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The formation and the structure of a mixed quark—nucleon phase in
neutron star cores are studied, for different models of the nuclear symmetry
energy. Simple parametrizations of the nuclear matter equation of state and
the bag model for the quark phase are used. For lower values of the bag
constant B the properties of the mixed phase do not depend strongly on
the symmetry energy. For larger B we find that a critical pressure for the
first quark droplets to form in the nucleon medium is strongly dependent
on the nuclear symmetry energy, but the pressure at which last nucleons
disappear is independent of it.

PACS numbers: 26.60.+c, 21.65.+f, 97.60.Jd, 12.38.Mh

1. Introduction

Properties of neutron stars result from the Equation Of State (EOS) of
dense nuclear matter. The present knowledge of EOS is quite uncertain, es-
pecially at densities considerably exceeding the saturation density of nuclear
matter ng = 0.17 fm~3. Generally, it is expected that pure nucleon matter
existing at the base of a neutron star’s crust changes in some new form of
matter with increasing density of a core. The exact form of this matter,
however, is unknown. Depending on the theoretical approach it may be e.g.
condensate of pions or kaons, hyperonic matter or quark matter. The exis-
tence of the latter kind of matter inside neutron stars is expected as a result
of the deconfinement transition which should take place when the density of
nuclear matter is sufficiently high.
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Recently, Glendenning [1] has shown that the proper construction of the
nucleon—quark phase transition inside neutron stars must take into account
the condition that the two independent quantum numbers carried by com-
ponents of the neutron star matter, namely the baryon number and the elec-
tric charge, have to be only globally conserved during the phase transition.
When instead the local charge neutrality is applied to the system, general
conditions of equilibrium cannot be satisfied. Imposition of the global charge
neutrality allows for a nonuniform distribution of the baryon number and
the electric charge in two phases creating an additional degree of freedom.
Exploitation of this degree of freedom depends on the proportion of phases
in equilibrium and in consequence leads to the coexistence of nucleon matter
and quark matter over a finite range of pressure. This has the effect that a
core, or a spherical shell, of a mixed quark—nucleon phase can exist inside
neutron stars. The fraction of space occupied by quark matter smoothly
increases from zero at the core boundary, where pressure reaches a critical
value for the first quark droplets formation in the nucleon medium, to unity
when eventually the last nucleons dissolve into quarks. In addition, nonequal
division of the electric charge between two phases leads to the appearance of
a geometrical structure in the mixed phase. It has been shown by Heiselberg
et al. [2] that the structured mixed phase remains the ground state of the
neutron star matter if only physically reasonable values of surface tension
are assumed.

In the original construction due to Glendenning, nucleon matter was
treated in the Relativistic Mean Field (RMF) model. The nuclear symme-
try energy in this model increases monotonically with the baryon number
density [3]. This feature is in contrast to several Variational Many-Body
(VMB) calculations of the equation of state of nuclear matter [4]. These
models use phenomenological nucleon—nucleon potentials and hence can be
regarded as more realistic. They predict the symmetry energy to saturate
and then to decrease to negative values at high baryon number densities.
This discrepancy in high density behavior of the nuclear symmetry energy
leads to serious uncertainty about some astrophysically important proper-
ties of the neutron star matter. Here we study the consequences of this
uncertainty for the formation and structure of a mixed quark—nucleon phase
in neutron star cores.

2. Mixed quark—nucleon phase

In the construction of the phase transition the neutron star matter is
assumed to be cold, S-stable and globally charge neutral. The geometry
of droplets is neglected in these calculations since inclusion of finite-size
effects results in only small corrections to the equation of state, which do
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not change considerably the results of this simple approach. We discuss
these effects in our paper [5], where the reader can find more details of the
calculation method and the analysis of the properties of the phase transition
is also given there. Some most important results regarding finite-size effects
will be shortly discussed at the end of the paper.

In the case where geometrical effects are neglected the equilibrium con-
ditions are those for bulk systems. The coexistence of the quark matter
with the nucleon medium under given pressure p requires equality of chem-
ical potentials in both phases. In the case of the neutron star matter there
are two independent chemical potentials representing two globally conserved
quantum numbers. Both are functions of pressure which is chosen as an in-
dependent variable. Hence, the equilibrium conditions are

pr(p) = wiy(p), (1)
pp(p) = wp(p), (2)

where p and p% are the neutron chemical potentials in the nucleon and
the quark phase, respectively. Similarly, % and pf, are the proton chemical
potentials in respective phases. The coexistence conditions become complete
by adding the B-equilibrium equation

MZ]-V_M%:Mea iz”aQa (3)

where p. is the electron chemical potential, and n and ¢ refer to the nucleon
and the quark phases, respectively. From Eq. (3) and the formula for the
electron chemical potential

He = (37T2ne)1/3 (4)

we obtain the density of electrons me. We assume them to be uniformly
distributed throughout both phases.

Solutions of Egs. (1)-(3) provide the densities of protons np in the nu-
cleon phase and the electric charge density of quarks n, in units of e. The
global charge neutrality condition requires that

Vine = Vpnp + Vgng, (5)

where V,, is the volume occupied by nucleons and V; is the volume of quarks.
Since the total available volume is V;, +V, = V', we can define a quantity
a =V, /V, which is the fraction of space containing nucleons. From Eq. (5)
we obtain « in the form
o — e " Mg (6)
np — nq

The quarks occupy a complementary fraction, 1 — a, of the volume.
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At a sufficiently low pressure free quarks are absent in the neutron star
matter and o = 1. The first quark droplets form at the lower critical pres-
sure p;. It corresponds to « starting to deviate from unity for the first time.
With increasing pressure, more space is filled with the quark matter and
a < 1. Quarks coexist with the nucleon matter up to the upper critical
pressure py at which nucleons finally disappear and «(ps) = 0.

3. Nuclear and quark matter models

To implement the above construction in practical calculations specific
models of the nucleon matter and the quark matter have to be used. The
nuclear matter equation of state yielded by variational many-body calcu-
lations can be simply parametrized as a function of the baryon number
density n and the proton fraction z = np/n [6]. The energy per particle is
expressed as

E(n,z) = T(n,z) + Vo(n) + (1 - 22)*Va(n), (7)

where T'(n, z) is the kinetic energy contribution and Vjy(n) and Va(n) func-
tions represent the interaction energy contributions. From Eq. (7) the pres-
sure p(n,z) and chemical potentials of neutrons and protons pR;(n,z) and
p'h(n, z) can be calculated. The function V5(n) is the most important com-
ponent in this expression as it is responsible for the high density behavior
of the nuclear symmetry energy,

Esym(n) = %T ('n, %) + Via(n), (8)

which influence on the mixed phase properties we study.

As an example of variational many-body calculations, we use the EOS
with the UV14+4TNI interactions from Ref. [4]. The corresponding func-
tion Va(n) is presented in Fig. 1. One should note that with this Va(n)
the symmetry energy Eq. (8) reproduces the empirical value, Fgym(ng) =
34 £4 MeV [7]. At higher densities, Fsym(n) saturates and then decreases,
reaching negative values for n > 1.0 fm™3.

In Fig. 1 there is also shown the linear growth of the function Va(n)
corresponding to the RMF approach. The energy per particle of this model
can also be cast in the form (7) [8], with the function Va(n) expressed by

19,
mp

Va(n) (9)

in this case. The linear dependence of V5 on the baryon number density
gives the monotonical growth of the nuclear symmetry energy with n in the



Nucleon—Quark Phase Transition in Neutron Stars 3057

0.8
0.6
= 0.4
é 0.2+
-~ O0fF-———-
> 0.2-
-0.44 VMB

-0.6

RMF

02 04 06 08 | 12 14 16

n [fm™?]
Fig.1. The interaction energy Va(n) as a function of the baryon number density,
for the VMB and RMF models.

RMF model. As we are concerned here mainly with the role of the symmetry
energy, we model the energy per particle corresponding to the RMF theory
using the function V2(n) in the form (9) and keeping other contributions in
Eq. (7) the same as in the VMB case. We also adjust the coupling parameter
gZ / m% so as to fit the empirical value of the nuclear symmetry energy at the
saturation point.

Fig. 2 demonstrates how the discrepancy in the high density behavior of
the symmetry energy predicted by both class of models implies uncertainty
in the proton fraction of the neutron star matter, a crucial parameter in
physics of neutron stars. For the case of the S-stable, pure nucleon matter
it is fully determined by the function Va(n) [5]. As is shown in Fig. 2, the
RMF model predicts that z(n) monotonically increases with the density,
whereas for V,(n) corresponding to the UV14+4TNI interactions the proton
fraction decreases with n and eventually protons disappear completely at
some density.
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Fig.2. The proton fraction of the §-stable neutron star matter corresponding to
the interaction energy V5 (n) in Fig. 1, for VMB and RMF models.
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The quark matter is described by a simple bag-model equation of state.
With the assumption of neglecting bare masses the energy density for three
flavors is

€q = %w2/3 (nf/g + nz/g + n;*/?’) + B, (10)

where n;,1 = u,d, s are the quark number densities. The exact value of the
bag constant B is not well known. We treat it here as a phenomenological
parameter and show results corresponding to two values of the bag constant,
B = 120 MeV /fm3 and B = 200 MeV /fm?.

The quark chemical potentials are

,uz-:7r2/3'n;/3, i =u,d,s. (11)

Since the 8 equilibrium condition requires equality of the chemical poten-
tials of down and strange flavors, for a given pressure, there are only two
independent quark chemical potentials. They are explicitly related to the
proton and neutron chemical potentials in the quark phase [5].

4. Results and implications for neutron stars

To solve the equilibrium conditions (1) and (2) we construct isobars for
the nucleon and quark matter in the pp—ux plane [5]. The example is shown
in Fig. 3 for the pressure value p = 100 MeV /fm?. For the nucleon phase we
parametrize isobars by the proton fraction x, whereas for the quark phase by
the down quark chemical potential. The coexistence conditions are fulfilled
at the crossing point of the nucleon and quark isobars. This point indicates
all quantities necessary for the construction of the phase transition includ-
ing also the density of the homogeneous electron background n., since the
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Fig.3. VMB and RMF nucleon isobars, and quark isobars for two values of the
bag constant, for pressure p = 100 MeV /fm?3.
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B-equilibrium condition (3) is satisfied at this point with the electron chem-
ical potential pe = pun — pp. For various values of pressure the coordinates
of the crossing point in the up—un plane, and together with them the prop-
erties of the coexisting phases, change.

The results of the construction of the nucleon—quark phase transition are
displayed in Fig. 4. For VMB and RMF models and for both values of the
bag constant the fraction of space occupied by nucleons smoothly changes
from unity at the lower critical pressure p; to zero at the upper critical one,
py. The lower critical pressure p; is a pressure at which the proton fraction
of the nucleon matter at the crossing of the isobars coincides with that of
the B-stable neutron star matter at this pressure. For B = 120 MeV /fm3,
it is p; = 2 MeV/fm?® and p; = 3 MeV/fm? for VMB and RMF models,
respectively. The lower critical pressure corresponds to the formation of
the first quark droplets in the nucleon medium. At higher pressure the
quark matter coexists with nucleons and the fraction of volume filled with
quarks gradually increases. At the upper critical pressure py the last nucleon
droplets immersed in quark matter finally dissolve. It has a common value
for both VMB and RMF isobars. In the case of B = 120 MeV /fm?, pyr =115
MeV /fm3.

50 100 150 200 230 300
p [MeV /fm?]

Fig.4. The fraction of the mixed phase volume filled with nucleons as a function
of pressure for VMB and RMF models and for both values of B.

For B = 200 MeV /fm?, the lower critical pressure for the VMB and RMF
isobars is, respectively, p; = 215 MeV /fm? and p; = 35 MeV /fm3. The value
of the upper critical pressure is p; = 290 MeV /fm?.

The results presented in Fig. 4 prove that the properties of the nucleon—
quark phase transition are very sensitive to the behavior of the nuclear sym-
metry energy only for higher values of the bag constant. This is because,
generally, the phase transition occurs at a higher pressure for higher val-
ues of B, and the VMB and RMF isobars differ much more at high values
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of pressure (see Figs. 5 and 6 in Ref. [5]). For low values of the bag con-
stant, the phase transition starts at a low enough pressure for the nuclear
symmetry energy not to affect the isobars significantly.

In Fig. 5 we show the proton fraction of nucleon matter coexisting at a
given pressure with quark matter, as a function of the mean baryon number
density n = an + (1 — a)n?, where n® = (n, + ng + n,)/3 is the baryon
number density of quark matter. The density corresponding to the lower
critical pressure p; at which the phase transition starts is n;. For B = 120
MeV /fm?3 7; = 0.17 fm 3 is approximately the same for both nuclear mod-
els. In the case of B = 200 MeV /fm?3, #; = 0.84 fm 3 and 7; = 0.35 fm 3,
respectively, for the VMB and RMF models. The phase transition is com-
pleted at the density ny corresponding to the upper critical pressure py. It
is iy = 0.8 fm 3 and Ay = 1.39 fm 3 for B = 120 MeV/fm® and B =
200 MeV /fm?3, respectively. One can notice that nucleon matter becomes
more proton rich with increasing pressure irrespective of the nuclear symme-
try energy. At the upper critical pressure py disappearing nucleon droplets
for both nuclear models are composed of symmetric nuclear matter. In
Ref. [1] this increase of the proton fraction with pressure was attributed to
the particular form of the symmetry energy in the RMF approach. It was
suggested there that the isospin properties of this model are responsible for
the existence of the mixed quark—nucleon phase. As we show here, the phase
transition from nucleon to quark matter occurs irrespective of the particu-
lar form of the nuclear symmetry energy and it is the behavior of nucleon
matter isobars that allows the existence of the mixed phase.
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Fig.5. The proton fraction of nucleon matter coexisting with quark matter as a
function of the mean baryon number density.

In order to investigate the consequences of the existence of a mixed
quark-—nucleon phase for neutron stars we construct the equations of state
for the models of matter with the mixed phase and for pure nucleon matter
and solve models of neutron star structure. Curves presented on the plot of
neutron star masses as functions of the central density (Fig. 6) correspond to
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Fig.6. Neutron star masses as functions of the central density. The dotted line
corresponds to pure nucleon matter in the RMF model. The dash—dotted line is
for pure nucleon VMB equation of state. Solid and dashed curves are for equations
of state involving the mixed quark—nucleon phase. The horizontal line shows the
empirical lower limit to the maximum neutron star mass.

the solutions of Tolman—Oppenheimer—Volkoff equations with a given EOS.
The existence of quark matter in neutron star cores makes the equation of
state softer. The maximum masses of neutron stars containing the mixed
phase are smaller than those with the pure nucleon matter. The effect
is stronger for low B, since the mixed phase comprises more mass of the
star than for higher values of the bag constant. For B < 120 MeV /fm?3
the maximum mass is below the observational limit, so that these models
cannot be realized in nature. For B = 200 MeV /fm? the maximum mass
safely exceeds this limit and the influence of the symmetry energy is clearly
visible in this case. As the phase transition in the RMF model starts at much
lower pressure than in the VMB case, the maximum mass corresponding to
the RMF approach is well below that for the VMB model. Correspondingly,
the mixed phase cores of neutron stars of a given mass are much larger in
the RMF model as compared with the VMB case.

The above results deal with the phase transition between two bulk sys-
tems. When the finite-size effects (i.e. the Coulomb interaction and the
surface tension) are included in the calculations, a variety of geometric struc-
tures appears in the mixed phase. They are formed by regions filled with
nucleons and quarks that have opposite electric charge density [9]. Sizes
and shapes of these structures change with the fraction of space occupied
by nucleons, « [5]. But, as it was mentioned already, the structured mixed
phase is the ground state of the neutron star matter only for sufficiently
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small values of surface tension. We find that the range of o < 10 MeV /fm?
for the VMB model and o < 150 MeV /fm? for the RMF one (B = 200
MeV /fm?) is allowed for the mixed phase to be energetically favored [5].
Thus, the appearance of this phase, is dependent not only on the exact
value of the surface tension, but it is also very sensitive to the form of the
nuclear symmetry energy.

5. Discussion and conclusions

The scenario of the phase transition from nucleon to quark matter is
connected with the formation of a mixed phase. The occurrence of this
phase is irrespective of the particular form of the nuclear symmetry energy,
but its properties strongly depend on the nuclear matter model. Properties
of neutron stars also depend on it, in particular, the size of the mixed phase
core is very sensitive to the form of the symmetry energy. A neutron star of
the canonical mass M = 1.44 Mg, for B = 200 MeV /fm?® and with the RMF
symmetry energy, possesses a quark—nucleon core of ~ 7 km radius, whereas
its total radius is ~ 12 km. In the VMB model, the star is composed entirely
of nucleons. It is because in the latter case the pressure in the center of a star,
pe = 120 MeV /fm?, is below the lower critical value p; = 215 MeV /fm? at
which the phase transition begins. Thus conclusions concerning the presence
of the quark matter in neutron stars are subject to some uncertainty due
to incompatible model predictions of high density behavior of the nuclear
symmetry energy.

Variational many-body calculations seem to be more realistic than rela-
tivistic models. Description of the interactions between nucleons in the case
of the VMB approach is based on phenomenological nucleon—nucleon poten-
tials concluded from experiments. The allowed range of surface tension is,
however, very narrow for the VMB model and unless the true value of o is
very small the quark matter will not form inside neutron stars in this case.

The observational confirmation of the existence of a mixed phase in the
cores of neutron stars is difficult. A structure of such object, without any
discontinuity in the density of matter, will not rather manifest itself in ob-
servational data. However, it is potentially possible to detect the phase
transition to quark matter proceeding in rotating neutron stars, which are
observed as pulsars. During the course of spin-down, a pulsar can develop
the mixed phase core. This would lead to characteristic changes in timing
properties of pulsar’s signal [10]. Moreover, the mixed phase is expected to
be solid. Strains appearing in such a medium lead to the quake phenomena
which are probably related to glitches observed in some pulsars [11]. The
existence of the mixed quark—nucleon phase inside neutron stars can also
strongly influence the cooling mechanisms [11].
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