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Low-dimensional antiferromagnets in an external magnetic field provide
an ideal illustration of the physics of quantum phase transitions. This
theoretical analysis is motivated by the two-leg spin ladder geometry, which
has been the subject of much experimental study in the material CuHpCl.
The non-linear sigma model is used to characterise the quantum phases of
the system, and the bond-operator description to discuss excitation spectra
and quantum phase transitions between ground states.

PACS numbers: 75.10.Jm, 75.30.Cr, 75.40.Cx

1. Introduction

Quantum spin systems are those with sufficiently low dimensionality d
and spin S that their quantum nature becomes manifest through the effects
of fluctuations. Their value in revealing fundamental quantum mechanical
properties has been understood since Haldane’s conjecture [1] concerning
integral- and half-integral-spin AntiFerromagnetic (AF) chains. Application
of a magnetic field to such systems affects both the spins and their fluctu-
ations, in ways which can profoundly alter the sample properties, including
a change of ground state. Such a process, occurring at zero temperature, is
a quantum phase transition [2].

Synthesis of novel metalloorganic materials has provided a range of low-
dimensional antiferromagnets in which the small exchange constants permit
the full magnetisation to saturation to be measured in laboratory fields.
The experimental realisation of many profound features of quantum magnets
may be counted as one of the major triumphs of condensed matter physics
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in the past decade. This overview is intended to highlight some theoretical
aspects of the quantum phases and quantum phase transitions which arise in
such systems in a magnetic field. The focus will be on the two-chain ladder
geometry believed to be appropriate for CuHpCl [3,4] the best-characterised
sample in recent literature, but is in fact relevant for a variety of quantum
magnets.

CuHpCl provides a weakly-coupled network of S = '/, Cu atoms, which
are thought to be most strongly coupled as dimer pairs, with an inter-
dimer coupling leading to a configuration of isolated spin ladders. The ratio
A =J'/J ~ 0.2 of chain to rung couplings (Fig. 1) makes CuHpCl a strongly
dimerised system, and as such very well suited to both of the analytical ap-
proaches to follow. In an applied magnetic field, magnetisation [3], specific
heat [4] and Nuclear Magnetic Resonance (NMR) measurements [5] show
clearly the evolution from a gapped system at low field, through a gapless
regime at intermediate fields, to a gapped, saturated magnet at high fields.
In the terminology of quantum phase transitions [2|, these regimes are re-
spectively “quantum disordered”, “quantum critical” (an extended regime
strictly in one dimension (1d)) and “renormalised classical”. More detail will
be furnished throughout the text on the meaning of these terms and the
properties they describe. A full account of the experiments characterising
these phases and realising quantum phase transitions in a field may be found
in Ref. [6].

Theoretical studies have been performed using a variety of techniques
[7-10]. In the following, Sec. 2 presents the Non-Linear o Model (NLoM)
description [11], which is shown to provide a good, qualitative picture of the
quantum phases and their underlying physics. More specific, microscopic
results concerning excitation spectra of these phases are obtained in Sec. 3
by employing the bond-operator method, which is found to be ideally suited
to discussing quantum phase transitions. Sec. 4 contains a final comparison
with experiment and summary.

2. Quantum phases: non-linear & model

Although the NLoM applies strictly to the semiclassical limit (large S),
it has been used frequently as the basis for fundamental deductions about
the quantum limit of AF systems. It can be shown to be valid for all effec-
tively integral-spin quantum systems in magnetic fields on the order of the
zero-field spin gap. Of the many approaches to this model, a spin stiffness
analysis and a renormalisation group technique provide the most appealing
description of the broken-symmetry regime of finite magnetisation at inter-
mediate field, and of the low-field regime where symmetry is restored by
quantum fluctuations.
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Fig.1. Schematic representation of two-chain ladder system, with intrachain su-
perexchange coupling .J' and interchain coupling .J, in applied magnetic field B.

The Hamiltonian for the system (Fig. 1) in a magnetic field b = gupB
may be written as

H= Y (J'Smi-Smit1+JS1i-S2i+b-Sm;). (1)

i;m=1,2

The NLoM action is derived using the coherent-state representation of the
spin Sy, as S92, ~ S[(—l)”mnmi + aly, i], where n,, ; is the staggered
spin, or Néel vector, and the uniform component 1,, ; describes normal fluc-
tuations. In the continuum limit, the field I is integrated out subject to
the constraint I - n = 0. A key element of the derivation, which is detailed
in full in Ref. [11], is the demonstration that for the two-chain system the
Pontryagin index terms for the S = !/, spins are effectively paired due to the
finite-size gap across the ladder, placing the ladder in the class of integral-
spin systems. Neglecting this term, the action for the quasi-1d system, in
1+ 1 Euclidean dimensions denoted by u, is [12]

Sp = %/dex {(a,m)2 - [b2 —(n- b)2] +2ib- (n/\h)}, 2)
in which g = (2/N,S)\/(J' + £J)/J" is the bare coupling constant, and the
integral over 7 is from zero to Lt = ¢f, with 8 the inverse temperature and
c=2Sa\/J'(J + %J) the effective spin-wave velocity.

In spherical coordinates for n, chosen as (¢ + 7/2, ¢), the corresponding
Lagrangean

Lp = % { [(gb + z'b)2 + (axqs)?] — [ag +(#+ z'b>2] 79} (3)

has the physically more transparent form of separating into distinct contri-
butions from in-plane and out-of-plane fluctuations in the high-field regime,
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|b] > qS = w. The field behaves as a hard axis, forcing the spins to align in
the normal plane, and can be considered as suppressing out-of-plane fluctu-
ations.

2.1. Spin stiffness

The spin stiffness provides valuable initial insight into the effect of the
magnetic field [13]. To 1-loop order in g, this is given by

1 9’F 0 g 1
s = ¢l — = Ps 1- ’ 4
p 2 o2 $=0 LLy . k21 (%)2 (4)

where p? = ¢/2g is the classical (bare) value, and the sum includes both
quantum and thermal (through the finite “length” Lt) corrections to first
order in g. The system length L over which the stiffness vanishes is the
correlation length, which for the quantum regime Lt > L is given by

2L, §o
{(B) = Z 7 = B\2 " (5)
() - ()
L,, = mc/b is the effective magnetic length scale, £, = Aa e?™/9 o e

(A ~ O(1)) is the zero-field correlation length familiar from the Haldane
analysis, and L}, = asinh(27/g) gives the critical field B* at which £(B) di-
verges. For finite fields B < B*, the system has only short-range correlations
and finite correlation length (Fig. 2), there is no spontaneous breaking of the
O(3) spin symmetry, and this “quantum disordered” regime has gapped spin

0 B B

Fig.2. Schematic behaviour of spin stiffness and correlation length, or spin gap,
with applied field.

excitations (A o ¢ 1). For B > B*, the field enforces a quasi-long-ranged
correlation throughout the system, the symmetry is lowered to O(2), or XY,
and in-plane fluctuations (¢ in Eq. (3)) are massless. In the 1d model this
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is the “quantum critical” phase; in higher dimensions the presence of gapless
modes gives the properties of the “renormalised classical” phase of Ref. [2].
Excitation modes () in the field direction are gapped with “mass” b. The
suppression of quantum fluctuations which leads to this symmetry breaking
is the origin of the field-induced quantum phase transition between the two
distinct regimes.

2.2. Renormalisation group

Renormalisation-Group (RG) study of the NLoM in an applied field
yields meaningful results over the full field range. Application of a stan-
dard Wilson momentum-shell treatment to the action of Eq. (2) yields to
1-loop order in the (small) coupling constant g a self-similar form. With
flow parameter [ = In(a’/a), the differential form of the resulting, coupled
RG equations is

dg 92 1
il ©
dﬁ_Q 532 g 22

These represent an extension of the usual NLocM RG equations to include
the magnetic field B, contained in 8 = a’ = a’b(a’)/c. Eq. (6) is the con-
ventional “(-equation” for renormalisation of the coupling constant, with an
additional field term in the denominator. A strong field restricts flow to the
strong-coupling (disordered) limit, effectively suppressing quantum fluctua-
tion effects, and suggesting a “deconfinement of excitations” at suitably high
field. Eq. (7) gives renormalisation of the field with dynamical exponent
z = 1 from the first term, but with additional, logarithmic suppression of
this flow at strong field and coupling (second term).

Solution of the RG equations gives the flow diagram in Fig. 3. The regime
(i) of weak initial B-field is a strong-coupling phase, with confinement of
(gapped) excitations. Here, the assumption (underlying the perturbative
RG treatment) of small g becomes inconsistent, but the equations contain a
physically meaningful cut-off lengthscale £, = ae?m/90 (= &), where in addi-
tion the magnetisation M is zero. In this region O(3) symmetry is restored
by quantum fluctuations, which may thereby be considered as “screening”
the magnetic field. In contrast, the regime (i) of strong initial B-field cor-
responds to weak coupling, where g and b/c are only weakly renormalised.
Here the excitations are deconfined on a length scale £(B) whose flow is
governed by B. In this region, quantum fluctuations are suppressed by the
magnetic field, and the broken O(3) symmetry cannot be restored. The
properties of the broken- and unbroken-symmetry phases may be further
contrasted by considering physical properties such the correlation length ¢
or magnetisation M in each regime [11].
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0

Fig.3. RG flow diagram for g and b. Strong- and weak-coupling regimes are
separated by separatrix s.

The NLoM treatment may be further employed to compute the mag-
netisation and critical fields, and extended to calculate spin correlation
functions, and decay exponents accessible by NMR experiments. Satura-
tion of the spins, giving rise to a truly classical magnetic system, may be
incorporated by a constraint on the uniform component I. Comparison to
experiment is deferred until Sec. 4, and additional details are contained in
Ref. [11]. To summarise this section, the NLoM gives a good qualitative ac-
count of the quantum phases of AF systems in an external field, which may
be understood on the basis of symmetry-breaking due to the competition of
field and quantum fluctuation effects.

3. Quantum phase transitions: bond operators

The NLoM employed in the previous section is unable to provide quanti-
tative information concerning spin gaps or excitations in the quantum phases
of the system, or concerning transitions between these phases. To obtain
more microscopic insight, one may turn to the bond operator technique,
which unlike the NLoM is more restricted in its range of application. The
bond-operator method [14] may be applied for any S = '/, spin system with
a unique dimer covering, and has been found [15] to give a good description
of the two-chain ladder (Fig. 1) for coupling ratios A = J'/J < 1. It is most
appropriate for gapped spin systems, i.e. in the “quantum disordered” phase
of the canonical phase transition discussion [2]. However, it has also been
shown to be applicable to the “renormalised classical” regime, and thus to
be a suitable analytical method for quantum phase transitions induced by
interladder coupling [16].
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Here the bond-operator formalism is extended systematically to finite
magnetic fields. It is shown to be a consistent description of all three quan-
tum phases, and hence a most appropriate framework in which to discuss
transitions. For a dimer unit in a magnetic field, the eigenstates are linear
combinations of the S, = 0 bond operators th (¢ = z,y,2) of Ref. [14],

which represent the spins according to
Si2)a = & |+(=)(s1ta + ths) —ieas, tht 8
1(2),a 2 +( )(3 at as) apylply| ( )

and whose bosonic commutation relations reproduce the SU(2) spin algebra.
The new operator combinations are

) = 5tk +it])o) = —|11), (9)
t-) = 5tk —ithlo) = + 1), (10)
ito) = t10) = J5(I 1)) +141)), (11)

whence for terms in the transformation to follow

thty +tht, = they +lt
and
il +ahel = dhel 4l (12)

1.e. diagonal terms transform into diagonal ones, but off-diagonal terms
transform to mode-mixing ones. A magnetic field term has a diagonal rep-
resentation

b (81 +82) = ib. (thty — thts) =b(they —tLe ), (13)

ensuring that the operators tg 11 reproduce the energy levels of the field
eigenstates S, = 0, +1. ’

Transformation of Eq. (1) into bond operators [14,15] leads to a Hamil-
tonian with quadratic and quartic terms in operators (s;, t;,), from the rung
and chain terms respectively, a quadratic field term, and a constraint term
which introduces a chemical potential u; to ensure the single occupancy of
each dimer ¢ by states |s;) or |t;y): the bosonic operators have hard-core na-
ture. Treatment of this Hamiltonian follows by a mean-field approximation
with retention of quadratic terms, and differs in each of the three regimes of
magnetic field.
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3.1. B< By

For magnetic fields below the first critical field B,j, the system is in
the quantum disordered regime with a spin gap between the singlet and
triplet states on each dimer. In the bond-operator technique this situation
is represented [14]| by replacing the operator s; everywhere with its global
expectation value (s;) = 3, corresponding to a Bose condensation of the
singlet states. Quantum fluctuations about this ground state of pure dimer
singlets are contained in the triplet operators t;rw and for a system with
strong rung coupling (A < 1) these are weak (few excited triplets). Re-
placing also the chemical potential with a global average value u; = p, the

Hamiltonian is [15]
H = N(-3J5 —pZ + )+ Y ((%J — )t (LT - u)tLOtk())
k

FIAT2 Y cos k (th b+ gty Lt a i toi) + O(EY),

ky
(14)
where ¥ = —, 0, + for modes v = +, 0, —. Diagonalisation of the Hamiltonian
matrix gives the three modes wy + b, wy and wy — b, where
wg = [(iJ—,u)(%J—,u—f-2)\J§2005k)]1/2 (15)

is the dispersion relation for the field-free ladder [15]. The triplet modes
do not interact, and are merely split by the magnetic field, as shown in
Fig. 4(a). The parameters 3 = 31 and p = p are fixed only by the ratio A,
and do not evolve with increasing field below the lower critical field

_ 1/2
be1 = [(i] — Ml)(%J — 1+ 2)\]8% cos k)] 2 _ Ag, (16)
the zero-field spin gap. The gap is a linearly decreasing function of field in

the entire range from 0 to b.;, and the free energy is constant.

3.2. B> B

In the high-field regime the spins are fully polarised. In bond-operator
notation one may represent the ground state as a Bose condensate of the

triplet mode ! favoured by the field, (¢; ) — t. The quadratic Hamiltonian
is

H = NI =y + p) — N6&° + LNaJT

+ Z (w,is};sk + wgtlotko + w,‘:tht“) ; (17)
k
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Fig.4. Magnon dispersion relations for (a) quantum disordered regime B < B,
and (b) fully polarised, classical regime B > B,s.

and contains no remaining off-diagonal terms. Solution of the mean-field
equation in p returns the result £ = 1: the polarised system is completely
classical in the sense that all quantum fluctuations are suppressed by the
field. The magnon energies in Eq. (17) are

wi = +J—p—AJ+b, (18)
wd = T —p+ i Jcosk, (19)
wp = =3J—p+AJcosk, (20)

and are depicted in Fig. 4(b). The upper triplet mode becomes completely
non-dispersive, while the remaining modes retain their minimum at the point
k = m. Although the system is ferromagnetic, this configuration is enforced
by the field, and the lowest-lying excitations remain those of AF nature.
These correspond to the action of the spin-raising operator S; in a spin-
wave description, which here is completely equivalent. The second mean-
field equation gives a condition %J —u— b+ AJ =0, showing that p varies
linearly with the field in this regime. In conjunction with the condition
wi|p=b,, = 0, that the lowest mode be massless at the transition, one may
deduce the upper critical field

by = J 4+ 2MJ | (21)

which has precisely the value expected classically from the AF couplings to
each spin.
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3.3. Be1 < B < Be

In the intermediate-field regime, the ground state of each dimer can be
considered as a partially polarised ferromagnetic configuration, or a canted
AF. In the bond-operator formulation, this ordered ground state would be
represented by finite expectation values 5 and ¢ of both the singlet and #_
triplet operators. However, from these two degrees of freedom there may
only be one ground-state condensate, with one gapless fluctuation mode
orthogonal to it. The initial states may be written as the sum of a condensed
part and a fluctuating component,

s) =5 +13), |ti) =1+ [ti-) (22)

and transformed according to

(8)- (L))

The requirement that |7;) be a pure fluctuation mode sets the condition
a = t/3. The fluctuating part of |o;) is then seen to vanish, as it is orthogonal
to the sole fluctuation |7;), leaving |o;) = ; as the Bose condensate. Thus
_ ti_) — als;
gi=\/52+7 and |r)= % (24)
are the appropriate linear combinations with which to describe the interme-
diate phase.

The initial Hamiltonian in the intermediate-field regime may now be
reexpressed in terms of operators o;, 7;, ;o and t;;.. After condensation of
o, the three excitation branches separate into a coupled pair and a decoupled
mode with dispersion relations

wi =/AF2 = A2 + A, (25)

wd = {(i]—u + %)\J# cos k) (iJ—u + (%)\Jf2 + 2)\J3%) cos k)} 1/2, (26)

wy =\ A2 - A7 - A, (27)

in which A,f = % (/1,1c + A%), and the coefficients

AL = LT —p+b=MJE + AJ5 cosk, (28)
-2 _972 4, 74
t(b— AJ3t + A k t
A2 = LI+ (b—J)+ AJs +_2Jcos (3 + )’ (29)
52+
33
Ak = )\JCOSkﬁ (30)
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allow one to make contact with previous results [15,16]. The S, = 0 branch,
w?, remains independent of the magnetic field, while the coupled branches,
w,, , are field-dependent. The most important feature of these mode energies
is that they interpolate smoothly from the forms in the low- and high-field
regimes when ¢ and 3, respectively, are taken to zero at the phase transitions

be1 and bee. The dispersion relations are shown in Fig. 5(a).
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Fig.5. (a) Magnon dispersion relations in quantum critical regime B.; < B < Bea.
(b) Evolution with field b of order parameters 5 and #, chemical potential y and
spin gap A over the field range spanning all three quantum phases.

The quadratic Hamiltonian in the intermediate-field regime is then

H=N [(—%J — W)+ (AT — B+ p— 0+ AJFE + LT
)

=) =G T —p+b—AJT)

(%J —u—b+ (?(b —J)+ AJ§2f2> /(3 + 52))]

+ 3 Jwp (77 +3) + ol (thoteo + 3) + wf (Hodis +3)]31)
k

Minimisation of the corresponding zero-temperature free energy gives the
self-consistent solutions for the order parameters s and ¢ for all values of the
field. This minimisation is performed subject to the physical constraint that
wy = 0, i.e. that the lowest excitation mode be massless throughout this
field regime, as in Fig. 5(a). The gapless excitation mode is the defining fea-
ture of the physics at intermediate fields, and the application of the physical
constraint represents a partially-controlled means of taking the treatment
beyond quadratic order [16]. As noted above, the dispersion minimum al-
ways occurs at £k = m, and there are no incommensurate excitations in the
bond-operator construction.
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The solutions for 5 and £ quantify the picture of a partially polarised
magnetic state on every rung. The deviation of (32 + 52) from unity can be
taken to characterise the effect of quantum fluctuations, and shows as in the
previous section that increasing field suppresses these (completely at Bes).
The field tunes the system from a quantum, dimerised phase to a classical,
ordered one.

After this analysis, the issue of quantum phase transitions is easy to
study in such a unified framework for all three phases: the continuity of all
properties at the phase boundaries ensures second-order transitions, and one
may consider further the critical exponents of static and dynamic quantities
around the critical points. The most important of these is that the magneti-
sation M o 72 [16] is expected to have the field dependence M o /b — by as
b — be1 from above, and M o< v/b.o — b as b — by from below. In the bond-
operator description for small A, where quantum fluctuations are always
small, these square-root regimes are found to be rather narrow (Fig. 5(b)).

To conclude this part of the discussion, the bond-operator approach is
particularly suitable for the strongly dimerised system CuHpClI, and in fact
renders quantum fluctuation effects beyond the singlet ground state rather
small even in the “quantum disordered” regime. The method gives a micro-
scopic description of the ground states and excitations in all three phases.
Most importantly, the unified formulation across the full field range makes
this technique uniquely suitable for discussing the quantum phase transi-
tions, which by suitable choice of the condensate are quite straightforward
found to be continuous. The bond-operator formalism is readily extended to
higher-dimensional problems, alternating chains and systems with frustrat-
ing couplings, subject to the requirement that the geometry allow a unique
dimerisation.

4. Experiment

Specialising to the parameters of CuHpCl, the NLoM approach requires
the exchange constants deduced from magnetisation and susceptibility mea-
surements [3,4], J/kg = 13.2 K and J'/kg = 2.4 K, whence B,y = 6.6 T
and B,y = 13.3 T [11]. The bond-operator technique allows an indepen-
dent fit to the data, from which the deduced zero-temperature critical fields,
B =7.1T and By = 13.6 T, give the exchange constants J/kg = 12.5 K
and J'/kg = 2.9 K. The bond-operator coupling ratio is then A = 0.23. The
results of these fits are shown in Fig. 6; both give the same, predominantly
linear magnetisation observed in experiment, which however is not in full
accord with numerical simulations of the minimal model [7,10].

The other category of experiments performed on CuHpCl is the mea-
surement of NMR spin relaxation rates, which probe spin—spin correlation
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Fig. 6. Magnetisation calculated for the spin ladder system CuHpClI by the NLoM
(solid) and bond-operator (dashed) techniques. Circles are data from Ref. [3].

functions. These have been computed within the NLoM [11], and using
bond operators for a coupled ladder system [16]. Because the experimental
data allow only qualitative conclusions concerning the presence and mag-
nitude of the spin gap, and cannot be used to compare exponents, these
quantities will not be discussed further here. The two methods give a good
account of available experimental data concerning the quantum phases and
their boundaries, which are summarised in the phase diagram of Ref. [17],
albeit with one major exception. This is the presence of a 3d ordered phase
within the gapless, intermediate-field regime. Such a phase is expected in
the presence of any higher-dimensional couplings, however weak, as these
will constitute relevant perturbations of the ground state in the quantum
critical phase. The bond-operator technique permits a description of this
phase in terms of a condensate formed by linear combination of three com-
ponents with finite expectation values, (s;), (tjo) and (¢;_), from the singlet,
S, = 0 triplet and high-field triplet modes. However, the presence of a
spin gap in the excitation spectrum, observed recently in this regime [17],
does come as a surprise, and similarly requires additional terms beyond the
model considered here. While a form of phonon coupling, or spin-Peierls
phenomenon, has been proposed [17] to account for this result within the
spin-ladder framework (1), recent indications from inelastic neutron scatter-
ing [18] raise the possibility that an alternative model description may in
fact be necessary for CuHpCl.
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5. Summary

The quantum antiferromagnet in a magnetic field provides an ideal il-
lustration of quantum phases in different universality classes, of symmetry-
breaking, and of quantum phase transitions. A NLoM description contains
at low but finite fields the restoration of O(3) symmetry of the spin Hamil-
tonian by strong quantum fluctuations, the effect of “asymptotic freedom?”.
Fields which are sufficiently strong, but remain experimentally accessible in
materials such as CuHpCl, suppress quantum fluctuations such that the spin
system is reduced to the lower O(2) (XY) symmetry. In this case there are
gapless excitation modes and no true long range order, but instead a quasi-
long-range order characterised by spin—spin correlation functions which de-
cay in space and time with a power law form. A bond-operator description
contains the microscopic picture of these phases in terms of singlet and
triplet excitations on each dimer bond of the appropriate lattice structure.
The eigenstates of wavevector and field have the same gapped and gapless
properties as the NLoM phases, and interpolate continuously across the en-
tire field range. This consistent description is uniquely suitable for the study
of quantum phase transitions, which are second-order in nature.
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operator condensate. This work was supported by Treubelfonds, and by the
Deutsche Forschungsgemeinschaft through SFB 484.
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