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QUANTUM ANTIFERROMAGNETSIN A MAGNETIC FIELD�B. NormandTheoretis
he Physik III, Elektronis
he Korrelationen und MagnetismusUniversität AugsburgD-86135 Augsburg, Germany(Re
eived O
tober 16, 2000)Low-dimensional antiferromagnets in an external magneti
 �eld providean ideal illustration of the physi
s of quantum phase transitions. Thistheoreti
al analysis is motivated by the two-leg spin ladder geometry, whi
hhas been the subje
t of mu
h experimental study in the material CuHpCl.The non-linear sigma model is used to 
hara
terise the quantum phases ofthe system, and the bond-operator des
ription to dis
uss ex
itation spe
traand quantum phase transitions between ground states.PACS numbers: 75.10.Jm, 75.30.Cr, 75.40.Cx1. Introdu
tionQuantum spin systems are those with su�
iently low dimensionality dand spin S that their quantum nature be
omes manifest through the e�e
tsof �u
tuations. Their value in revealing fundamental quantum me
hani
alproperties has been understood sin
e Haldane's 
onje
ture [1℄ 
on
erningintegral- and half-integral-spin AntiFerromagneti
 (AF) 
hains. Appli
ationof a magneti
 �eld to su
h systems a�e
ts both the spins and their �u
tu-ations, in ways whi
h 
an profoundly alter the sample properties, in
ludinga 
hange of ground state. Su
h a pro
ess, o

urring at zero temperature, isa quantum phase transition [2℄.Synthesis of novel metalloorgani
 materials has provided a range of low-dimensional antiferromagnets in whi
h the small ex
hange 
onstants permitthe full magnetisation to saturation to be measured in laboratory �elds.The experimental realisation of many profound features of quantum magnetsmay be 
ounted as one of the major triumphs of 
ondensed matter physi
s� Presented at the XL Cra
ow S
hool of Theoreti
al Physi
s, Zakopane, Poland,June 3�11, 2000. (3005)



3006 B. Normandin the past de
ade. This overview is intended to highlight some theoreti
alaspe
ts of the quantum phases and quantum phase transitions whi
h arise insu
h systems in a magneti
 �eld. The fo
us will be on the two-
hain laddergeometry believed to be appropriate for CuHpCl [3,4℄ the best-
hara
terisedsample in re
ent literature, but is in fa
t relevant for a variety of quantummagnets.CuHpCl provides a weakly-
oupled network of S = 1=2 Cu atoms, whi
hare thought to be most strongly 
oupled as dimer pairs, with an inter-dimer 
oupling leading to a 
on�guration of isolated spin ladders. The ratio� = J 0=J � 0:2 of 
hain to rung 
ouplings (Fig. 1) makes CuHpCl a stronglydimerised system, and as su
h very well suited to both of the analyti
al ap-proa
hes to follow. In an applied magneti
 �eld, magnetisation [3℄, spe
i�
heat [4℄ and Nu
lear Magneti
 Resonan
e (NMR) measurements [5℄ show
learly the evolution from a gapped system at low �eld, through a gaplessregime at intermediate �elds, to a gapped, saturated magnet at high �elds.In the terminology of quantum phase transitions [2℄, these regimes are re-spe
tively �quantum disordered�, �quantum 
riti
al� (an extended regimestri
tly in one dimension (1d)) and �renormalised 
lassi
al�. More detail willbe furnished throughout the text on the meaning of these terms and theproperties they des
ribe. A full a

ount of the experiments 
hara
terisingthese phases and realising quantum phase transitions in a �eld may be foundin Ref. [6℄.Theoreti
al studies have been performed using a variety of te
hniques[7�10℄. In the following, Se
. 2 presents the Non-Linear � Model (NL�M)des
ription [11℄, whi
h is shown to provide a good, qualitative pi
ture of thequantum phases and their underlying physi
s. More spe
i�
, mi
ros
opi
results 
on
erning ex
itation spe
tra of these phases are obtained in Se
. 3by employing the bond-operator method, whi
h is found to be ideally suitedto dis
ussing quantum phase transitions. Se
. 4 
ontains a �nal 
omparisonwith experiment and summary.2. Quantum phases: non-linear � modelAlthough the NL�M applies stri
tly to the semi
lassi
al limit (large S),it has been used frequently as the basis for fundamental dedu
tions aboutthe quantum limit of AF systems. It 
an be shown to be valid for all e�e
-tively integral-spin quantum systems in magneti
 �elds on the order of thezero-�eld spin gap. Of the many approa
hes to this model, a spin sti�nessanalysis and a renormalisation group te
hnique provide the most appealingdes
ription of the broken-symmetry regime of �nite magnetisation at inter-mediate �eld, and of the low-�eld regime where symmetry is restored byquantum �u
tuations.
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Fig. 1. S
hemati
 representation of two-
hain ladder system, with intra
hain su-perex
hange 
oupling J 0 and inter
hain 
oupling J , in applied magneti
 �eld B.The Hamiltonian for the system (Fig. 1) in a magneti
 �eld b = ~g�BBmay be written asH = Xi;m=1;2 �J 0Sm;i � Sm;i+1 + JS1;i � S2;i + b � Sm;i � : (1)The NL�M a
tion is derived using the 
oherent-state representation of thespin Sm;i as S
m;i ' S[(�1)i+mnm;i + alm;i℄, where nm;i is the staggeredspin, or Néel ve
tor, and the uniform 
omponent lm;i des
ribes normal �u
-tuations. In the 
ontinuum limit, the �eld l is integrated out subje
t tothe 
onstraint l � n = 0. A key element of the derivation, whi
h is detailedin full in Ref. [11℄, is the demonstration that for the two-
hain system thePontryagin index terms for the S = 1=2 spins are e�e
tively paired due to the�nite-size gap a
ross the ladder, pla
ing the ladder in the 
lass of integral-spin systems. Negle
ting this term, the a
tion for the quasi-1d system, in1 + 1 Eu
lidean dimensions denoted by �, is [12℄SE = 12g Z d� dx n(��n)2 � hb2 � (n � b)2i+ 2ib � (n ^ _n)o ; (2)in whi
h g = (2=NyS)q(J 0 + 12J)=J 0 is the bare 
oupling 
onstant, and theintegral over � is from zero to LT = 
�, with � the inverse temperature and
 = 2SaqJ 0(J 0 + 12J) the e�e
tive spin-wave velo
ity.In spheri
al 
oordinates for n, 
hosen as (#+�=2; �), the 
orrespondingLagrangeanLE = 12g ��� _�+ ib�2 + (�x�)2�� # ��2� + � _�+ ib�2�#� (3)has the physi
ally more transparent form of separating into distin
t 
ontri-butions from in-plane and out-of-plane �u
tuations in the high-�eld regime,



3008 B. Normandjbj > _� � !. The �eld behaves as a hard axis, for
ing the spins to align inthe normal plane, and 
an be 
onsidered as suppressing out-of-plane �u
tu-ations. 2.1. Spin sti�nessThe spin sti�ness provides valuable initial insight into the e�e
t of themagneti
 �eld [13℄. To 1-loop order in g, this is given by�s = 12
L �2F� 2 ���� =0 = �0s 241� gLLT Xk 1k2 + � b
�235 ; (4)where �0s = 
=2g is the 
lassi
al (bare) value, and the sum in
ludes bothquantum and thermal (through the �nite �length� LT) 
orre
tions to �rstorder in g. The system length L over whi
h the sti�ness vanishes is the
orrelation length, whi
h for the quantum regime LT � L is given by�(B) = 2L�m1� �L�mLm�2 � �01� � BB� �2 : (5)Lm = �
=b is the e�e
tive magneti
 length s
ale, �0 = Aa e2�=g / e�S(A � O(1)) is the zero-�eld 
orrelation length familiar from the Haldaneanalysis, and L�m = a sinh(2�=g) gives the 
riti
al �eld B� at whi
h �(B) di-verges. For �nite �elds B < B�, the system has only short-range 
orrelationsand �nite 
orrelation length (Fig. 2), there is no spontaneous breaking of theO(3) spin symmetry, and this �quantum disordered� regime has gapped spin
ρ

ξ
-1

~∆

s

0 BB*Fig. 2. S
hemati
 behaviour of spin sti�ness and 
orrelation length, or spin gap,with applied �eld.ex
itations (� / ��1). For B > B�, the �eld enfor
es a quasi-long-ranged
orrelation throughout the system, the symmetry is lowered to O(2), or XY ,and in-plane �u
tuations (� in Eq. (3)) are massless. In the 1d model this
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 Field 3009is the �quantum 
riti
al� phase; in higher dimensions the presen
e of gaplessmodes gives the properties of the �renormalised 
lassi
al� phase of Ref. [2℄.Ex
itation modes (#) in the �eld dire
tion are gapped with �mass� b. Thesuppression of quantum �u
tuations whi
h leads to this symmetry breakingis the origin of the �eld-indu
ed quantum phase transition between the twodistin
t regimes. 2.2. Renormalisation groupRenormalisation-Group (RG) study of the NL�M in an applied �eldyields meaningful results over the full �eld range. Appli
ation of a stan-dard Wilson momentum�shell treatment to the a
tion of Eq. (2) yields to1-loop order in the (small) 
oupling 
onstant g a self-similar form. With�ow parameter l = ln(a0=a), the di�erential form of the resulting, 
oupledRG equations is dgdl = g22� 11 + ��2 ; (6)d��2dl = 2��2 � g2� ln �1 + ��2� : (7)These represent an extension of the usual NL�M RG equations to in
ludethe magneti
 �eld B, 
ontained in �� = a0 = a0b(a0)=
. Eq. (6) is the 
on-ventional ��-equation� for renormalisation of the 
oupling 
onstant, with anadditional �eld term in the denominator. A strong �eld restri
ts �ow to thestrong-
oupling (disordered) limit, e�e
tively suppressing quantum �u
tua-tion e�e
ts, and suggesting a �de
on�nement of ex
itations� at suitably high�eld. Eq. (7) gives renormalisation of the �eld with dynami
al exponentz = 1 from the �rst term, but with additional, logarithmi
 suppression ofthis �ow at strong �eld and 
oupling (se
ond term).Solution of the RG equations gives the �ow diagram in Fig. 3. The regime(i) of weak initial B-�eld is a strong-
oupling phase, with 
on�nement of(gapped) ex
itations. Here, the assumption (underlying the perturbativeRG treatment) of small g be
omes in
onsistent, but the equations 
ontain aphysi
ally meaningful 
ut-o� lengths
ale L� = ae2�=g0(� �0), where in addi-tion the magnetisation M is zero. In this region O(3) symmetry is restoredby quantum �u
tuations, whi
h may thereby be 
onsidered as �s
reening�the magneti
 �eld. In 
ontrast, the regime (ii) of strong initial B-�eld 
or-responds to weak 
oupling, where g and b=
 are only weakly renormalised.Here the ex
itations are de
on�ned on a length s
ale ��(B) whose �ow isgoverned by B. In this region, quantum �u
tuations are suppressed by themagneti
 �eld, and the broken O(3) symmetry 
annot be restored. Theproperties of the broken- and unbroken-symmetry phases may be further
ontrasted by 
onsidering physi
al properties su
h the 
orrelation length �or magnetisation M in ea
h regime [11℄.
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Fig. 3. RG �ow diagram for g and �b. Strong- and weak-
oupling regimes areseparated by separatrix s.The NL�M treatment may be further employed to 
ompute the mag-netisation and 
riti
al �elds, and extended to 
al
ulate spin 
orrelationfun
tions, and de
ay exponents a

essible by NMR experiments. Satura-tion of the spins, giving rise to a truly 
lassi
al magneti
 system, may bein
orporated by a 
onstraint on the uniform 
omponent l. Comparison toexperiment is deferred until Se
. 4, and additional details are 
ontained inRef. [11℄. To summarise this se
tion, the NL�M gives a good qualitative a
-
ount of the quantum phases of AF systems in an external �eld, whi
h maybe understood on the basis of symmetry-breaking due to the 
ompetition of�eld and quantum �u
tuation e�e
ts.3. Quantum phase transitions: bond operatorsThe NL�M employed in the previous se
tion is unable to provide quanti-tative information 
on
erning spin gaps or ex
itations in the quantum phasesof the system, or 
on
erning transitions between these phases. To obtainmore mi
ros
opi
 insight, one may turn to the bond operator te
hnique,whi
h unlike the NL�M is more restri
ted in its range of appli
ation. Thebond-operator method [14℄ may be applied for any S = 1=2 spin system witha unique dimer 
overing, and has been found [15℄ to give a good des
riptionof the two-
hain ladder (Fig. 1) for 
oupling ratios � = J 0=J � 1. It is mostappropriate for gapped spin systems, i.e. in the �quantum disordered� phaseof the 
anoni
al phase transition dis
ussion [2℄. However, it has also beenshown to be appli
able to the �renormalised 
lassi
al� regime, and thus tobe a suitable analyti
al method for quantum phase transitions indu
ed byinterladder 
oupling [16℄.



Quantum Antiferromagnets in a Magneti
 Field 3011Here the bond-operator formalism is extended systemati
ally to �nitemagneti
 �elds. It is shown to be a 
onsistent des
ription of all three quan-tum phases, and hen
e a most appropriate framework in whi
h to dis
usstransitions. For a dimer unit in a magneti
 �eld, the eigenstates are linear
ombinations of the Sz = 0 bond operators ty� (� = x; y; z) of Ref. [14℄,whi
h represent the spins a

ording toS1(2);� = 12 h+(�)(syt� + ty�s)� i"��
 ty�t
i ; (8)and whose bosoni
 
ommutation relations reprodu
e the SU(2) spin algebra.The new operator 
ombinations arejt+i = 1p2(tyx + ityy)j0i � �j ""i ; (9)jt�i = 1p2(tyx � ityy)j0i � +j ##i ; (10)jt0i = tyzj0i � 1p2 (j "#i+ j #"i) ; (11)when
e for terms in the transformation to followtyxtx + tyyty = ty+t+ + ty�t�and tyxtyx + tyytyy = ty+ty� + ty�ty+ ; (12)i.e. diagonal terms transform into diagonal ones, but o�-diagonal termstransform to mode-mixing ones. A magneti
 �eld term has a diagonal rep-resentation�b � (S1 + S2) = ibz �tyxty � tyytx� = b�ty+t+ � ty�t�� ; (13)ensuring that the operators ty0;�1 reprodu
e the energy levels of the �eldeigenstates Sz = 0;�1.Transformation of Eq. (1) into bond operators [14,15℄ leads to a Hamil-tonian with quadrati
 and quarti
 terms in operators (si; ti
), from the rungand 
hain terms respe
tively, a quadrati
 �eld term, and a 
onstraint termwhi
h introdu
es a 
hemi
al potential �i to ensure the single o

upan
y ofea
h dimer i by states jsii or jti
i: the bosoni
 operators have hard-
ore na-ture. Treatment of this Hamiltonian follows by a mean-�eld approximationwith retention of quadrati
 terms, and di�ers in ea
h of the three regimes ofmagneti
 �eld.



3012 B. Normand3.1. B < B
1For magneti
 �elds below the �rst 
riti
al �eld B
1, the system is inthe quantum disordered regime with a spin gap between the singlet andtriplet states on ea
h dimer. In the bond-operator te
hnique this situationis represented [14℄ by repla
ing the operator si everywhere with its globalexpe
tation value hsii = s, 
orresponding to a Bose 
ondensation of thesinglet states. Quantum �u
tuations about this ground state of pure dimersinglets are 
ontained in the triplet operators tyi
 , and for a system withstrong rung 
oupling (� � 1) these are weak (few ex
ited triplets). Re-pla
ing also the 
hemi
al potential with a global average value �i = �, theHamiltonian is [15℄H = N(�34Js2 � �s2 + �) +Xk �(14J � �� b)tyk�tk� + (14J � �)tyk0tk0�+12�Js2Xk
 
os k �tyk
tk
+ty�k
t�k
+tyk
ty�k
+tk
t�k
�+O(t4); (14)where 
 = �; 0;+ for modes 
 = +; 0;�. Diagonalisation of the Hamiltonianmatrix gives the three modes !k + b, !k and !k � b, where!k = �(14J � �)(14J � �+ 2�Js2 
os k)�1=2 (15)is the dispersion relation for the �eld-free ladder [15℄. The triplet modesdo not intera
t, and are merely split by the magneti
 �eld, as shown inFig. 4(a). The parameters s = s1 and � = �1 are �xed only by the ratio �,and do not evolve with in
reasing �eld below the lower 
riti
al �eldb
1 = �(14J � �1)(14J � �1 + 2�Js21 
os k)�1=2 = �0; (16)the zero-�eld spin gap. The gap is a linearly de
reasing fun
tion of �eld inthe entire range from 0 to b
1, and the free energy is 
onstant.3.2. B > B
2In the high-�eld regime the spins are fully polarised. In bond-operatornotation one may represent the ground state as a Bose 
ondensate of thetriplet mode tyi� favoured by the �eld, hti�i ! t. The quadrati
 Hamiltonianis H = N(14Jt2 � �t2 + �)�Nbt2 + 12N�Jt4+Xk �!sksyksk + !0ktyk0tk0 + !+k tyk+tk+� ; (17)
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Fig. 4. Magnon dispersion relations for (a) quantum disordered regime B < B
1and (b) fully polarised, 
lassi
al regime B > B
2.and 
ontains no remaining o�-diagonal terms. Solution of the mean-�eldequation in � returns the result t = 1: the polarised system is 
ompletely
lassi
al in the sense that all quantum �u
tuations are suppressed by the�eld. The magnon energies in Eq. (17) are!+k = 14J � �� �J + b; (18)!0k = 14J � �+ 12�J 
os k ; (19)!sk = �34J � �+ �J 
os k ; (20)and are depi
ted in Fig. 4(b). The upper triplet mode be
omes 
ompletelynon-dispersive, while the remaining modes retain their minimum at the pointk = �. Although the system is ferromagneti
, this 
on�guration is enfor
edby the �eld, and the lowest-lying ex
itations remain those of AF nature.These 
orrespond to the a
tion of the spin-raising operator S�i in a spin-wave des
ription, whi
h here is 
ompletely equivalent. The se
ond mean-�eld equation gives a 
ondition 14J � �� b+ �J = 0, showing that � varieslinearly with the �eld in this regime. In 
onjun
tion with the 
ondition!s�jb=b
2 = 0, that the lowest mode be massless at the transition, one maydedu
e the upper 
riti
al �eldb
2 = J + 2�J ; (21)whi
h has pre
isely the value expe
ted 
lassi
ally from the AF 
ouplings toea
h spin.



3014 B. Normand3.3. B
1 < B < B
2In the intermediate-�eld regime, the ground state of ea
h dimer 
an be
onsidered as a partially polarised ferromagneti
 
on�guration, or a 
antedAF. In the bond-operator formulation, this ordered ground state would berepresented by �nite expe
tation values s and t of both the singlet and t�triplet operators. However, from these two degrees of freedom there mayonly be one ground-state 
ondensate, with one gapless �u
tuation modeorthogonal to it. The initial states may be written as the sum of a 
ondensedpart and a �u
tuating 
omponent,jsii = s+ j~sii ; jtii = t+ j~ti�i (22)and transformed a

ording to� j�iij�ii � = 1p1 + �2 � 1 ��� 1 �� jsiijti�i � : (23)The requirement that j�ii be a pure �u
tuation mode sets the 
ondition� = t=s. The �u
tuating part of j�ii is then seen to vanish, as it is orthogonalto the sole �u
tuation j�ii, leaving j�ii = �i as the Bose 
ondensate. Thus�i =qs2i + t2i and j�ii = j~ti�i � �j~siip1 + �2 (24)are the appropriate linear 
ombinations with whi
h to des
ribe the interme-diate phase.The initial Hamiltonian in the intermediate-�eld regime may now bereexpressed in terms of operators �i, �i, ti0 and ti+. After 
ondensation of�i, the three ex
itation bran
hes separate into a 
oupled pair and a de
oupledmode with dispersion relations!+k =q�+2k ��2k + ��k ; (25)!0k = h� 14J��+ 12�Jt2 
os k��14J��+ (12�Jt2 + 2�Js2) 
os k�i1=2; (26)!�k =q�+2k ��2k � ��k ; (27)in whi
h ��k = 12 ��1k � �2k�, and the 
oe�
ients�1k = 14J��+b��Jt2 + �Js2 
os k ; (28)�2k = 14J���b+ t2(b�J) + �Js2t2 + �J 
os k(s4+ t4)s2+t2 ; (29)�k = �J 
os k s3ps2 + t2 (30)
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 Field 3015allow one to make 
onta
t with previous results [15,16℄. The Sz = 0 bran
h,!0k, remains independent of the magneti
 �eld, while the 
oupled bran
hes,!�k , are �eld-dependent. The most important feature of these mode energiesis that they interpolate smoothly from the forms in the low- and high-�eldregimes when t and s, respe
tively, are taken to zero at the phase transitionsb
1 and b
2. The dispersion relations are shown in Fig. 5(a).
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b bFig. 5. (a) Magnon dispersion relations in quantum 
riti
al regime B
1 < B < B
2.(b) Evolution with �eld b of order parameters s and t, 
hemi
al potential � andspin gap � over the �eld range spanning all three quantum phases.The quadrati
 Hamiltonian in the intermediate-�eld regime is thenH = N h(�34J � �)s2 + (14J � �)t2 + �� bt2 + �Js2t2 + 12�Jt4�12(14J � �)� 12(14J � �+ b� �Jt2)�12 �14J � �� b+ �t2(b� J) + �Js2t2� =(s2 + t2)�i+Xk h!�k �~� yk~�k + 12�+ !0k �tyk0tk0 + 12�+ !+k �~tyk+~tk+ + 12�i:(31)Minimisation of the 
orresponding zero-temperature free energy gives theself-
onsistent solutions for the order parameters s and t for all values of the�eld. This minimisation is performed subje
t to the physi
al 
onstraint that!�� = 0, i.e. that the lowest ex
itation mode be massless throughout this�eld regime, as in Fig. 5(a). The gapless ex
itation mode is the de�ning fea-ture of the physi
s at intermediate �elds, and the appli
ation of the physi
al
onstraint represents a partially-
ontrolled means of taking the treatmentbeyond quadrati
 order [16℄. As noted above, the dispersion minimum al-ways o

urs at k = �, and there are no in
ommensurate ex
itations in thebond-operator 
onstru
tion.



3016 B. NormandThe solutions for s and t quantify the pi
ture of a partially polarisedmagneti
 state on every rung. The deviation of (s2 + t2) from unity 
an betaken to 
hara
terise the e�e
t of quantum �u
tuations, and shows as in theprevious se
tion that in
reasing �eld suppresses these (
ompletely at B
2).The �eld tunes the system from a quantum, dimerised phase to a 
lassi
al,ordered one.After this analysis, the issue of quantum phase transitions is easy tostudy in su
h a uni�ed framework for all three phases: the 
ontinuity of allproperties at the phase boundaries ensures se
ond-order transitions, and onemay 
onsider further the 
riti
al exponents of stati
 and dynami
 quantitiesaround the 
riti
al points. The most important of these is that the magneti-sationM / t2 [16℄ is expe
ted to have the �eld dependen
eM / pb� b
1 asb! b
1 from above, and M / pb
2 � b as b! b
2 from below. In the bond-operator des
ription for small �, where quantum �u
tuations are alwayssmall, these square-root regimes are found to be rather narrow (Fig. 5(b)).To 
on
lude this part of the dis
ussion, the bond-operator approa
h isparti
ularly suitable for the strongly dimerised system CuHpCl, and in fa
trenders quantum �u
tuation e�e
ts beyond the singlet ground state rathersmall even in the �quantum disordered� regime. The method gives a mi
ro-s
opi
 des
ription of the ground states and ex
itations in all three phases.Most importantly, the uni�ed formulation a
ross the full �eld range makesthis te
hnique uniquely suitable for dis
ussing the quantum phase transi-tions, whi
h by suitable 
hoi
e of the 
ondensate are quite straightforwardfound to be 
ontinuous. The bond-operator formalism is readily extended tohigher-dimensional problems, alternating 
hains and systems with frustrat-ing 
ouplings, subje
t to the requirement that the geometry allow a uniquedimerisation. 4. ExperimentSpe
ialising to the parameters of CuHpCl, the NL�M approa
h requiresthe ex
hange 
onstants dedu
ed from magnetisation and sus
eptibility mea-surements [3, 4℄, J=kB = 13:2 K and J 0=kB = 2:4 K, when
e B
1 = 6:6 Tand B
2 = 13:3 T [11℄. The bond-operator te
hnique allows an indepen-dent �t to the data, from whi
h the dedu
ed zero-temperature 
riti
al �elds,B
1 = 7:1 T and B
2 = 13:6 T, give the ex
hange 
onstants J=kB = 12:5 Kand J 0=kB = 2:9 K. The bond-operator 
oupling ratio is then � = 0:23. Theresults of these �ts are shown in Fig. 6; both give the same, predominantlylinear magnetisation observed in experiment, whi
h however is not in fulla

ord with numeri
al simulations of the minimal model [7, 10℄.The other 
ategory of experiments performed on CuHpCl is the mea-surement of NMR spin relaxation rates, whi
h probe spin�spin 
orrelation
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c1B Bc2Fig. 6. Magnetisation 
al
ulated for the spin ladder system CuHpCl by the NL�M(solid) and bond-operator (dashed) te
hniques. Cir
les are data from Ref. [3℄.fun
tions. These have been 
omputed within the NL�M [11℄, and usingbond operators for a 
oupled ladder system [16℄. Be
ause the experimentaldata allow only qualitative 
on
lusions 
on
erning the presen
e and mag-nitude of the spin gap, and 
annot be used to 
ompare exponents, thesequantities will not be dis
ussed further here. The two methods give a gooda

ount of available experimental data 
on
erning the quantum phases andtheir boundaries, whi
h are summarised in the phase diagram of Ref. [17℄,albeit with one major ex
eption. This is the presen
e of a 3d ordered phasewithin the gapless, intermediate-�eld regime. Su
h a phase is expe
ted inthe presen
e of any higher-dimensional 
ouplings, however weak, as thesewill 
onstitute relevant perturbations of the ground state in the quantum
riti
al phase. The bond-operator te
hnique permits a des
ription of thisphase in terms of a 
ondensate formed by linear 
ombination of three 
om-ponents with �nite expe
tation values, hsii, hti0i and hti�i, from the singlet,Sz = 0 triplet and high-�eld triplet modes. However, the presen
e of aspin gap in the ex
itation spe
trum, observed re
ently in this regime [17℄,does 
ome as a surprise, and similarly requires additional terms beyond themodel 
onsidered here. While a form of phonon 
oupling, or spin-Peierlsphenomenon, has been proposed [17℄ to a

ount for this result within thespin-ladder framework (1), re
ent indi
ations from inelasti
 neutron s
atter-ing [18℄ raise the possibility that an alternative model des
ription may infa
t be ne
essary for CuHpCl.



3018 B. Normand5. SummaryThe quantum antiferromagnet in a magneti
 �eld provides an ideal il-lustration of quantum phases in di�erent universality 
lasses, of symmetry-breaking, and of quantum phase transitions. A NL�M des
ription 
ontainsat low but �nite �elds the restoration of O(3) symmetry of the spin Hamil-tonian by strong quantum �u
tuations, the e�e
t of �asymptoti
 freedom�.Fields whi
h are su�
iently strong, but remain experimentally a

essible inmaterials su
h as CuHpCl, suppress quantum �u
tuations su
h that the spinsystem is redu
ed to the lower O(2) (XY ) symmetry. In this 
ase there aregapless ex
itation modes and no true long range order, but instead a quasi-long-range order 
hara
terised by spin�spin 
orrelation fun
tions whi
h de-
ay in spa
e and time with a power law form. A bond-operator des
ription
ontains the mi
ros
opi
 pi
ture of these phases in terms of singlet andtriplet ex
itations on ea
h dimer bond of the appropriate latti
e stru
ture.The eigenstates of waveve
tor and �eld have the same gapped and gaplessproperties as the NL�M phases, and interpolate 
ontinuously a
ross the en-tire �eld range. This 
onsistent des
ription is uniquely suitable for the studyof quantum phase transitions, whi
h are se
ond-order in nature.The author wishes to thank G. Chaboussant, L. Lévy, D. Loss, F. Mila,D. Rei
h, T.M. Ri
e and G. Sierra for helpful dis
ussions, and is espe
iallygrateful to J. Dukelsky for invaluable insight into the treatment of the bond-operator 
ondensate. This work was supported by Treubelfonds, and by theDeuts
he Fors
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