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The QCD vacuum in which we live, which has the familiar hadrons as its
excitations, is but one phase of QCD, and far from the simplest one at that.
One way to better understand this phase and the nonperturbative dynamics
of QCD more generally is to study other phases and the transitions between
phases. We are engaged in a voyage of exploration, mapping the QCD phase
diagram as a function of temperature 7" and baryon number chemical poten-
tial u. Because QCD is asymptotically free, its high temperature and high
baryon density phases are more simply and more appropriately described in
terms of quarks and gluons as degrees of freedom, rather than hadrons. The
chiral symmetry breaking condensate which characterizes the vacuum phase
melts away. At high temperatures, in the resulting quark-gluon plasma
(QGP) phase all of the symmetries of the QCD Lagrangian are unbroken
and the excitations have the quantum numbers of quarks and gluons. At
high densities, on the other hand, quarks form Cooper pairs and new conden-
sates develop. The formation of such superconducting phases [1-5] requires
only weak attractive interactions; these phases may nevertheless break chiral
symmetry [5] and have excitations with the same quantum numbers as those
in a confined phase [5-8]. These cold dense quark matter phases may arise in
the core of neutron stars; mapping this region of the phase diagram requires
an interplay between theory and neutron star phenomenology. We describe
efforts in this direction in Section 4. A central goal of the experimental
heavy ion physics program is to explore and map the higher temperature
regions of the QCD phase diagram. Recent theoretical developments sug-
gest that a key qualitative feature, namely a critical point which in a sense
defines the landscape to be mapped, may be within reach of discovery and
analysis as data is taken at several different energies [9,10]. The discovery of
the critical point would in a stroke transform this region of the map of the
QCD phase diagram from one based only on reasonable inference from uni-
versality, lattice gauge theory and models into one with a solid experimental
basis.

1. The critical point

We begin our walk through the phase diagram at zero baryon number
density, with a brief review [11] of the phase changes which occur as a
function of temperature. That is, we begin by restricting ourselves to the
vertical axis in figures 1 through 4. This slice of the phase diagram was
explored by the early universe during the first tens of microseconds after the
big bang and can be studied in lattice simulations. As heavy ion collisions are
performed at higher and higher energies, they create plasmas with a lower
and lower baryon number to entropy ratio and therefore explore regions of
the phase diagram closer and closer to the vertical axis.
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Fig.1. QCD Phase diagram for two massless quarks. Chiral symmetry is broken
in the hadronic phase and is restored elsewhere in the diagram. The chiral phase
transition changes from second to first order at a tricritical point. The phase at
high density and low temperature is a color superconductor in which up and down
quarks with two out of three colors pair and form a condensate. The transition
between this 2S5C phase and the QGP phase is likely first order. The transition
on the horizontal axis between the hadronic and 2SC phases is first order. The
transition between a nuclear matter “liquid” and a gas of individual nucleons is also

marked; it ends at a critical point at a temperature of order 10 MeV, characteristic
of the forces which bind nucleons into nuclei.

In QCD with two massless quarks (m, 4 = 0; ms = oo; figure 1) the
vacuum phase, with hadrons as excitations, is characterized by a chiral
condensate (11,0a%3%). (The color index a is summed over the three fla-
vors; the flavor index a is summed over the two flavors.) Whereas the
QCD Lagrangian is invariant under separate global flavor rotations of the
left-handed and right-handed quarks, the presence of the chiral condensate
spontaneously breaks SU(2)r, x SU(2)g to the subgroup SU(2)14r, in which
only simultaneous flavor rotations of L and R quarks are allowed. Locking
left- and right-handed rotations in this way results in three massless Gold-
stone bosons, the pions. The chiral order parameter, a 2 x 2 matrix M% in
flavor space, can be written in terms of four real fields o and 7 as

(layi’) = M = 06" +7-(7)" (1)

where the 7 are the three Pauli matrices. SU(2);, and SU(2)g rotations act
on M from the left and right, respectively. The order parameter can be
written as a four component scalar field ¢ = (o, 7) and the SU(2), x SU(2)r
rotations are simply O(4) rotations of ¢. The symmetry breaking pattern
SU(2), x SU(2)r — SU(2)1,+r is isomorphic to O(4)—0(3). In the vacuum,
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¢ has a nonzero expectation value, conventionally taken to be in the o
direction. In the presence of (o) # 0, the 7 excitations are excitations of
the direction in which (¢) is pointing, and are therefore massless goldstone
modes.

At nonzero but low temperature, one finds a gas of pions, the analogue
of a gas of spin-waves, but (¢) is still nonzero. Above some temperature
T¢, disorder wins over order (the direction in which ¢ points is scrambled)
and (¢) = 0. The phase transition at which chiral symmetry is restored is
likely second order and belongs to the universality class of O(4) spin models
in three dimensions [12]. Below T, chiral symmetry is broken and there
are three massless pions. At T = T, there are four massless degrees of
freedom: the pions and the sigma. Above T' = T, the pion and sigma cor-
relation lengths are degenerate and finite. In nature, the light quarks are
not massless. Because of this explicit chiral symmetry breaking, the sec-
ond order phase transition is replaced by an analytical crossover: physics
changes dramatically but smoothly in the crossover region, and no correla-
tion length diverges. Thus, in figure 2, there is no sharp boundary on the
vertical axis separating the low temperature hadronic world from the high
temperature quark-gluon plasma. This picture is consistent with present
lattice simulations [13,14], which suggest T, ~ 140-190 MeV [14,15].

T
My.d #Oy mg = o0
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Fig.2. QCD phase diagram for two light quarks. Qualitatively as in figure 1, except
that the introduction of light quark masses turns the second order phase transition
into a smooth crossover. The tricritical point becomes the critical endpoint FE,
which can be found in heavy ion collision experiments.

Arguments based on a variety of models [3,4,16-19] indicate that the
chiral symmetry restoration transition is first order at large p. (In Section 3,
we describe the color superconducting (2SC) phase of cold dense quark mat-
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ter which occurs at values of ;1 above this first order transition; the fact that
this is a transition in which two different condensates compete strength-
ens the argument that this transition is first order [18,20].) This suggests
that the phase diagram features a critical point E at which the line of first
order phase transitions present for yu > pup ends, as shown in figure 2 I
At ug, the phase transition is second order and is in the Ising universality
class [18,19]. Although the pions remain massive, the correlation length in
the o channel diverges due to universal long wavelength fluctuations of the
order parameter. This results in characteristic signatures, analogues of crit-
ical opalescence in the sense that they are unique to collisions which freeze
out near the critical point, which can be used to discover E [9,10].

T
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Fig.3. QCD phase diagram for two light quarks and a strange quark with a mass
comparable to that in nature. The presence of the strange quark shifts E to the left,
as can be seen by comparing with figure 2. At sufficiently high density, cold quark
matter is necessarily in the CFL phase in which quarks of all three colors and all
three flavors form Cooper pairs. The diquark condensate in the CFL phase breaks
chiral symmetry, and this phase has the same symmetries as baryonic matter which
is dense enough that the nucleon and hyperon densities are comparable. The phase
transition between the CFL and 2SC phases is first order.

Returning to the p = 0 axis, universal arguments [12]|, again backed by
lattice simulation [13], tell us that if the strange quark were as light as the up
and down quarks, the transition would be first order, rather than a smooth
crossover. This means that if one could dial the strange quark mass mg, one
would find a critical m¢ at which the transition as a function of temperature
is second order [11,22]. Figures 2, 3 and 4 are drawn for a sequence of

! Tf the up and down quarks were massless, E would be a tricritical point [21], at which
the first order transition becomes second order. See figure 1.
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Fig.4. QCD phase diagram for three quarks which are degenerate in mass and
which are either massless or light. The CFL phase and the baryonic phase have
the same symmetries and may be continuously connected. The dashed line denotes
the critical temperature at which baryon-baryon (or quark-quark) pairing vanishes;
the region below the dashed line is superfluid. Chiral symmetry is broken every-
where below the solid line, which is a first order phase transition. The question
mark serves to remind us that although no transition is required in this region,
transition(s) may nevertheless arise as the magnitude of the gap increases qualita-

tively in going from the hypernuclear to the CFL phase. For quark masses as in
nature, the high density region of the map may be as shown in figure 3 or may be
closer to that shown here, albeit with transition(s) in the vicinity of the question
mark associated with the onset of nonzero hyperon density and the breaking of
U1)s [7].

decreasing strange quark masses. Somewhere between figures 3 and 4, mj
is decreased below m{ and the transition on the vertical axis becomes first
order. The value of m¢ is an open question, but lattice simulations suggest
that it is about half the physical strange quark mass [23,24]. These results
are not yet conclusive [25] but if they are correct then the phase diagram in
nature is as shown in figure 3, and the phase transition at low u is a smooth
Crossover.

These observations fit together in a simple and elegant fashion. If we
could vary mg, we would find that as m, is reduced from infinity to mg, the
critical point F in the (T, ) plane moves toward the p = 0 axis [9]. This
is shown in figures 2-4. In nature, F is at some nonzero Tg and pug. When
ms is reduced to m¢, between figure 3 and figure 4, pp reaches zero. Of
course, experimentalists cannot vary mg. They can, however, vary u. AGS
collisions with center of mass energy /s = 5 AGeV create fireballs which
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freeze out near p ~ 500-600 MeV [26]. SPS collisions with /s = 17 AGeV
create fireballs which freeze out near p ~ 200-300 MeV [26]. In time, we
will also have data from SPS collisions with /s =9 AGeV and from RHIC
collisions with /s = 56, 130 and 200 AGeV and other energies?. By dialing
/s and thus p, experimenters can find the critical point E.

2. Discovering the critical point

We hope that the study of heavy ion collisions will, in the end, lead both
to a quantitative study of the properties of the quark-gluon plasma phase at
temperatures well above the transition and to a quantitative understanding
of how to draw the phase transition region of the phase diagram. Probing the
partonic matter created early in the collision relies on a suite of signatures
including: the use of J/¥ mesons, charmed mesons, and perhaps the 7" as
probes; the energy loss of high momentum partons and consequent effects
on the high-pt hadron spectrum; and the detection of photons and dileptons
over and above those emitted in the later hadronic stages of the collision.
I will not review this program here. Instead, I focus on signatures of the
critical point. The map of the QCD phase diagram which I have sketched
so far is simple, coherent and consistent with all we know theoretically; the
discovery of the critical point would provide an experimental foundation for
the central qualitative feature of the landscape. This discovery would in
addition confirm that in higher energy heavy ion collisions and in the big
bang, the QCD phase transition is a smooth crossover. Furthermore, the
discovery of collisions which create matter that freezes out near E would
imply that conditions above the transition existed prior to freezeout, and
would thus make it much easier to interpret the results of other experiments
which study those observables which can probe the partonic matter created
early in the collision.

We theorists must clearly do as much as we can to tell experimentalists
where and how to find E. The “where” question, namely the question of
predicting the value of pup and thus suggesting the /s to use to find E, is
much harder for us to answer. First, as we stress further in the next Section,
ab initio analysis of QCD in its full glory — 4.e. lattice calculations — are at
present impossible at nonzero . We must therefore rely on models. Second,
an intrinsic feature of the picture we have described is that pg is sensitive
to the mass of the strange quark, and therefore particularly hard to predict.
Crude models suggest that ug could be ~ 600-800 MeV in the absence of the
strange quark [18,19]; this in turn suggests that in nature pp may have of
order half this value, and may therefore be accessible at the SPS if the SPS

2 The first data from RHIC collisions at /s = 56 AGeV and /s = 130 AGeV have
already appeared [27]. This bodes well for the analyses to come.
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runs with /s < 17 AGeV. However, at present theorists cannot predict the
value of up even to within a factor of two. The SPS can search a significant
fraction of the parameter space; if it does not find F, it will then be up to
the RHIC experiments to map the p < 200 MeV region.

Although we are trying to be helpful with the “where” question, we are
not very good at answering it quantitatively. This question can only be an-
swered convincingly by an experimental discovery. What we theorists can do
reasonably well is to answer the “how” question, thus enabling experimenters
to answer “where”. This is the goal of a recent paper by Stephanov, myself
and Shuryak [10]. The signatures we have proposed are based on the fact
that F is a genuine thermodynamic singularity at which susceptibilities di-
verge and the order parameter fluctuates on long wavelengths. The resulting
signatures are nonmonotonic as a function of y/s: as this control parameter
is varied, we should see the signatures strengthen and then weaken again as
the critical point is approached and then passed.

The critical point £ can also be sought by varying control parameters
other than /s. Ion size, centrality selection and rapidity selection can all be
varied. The advantage of using /s is that we already know (by comparing
results from the AGS and SPS) that dialing it changes the freeze out chemical
potential u, which is the goal in a search for £.

The simplest observables we analyze are the event-by-event fluctuations
of the mean transverse momentum of the charged particles in an event, pr,
and of the total charged multiplicity in an event, N. We calculate the mag-
nitude of the effects of critical fluctuations on these and other observables,
making predictions which, we hope, will allow experiments to find E. As a
necessary prelude, we analyze the contribution of noncritical thermodynamic
fluctuations. We compare the noncritical fluctuations of an equilibriated res-
onance gas to the fluctuations measured by NA49 at /s = 17 AGeV [28].
The observed fluctuations are as perfect Gaussians as the data statistics al-
low, as expected for freeze-out from a system in thermal equilibrium. The
data on multiplicity fluctuations show evidence for a nonthermodynamic
contribution, which is to be expected since the extensive quantity N is sen-
sitive to the initial size of the system and thus to nonthermodynamic effects
like variation in impact parameter. The contribution of such effects to the
fluctuations have now been estimated [29,30]; the combined thermodynamic
and nonthermodynamic fluctuations are in satisfactory agreement with the
data [30]. The width of the event-by-event distribution® of mean pr is in
good agreement with predictions based on noncritical thermodynamic fluc-

3 This width can be measured even if one observes only two pions per event [31]; large
acceptance data as from NA49 is required in order to learn that the distribution
is Gaussian, that thermodynamic predictions may be valid, and that the width is
therefore the only interesting quantity to measure.
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tuations. That is, NA49 data are consistent with the hypothesis that almost
all the observed event-by-event fluctuation in mean pr, an intensive quan-
tity, is thermodynamic in origin. This bodes well for the detectability of
systematic changes in thermodynamic fluctuations near F.

One analysis described in detail in Ref. [10] is based on the ratio of the
width of the true event-by-event distribution of the mean pt to the width
of the distribution in a sample of mixed events. This ratio was called VF.
NA49 has measured vF = 1.002 & 0.002 [10, 28], which is consistent with
expectations for noncritical thermodynamic fluctuations*. Critical fluctua-
tions of the o field, i.e. the characteristic long wavelength fluctuations of
the order parameter near F, influence pion momenta via the (large) onm
coupling and increase v/F [10]. The effect is proportional to €2 copeonts Where
Etreezeout 1S the o-field correlation length of the long-wavelength fluctuations
at freezeout [10]. If &freeseous ~ 3 fm (a reasonable estimate, as we describe
below) the ratio v/F increases by ~3-5%, ten to twenty times the statistical
error in the present measurement [10]. This observable is valuable because
data on it has been analyzed and presented by NA49, and it can therefore be
used to learn that Pb+Pb collisions at 158 AGeV do not freeze out near E.
The 3-5% nonmonotonic variation in v/F as a function of /s which we pre-
dict is easily detectable but is not so large as to make one confident of using
this alone as a signature of F.

Once F is located, however, other observables which are more sensitive to
critical effects will be more useful. For example, a v/ Fgof;, defined using only
the softest 10% of the pions in each event, will be much more sensitive to the
critical long wavelength fluctuations. The higher pt pions are less affected
by the o fluctuations [10], and these relatively unaffected pions dominate
the mean pr of all the pions in the event. This is why the increase in VF
near the critical point will be much less than that of \/Fy.s. Depending on
the details of the cuts used to define it, v/ Fgog should be enhanced by many
tens of percent in collisions passing near E. Ref. [10] suggests other such
observables, and more can surely be found.

The multiplicity of soft pions is an example of an observable which may
be used to detect the critical fluctuations without an event-by-event anal-
ysis. The post-freezeout decay of sigma mesons, which are copious and
light at freezeout near F and which decay subsequently when their mass

4 In an infinite system made of classical particles which is in thermal equilibrium,
VF = 1. Bose effects increase VF by 1-2% [10, 32]; an anticorrelation introduced
by energy conservation in a finite system — when one mode fluctuates up it is more
likely for other modes to fluctuate down — decreases vF by 1-2% [10]; two-track
resolution also decreases vF by 1-2% [28]. The contributions due to correlations
introduced by resonance decays and due to fluctuations in the flow velocity are each
much smaller than 1% [10].
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increases above twice the pion mass, should result in a population of pions
with pp ~ m, /2 which appears only for freezeout near the critical point [10].
If &treezeont > 1/my, this population of unusually low momentum pions will
be comparable in number to that of the “direct” pions (i.e. those which were
pions at freezeout) and will result in a large signature. This signature is
therefore certainly large for &feezeout ~ 3 fm and would not increase much
further if &freezeous Were larger still.

The variety of observables which should all vary nonmonotonically with
/s (and should all peak at the same /s) is sufficiently great that if it were
to turn out that ug < 200 MeV, making F inaccessible to the SPS, all four
RHIC experiments could play a role in the study of the critical point.

The purpose of Ref. [33] is to estimate how large &freezeout Can become,
thus making the predictions of Ref. [10] for the magnitude of various signa-
tures more quantitative. The nonequilibrium dynamics analyzed in Ref. [33]
is guaranteed to occur in a heavy ion collision which passes near F, even
if local thermal equilibrium is achieved at a higher temperature during the
earlier evolution of the plasma created in the collision. If this plasma were
to cool arbitrarily slowly, ¢ would diverge at Tr. However, it would take
an infinite time for ¢ to grow infinitely large. Indeed, near a critical point,
the longer the correlation length, the longer the equilibration time, and the
slower the correlation length can grow. This critical slowing down means
that the correlation length cannot grow sufficiently fast for the system to
stay in equilibrium. We use the theory of dynamical critical phenomena to
describe the effects of critical slowing down of the long wavelength dynamics
near F on the time development of the correlation length. The correlation
length does not have time to grow as large as it would in equilibrium: we
find &xeezeout ~ 2/Tr ~ 3 fm for trajectories passing near E. Although
critical slowing down hinders the growth of £, it also slows the decrease of &
as the system continues to cool below the critical point. As a result, £ does
not decrease significantly between the phase transition and freezeout.

Our results depend on the universal function describing the equilibrium
behavior of & near the Ising critical point E, on the universal dynamical
exponent z describing critical slowing down (perturbations away from equi-
librium relax toward equilibrium on a timescale which scales with £ like
AE7 [34]), on the nonuniversal constant A, the nonuniversal constants which
relate (T'— Tg) and (4 — pg) to dimensionless Ising model variables, on Tg
which we take to be ~ 140 MeV, and finally on the cooling rate |dT'/dt|
which we estimate to be 4 MeV /fm [33,35-37].

Our estimate that £ does not grow larger than 2/Tg is robust in three
senses. First, it depends very little on the angle with which the trajec-
tory passes through E. Second, it turns out to depend on only one com-
bination of all the nonuniversal quantities which play a role. We call this
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parameter a; it is proportional to |dT/dt|~!. Third, our results do not de-
pend sensitively on a. We show that the maximum value of ¢ scales like

v/BS
a“ﬂ/% ~ a®21® [33]°. Thus, for example, |dT/dt| would have to be a factor
of 25 smaller than we estimate in order for ¢ to grow to 4/Tg instead of
2/Tg. Although our results are robust in this sense, they cannot be treated
as precise because our assumption that the dynamics of £ in QCD is de-
scribed by the universal classical dynamics of the three-dimensional Ising
model only becomes precise if £ > 1/Tg, while our central result is that &
does not grow beyond ~ 2/Tg. A 3 4+ 1-dimensional quantum field theoret-
ical treatment of the interplay between cooling and the dynamics of critical
slowing down is not yet available, but promising first steps in this direction
can be found in Ref. [42].

A result which is of great importance in the planning of experimental
searches is that one need not hit E precisely in order to find it. Our analysis
demonstrates that if one were to do a scan with collisions at many finely
spaced values of the energy and thus u, one would see signatures of E with
approximately the same magnitude over a broad range of . The magnitude
of the signatures will not be narrowly peaked as p is varied. As long as one
gets close enough to E that the equilibrium correlation length is (2-3)/TE,
the actual correlation length & will grow to ~ 2/Tg®. There is no advantage
to getting closer to E, because critical slowing down prevents ¢ from getting
much larger even if {4 does. Data at many finely spaced values of p is not
called for.

As described above, knowing that we are looking for &greezeout ~ 3 fm
allows us [33] to make quantitative estimates of the magnitude of the signa-
tures of F described in detail in Ref. [10]. Together, the excess multiplicity at
low momentum (due to post-freezeout sigma decays) and the excess event-

® A scaling law of this form (of course with different numerical values for the exponents)
relating the maximum correlation length which is reached to the cooling rate was first
discovered in the theory of defect formation at a second order phase transition [38].
In this context, the maximum correlation length reached during the phase transition
sets the scale for the initial separation between defects — vortices in a superfluid or
in liquid crystals, for example — created as the system cools through the transition.
This initial network of defects coarsens at later times. The Ising phase transition
of interest to us creates no defects. It is nevertheless very pleasing that scaling
laws analogous to the one we need have been tested quantitatively in numerical
simulations [39] and, furthermore, are supported by data from experiments on liquid
crystals [40] and superfluid *He [41].

Analysis within the toy model of Ref. [18] suggests that in the absence of the strange
quark, the range of p over which £eq > 2 fm is about Au ~ 120 MeV for pur ~ 800
MeV. Similar results can be obtained [43] within a random matrix model [19]. It
is likely over-optimistic to estimate Au ~ 120 MeV when the effects of the strange
quark are included and pg itself is reduced. A conservative estimate would be to use
the models to estimate that Ap/pur ~ 15%.
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by-event fluctuation of the momenta of the low momentum pions (due to
their coupling to the order parameter which is fluctuating with correlation
length &freezeout) should allow a convincing detection of the critical point E.
Both should behave nonmonotonically as the collision energy, and hence u,
are varied. Both should peak for those heavy ion collisions which freeze out
near F, with &preezeout ~ 3 fm.

We have learned much from the beautiful gaussian event-by-event fluctu-
ations observed by NA49. The magnitude of these fluctuations are consistent
with the hypothesis that the hadronic system at freezeout is in approximate
thermal equilibrium. These and other data show none of the non-gaussian
features that would signal that the system had been driven far from equilib-
rium either by a rapid traversal of the transition region or by the bubbling
that would occur near a strong first order phase transition. There is also
no sign of the enhanced, but still gaussian, fluctuations which would sig-
nal freezeout near the critical point £. Combining these observations with
the observation of tantalizing indications that the matter created in SPS
collisions is not well described at early times by hadronic models [44] sug-
gests that collisions at the SPS may be exploring the crossover region to
the left of the critical point E, in which the matter is not well-described as
a hadron gas but is also not well-described as a quark-gluon plasma. This
speculation could be confirmed in two ways. First, if the SPS is probing the
crossover region then the coming experiments at RHIC may discover direct
signatures of an early partonic phase, which are well-described by theoretical
calculations beginning from an equilibrated quark-gluon plasma. Second, if
Vs = 17 AGeV collisions are probing the crossover region not far to the
left of the critical point E, then SPS data taken at lower energies would
result in the discovery of E. If, instead, RHIC were to discover E with
pE < 200 MeV, that would indicate that the SPS experiments have probed
the weakly first order region just to the right of E. Regardless, discovering
FE would take all the speculation out of mapping this part of the QCD phase
diagram.

3. Color superconductivity and color-flavor locking

I turn now to recent developments in our understanding of the low tem-
perature, high density regions of the QCD phase diagram. First, a notational
confession. It is conventional in the literature on cold dense quark matter
to define u as the quark number chemical potential, 1/3 the baryon number
chemical potential used in Sections 1 and 2. We make this change from
here on. For example, neutron star cores likely have u ~ 400-500 MeV,
corresponding to baryon number chemical potentials ~ 1.2-1.5 GeV in fig-
ures 1-4.
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The relevant degrees of freedom in cold dense quark matter are those
which involve quarks with momenta near the Fermi surface. At high den-
sity, when the Fermi momentum is large, the QCD gauge coupling g(u) is
small. However, because of the infinite degeneracy among pairs of quarks
with equal and opposite momenta at the Fermi surface, even an arbitrarily
weak attraction between quarks renders the Fermi surface unstable to the
formation of a condensate of quark Cooper pairs. Creating a pair costs no
free energy at the Fermi surface and the attractive interaction results in a
free energy benefit. Pairs of quarks cannot be color singlets, and in QCD
with two flavors of massless quarks the Cooper pairs form in the (attrac-
tive) color 3 channel [1-4]. The resulting condensate creates a gap A at
the Fermi surfaces of quarks with two out of the three colors and breaks
SU(3)color t0 an SU(2)¢olor Subgroup, giving mass to five of the gluons by
the Anderson—Higgs mechanism. In QCD with two flavors, the Cooper pairs
are ud-du flavor singlets and the global flavor symmetry SU(2)1, x SU(2)r
is intact. There is also an unbroken global symmetry which plays the role
of U(1)g. Thus, no global symmetries are broken in this 2SC phase. There
must therefore be a phase transition between the 25C and hadronic phases
on the horizontal axis in figure 1, at which chiral symmetry is restored. This
phase transition is first order [3, 18,20, 45| since it involves a competition
between chiral condensation and diquark condensation [18,20]. There need
be no transition between the 25C and quark-gluon plasma phases in figure 1
because neither phase breaks any global symmetries. However, this transi-
tion, which is second order in mean field theory, is likely first order in QCD
due to gauge field fluctuations [18], at least at high enough density [46].

In QCD with three flavors of massless quarks, the Cooper pairs cannot be
flavor singlets, and both color and flavor symmetries are necessarily broken.
The symmetries of the phase which results have been analyzed in [5, 6].
The attractive channel favored by one-gluon exchange exhibits “color-flavor
locking.” A condensate of the form

<,¢Ea,¢5b> . AeaﬂAeabA (2)

involving left-handed quarks alone, with «, 8 color indices and a, b fla-
vor indices, locks SU(3);, flavor rotations to SU(3)color: the condensate is
not symmetric under either alone, but is symmetric under the simultane-
ous SU(3)14color TOtations”. A condensate involving right-handed quarks

"1t turns out [5] that condensation in the color 3 channel induces a condensate in
the color 6 channel because this breaks no further symmetries [7]. The resulting
condensates can be written in terms of k1 and k2 where ( f“@bfb) ~ K16%°6PY 4
£20°°5P%. Here, the Kronecker §’s lock color and flavor rotations. The pure color 3
condensate (2) has k2 = —k1.
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alone locks SU(3)r flavor rotations to SU(3)color- Because color is vecto-
rial, the combined effect of the LL and RR condensates is to lock SU(3)y, to
SU(3)R, breaking chiral symmetry®. Thus, in quark matter with three mass-
less quarks, the SU(3)co1or X SU(3)1, x SU(3)r x U(1)g symmetry is broken
down to the global diagonal SU(3)color+ 1+ r group. All nine quarks have a
gap. All eight gluons get a mass. There are nine massless Nambu—Goldstone
bosons. There is an unbroken gauged U(1) symmetry which plays the role
of electromagnetism. Under this symmetry, all the quarks, all the massive
vector bosons, and all the Nambu—Goldstone bosons have integer charges.
The CFL phase therefore has the same symmetries as baryonic matter with a
condensate of Cooper pairs of baryons [6]. Furthermore, many non-universal
features of these two phases correspond [6]. This raises the possibility that
quark matter and baryonic matter may be continuously connected [6], as
shown in figure 4.

The physics of the CFL phase has been the focus of much recent work
[5-8,47—62]. Nature chooses two light quarks and one middle-weight strange
quark, rather than three degenerate quarks as in figure 4. A nonzero my
weakens those condensates which involve pairing between light and strange
quarks. The CFL phase requires nonzero (us) and (ds) condensates; because
these condensates pair quarks with differing Fermi momenta they can only
exist if they are larger than of order m?2/2u, the difference between the u
and s Fermi momenta in the absence of pairing. If one imagines increasing
my at fixed p, one finds a first order unlocking transition [7,8]: for larger
ms only u and d quarks pair and the 2SC phase is obtained. Conversely, as
my is reduced in going from figure 2 to 3 to 4, the region occupied by the
CFL phase expands to encompass regions with smaller and smaller 4 [7,8].
For any mg # oo, the CFL phase is the ground state at arbitrarily high
density [7]. For larger values of mg, there is a 2SC interlude on the horizontal
axis, in which chiral symmetry is restored, before the CFL phase breaks it
again at high densities. For smaller values of mg, the possibility of quark-
hadron continuity [6] as shown in figure 4 arises. It should be noted that
when the strange and light quarks are not degenerate, the CFL phase may
be continuous with a baryonic phase in which the densities of all the nucleons
and hyperons are comparable; there are, however, phase transitions between
this hypernuclear phase and ordinary nuclear matter [7].

The Nambu—Goldstone bosons in the CFL phase are Fermi surface exci-
tations in which the orientation of the left-handed and right-handed diquark
condensates oscillate out of phase in flavor space. The effective field theory
describing these oscillations has been constructed [49,52,57]. Because the

8 Once chiral symmetry is broken by color-flavor locking, there is no symmetry argu-
ment precluding the existence of an ordinary chiral condensate. Indeed, instanton
effects do induce a nonzero {(gq) [5], but this is a small effect [47].
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full theory is weakly coupled at asymptotically high densities, in this regime
all coefficients in the effective theory describing the long wavelength meson
physics are calculable from first principles. The decay constants fr g .. [52]
and the meson masses My gy, [52-56,58| are all now known. The meson
masses depend on quark masses like m? ~ m?2 in the CFL phase (neglect-
ing the small chiral condensate) [5], and their masses are inverted in the
sense that the kaon is lighter than the pion [52]. The charged kaon mass
m%d ~ mg(my + ms)A/p is so light that it is likely less than the electron
chemical potential, meaning that the CFL phase likely features a kaon con-
densate [61]. The dispersion relations describing the fermionic quasiparticle
excitations in the CFL phase, which have the quantum numbers of an octet
and a singlet of baryons, have also received attention |7,50]. So have the
properties of the massive vector meson octet — the gluons which receive
a mass via the Meissner-Anderson-Higgs mechanism [52,59,63]. We now
have a description of the properties of the CFL phase and its excitations, in
which much is known quantitatively if the value of the gap A is known. We
describe estimates of A below.

It is interesting that both the 2SC and CFL phases satisfy anomaly
matching constraints, even though it is not yet completely clear whether
this must be the case when Lorentz invariance is broken by a nonzero den-
sity [64]. It is not yet clear how high density QCD with larger numbers of
flavors [51] satisfies anomaly matching constraints. Also, anomaly matching
in the 25C phase requires that the up and down quarks of the third color
remain ungapped; this requirement must, therefore, be modified once these
quarks pair to form a J = 1 condensate, breaking rotational invariance [3].

Much effort has gone into estimating the magnitude of the gaps in the
2SC and CFL phases [2-5,7,8,18,20,47,65-80]. It would be ideal if this task
were within the scope of lattice gauge theory as is, for example, the calcu-
lation of the critical temperature on the vertical axis of the phase diagram.
Unfortunately, lattice methods relying on importance sampling have to this
point been rendered exponentially impractical at nonzero baryon density
by the complex action at nonzero p ?. There are more sophisticated algo-

9 Note that quark pairing can be studied on the lattice in some models with four-
fermion interactions and in two-color QCD [81]. The N. = 2 case has also been
studied analytically in Refs. [4, 82]; pairing in this theory is simpler to analyze be-
cause quark Cooper pairs are color singlets. The N. — oo limit of QCD is of-
ten one in which hard problems become tractable. However, the ground state of
N. = 00 QCD is a chiral density wave, not a color superconductor [83]. At asymp-
totically high densities color superconductivity persists up to N.’s of order thousands
[84, 85] before being supplanted by the phase described in Ref. [83]. At any finite
N., color superconductivity occurs at arbitrarily weak coupling whereas the chiral
density wave does not. For N, = 3, color superconductivity is still favored over the
chiral density wave (although not by much) even if the interaction is so strong that
the color superconductivity gap is ~ 11/2 [86].
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rithms which have allowed theories which are simpler than QCD but which
have as severe a fermion sign problem as that in QCD at nonzero chemical
potential to be simulated [87]. This bodes well for the future. Given the
present absence of suitable lattice methods, the magnitude of the gaps in
quark matter at large but accessible density has been estimated using two
broad strategies. The first class of estimates are done within the context of
models whose parameters are chosen to give reasonable vacuum physics. Ex-
amples include analyses in which the interaction between quarks is replaced
simply by four-fermion interactions with the quantum numbers of the in-
stanton interaction [3,4,18| or of one-gluon exchange [5,7], random matrix
models [68], and more sophisticated analyses done using the instanton liquid
model [20,47,86]. Renormalization group methods have also been used to
explore the space of all possible effective four-fermion interactions [65, 66].
These methods yield results which are in qualitative agreement: the favored
condensates are as described above; the gaps range between several tens
of MeV up to as large as about 100 MeV; the associated critical tempera-
tures (above which the diquark condensates vanish) can be as large as about
T, ~ 50 MeV. This agreement between different models reflects the fact that
what matters most is simply the strength of the attraction between quarks
in the color 3 channel, and by fixing the parameters of the model interaction
to fit, say, the magnitude of the vacuum chiral condensate, one ends up with
attractions of similar strengths in different models.

The second strategy for estimating gaps and critical temperatures is to
use p = oo physics as a guide. At asymptotically large p, models with
short-range interactions are bound to fail because the dominant interaction
is due to the long-range magnetic interaction coming from single-gluon ex-
change [45,69]. The collinear infrared divergence in small angle scattering
via one-gluon exchange (which is regulated by dynamical screening [69]) re-
sults in a gap which is parametrically larger at ;4 — oo than it would be for
any point-like four-fermion interaction. At y — oo, where g(u) — 0, the
gap takes the form [69]

A~ bpg(p) =7 exp[-3n%/v2g(n)] (3)

whereas for a point-like interaction with four-fermion coupling ¢ the gap
goes like exp(—1/¢?). Son’s result (3) has now been confirmed using a va-
riety of methods [70-75,78]. The O(g°) contribution to the prefactor b in
(3) is not yet fully understood. It is estimated to be b ~ 5127% in the 25C
phase and b ~ 5127%21/3(2/3)%/2 in the CFL phase [51,70,72-76]. However,
modifications to the quasiparticle dispersion relations in the normal (non-
superconducting; high temperature) phase [74] and quasiparticle damping
effects in the superconducting phase [80] both tend to reduce b. Also, the
value of b is affected by the choice of the scale at which g is evaluated in
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(3). The results of Beane et al. demonstrate that g should be evaluated
at a p-dependent scale which is much lower than u [78]. If, by convention,
one instead takes g as g(u), then b is significantly enhanced. Finally, ex-
amination of the gauge-dependent (and g-dependent) contributions to b in
calculations based on the one-loop Schwinger-Dyson equation (e.g. those of
Refs. [70,72,73,75]) reveals that they only begin to decrease for g < 0.8 [79].
This means that effects which have to date been neglected in all calculations
(e.g. vertex corrections) are small corrections to b only for > 10% MeV.

The phase of N, = 3 QCD with nonzero isospin density (u; # 0) and zero
baryon density (@ = 0) can be simulated on the lattice [88]. Although not
physically realizable, it is very interesting to consider because phenomena
arise which are similar to those occurring at large p and, in this context,
these phenomena can be analyzed on the lattice. In this setting, therefore,
lattice simulations can be used to test calculational methods which have also
been applied at large u, where lattice simulation is unavailable. Large ur
physics features large Fermi surfaces for down quarks and anti-up quarks,
Cooper pairing of down and anti-up quarks, and a gap whose g-dependence
is as in (3), albeit with a different coefficient of 1/g in the exponent [88]. This
condensate has the same quantum numbers as the pion condensate expected
at much lower u7, which means that a hypothesis of continuity between
hadronic — in this case pionic — and quark matter as a function of y; can
be tested on the lattice [88]. We henceforth return to the physically realizable
setting in which differences between chemical potentials for different species
of quarks (e.g. py) are small compared to p.

At large enough u, the differences between u, d and s Fermi momenta
decrease, while the result (3) demonstrates that the magnitude of the con-
densates increases slowly as p — oco. (As g — oo, the running coupling
g(p) — 0 logarithmically and the exponential factor in (3) goes to zero, but
not sufficiently fast to overcome the growth of x.) This means that the CFL
phase is favored over the 2SC phase for y — oo for any ms # oo [7]. If
we take the asymptotic estimates for the prefactor, quantitatively valid for
p > 108 MeV [79], and apply them at accessible densities, say u ~ 500 MeV,
it predicts gaps as large as about 100 MeV and critical temperatures as large
as about 50 MeV [73]. Even though the asymptotic regime where A can be
calculated from first principles with confidence is not accessed in nature, it
is of great theoretical interest. The weak-coupling calculation of the gap in
the CFL phase is the first step toward the weak-coupling calculation of other
properties of this phase, in which chiral symmetry is broken and the spec-
trum of excitations is as in a confined phase. As we have described above,
for example, the masses and decay constants of the pseudoscalar mesons can
be calculated from first principles once A is known.
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It is satisfying that two very different approaches, one using zero density
phenomenology to normalize models, the other using weak-coupling meth-
ods valid at asymptotically high density, yield predictions for the gaps and
critical temperatures at accessible densities which are in good agreement.
Neither can be trusted quantitatively for quark number chemical potentials
1~ 400-500 MeV, as appropriate for the quark matter which may occur in
compact stars. Still, both methods agree that the gaps at the Fermi surface
are of order tens to 100 MeV, with critical temperatures about half as large.

T. ~ 50 MeV is much larger relative to the Fermi momentum (say
pu ~ 400-500 MeV) than in low temperature superconductivity in metals.
This reflects the fact that color superconductivity is induced by an attrac-
tion due to the primary, strong, interaction in the theory, rather than having
to rely on much weaker secondary interactions, as in phonon mediated su-
perconductivity in metals. Quark matter is a high-7, superconductor by any
reasonable definition. It is unfortunate that its 7. is nevertheless low enough
that it is unlikely the phenomenon can be realized in heavy ion collisions.

4. Color superconductivity in compact stars

Our current understanding of the color superconducting state of quark
matter leads us to believe that it may occur naturally in compact stars. The
critical temperature T, below which quark matter is a color superconductor
is high enough that any quark matter which occurs within neutron stars that
are more than a few seconds old is in a color superconducting state. In the
absence of lattice simulations, present theoretical methods are not accurate
enough to determine whether neutron star cores are made of hadronic mat-
ter or quark matter. They also cannot determine whether any quark matter
which arises will be in the CFL or 25C phase: the difference between the u,
d and s Fermi momenta will be a few tens of MeV which is comparable to es-
timates of the gap A; the CFL phase occurs when A is large compared to all
differences between Fermi momenta. Just as the higher temperature regions
of the QCD phase diagram are being mapped out in heavy ion collisions,
we need to learn how to use neutron star phenomena to determine whether
they feature cores made of 2SC quark matter, CFL quark matter or hadronic
matter, thus teaching us about the high density region of the QCD phase
diagram. It is therefore important to look for astrophysical consequences of
color superconductivity.

Equation of State: Much of the work on the consequences of quark mat-
ter within a compact star has focussed on the effects of quark matter on
the equation of state, and hence on the radius of the star. As a Fermi sur-
face phenomenon, color superconductivity has little effect on the equation of
state: the pressure is an integral over the whole Fermi volume. Color super-
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conductivity modifies the equation of state at the ~ (A/u)? level, typically
by a few percent [3]. Such small effects can be neglected in present calcu-
lations, and for this reason I will not attempt to survey the many ways in
which observations of neutron stars are being used to constrain the equation
of state [89].

I will describe one current idea, however. As a neutron star in a low
mass X-ray binary (LMXB) is spun up by accretion from its companion, it
becomes more oblate and its central density decreases. If it contains a quark
matter core, the volume fraction occupied by this core decreases, the star
expands, and its moment of inertia increases. This raises the possibility [90]
of a period during the spin-up history of an LMXB when the neutron star is
gaining angular momentum via accretion, but is gaining sufficient moment of
inertia that its angular frequency is hardly increasing. In their modelling of
this effect, Glendenning and Weber [90] discover that LMXB’s should spend
a significant fraction of their history with a frequency of around 200 Hz, while
their quark cores are being spun out of existence, before eventually spinning
up to higher frequencies. This may explain the observation that LMXB fre-
quencies are clustered around 250-350 Hz [91], which is otherwise puzzling
in that it is thought that LMXB’s provide the link between canonical pul-
sars and millisecond pulsars, which have frequencies as large as 600 Hz [92].
It will be interesting to see how robust the result of Ref. [90] is to changes
in model assumptions and also how its predictions fare when compared to
those of other explanations which posit upper bounds on LMXB frequen-
cies [93], rather than a most probable frequency range with no associated
upper bound [90]. We note here that because Glendenning and Weber’s
effect depends only on the equation of state and not on other properties of
quark matter, the fact that the quark matter must in fact be a color super-
conductor will not affect the results in any significant way. If Glendenning
and Weber’s explanation for the observed clustering of LMXB frequencies
proves robust, it would imply that pulsars with lower rotational frequencies
feature quark matter cores.

Cooling by Neutrino Emission: We turn now to neutron star phenomena
which are affected by Fermi surface physics. For the first 10576 years of
its life, the cooling of a neutron star is governed by the balance between
heat capacity and the loss of heat by neutrino emission. How are these
quantities affected by the presence of a quark matter core? This has been
addressed recently in Refs. [94,95], following earlier work in Ref. [96]. Both
the specific heat Cyy and the neutrino emission rate L, are dominated by
physics within T of the Fermi surface. If, as in the CFL phase, all quarks have
a gap A > T then the contribution of quark quasiparticles to Cy and L, is
suppressed by ~ exp(—A/T). There may be other contributions to L, [94],
but these are also very small. The specific heat is dominated by that of the
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electrons, although it may also receive a small contribution from the CFL
phase Goldstone bosons. Although further work is required, it is already
clear that both Cy and L, are much smaller than in the nuclear matter
outside the quark matter core. This means that the total heat capacity and
the total neutrino emission rate (and hence the cooling rate) of a neutron
star with a CFL core will be determined completely by the nuclear matter
outside the core. The quark matter core is “inert”: with its small heat
capacity and emission rate it has little influence on the temperature of the
star as a whole. As the rest of the star emits neutrinos and cools, the core
cools by conduction, because the electrons keep it in good thermal contact
with the rest of the star. These qualitative expectations are nicely borne
out in the calculations presented by Page et al. [95].

The analysis of the cooling history of a neutron star with a quark matter
core in the 2S5C phase is more complicated. The red and green up and
down quarks pair with a gap many orders of magnitude larger than the
temperature, which is of order 10 keV, and are therefore inert as described
above. Any strange quarks present will form a (ss) condensate with angular
momentum J = 1 [97]. The resulting gap has been estimated to be of
order hundreds of keV [97], although applying results of Ref. [98] suggests a
somewhat smaller gap, around 10 keV. The blue up and down quarks can
also pair, forming a J = 1 condensate which breaks rotational invariance [3].
The related gap was estimated to be a few keV [3], but this estimate was
not robust and should be revisited in light of more recent developments
given its importance in the following. The critical temperature T, above
which no condensate forms is of order the zero-temperature gap A. (T, =
0.57A for J = 0 condensates [70].) Therefore, if there are quarks for which
A ~ T or smaller, these quarks do not pair at temperature 1. Such quark
quasiparticles will radiate neutrinos rapidly (via direct URCA reactions like
d—u+e+v,u—d+e” +v, etc.) and the quark matter core will cool
rapidly and determine the cooling history of the star as a whole [95, 96].
The star will cool rapidly until its interior temperature is T' < T, ~ A, at
which time the quark matter core will become inert and the further cooling
history will be dominated by neutrino emission from the nuclear matter
fraction of the star. If future data were to show that neutron stars first cool
rapidly (direct URCA) and then cool more slowly, such data would allow
an estimate of the smallest quark matter gap. We are unlikely to be so
lucky. The simple observation of rapid cooling would not be an unambiguous
discovery of quark matter with small gaps; there are other circumstances in
which the direct URCA processes occurs. However, if as data on neutron
star temperatures improves in coming years the standard cooling scenario
proves correct, indicating the absence of the direct URCA processes, this
would rule out the presence of quark matter with gaps in the 10 keV range
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or smaller. The presence of a quark matter core in which all gaps are > T
can never be revealed by an analysis of the cooling history.

Supernova Neutrinos: We now turn from neutrino emission from a neu-
tron star which is many years old to that from the protoneutron star during
the first seconds of a supernova. Carter and Reddy [99] have pointed out
that when this protoneutron star is heated up to its maximum temperature
of order 30-50 MeV, it may feature a quark matter core which is too hot
for color superconductivity. As the core of the protoneutron star cools over
the coming seconds, if it contains quark matter this quark matter will cool
through T, entering the color superconducting regime of the QCD phase di-
agram from above. For T' ~ T, the specific heat rises and the cooling slows.
Then, as T drops further and A increases to become greater than T, the
specific heat drops rapidly. Furthermore, as the number density of quark
quasiparticles becomes suppressed by exp(—A/T), the neutrino transport
mean free path rapidly becomes very long [99]|. This means that all the neu-
trinos previously trapped in the now color superconducting core are able to
escape in a sudden burst. If we are lucky enough that a terrestrial neutrino
detector sees thousands of neutrinos from a future supernova, Carter and
Reddy’s results suggest that there may be a signature of the transition to
color superconductivity present in the time distribution of these neutrinos.
Neutrinos from the core of the protoneutron star will lose energy as they
scatter on their way out, but because they will be the last to reach the sur-
face of last scattering, they will be the final neutrinos received at the earth.
If they are emitted from the quark matter core in a sudden burst, they may
therefore result in a bump at late times in the temporal distribution of the
detected neutrinos. More detailed study remains to be done in order to un-
derstand how Carter and Reddy’s signature, dramatic when the neutrinos
escape from the core, is processed as the neutrinos traverse the rest of the
protoneutron star and reach their surface of last scattering.

r-mode Instabilities: Another arena in which color superconductivity
comes into play is the physics of r-mode instabilities. A neutron star whose
angular rotation frequency {2 is large enough is unstable to the growth of
r-mode oscillations which radiate away angular momentum via gravitational
waves, reducing 2. What does “large enough” mean? The answer depends
on the damping mechanisms which act to prevent the growth of the relevant
modes. Both shear viscosity and bulk viscosity act to damp the r-modes,
preventing them from going unstable. The bulk viscosity and the quark
contribution to the shear viscosity both become exponentially small in quark
matter with A > T and as a result, as Madsen [100] has shown, a compact
star made entirely of quark matter with gaps A = 1 MeV or greater is
unstable if its spin frequency is greater than tens to 100 Hz. Many compact
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stars spin faster than this, and Madsen therefore argues that compact stars
cannot be strange quark stars unless some quarks remain ungapped. Alas,
this powerful argument becomes much less powerful in the context of a
neutron star with a quark matter core. First, the r-mode oscillations have
a wave form whose amplitude is greatest near the surface, not in the core.
Second, in an ordinary neutron star there is a new source of damping: friction
at the boundary between the crust and the neutron superfluid “mantle”
keeps the r-modes stable regardless of the properties of a quark matter
core [100,101].

Magnetic Field Evolution: Next, we turn to the physics of magnetic
fields within color superconducting neutron star cores [102,103]. The interior
of a conventional neutron star is a superfluid (because of neutron-neutron
pairing) and is an electromagnetic superconductor (because of proton-proton
pairing). Ordinary magnetic fields penetrate it only in the cores of magnetic
flux tubes. A color superconductor behaves differently. At first glance,
it seems that because a diquark Cooper pair has nonzero electric charge,
a diquark condensate must exhibit the standard Meissner effect, expelling
ordinary magnetic fields or restricting them to flux tubes within whose cores
the condensate vanishes. This is not the case [103]. In both the 2SC and
CFL phase a linear combination of the U(1) gauge transformation of ordinary
electromagnetism and one (the eighth) color gauge transformation remain
unbroken even in the presence of the condensate. This means that the
ordinary photon A, and the eighth gluon Gi are replaced by new linear
combinations

A9 = cos og Ay +sinayg GZ,

Al)f = —sinag A, + cosag GZ , (4)

where Af}? is massless and Aff is massive. This means that By satisfies
the ordinary Maxwell equations while Bx experiences a Meissner effect.
The mixing angle g is the analogue of the Weinberg angle in electroweak
theory, in which the presence of the Higgs condensate causes the AZ and the
third SU(2)w gauge boson mix to form the photon, A,, and the massive Z
boson. sin(ayg) is proportional to e/g and turns out to be about 1/20 in the
2SC phase and 1/40 in the CFL phase [103]. This means that the Q-photon
which propagates in color superconducting quark matter is mostly photon
with only a small gluon admixture. If a color superconducting neutron star
core is subjected to an ordinary magnetic field, it will either expel the X
component of the flux or restrict it to flux tubes, but it can (and does [103])
admit the great majority of the flux in the form of a B magnetic field

satisfying Maxwell’s equations. The decay in time of this “free field” (i.e. not
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in flux tubes) is limited by the Q-conductivity of the quark matter. A color
superconductor is not a Q—supeNrconductor — that is the whole point — but
it turns out to be a very good Q-conductor due to the presence of electrons:
the B magnetic field decays only on a time scale which is much longer than
the age of the universe [103]. This means that a quark matter core within
a neutron star serves as an “anchor” for the magnetic field: whereas in
ordinary nuclear matter the magnetic flux tubes can be dragged outward by
the neutron superfluid vortices as the star spins down [104], the magnetic flux
within the color superconducting core simply cannot decay. Even though
this distinction is a qualitative one, it will be difficult to confront it with
data since what is observed is the total dipole moment of the neutron star.
A color superconducting core anchors those magnetic flux lines which pass
through the core, while in a neutron star with no quark matter core the
entire internal magnetic field can decay over time. In both cases, however,
the total dipole moment can change since the magnetic flux lines which do
not pass through the core can move.

Glitches in Quark Matter: The final consequence of color superconduc-
tivity we wish to discuss is the possibility that (some) glitches may originate
within quark matter regions of a compact star [98]. In any context in which
color superconductivity arises in nature, it is likely to involve pairing between
species of quarks with differing chemical potentials. If the chemical potential
difference is small enough, BCS pairing occurs as we have been discussing.
If the Fermi surfaces are too far apart, no pairing between the species is pos-
sible. The transition between the BCS and unpaired states as the splitting
between Fermi momenta increases has been studied in electron [105] and
QCD [7,8,106] superconductors, assuming that no other state intervenes.
However, there is good reason to think that another state can occur. This
is the “LOFF” state, first explored by Larkin and Ovchinnikov [107] and
Fulde and Ferrell [108] in the context of electron superconductivity in the
presence of magnetic impurities. They found that near the unpairing tran-
sition, it is favorable to form a state in which the Cooper pairs have nonzero
momentum. This is favored because it gives rise to a region of phase space
where each of the two quarks in a pair can be close to its Fermi surface, and
such pairs can be created at low cost in free energy. Condensates of this
sort spontaneously break translational and rotational invariance, leading to
gaps which vary periodically in a crystalline pattern. If in some shell within
the quark matter core of a neutron star (or within a strange quark star)
the quark number densities are such that crystalline color superconductivity
arises, rotational vortices may be pinned in this shell, making it a locus for
glitch phenomena.
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We [98] have explored the range of parameters for which crystalline color
superconductivity occurs in the QCD phase diagram, upon making various
simplifying assumptions. For example, we focus primarily on a four-fermion
interaction with the quantum numbers of single gluon exchange. Also, we
only consider pairing between u and d quarks, with uq = 1 + dp and p, =
i — 0, whereas we expect a LOFF state when the difference between the
Fermi momenta of any two quark flavors is near an unpairing transition. We
find the LOFF state is favored for values of du which satisfy du1 < dp < du
where dp1/Ag = 0.707 and dua/Ag = 0.754 in the weak coupling limit in
which Ag < p. (Here, Ay is the 2SC gap that would arise if du were zero.)
The LOFF gap parameter decreases from 0.23Aq at dpu = duy (where there
is a first order BCS-LOFF phase transition) to zero at du = dug (where
there is a second order LOFF-normal transition). Except for very close to
dpo, the critical temperature above which the LOFF state melts will be
much higher than typical neutron star temperatures. At stronger coupling
the LOFF gap parameter decreases relative to Ay and the window of du/A
within which the LOFF state is favored shrinks. The window grows if the
interaction is changed to weight electric gluon exchange more heavily than
magnetic gluon exchange.

The quark matter which may be present within a compact star will
be in the crystalline color superconductor (LOFF) state if du/Aq is in the
requisite range. For a reasonable value of du, say 25 MeV, this occurs if
the gap Ay which characterizes the uniform color superconductor present
at smaller values of du is about 40 MeV. This is in the middle of the range
of present estimates. Both du and Ay vary as a function of density and
hence as a function of radius in a compact star. Although it is too early to
make quantitative predictions, the numbers are such that crystalline color
superconducting quark matter may very well occur in a range of radii within
a compact star. It is therefore worthwhile to consider the consequences.

Many pulsars have been observed to glitch. Glitches are sudden jumps in
rotation frequency {2 which may be as large as A2/ ~ 1075, but may also
be several orders of magnitude smaller. The frequency of observed glitches is
statistically consistent with the hypothesis that all radio pulsars experience
glitches [109]. Glitches are thought to originate from interactions between
the rigid crust, somewhat more than a kilometer thick in a typical neutron
star, and rotational vortices in the neutron superfluid which are moving (or
trying to move) outward as the star spins down. Although the models [110]
differ in important respects, all agree that the fundamental requirements
are the presence of rotational vortices in a superfluid and the presence of a
rigid structure which impedes the motion of vortices and which encompasses
enough of the volume of the pulsar to contribute significantly to the total
moment of inertia.
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Although it is premature to draw quantitative conclusions, it is interest-
ing to speculate that some glitches may originate deep within a pulsar which
features a quark matter core, in a region of that core in which the color su-
perconducting quark matter is in a LOFF crystalline color superconductor
phase. A three flavor analysis is required to determine whether the LOFF
phase is a superfluid. If the only pairing is between u and d quarks, this
2SC phase is not a superfluid [3,7], whereas if all three quarks pair in some
way, a superfluid is obtained [5,7]. Henceforth, we suppose that the LOFF
phase is a superfluid, which means that if it occurs within a pulsar it will
be threaded by an array of rotational vortices. It is reasonable to expect
that these vortices will be pinned in a LOFF crystal, in which the diquark
condensate varies periodically in space. Indeed, one of the suggestions for
how to look for a LOFF phase in terrestrial electron superconductors relies
on the fact that the pinning of magnetic flux tubes (which, like the rota-
tional vortices of interest to us, have normal cores) is expected to be much
stronger in a LOFF phase than in a uniform BCS superconductor [111].

A real calculation of the pinning force experienced by a vortex in a
crystalline color superconductor must await the determination of the crys-
tal structure of the LOFF phase. We can, however, attempt an order of
magnitude estimate along the same lines as that done by Anderson and
Itoh [112] for neutron vortices in the inner crust of a neutron star. In that
context, this estimate has since been made quantitative [110,113,114]. For
one specific choice of parameters [98], the LOFF phase is favored over the
normal phase by a free energy Fiorr ~ 5 % (10 MeV)* and the spacing
between nodes in the LOFF crystal is b = n/(2|q|) ~ 9 fm. The thickness
of a rotational vortex is given by the correlation length £ ~ 1/A ~ 25 fm.
The pinning energy is the difference between the energy of a section of
vortex of length b which is centered on a node of the LOFF crystal wvs
one which is centered on a maximum of the LOFF crystal. It is of or-
der B, ~ Fiorr b® ~ 4 MeV. The resulting pinning force per unit length
of vortex is of order f, ~ E,/b?> ~ (4 MeV)/(80 fm?). A complete calcu-
lation will be challenging because b < &, and is likely to yield an f, which
is somewhat less than that we have obtained by dimensional analysis. Note
that our estimate of f, is quite uncertain both because it is only based on
dimensional analysis and because the values of A, b and F1,opF are uncer-
tain. (We hae a good understanding of all the ratios A/Ag, du/Ag, q/Ao
and consequently bAg in the LOFF phase. It is of course the value of the
BCS gap Ag which is uncertain.) It is premature to compare our crude
result to the results of serious calculations of the pinning of crustal neu-
tron vortices as in Refs. [110,113,114]. It is nevertheless remarkable that
they prove to be similar: the pinning energy of neutron vortices in the
inner crust is B, ~ 1 — 3 MeV and the pinning force per unit length is
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fp = (1—3 MeV)/(200 — 400 fm?). Perhaps, therefore, glitches occurring in
a region of crystalline color superconducting quark matter may yield similar
phenomenology to those occurring in the inner crust.

Perhaps the most interesting consequence of these speculations arises
in the context of compact stars made entirely of strange quark matter.
The work of Witten [115] and Farhi and Jaffe [116] raised the possibil-
ity that strange quark matter may be energetically stable relative to nu-
clear matter even at zero pressure. If this is the case it raises the question
whether observed compact stars—pulsars, for example—are strange quark
stars [117,118] rather than neutron stars. A conventional neutron star may
feature a core made of strange quark matter, as we have been discussing
above!?. Strange quark stars, on the other hand, are made (almost) en-
tirely of quark matter with either no hadronic matter content at all or with
a thin crust, of order one hundred meters thick, which contains no neu-
tron superfluid [118,119]. The nuclei in this thin crust are supported above
the quark matter by electrostatic forces; these forces cannot support a neu-
tron fluid. Because of the absence of superfluid neutrons, and because of
the thinness of the crust, no successful models of glitches in the crust of
a strange quark star have been proposed. Since pulsars are observed to
glitch, the apparent lack of a glitch mechanism for strange quark stars has
been the strongest argument that pulsars cannot be strange quark stars
[120-122]. This conclusion must now be revisited.

Madsen’s conclusion [100] that a strange quark star is prone to r-mode
instability due to the absence of damping must also be revisited, since the
relevant fluid oscillations may be damped within or at the boundary of a
region of crystalline color superconductor.

The quark matter in a strange quark star, should one exist, would be a
color superconductor. Depending on the mass of the star, the quark number
densities increase by a factor of about two to ten in going from the surface to
the center [118]. This means that the chemical potential differences among
the three quarks will vary also, and there could be a range of radii within
which the quark matter is in a crystalline color superconductor phase. This
raises the possibility of glitches in strange quark stars. Because the variation
in density with radius is gradual, if a shell of LOFF quark matter exists it
need not be particularly thin. And, we have seen, the pinning forces may
be comparable in magnitude to those in the inner crust of a conventional
neutron star. It has recently been suggested (for reasons unrelated to our
considerations) that certain accreting compact stars may be strange quark

10 Note that a convincing discovery of a quark matter core within an otherwise hadronic
neutron star would demonstrate conclusively that strange quark matter is not stable
at zero pressure, thus ruling out the existence of strange quark stars. It is not possible
for neutron stars with quark matter cores and strange quark stars to both be stable.
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stars [123], although the evidence is far from unambiguous [124]. In contrast,
it has been thought that, because they glitch, conventional radio pulsars
cannot be strange quark stars. Our work questions this assertion by raising
the possibility that glitches may originate within a layer of quark matter
which is in a crystalline color superconducting state.

Closing Remarks: The answer to the question of whether the QCD phase
diagram does or does not feature a 2SC interlude on the horizontal axis,
separating the CFL and baryonic phases in both of which chiral symmetry
is broken, depends on whether the strange quark is effectively heavy or ef-
fectively light. This is the central outstanding qualitative question about
the high density region of the QCD phase diagram. A central question at
higher temperatures, namely where does nature locate the critical point F,
also depends on the strange quark mass. Both questions are hard to an-
swer theoretically with any confidence. The high temperature region is in
better shape, however, because the program of experimentation described
in Section 2 allows heavy ion collision experiments to search for the critical
point E. Theorists have described how to use phenomena characteristic of
freezeout in its vicinity to discover F; this gives experimentalists the ability
to locate it convincingly. The discovery of E would allow us to draw the
higher temperature regions of the map of the QCD phase diagram in ink.
At high density, there has been much recent progress in our understanding
of how the presence of color superconducting quark matter in a compact
star would affect five different phenomena: cooling by neutrino emission,
the temporal pattern of the neutrinos emitted by a supernova, the evolution
of neutron star magnetic fields, r-mode instabilities, and glitches. Neverthe-
less, much theoretical work remains to be done before we can make sharp
proposals for which astrophysical observations are most likely to help teach
us how to ink in the boundaries of the 25C and CFL regions in the QCD
phase diagram. Best of all, though, and as in heavy ion physics, a wealth of
new data is expected over the next few years.
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