrxCuO4 suggest that the site-
entered stripes are observed. It isnot very likely, however, that su
h experiments would help to understandthe stripe melting, as the phenomenon is dynami
 by itself, and experi-mental resolution might not be su�
ient. Enhan
ed density of doped holesin the regime of stripe melting 
ould promote the ordering of kinks, 
aus-
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Fig. 11. Part (a): S
hemati
 phase diagram of La2�xSrxCuO4 
ompounds (top),and the evolution of spe
tral weight with hole doping in the LHB at k = (�; 0) andk = (�=2; �=2) [36℄. Part (b) shows in a s
hemati
 way the modi�
ation of spe
tralweight distribution from an AF Insulator (AFI) around a semi
ondu
tor-metaltransition (SIT) to a stripe phase with 1D 
ondu
tivity, or to a super
ondu
tor(SC). This �gure was obtained due to the 
ourtesy of A. Ino.ing the stripe phase to tilt. Su
h states, unlike the instability towards thebond-ordered stripes, are observable in neutron s
attering as tilting of themaxima of S(k) away from the (10) and (01) dire
tions in the re
ipro
alspa
e [75℄. Indeed, su
h tilted DW's were re
ently observed in a number of
uprates [63, 76℄.Summarizing, we have shown that the instability towards stripe phases,found �rst in the HF studies [6℄, is robust and not only survives when theele
tron 
orrelation e�e
ts are treated expli
itly, but gives results whi
hagree with experiments. The qualitative physi
s established by the HF stud-ies applies in a broad range of parameters, also when the Hubbard model isextended either by a further neighbor hopping terms, or to a 
harge-transfermodel. These extensions should be further explored in the future studiesin order to 
larify the tenden
y towards stripe formation in di�erent 
lassesof HTSO. Although it has been shown in Se
. 3 that the se
ond neighborhopping t0 may 
hange the most stable stru
tures from (01) to (11) stripes,this point was not yet studied in more sophisti
ated methods, su
h as theDMFT. In this 
ontext, it would be of interest to derive the parameters ofthe e�e
tive Hubbard model for the ele
tron doped 
uprates and to studythe relevant regime in order to understand better whether indeed the stripe



2992 A.M. Ole±instabilities in this 
lass of 
uprates are 
loser to those observed in the ni
k-elates, as 
laimed re
ently [23℄.The possible role of stripes in the phenomenon of super
ondu
tivity ispuzzling. The stati
 stripes are stable only in the normal phase ofLa2�xSrxCuO4 
ompounds [Fig. 11(a)℄, where the values of T
 are lowest.This alone suggests that the stripe instability 
ompetes with the super-
ondu
ting instability, but it might also be that the �u
tuating stripes aredi�erent, and support the super
ondu
ting �u
tuations in a quantum stringliquid [77℄. The stable stripes in the normal phase of La2�xSrxCuO4 givea pseudogap in the density of states [Fig. 11(b)℄, while a pseudogap wasobserved in pra
ti
ally all the HTSO, where it explains the transport andthermodynami
 properties in the high-temperature regime [11, 70℄. As thepseudogap is so universal, it would be interesting to understand better itsorigin in those situations where stati
 stripes 
ould not be observed so far.As the most important 
on
lusion of the DMFT studies [32℄, the verti-
ally (or horizontally) ordered stripe phases are metalli
 along the dire
tionof the nonmagneti
 DW's, in 
ontrast to the HF stripes whi
h are alwaysinsulating, with a small gap at the Fermi level. The HF gap is smearedout into a pseudogap by the dynami
al �u
tuations whi
h o

ur due to the
oupling of the holes moving along the stripes to spin �u
tuations withinthe AF domains.It is a pleasure to thank Mar
us Fle
k and Jan Zaanen for a friendly
ollaboration and for numerous stimulating dis
ussions, and A. Ino for hisagreement for presenting Fig. 11 in the present paper. Valuable dis
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