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A MODIFIED FORM OF THE POLAR MODELOF CRYSTALS�L. DidukhTernopil State Tehnial University, Department of Physis56 Rus'ka St., Ternopil UA�46001, Ukrainee-mail: didukh�tu.edu.te.ua(Reeived November 13, 2000)A modi�ed form of the polar model of rystals is proposed. A peu-liarity of the model is the dependene of the hopping integral on the siteoupation. In the ases of weak and strong interations the e�etive modelHamiltonian, whih generalises the known forms of the e�etive Hamilto-nian, is derived. It is shown that the model has the eletron-hole asym-metry, in ontrast to the Hubbard model. The metal-insulator transitionwithin the model is also studied. The obtained results are ompared withexperimental data for narrow-band materials. Some spei� narrow-bande�ets are disussed.PACS numbers: 71.10.Fd, 71.27.+a, 71.28.+d1. Introdution1. The fat that unique properties of narrow-band systems (for exampleoxides, sulphides and selenides of transition metals) are aused by eletron-eletron interations is generally aepted in our time. But, in spite of thegreat number of the papers onerning this problem, it is still an atualproblem of ondensed matter physis to onstrut the onsistent theory ofnarrow-band systems. During the reent years the range of problems on-neted with the orrelation problem and an importane of investigating thenarrow band systems have intensi�ed with the disovery of high-T super-ondutors.Important problems an be separated into three groups:(1) a onstrution of the narrow-band-system models using adequate Hamil-tonians;� Contributed to the XL Craow Shool of Theoretial Physis, Zakopane, PolandJune 3�11, 2000 (in the author absentia).(3097)



3098 L. Didukh(2) an elaboration of e�etive mathematial methods to study those modelHamiltonians;(3) a onstrution of the onsistent theory of orrelation e�ets and anexplanation of peuliarities of physial properties in the narrow-bandsystems.Problems (1) and (2) had been onsidered and partially solved by Shubinand Vonsovsky within their famous polar model [1℄. In this a model Hamilto-nian and its �on�gurational� representation had been proposed. The polarmodel proves to be very meaningful due to the heuristi value of �on�gura-tional� desription idea (basi for model treatment of 3d-ompounds [2℄.) Inthe frame of the polar model a riterion of metal-insulator transition (MIT)was formulated for the �rst time; an explanation of frational atom momen-tum in transition 3d-metals, a hypothesis of the possibility of harge orderingwere also proposed; a possibility of having a gapeless semiondutor and su-perexhange interation were predited. Commonly used Hubbard model isa partial ase of the polar model [3℄.However, a diret use of the polar model (in the traditional form [1℄) tosolve the problems had been proved to be not e�etive in many ases.Firstly, the transition from the seond quantisation Hamiltonian in termsof eletron operators to its representation in terms of Shubin�Vonsovsky op-erators had been realized by the substitution of some ombination of eletronoperators through the ombination of Shubin�Vonsovsky operators with thesame ation on the wave funtion. Suh transition is umbersome and di�-ult even for the s-band situation (see for example [4℄).Seondly, the approximations underlying the mathematial treatment ofthe polar model are unontrollable (�rst of all, the postulation of Bose-typeommutation rules for the operators of urrent exitation).2. The polar model theory was developed in two ways. The �rst oneis onneted with developing the methods of e�etive mathematial treat-ment of initial polar model Hamiltonian in the eletron representation. Thefundamental results in this way belong to Bogolubov [5℄. He proposed thee�etive Hamiltonian method whih took into aount high energy eletronstates with the help of speial form of the perturbation theory. This methodis one of the most onsistent approahes to study of the exhange intera-tions in magneti insulators [6℄. A use of the on�gurational representationof the polar model (polar and homeopolar states) proved to be helpful forinterpretation of the obtained results, and ontrol of the performed alula-tions (sometimes very bulky).The seond way is based on a diret use of the on�gurational repre-sentations. This approah is e�etive for investigation of peuliarities of



A Modi�ed Form of the Polar Model of Crystals 3099narrow-band systems, insulators and semiondutors, on one hand, metalsand materials in whih MIT is aused by external in�uenes, on the other.Important ahievement in this way was obtained in the works of Lvivbranh in theory of solids. Here the works [7, 8, 9℄ of Glauberman, Vladimirov,Stasyuk were preursory. In this way, the important problems of the polarmodel of non-metalli rystals (the problem of onstruting model Hamilto-nians in the terms of site elementary exitations and the problem of om-mutation rules for operators of site elementary exitations) were solved.3. The wide use of the on�gurational forms of model Hamiltonians toonsider physial properties of narrow-band materials is assoiated with pa-per of Hubbard [10℄ in whih Xkli -operators had been introdued and papers[11, 12℄ where the relation between eletron- and transition-operators hadbeen �rst established, an e�etive form of perturbation theory had beenproposed. It had been shown that the proper identi�ation of the Shubin�Vonsovsky operators and transition-operators (the Hubbard operators)leads to formal equivalene of the traditional form of the polar model andits modern representations in terms of transition-operators. It also had beenshown that Xkli = �yik�il;where �yik; �il � Shubin�Vonsovsky operators of reation and destrutionof jki-state and jli-state respetively on i-site.An expedieny of using Xkli - or �yi��i�-representation is predited byrequirements of onsidered problem. In alulations using diagrammatiGreen funtions tehnique or perturbation theory it is onvenient to useXkli -representation of Hamiltonian [13℄, in problems using approximate se-ond quantisation method (e.g. to study MIT using the mean-�eld approx-imation (MFA) in generalised Hartree�Fok approximation [14℄) �yi��i�-representation is more onvenient. The b--representation (see Ref. [14℄)an also be useful.4. The representation of a narrow-band Hamiltonian in the terms ofXkli ,b-- or �yi��i�-operators are helpful for understanding the orrelation e�ets,to explain physial properties of narrow-band materials. This representationis onvenient from the point of view of mathematial treatment of models.Below a onsistent form of the polar model of narrow-band materials isproposed and the onsequenes derived from this model are disussed.



3100 L. Didukh2. The HamiltonianHamiltonian of the system of s-eletrons in the Wannier-representationis written as H = ��Xi� ayi�ai� +X0ij�t(ij)ayi�aj�+12Xijkl�;�0 J(ijkl)ayi�aj�0al�0ak� ; (2.1)where ayi�, ai� � reation and destrution operators of eletron on site i,� ="; #, � � hemial potential, ni� = ayi�ai�, andt(ij) = Z ��(r �Ri)Xn V (r �Rn)�(r �Rj)dr ; (2.2)J(ijkl) = Z Z ��(r �Ri)�(r �Rk) e2jr � r0 j���(r0 �Rj)�(r0 �Rl)drdr0 ; (2.3)are respetively the matrix elements whih desribe hoppings of eletronsbetween nearest-neighbour sites of lattie (V (r � Ri) is the potential en-ergy of eletron interating with an ion on i-site), and the eletron�eletroninterations. The prime by the seond sum in Eq. (2.1) means that i 6= j.Narrow energy bands allow to simplify Hamiltonian (2.1). Here wavefuntions losely resemble atomi 3d-funtions (their overlapping dereasequikly with inrease of the inter-atomi spaing), so matrix elements t(ij)and J(ijkl) an be estimated from degree of overlapping. Thus quantitiesJ(iiii) and J(ikik) will be of zero order, J(iiij), J(ijkj) � of �rst order (ast(ij)), J(ijkl) at i 6= k; j 6= l � of seond order (immediate estimation ofJ(ijkl) is given in the paper [3℄). In aordane with this we limit ourselvesto aounting in Hamiltonian (2.1) matrix elements J(iiii) = U , J(ijij) =V (ij) (i and j are nearest neighbours), J(iiij) = T (ij), J(ijkj) (k 6= i; k 6=j), J(ijji) = J(ij); taking into aount quantity of seond order J(ij) ison priniple neessary to desribe ferromagnetism in this model in Mott�Hubbard insulator state. ThenH = � �Xi� ayi�ai� +X0ij�ayi�(t(ij) +Xk J(ikjk)nk)aj� + UXi ni"ni#+ 12X0ij��0J(ij)ayi�ayj�0ai�0aj� + 12X0ij��0V (ij)ni�nj�0 ; (2.4)where ni = ni" + ni#.



A Modi�ed Form of the Polar Model of Crystals 3101In Hamiltonian (2.4) we rewrite the sum P0ij�k J(ikjk)ayi�nkaj� in theform Xij� 0Xk 6=ik 6=j J(ikjk)ayi�nkaj� +Xij� 0 �J(iiij)ayi�aj�ni�� + h::� (2.5)(�� denotes spin projetion whih is opposite to �). We suppose (as in pa-pers [14, 15℄) thatXij� 0Xk 6=ik 6=j J(ikjk)ayi�nkaj� = nXk 6=ik 6=j J(ikjk)Xij� 0ayi�aj�with n = hni" + ni#i (sites i and j are nearest neighbours). It should benoted that this supposition is exat in the homeopolar limit (ni = 1).Thus Hamiltonian (2.4) takes the following formH = � �Xi� ayi�ai� +X0ij�tij(n)ayi�aj�+ X0ij� �T (ij)ayi�aj�ni�� + h::�+ UXi ni"ni#+ 12X0ij��0J(ij)ayi�ayj�0ai�0aj� + 12X0ij��0V (ij)ni�nj�0 ; (2.6)where tij(n) = t(ij) + nXk 6=ik 6=j J(ikjk) (2.7)is the e�etive hopping integral between nearest neighbours.Negleting all matrix elements in (2.6) exept t(ij) and J(iiii) we obtainthe Hubbard Hamiltonian.The transition from the general form of Hamiltonian (2.6) to the Hub-bard Hamiltonian, i.e. taking into aount only the intra atomi Coulombrepulsion, it is often argued that the quantities J(iiij), J(ikjk), J(ijji) andJ(ijij) are small in omparison with J(iiii). However, taking inlusion ofthese matrix elements an be in priniple important from the point of view ofboth the onstrution of orrelation e�ets theory in materials with narrowenergy bands and the interpretation of physial properties of these materials[13, 15�17℄.Negleting inter-atomi exhange interation is justi�ed by a smallnessof J(ij) in omparison with U and hopping integral t(ij), on the one hand,



3102 L. Didukha possibility of ferromagneti ordering stabilisation in narrow energy band(NEB) as a onsequene of �translational� mehanism of exhange, on theother hand. Without onsideration of a possibility of ferromagnetism real-ization in the one-band Hubbard model it should be noted that in NEB aontribution of translational part of energy in total system energy an besmaller then a ontribution of energy of inter-atomi exhange interation(in spite of the fat that jt(ij)j � J(ij)). Really, in partially �lled NEB (forU � jt(ij)j) the ontribution of translational part of ground state energy� nÆw (Æ � degree of deviation from half-�lling, n is the average numberof eletrons per site, 2w is the bandwidth) [16℄, and the ontribution of ex-hange interation in ground state energy � zn2J (J is the exhange integralbetween the nearest neighbours, z is the number of the nearest neighboursto a site). It is learly, that in NEB lose to half-�lling (Æ ! 0) the ontri-bution of energy of inter-atomi exhange interation in total system energywill be the largest. In partiular, in non-doped Mott�Hubbard ferromagnetsmagneti ordering is stabilised by inter-atomi exhange interation only.Taking into aount inter-atomi Coulomb interation is also importantto understand a harater of harge ordering in materials with NEB.Finally, we an neglet the orrelated hopping term (2.5); this is justi�edby estimating the matrix elements [3℄. However, matrix elements J(ikjk)are the hopping integrals. Thus taking into aount (2.5) leads to the renor-malisation of those proesses desribing the band part of Hamiltonian (2.6).In e�et, t(ij), T (ij), J(ikjk) are the quantities of the same order of mag-nitude.If diret exhange interation and inter-atomi Coulomb repulsion an betaken into aount by respetive renormalisation of hemial potential (fer-romagneti and harge orderings are absent) then Hamiltonian (2.6) takesthe form H = � �Xi� ni� +X0ij�tij(n)ayi�aj�+ X0ij� �T (ij)ayi�aj�ni�� + h::�+ UXi ni"ni#: (2.8)The peuliarity of the model of NEB material desribed by Hamilto-nian (2.8) relies on taking into aount inter-site hopping of eletrons whihare aused by eletron�eletron interation. In this onnetion the followingfat should be noted. Formally, orrelated hopping has been introdued inthe papers beginning from the pioneering work of Shubin and Vonsovsky [1℄;the possible renormalisation of �band� hopping as a onsequene of takinginto aount orrelated hopping had been noted in the papers [5, 18, 19℄.The important role of the orrelated hopping in NEB in generalizing theonept of the Hubbard subbands had been pointed out in [20℄. In that



A Modi�ed Form of the Polar Model of Crystals 3103work, in partiular, it had been shown that NEB had eletron-hole asymme-try and essentially renormalised bandwidths onneted by hopping in �holeand doublon subbands�. This approah has been developed in the papers[21, 22℄, where it has been shown that some properties of narrow-band ma-terials an be interpreted using the idea of orrelated hopping and ausedby it eletron-hole asymmetry in NEB.The fat that the orrelated hopping is neessary, was pointed out alsoin the papers [23℄. In reent years models with orrelated hopping have beenstudied intensively [24�28℄.3. Partiular ases of the polar model3.1. Weak intra atomi interationTo simplify the onsiderations we use model Hamiltonian (2.8). If intraatomi Coulomb interation is weak (U < jtij(n)j) then we an take intoaount the eletron�eletron interation in the Hartree-Fok approximation:ni"ni# = n"ni# + n#ni";ayi�ni��aj� = n��ayi�aj� + hayi�aj�ini��; (3.1)where the average value hni�i = n� is independent of the site index (ifassumed that distributions of eletron harge and magneti momentum arehomogenous). Taking into aount (3.1) we an write Hamiltonian (2.8) inthe following form: H = X0ij���(ij)ayi�aj� ; (3.2)where ��(ij) = ��+ �� + n��U + tij(n�) ; (3.3)�� = 2N Xij T (ij)hayi��aj��i ; (3.4)tij(n�) = tij(n) + 2n��T (ij) : (3.5)The use of (3.2) allows us to explain the peuliarities of the dependene ofbinding energy on atomi number in transition metals and also to modifythe theory of ferromagnetism in a olletive eletron model.



3104 L. Didukh3.2. Strong intra atomi interationFor typial narrow-band materials the onditions of strong U � t(ij) ormoderate U � t(ij) intra atomi Coulomb repulsion are met. In this aseHamiltonian (2.6), using the �on�gurational ideology� of the polar modelproposed in [12℄, an be written in the form suitable for a detailed treatment.For that purpose let us rewrite Hamiltonian (2.6) in �on�gurational� repre-sentations[11, 12℄. The relations to the � operators are provided by the formulae:ayi� = �yi��i0 � ���yi2�i��; ai� = �yi0�i� � ���yi���i2;where �� = +1 when � =", �� = �1 when � =#, site i an be unoupiedwith eletron (j0i), singly oupied (j�i) or doubly oupied (j2i). Therelations to the X operators are given by:ayi� = X�0i � ��X2��i ; ai� = X0�i � ��X ��2i ; (3.6)where Xkli � operators of site i transition from state jli to state jki, 1The Hamiltonian an be written then in the form:H = H0 +H1 +H 01 +Hex; (3.7)where H0 = ��Xi �X"i +X#i + 2X2i �+ UXi X2i+12Xij V (ij) �1�X0i +X2i � �1�X0j +X2j � ; (3.8)H1 = X0ij�tij(n)X�0i X0�j +Xij� ~tij(n)X2�i X�2j ; (3.9)H 01 = X0ij� �t0ij(n)�X#0i X"2j �X"0i X#2j �+ h::� ; (3.10)Hex = �12Xij� 0J(ij) ��X�i +X2i � �X�j +X2j �+X���i X���j � ; (3.11)where Xki is the number operator of jki-states on site i, and~tij(n) = tij(n) + 2T (ij) ; (3.12)t0ij(n) = tij(n) + T (ij) : (3.13)1 In the papers [11, 12℄ notations of site transition-operators Bikl was introdued. Inthe present paper we use the modern notations Xkli , and more onvenient notationsof state jiki.



A Modi�ed Form of the Polar Model of Crystals 3105The essene of on�gurational representation is proved by the fat thatthe intra atomi interation takes the diagonal form. Besides, e�ets of intraatomi Coulomb interations orrelating eletron translations are desribedby Hamiltonians H1 and H 01.H1 desribes transitions of jj�i-on�gurations to ji0i-on�gurationsand jj "#i-on�gurations to jj�i-on�gurations of neighbouring sites, whihforms �-0-subband ��hole� subband and 2-�-subband ��doublon� subband,respetively (they are analog of �lower� and �upper� Hubbard subbands).H 01 desribes transitions between �� 0- and "# ��-subbands ( proessesof paired reation and destrution of holes and doublons). These proessesare �translational� in the distintion from �ativational �proesses desribedby H1.If we neglet inter atomi Coulomb and exhange interation in Hamil-tonian (3.7) then the Hamiltonian takes the operator struture equivalentto the Hubbard Hamiltonian. However, in this model hopping integrals in�-0 and "# �-subbands and �interband� hopping integrals are dependenton onentration and di�erent, in distintion from the Hubbard model (seeFig. 1). Properties of this �asymmetrial Hubbard model� an be essentiallydi�erent. 3.3. Generalised t�J modelCon�gurational representation is espeially useful in an investigation ofnarrow-band system, in whih the ondition U � t(ij) is satis�ed. In thisase system an be both Mott�Hubbard insulator at n = 1 and doped Mott�Hubbard insulator at n 6= 1. Then general Hamiltonian using suitable formof the perturbation theory [12℄ generalising Bogolubov perturbation the-ory [5℄ for metalli systems an be written in the form of e�etive Hamilto-nian, whih is onvenient to the mathematial treatment. Thus, transitionto the well-known t�J model is obtained (see the review [29℄ and also thepapers [12, 16℄ where modern form of t�J -model was formulated �rst). Letus use the approah proposed in [12℄ for generalised narrow-band Hamilto-nian (3.7). Namely, we perform the anonial transformation~H = esHe�s; (3.14)where S =Xij �L(ij)�X"0i X#2j �X#0j X"2i �� h::� : (3.15)If we limit ourselves to quantities of seond order of smallness in Eq. (3.14)(S is of �rst order), then



3106 L. Didukh~H = H0 +H1 +H 01 + [SH0℄+[SH1℄ + [SH 01℄ + 12 [S[SH0℄℄ : (3.16)Use the ondition of an elimination of �ativational� proessesH 01 + [SH0℄ = 0: (3.17)Taking into aount inter-atomi Coulomb interation in the mean-�eld ap-proximation we obtain thatL(ij) = t0ij(n)=�; (3.18)where � = U � V + zV �hX0i i+ hX2i i� (3.19)is the ativation energy of hole-doublon pair (V is the strength of Coulombrepulsion between nearest neighbours ).The omponents of ommutator [S;H1℄ have operator strutures similarto struture of H 0, but with �hopping integrals� of seond order; in theonsidered approximation they do not ontribute to ~H. Thus for the aseof �-0- and "#-�-subbands are separated by energy gap and t0ij(n)� � theinitial Hamiltonian (2.6) has the form~H = H0 +X0ijtij(n)X�0i X0�j+X0ij�~tij(n)X2�i X�2j +Hex + ~Hex + ~Ht ; (3.20)where ~Hex = �12X0ij� ~J(ij)(X�i X ��j�X���i X ���j �X2i X0j ); (3.21)~Ht = �12X0ijk�J(ijk) �X�0i X ��j X0�k �X�0i X ���j X0��k ��12X0ijk�J(ijk) �X2�i X���j X ��2k �X2�i X ��j X�2k � : (3.22)Here ~J(ij) = 2t0ij(n)t0ij(n)=� (3.23)



A Modi�ed Form of the Polar Model of Crystals 3107� integral of indiret exhange (through polar states),J(ijk) = 2t0ij(n)t0jk(n)=� (3.24)� integral of indiret harge transfer in �-0- and "#-�-subbands; in sum(3.22) sites i and k are nearest neighbours to j.An elimination of the proesses of paired reation and destrution ofholes and doublons (in �rst order on hopping integral t0ij(n)) leads to a riseof two terms ~Hex and ~Ht in EH (3.20). ~Hex desribes indiret exhangeinteration (superexhange), ~Ht desribes indiret hopping of eletrons (su-perhopping). EH (3.20) generalises the EH obtained in [12℄ for the Hub-bard model. The distintions of EH (3.20) from the forms of t-J -models([30, 31℄) are aused by the onentration-dependene of hopping integralsin �-0- and 2-�-subbands, �rstly, the di�erene of the noted hopping inte-grals (the absene of eletron-hole symmetry), seondly, unusual form of thesuperexhange and superhopping integrals (the being of the onentration-dependene in hopping integrals, formula (3.19) for �), thirdly.In the modi�ed in this way t-J -model, in partiular, the onditions ofa realization of high-T are more favourable than in the similar Spaªekmodel [32℄. A number of peuliarities of the model EH are useful to in-terpret physial properties of narrow-band materials.4. New two-pole approximations4.1. Approximation I4.1.1. Single-partile energy spetrum. Metal�insulator transitionBeyond the frameworks of approximations onsidered in Set. 3 the re-gion of parameters remains, in whih the width of unperturbed band 2zjt(ij)jand a strength of Coulomb repulsion are lose to eah other. From generalphysial onsiderations in this region we have to expet the metal-insulatortransition (for n = 1). Although a great number of papers are devoted to thedetermining the energy gap, the question of a orret desription of metal-insulator transition attrats the attention of researhers (see, for example[34, 35℄).The most signi�ant defet of the approximation �Hubbard-I� is the in-ability to desribe of the metal-insulator transition (MIT) beause of thepresene of an energy gap in a spetrum at all values of U=w > 0. Otherapproximations are free from this defet, but have their own defets [34, 35℄.We propose a new approah to alulating the single-partile energyspetrum of narrow-band materials whih leads to orret desription ofmetal-insulator transition. The approah is based on a variant of the approx-imate seond quantisation representation method [36℄ within a generalisedHartree�Fok approximation (GHFA) [37℄.



3108 L. DidukhWe start from the Hamiltonian (3.7) without the Hex term. Suppose thateletron ordering is absent (taking into aount the inter-atomi interationin the mean-�eld approximation leads to hemial potential renormalisa-tion).The single-partile Green funtionG�pp0(E) = DDap�jayp0�EE (4.1)in terms of Hubbard operators is written asG�pp0(E) = DDX0�p ���X�0p0 EE+ �� DDX0�p ���X2��p0 EE+ �� DDX ��2p ���X�0p0 EE+DDX ��2p ���X2��p0 EE : (4.2)The Green funtion DDX0�p ���X�0p0 EE is given by the equation(E + �)DDX0�p ���X�0p0 EE = Æpp02� hX�p +X0p i+ DD�X0�p ;H1� ���X�0p0 EE+DD�X0�p ;H 01� ���X�0p0 EE ; (4.3)with [A;B℄ = AB �BA, and�X0�p ;H1� = tXj �(X�p +X0p )X0�j +X ���p X0��j �� ~tXj X02p X2�j ; (4.4)�X0�p ;H 01� = �t0Xj X02p X ��0j + t0Xj X ���p X�2j�t0Xj (X�p +X0p )X ��2j : (4.5)To terminate the sequene of Green-funtion equations aording to thegeneralised Hartree�Fok approximation [37℄ we suppose that�X0�p ;H1� =Xj �(pj)X0�j ; �X0�p ;H 01� =Xj �1(pj)X ��2j ; (4.6)where �(pj) and �1(pj) are the non-operator expressions. The hoie of theommutators in form (4.2) and (4.3) is prompted by the operator struture ofthese ommutators, whih maps the energy non-equivalene of the hopping



A Modi�ed Form of the Polar Model of Crystals 3109proesses presribed by H1 and H 01. Taking into aount (4.4) we rewriteEq. (4.1) in the form(E + �)DDX0�p ���X�0p0 EE = Æpp02� hX�p +X0pi+Xj �(pj)DDX0�j ���X�0p0 EE+Xj �1(pj)DDX ��2j ���X�0p0 EE : (4.7)After antiommutating both sides of (4.4) with X�0k and with X2��k , we ob-tain, respetively�(pk)(X�k +X0k) = t(X�p +X0p )(X�k +X0k) + tX���k X ���p�ÆpktXj X ��0k X0��j + Æpk~tXj X2�j X�2k�~tX20k X02p ; (4.8)�1(pk)(X ��k +X2k) = �t0(X�p +X0p )(X ��k +X2k) + t0X ���p X���k�Æpkt0Xj X ��0j X0��k + Æpkt0Xj X2�k X�2j�t0X20k X02p : (4.9)Similarly, for the Green funtion DDX ��2p ���X�0p0 EE we an write the equa-tion (E + �� U)DDX ��2p ���X�0p0 EE = Xj ~�(pj)DDX ��2j ���X�0p0 EE+Xj �2(pj)DDX0�j ���X�0p0 EE ; (4.10)where ~�(pj) and �2(pj) are determined through the expressions whih areanalogous to (4.6) and (4.7). Thus we obtain the losed system of equationsfor the Green funtions DDX0�p ���X�0p0 EE and DDX ��2p ���X�0p0 EE.By negleting orrelated hopping and by averaging expressions (4.6)and (4.7) we obtain the approximations [3, 38℄; the defets of these ap-proximations are well-known (see, for example Ref. [39℄). Here we use theapproah whih has been proposed in the papers [14, 40℄.To determine �(pj); �1(pj) we rewriteXkli -operator in Eqs. (4.8) and (4.9)in the form [41℄ Xkli = �yik�il, where �yik; �il are the operators of reation



3110 L. Didukhand destrution for jki- and jli-states on i-site respetively (the Shubin�Vonsovsky operators [1℄); thus X0i = �yi0�i0; X2i = �yi2�i2; X�i = �yi��i�.Let us substitute �-operators by -numbers in Eqs. (4.6) and (4.7) (herethere is a partial equivalene with slave boson method [42℄)�yi� = �i� = �1� 2d2 �1=2 ; �yi0 = �i0 = �yi2 = �i2 = d1=2 (4.11)(we onsider a paramagneti ase, eletron onentration on site n = 1);d is the onentration of polar states (holes or doublons).The proposed approximation is based on the following physial idea. Letus onsider a paramagneti Mott�Hubbard insulator at temperature T 6= 0.In the temperature interval (kBT � U) the onentration of polar states issmall (d� 1). An analogous onsideration is valid for a paramagneti Mott�Hubbard semimetal (hole and doublon subbands overlap weakly, d� 1). So,the hange of states and polar exitations in�uenes on j�i-states weakly.Thus we may onsider j�i-states as the quasilassial system and substitutethe operators �yi�; �i� by -numbers. In addition, when we �nd �(pj); �1(pj)we substitute the reation and destrution operators of j0i- and j2i-statesthrough the respetive quasilassial expressions. Atually the proposedapproximation is equivalent to a separation of the harge and spin degreesof freedom. Note that the present approah is justi�able when d! 0.Thus in k-representation we obtain [43℄�(k) = (1� d)2tk � 2d2~tk; �1(k) = �2dt0k; (4.12)where tk; ~tk; t0k are the Fourier transforms of the hopping integral t; ~t; t0respetively. Similarly, we �nd that~�(k) = (1� d)2~tk � 2d2tk; �2(k) = �2dt0k: (4.13)The Fourier transform of the Green funtion DDX0�p ���X�0p0 EE is foundfrom the system of equations (4.5) and (4.8)DDX0�p ���X�0p0 EEk = 14� E + �� U � (1� 2d+ 2d2)~tk + 2d2tk(E �E1(k))(E �E2(k)) ; (4.14)with E1;2(k) = ��+ (1� 2d)(tk + ~tk) + U2 � 12Fk; (4.15)Fk =q�B(tk � ~tk)� U�2 + (4dt0k)2; B = 1� 2d+ 4d2: (4.16)



A Modi�ed Form of the Polar Model of Crystals 3111An analogous proedure is realized also in the equations for the otherGreen funtions in Eq. (4.2).Finally, in k-representation the single-partile Green funtion isGk(E) = 12� � AkE �E1(k) + BkE �E2(k)� ; (4.17)Ak = 12 � 2dt0kFk ; Bk = 12 + 2dt0kFk : (4.18)Single-partile Green funtion (4.17) gives the exat atomi and bandlimits: if U = 0 and tk = ~tk = t0k = t0(k) (it means negleting orrelatedhopping) then Gk(E) takes the band form (d = 1=4 when U = 0), if tk =~tk = t0k ! 0 then we obtain the exat atomi limit.The peuliarities of obtained quasipartile energy spetrum (4.15) ofnarrow-band system whih is desribed by Hamiltonian (2.5) are the de-pendene on the onentration of polar states and the non-equivalene ofthe lower and upper Hubbard bands. This non-equivalene is aused by thedi�erene of the hopping integrals t, ~t, t0.Quasipartile energy spetrum (4.15) allows to study MIT in the pro-posed model whih has been investigated in the paper [43℄.With the help of energy spetrum of eletrons (4.15) we �nd the expres-sion for the energy gap width (di�erene of energies between bottom of theupper and top of the lower Hubbard bands):�E = �(1� 2d)(w + ~w) + 12(Q1 +Q2) ;Q1 = q[B(w � ~w)� U ℄2 + (4dzt0)2 ;Q2 = q[B(w � ~w) + U ℄2 + (4dzt0)2 ; (4.19)where w and ~w are the half-widths of the lower (hole) and upper (doublon)Hubbard bands respetively: w = zjtj; ~w = zj~tj (z is the number of nearestneighbours to a site).The peuliarities of the expression for energy gap (4.19) are dependeneson the onentration of polar states, on the widths of hole and doublonbands, on the hopping integral t0 (thus on external pressure). At givenU; t; ~t; t0 (onstant external pressure) the onentration dependene of �Eallows to study MIT under the ation of external in�uenes: temperaturehange, photoe�et and magneti �eld. In partiular, �E(T )-dependenean lead to the transition from a metalli state to an insulating state withthe inrease of temperature (in this onnetion the transition from thestate of a paramagneti metal to the paramagneti insulator state in the



3112 L. Didukh(V1�xCrx)2O3 ompound [44, 45℄, in NiS2 [46℄ and in the NiS2�xSex sys-tem [46, 47℄ should be noted). Under the ation of light or magneti �eldthe onentration of polar states an be hanged; it leads to the fat thatthe energy gap width is hanged also and MIT an our.Distintion of formulae (4.15) and (4.19) from earlier obtained results(e.g., see reviews [34,35℄) is the dependene on onentration of polar states.Let us �nd the expression for its alulation.The onentration of polar states is given by the equationd = hX2i i = 1NXk +1Z�1 Jk(E)dE= 12N Xk 0� Ckexp E1(k)� + 1 + Dkexp E2(k)� + 11A ; (4.20)where Ck = 12 � B(~tk � tk)2Fk � U2Fk ;Dk = 12 + B(~tk � tk)2Fk + U2Fk ;� = kBT , kB is the Boltzmann's onstant, N is the number of sites, Jk(E)is the spetral intensity of the Green funtionDDX ��2p ���X2��p0 EEk = 14� � CkE �E1(k) + DkE �E2(k)� : (4.21)At T = 0 and the retangular density of states1N Xk Æ(E � tk) = 12w�(w2 �E2)(�(x) = 1 if x > 0; = 0 otherwise) from Eq. (4.20) we obtain that�Bz ~t� t� ['(�0)� '(��0)℄ + Uzp� �1� B2(~t� t)2� �� ln ����� p�'(�0)� ��0 �BU(~t� t)p�'(��0) + ��0 �BU(~t� t) ����� = 8d� 2 (U < w + ~w) (4.22)



A Modi�ed Form of the Polar Model of Crystals 3113with �0 = 2s �U � �2(1� 2d)2(t+ ~t)2 � �; � = (1� 2d+ 2d2)w � 2d2 ~w(1� 2d)(w + ~w) U;'(�) = ���2 � 2BU(~t� t)�+ U2	 12 ; � = B2(~t� t)2 + (4dt0)2:For narrow-band semimetal (d� 1) Eq. (4.22) takes the following form:d = 14 �1� Uw + ~w� : (4.23)Figure 1 shows the dependene of d on U=w whih is obtained fromEq. (4.22). The parameters �1 = T1=jt0j; �2 = T2=jt0j haraterise thevalue of orrelated hopping. One an see that a value of d depends on theparameters of orrelated hopping �1; �2 (thus on ~w=w) weakly when U=w islose to zero. But with the inrease of U=w the onentration of polar statesbeomes strongly dependent on the parameters �1; �2. It testi�es on the fatthat taking into aount the orrelated hopping is important to onsider themetal-insulator transition problem.

Fig. 1. Conentration of polar states d as a funtion of U=w: the upper urveorresponds to �1 = �2 = 0; the middle urve � �1 = �2 = 0:1; the lower urve ��1 = �2 = 0:2.Fig. 1 shows also that if U � w+ ~w then the onentration of polar statesd = 0. In the speial ase t + ~t = t0 = 0 this onsequene is in aordanewith the results of Refs. [48�50℄.



3114 L. DidukhAt T = 0 the energy gap width �E � 0 (i.e. MIT ours) when theondition U � w + ~w (4.24)is satis�ed (in agreement with general physial ideas [45℄). For the speialase t0 = 0 ondition (4.24) overs the exat results of Refs. [48�50℄.Fig. 2 whih is obtained from formula (4.19) using Eq. (4.24) showsthat in a metalli state the overlapping of energy subbands dereases andin an insulating state the energy gap width inreases with derease of theparameter ~w=w (at given U=w).

Fig. 2. Energy gap width �E as a funtion of U=w: the upper urve orrespondsto �1 = �2 = 0:2; the lower urve � �1 = �2 = 0.In the Hubbard model energy gap width (4.19) takes the following form:�E = �2w(1 � 2d) +pU2 + (4dw)2; (4.25)and the onentration of polar states (4.22) isd = �14 + U32dw ln(1� 4d)� �(2w � U): (4.26)In the region of metal-insulator transition d = 1=4 � U=(8w); this de-pendene is in qualitative aordane with the result of Brinkman andRie [51℄ obtained by use of Gutzwiller variational method [52℄, those ofthe general Gutzwiller-orrelated wave funtions in in�nite dimensions [53℄and the Kotliar-Rukenstein slave bosons [42℄. For U=2w ! 0 we obtaind = 1=4 + U=(8w) ln(U=2w) (if we onsider Coulomb repulsion as pertur-bation then d(U ! 0) = 1=4 � O(U)); in order to ompare the obtaineddependene (4.26) d on U=w in the Hubbard model with other approximatetheories see e.g. [54℄). �E � 0 when the ondition 2w � U is satis�ed.



A Modi�ed Form of the Polar Model of Crystals 31154.1.2. Temperature-indued metal-insulator transitionAt given U; w; ~w; t0 (onstant exterior pressure) onentration of polarstates (4.20) inreases with the inrease of temperature. It leads to the fatthat system an undergo transition from the state with �E � 0 to the statewith �E > 0, i.e. metal-to-insulator transition an our. In this ase theresults obtained in the Hubbard model and those obtained in non-symmetriHubbard model an be essentially di�erent (Fig. 3 illustrates it) [55℄. Letus take for example U=w = 0:9. One an see that at T = 0 K the energygap width in both models is �E < 0 (a metalli state). With the inreaseof temperature metal-to-insulator transition does not our in the Hubbardmodel, in non-symmetri model the values of parameters �1; �2 exist atwhih metal-to-insulator transition ours.

Fig. 3. The dependene of energy gap on temperature at U=w = 0:9. The upperurve orresponds to �1 = �2 = 0:2, the middle urve � �1 = �2 = 0:1, the lowerurve � �1 = �2 = 0 (the Hubbard model).In ase metal-to-insulator transition ours in both models from Fig. 3one an see that at given values of U=w in model with non-equivalent Hub-bard subbands metal-to-insulator transition ours at smaller temperaturethan in the Hubbard model. So, for example, for w0 = zjt0j �1:05 eV (suhbandwidth of NiS2 was estimated in paper [56℄) in onsidered model in aparamagneti state metal-to-insulator transition ours at T � 280 K forU=w0 = 1:94 and �1 = �2 = 0:01 (the observable transitions temperatureof NiS2 is T � 280 K at p � 3 MPa [46℄). For the same value of U=w0metal-to-insulator transition ours at T � 940 K when �1 = �2 = 0 (ne-gleting of orrelated hopping, the Hubbard model) and at T =0 K when



3116 L. Didukh�1 = �2 = 0:015. If U=w0 = 1:98 then transition from a metalli state toan insulating state is realized at T � 290 K for �1 = �2 = 0; at T = 0 Kwhen �1 = �2 = 0:005. Note that at U � 2w the temperatures of metal-to-insulator transition found in both models are essentially di�erent; with adeviation from this ratio the di�erene dereases.The obtained temperature dependene of energy gap an explain observ-able transition from the state of a paramagneti metal to the paramagnetiMott�Hubbard insulator state in the (V1�xCrx)2O3 ompound [44, 45℄ inNiS2 [46℄ and in the NiS2�xSex system [46, 47℄ with the inrease of temper-ature. 4.2. Approximation II4.2.1. Single-partile Green funtion and energy spetrumIn the present Setion reently proposed two-pole approximation [57℄ isused to study e�ets of eletron orrelations in the Hubbard model.The single-partile Green funtion is written in Xkli -operators asDDap"���ays"EE = DDX#2p ���X2#s EE� DDX0"p ���X2#s EE� DDX#2p ���X"0s EE+DDX0"p ���X"0s EE : (4.27)The funtions DDX#2p ���X2#s EE and DDX0"p ���X2#s EE satisfy the equations(E + �� U)DDX#2p ���X2#s EE = Æps2� DX#p +X2pE+��hX#2p ;H1i����X2#s ��+��hX#2p ;H 01i����X2#s �� ;(E + �)DDX0"p ���X2#s EE = ��hX0"p ;H1i����X2#s ��+��hX0"p ;H 01i����X2#s �� ; (4.28)with [A;B℄� = AB�BA. To obtain the losed system of equations we applynew two-pole approximation, proposed in work [57℄. Suppose in Eq. (4.28)that hX0"p ;H1i� =Xj �(pj)X0"j ; hX#2p ;H1i� =Xj ~�(pj)X#2j ; (4.29)where �(pj) and ~�(pj) are non-operator expressions whih we alulate usingthe method of work [36℄. At eletron onentration n=1 in a paramagneti



A Modi�ed Form of the Polar Model of Crystals 3117state we have �(pj) = (1� 2d)tpj ; ~�(pj) = (1� 2d)tpj ; (4.30)with d = hX2p i being the onentration of doublons.Let us take into aount the funtions ��hX#2p ;H 01i����X2#s ��and ��hX0"p ;H 01i����X2#s �� in the mean-�eld approximation:��hX#2p ;H 01i����X2#s ��= �Xi;i 6=p tiphDD(X#p +X2p )X0"i ���X2#s EE+ DDX02p X2"i ���X2#s EE�DDX#"p X0#i ���X2#s EEi ' �Xi;i 6=p tiphX#p +X2p iDDX0"i ���X2#s EE ;��hX0"p ;H 01i����X2#s ��= �Xi;i 6=p tiphDD(X0p +X"p )X#2i ���X2#s EE+ DDX02p X#0i ���X2#s EE�DDX#"p X"2i ���X2#s EEi ' �Xi;i 6=p tip DX0p +X"pEDDX#2i ���X2#s EE ;(4.31)in this way we neglet the proesses desribing the �inter-band� hoppingsof eletrons whih are onneted with spin turning over and �inter-band�hoppings with reation or annihilation of two eletrons on the same site.So we obtain the losed system of equations(E � � + U)DDX#2p ���X2#s EE�Xi ~�(pi)DDX#2i ���X2#s EE+ DX#p +X2pEXi;i 6=p tip DDX#2i ���X2#s EE = DX2p +X#pE2� Æps;(E � �)DDX0"p ���X2#s EE�Xi �(pi)DDX0"i ���X2#s EE+ DX0p +X"pEXi;i 6=p tip DDX#2i ���X2#s EE = 0 : (4.32)



3118 L. DidukhAfter the Fourier transformation we obtain solutions of system of Eqs. (4.32):DDX#2p ���X2#s EEk = DX2p +X#pE2� � A1kE �Eh(k) + B1kE �Ed(k)� ; (4.33)A1k = 12 �1� U � �(k) + ~�(k)Ed(k)�Eh(k) � ; B1k = 1�A1k;DDX0"p ���X2#s EEk = hX2p +X#p ihX0p +X"pi2�� t(k)Ed(k)�Eh(k) � 1E �Eh(k) � 1E �Ed(k)� :(4.34)Here t(k) is the hopping integral in k�representation andEh(k) = ��+ U2 + �(k) + ~�(k)2� 12q[U � �(k) + ~�(k)℄2 + hX0p +X"p ihX#p +X2pi(t(k))2 ;(4.35)Ed(k) = ��+ U2 + �(k) + ~�(k)2+ 12q[U � �(k) + ~�(k)℄2 + hX0p +X"pihX#p +X2p i(t(k))2(4.36)are the energies of eletron in lower (�hole�) and upper (�doublon�) subbands,respetively; �(k) and ~�(k) are the Fourier omponents of �(pj) and ~�(pj).Analogous proedure gives for funtions DDX#2p ���X"0s EE and DDX0"p ���X"0s EEthe following expressions:DDX#2p ���X"0s EEk = DDX0"p ���X2#s EEk ;DDX0"p ���X"0s EEk = DX0p +X"pE2� � A2kE �Eh(k) � B2kE �Ed(k)� ;A2k = B1k; B2k = A1k : (4.37)Finally, in k-representation the single-partile Green funtion (4.27) weobtainDDap"���ays"EEk = 12� � AkE �Eh(k) + BkE �Ed(k)� ;



A Modi�ed Form of the Polar Model of Crystals 3119Ak = 12 �1� (C1 � C2)(U � �(k) + ~�(k)) + 4t(k)C1C2Ed(k)�Eh(k) � ;Bk = 1�Ak ; (4.38)where C1 = DX0p +X"pE, C2 = DX2p +X#pE.In the important for an investigation of metal-insulator transition asen = 1 in a paramagneti state �DX"pE = DX#pE� single-partile Green fun-tion (4.38) has the formDDap"���ays"EEk = 12� � AkE �Eh(k) + BkE �Ed(k)� ;Ak = 12  1� t(k)pU2 + (t(k))2! ;Bk = 1�Ak ; (4.39)where single-partile energy spetrum isEh(k) = (1� 2d)t(k)� 12pU2 + (t(k))2 ;Ed(k) = (1� 2d)t(k) + 12pU2 + (t(k))2 ; (4.40)(here we took into aount that � = U2 for n = 1).Single-partile Green funtion (4.39) and energy spetrum (4.40) are ex-at in the band and atomi limits. It is worthwhile to note, that in distin-tion from the results of two-pole approximations of Hubbard [3℄ and Ikeda,Larsen, Mattuk [63℄ the energy spetrum (4.40) depends on polar statesonentration (thus on temperature). In distintion from approximationsbased on ideology of Roth [37℄ (in this onnetion see also Refs. [30, 67℄)the energy spetrum (4.40) desribes metal-insulator transition. Energyspetrum whih desribes metal-insulator transition was earlier obtainedin work [36℄. Expressions (4.40) di�er from the respetive expressions inwork [36℄ by presene of termpU2 + t2(k) instead ofpU2 + 4d2t2(k). Thisleads to the series of distintions between results of this work and results ofwork [36℄ (d(U=w)�dependene, the ondition of metal-insulator transition,et); at the same time expression (4.40) depends on polar state onentrationsimilarly to respetive expression in work [36℄.4.2.2. Energy gap and polar states onentrationThe energy gap (di�erene of energies between bottom of the upper andtop of the lower Hubbard bands) is given by�E = Ed(�w) �Eh(w) = �2w(1 � 2d) +pU2 + w2 : (4.41)



3120 L. DidukhExpression (4.41) desribes the vanishing of the energy gap in the spetrumof paramagneti insulator at ritial value �Uw � when the halfbandwidth winrease (under pressure). Dependene of �E on temperature an lead tothe transition from metalli to insulator state with inrease of temperature.

Fig. 4. The dependene of doublon onentration d on U=w at zero temperature.

Fig. 5. The omparison of d(U=w) dependenes: solid line � our result, dashedline � iterative-perturbative theory [62, 69℄, irles � QMC method [69℄.



A Modi�ed Form of the Polar Model of Crystals 3121For the alulation of polar states onentration we use funtion (4.33).At T = 0 and retangular density of states the onentration of polar statesis d = 14 + U8w ln�1� 4d3� 4d� (4.42)if �Uw � � �Uw � and d = 14 + U8w ln0�q1 + Uw 2 + 1q1 + Uw 2 � 11A (4.43)if �Uw � > �Uw �. At T = 0 we have �Uw� = 1:672.The dependene d �Uw � given by Eqs.(4.42)�(4.43) is plotted on Fig. 4.One an see that in the point �Uw � the slope of d �Uw ��dependene hanges;the onentration of doublons vanishes at Uw !1. Our result for d �Uw� inregion of MIT is in good agreement with result of papers [62, 69℄ obtainedin the limit of in�nite dimensions (Fig. 5). The parameter U is normalisedby averaged band energy in absene of orrelation "0.

Fig. 6. The dependenes of doublon onentration d on U=w at di�erent tempera-tures: the upper urve orresponds to kT=w = 0:16, the middle urve orrespondsto kT=w = 0:08, the lower urve orresponds to kT=w = 0.In Fig. 6 the dependenes of polar states onentration on parameter Uwat di�erent temperatures are presented. Note the important di�erene (see



3122 L. Didukh

Fig. 7. The dependenes of doublon onentration d on temperature at di�erentU=w: values of U=w from down to up are 3, 2, 1.5, 1, 0.5, 0Fig. 7) of the dependene of d on temperature from result of papers [62, 69℄:we found that at any temperature polar states onentration inreases mono-tonially with inreasing temperature at the �xed value of Uw when respetivedependene in [62, 69℄ has a minimum.The dependene of �EU on parameter Uw at zero temperature is plottedin Fig. 8. It is important to note that in the point of gap disappearaned 6= 0 in ontrast to the previously obtained result [36℄. At inreasing Uwthe energy gap width inreases (the negative values of �E orrespond tothe overlapping of the subbands). For omparison on Fig. 8 results of ap-proximation �Hubbard-I� [3℄ is also plotted. In the point of energy gapvanishing �Uw � = 1:672 what is very lose to result of �Hubbard-III� ap-proximation [68℄.At inrease of temperature in metalli state the overlapping of subbandsdereases and temperature indued transition from metalli to insulatingstate an our at some values of parameter Uw (Fig. 9). The obtainedresults allows us to draw the (w=U; T ) phase diagram of the model (Fig. 10).This phase diagram an explain the experimentally observed transitions frommetalli to insulating state with inrease of temperature and from insulatingto metalli state with inrease of bandwidth (under external pressure) inparamagneti state.
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Fig. 8. The dependenes of energy gap width on U=w: �Hubbard-I� approximation(upper urve), our result (middle urve), approximation [36℄ (lower urve).

Fig. 9. The dependenes of energy gap width on temperature at di�erent U=w:values of U=w from down to up are 0.5, 1.2, 1.5.
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Fig. 10. The obtained (kT;w=U)-phase diagram of the model.4.2.3. Ground state energyThe ground state energy of the modelE0N = 1N *Xij� tijayi�aj�++ Ud; (4.44)alulated using single partile Green funtion (4.39) and expressions (4.42)-(4.43) for the onentration of polar states has the form:E0N = �w2 + U4 (1 + 3d) � U22w (1� 4d)4(1 � 2d)2 � 1 (4.45)if �Uw � � �Uw � andE0N = �12pU2 + w2 + 2U �14 � d� (4.46)if �Uw � > �Uw �. In Fig. 11 the dependene of the ground state energy onparameter Uw given by Eqs.(4.45)�(4.46) is ompared with the exat result,found in one-dimensional ase [70℄. The upper and lower bounds on groundstate energy in one-dimensional ase found in paper [71℄ are also shown. Ourresult for the ground state energy in metalli state lies slightly lower thanexat one and in insulator state �ts the exat ground state energy very well.
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Fig. 11. The omparison of ground state energies in one-dimensional ase: dashedurves orrespond to upper and lower bounds given by Langer and Mattis, uppersolid urve orresponds to exat ground state (Lieb and Wu [70℄), lower solid urveorresponds to result of this paper.

Fig. 12. The ground state energy found in this paper (upper urve), best upper(middle urve) and lower (lower urve) bounds on ground state energy in in�nite-dimensional ase [72℄.



3126 L. DidukhIn Fig. 12 our plot of the ground state energy is ompared with the bestupper and lower bounds on in in�nite-dimensional ase [72℄. In Fig. 13we have the omparison with bounds on ground state energy for three-dimensional simple ubi lattie obtained in paper [71℄. In Figs. 11-13 theground state energy per eletron is normalised by averaged band energy inabsene of orrelation "0; in onsidered ase and retangular density of states"0 = �w2 . Figs. 11�13 show that our result present a good approximation forthe ground state energy of the system. In Fig. 14 we plot our result for thekineti part of ground state energy. This plot desribes the same behaviourof kineti energy of eletrons with hange of orrelation strength in paramag-neti state as respetive result of work [69℄: in metalli state absolute valueof kineti energy dereases rapidly due to rapid dereases of doublon (hole)onentration. In insulating state absolute value of kineti energy dereaseslowly what in the approximation of e�etive Hamiltonian (obtained for thease tijU � 1) is equivalent to the interation of loal magneti moments.

Fig. 13. The upper (upper urve) and lower (lower urve) bounds on ground stateenergy in three-dimensional ase and the ground state energy found in this paper(middle urve).The omparison of alulated ground state energy with results of otherapproximations and the exat result found in one-dimensional ase showsthat the used method is a good approximation for the model under onsid-eration. The obtained phase diagram of the model an explain the tran-sitions from paramagneti metal state to paramagneti insulator state at
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Fig. 14. The kineti part of ground state energy as a funtion of U=w.inrease of temperature and the paramagneti insulator � paramagnetimetal transitions under external pressure observed in the systems NiS2�xSex,(V1�xCrx)2O3 and Y1�xCaxTiO3.5. Spei� narrow-band e�ets5.1. Absene of eletron-hole asymmetry in NEBLet us onsider narrow-band system in whih the eletron onentrationn < 1 and the energy subbands �-0 and "#-� are separated by gap �E.Thus at temperature kT � �E we an limit ourselves by a onsiderationof the lower � � 0-subband. State of suh system (doped Mott�Hubbardinsulator � DMHI) will be desribed by EH (3.20) in whih we take thatthe expressions orresponding to hopping j "#i-states are equal to a zero.Let NEB is in the DMHI state with n > 1. In the Hubbard modelphysial properties of system of DMHI are equivalent both for n < 1 andfor n > 1 when the ondition hX0i i = hX2i i is satis�ed. This peuliarity ofthe Hubbard model (doublon-hole or eletron- hole symmetry) is a resultof hopping integrals equality in � � 0- and "#-�-subbands. In the proposedmodel hopping integrals in both subbands tij(n) and ~tij(n) an be essentiallydi�erent, besides at the transition of system from the state DMHI with n < 1to the state DMHI with n > 1 bandwidth have the jump equal to 2zT (ij)(and it ontinue to derease with inrease of n in onsequene of takinginto aount orrelated hopping; see Fig. 15). So properties of narrow-band



3128 L. Didukhsystem with strong intra atomi interation an be very di�erent for asesn < 1 and n > 1 in onsequene of the essential di�erene between subbandwidths (doublon-hole or eletron-hole asymmetry).

Fig. 15. The hange of bandwidth at transition from hole (n < 1) to eletron(n > 1) type of ondutivity in doped Mott�Hubbard insulator: 1 � orrespondsto Hubbard model (�1 = �2 = 0); 2 � �1 = �2 = 0:1; 3 � �1 = �2 = 0:25; � is theband narrowing fator.This non-equivalene will be shown, in partiular, in dependene ofondutivity on degree of subband �lling. In paper [22℄ had been shownthat for DMHI ondutivity at n < 1 � � nw=(2 � n), and for n > 1~� � d ~w(2 � n)=n, ( = hX0i i; d = hX2i i). In the region of eletron on-entration for whih ��=�n > 0(n < 1) and �~�=�n > 0(n > 1) we haveondutivity n-type, for ��=�n < 0), �~�=�n < 0 � ondutivity p-type.One an see that n�p-type of ondutivity of narrow-band system in theDMHI state is hanged three time with hange of eletron onentrationfrom 0 to 2: in a region of �rst and seond maximums (if we neglet or-related hopping then n1 ' 0; 6 and n2 ' 1; 4) and at n = 1. In a regionof some ondutivity type the expressions for alulation of ondutivityan be written in the Drude�Lorentz form with e�etive mass depending oneletron onentration [22℄.The non-equivalene of ases n < 1 and n > 1 in the onentration-dependene of �(n) is on�rmed experimentally. In the paper [73℄ was shownthat in metalooxides with less than half-�lling of 3d-shell (Mn2O) ondutiv-ity is muh higher than in the ompounds with half or more than half-�llingof 3d-shell (MnO, NiO).



A Modi�ed Form of the Polar Model of Crystals 31295.2. An appliation of the model to narrow-band materialsLet us shortly onsider a possibility of appliation of the obtained resultsfor the explanation of some narrow-band systems properties.1. Cohesive energy of 3d-metals. The ohesive energy in our model isde�ned (for the ase of weak and moderate intra atomi interation) by theformula Eb = �Xk� �k�h�yk��k�i � �U; (5.1)where �k� � Fourier-omponent of tij , � = n2=4 for n < 1 and � = 1� n+n2=4 for n > 1. In the approximation of the retangular density of statesohesive energy has the formEb = 12w(n) �w2(n)� t2�� �U; (5.2)with w(n) = w0 [1� n(�1 + �2)℄ ; t = w(n)[n� 1℄;where �1; �2 are the parameters of orrelated hopping, 2w0 � unperturbedbandwidth. The dependene of ohesive energy on the d-eletron onentra-tion in 3d-systems an be determined by a generalisation of Eq. (5.1) for thease of �ve equivalent d-subbands. Fig. 16 shows that the obtained resultsexplain the peuliarities of the dependene of ohesive energy on atominumber: minimum for Mn and a presene of two non-equivalent maximums(V, Co) (as the result of taking into aount orrelated hopping).

Fig. 16. The dependenes of ohesive energy in onsidered narrow-band model on�lling of the s-band; U=(2w0) = 0:8; 1 � �1 = �2 = 0; 2 � �1 = �2 = 0:1; 3 ��1 = �2 = 0:25.



3130 L. Didukh2. Change of n � p type of ondutivity. The noted hange of ondu-tivity type at half-�lling is on�rmed experimentally for some ompounds,e.g. VOx; in the frame of the onsidered model the Mott�Hubbard insulatorstate at x = 1 orresponds to the eletron onentration n = 1 (modellinghalf-�lled t2g-band). At x > 1 in VOx holes (V3+) appear and at x < 1doublons (Vy) appear. In aordane with our results the experiment [45℄exhibits at x ' 1 the transition from p-type (at x > 1) to n-type ondutiv-ity (at x < 1). Analogous hange of the ondutivity type is observed alsoin CoxFe3�xO3 [74℄.3. Conentration-dependene of the ativation energy. As a onsequeneof the onentration-dependene of the parameters in the quasipartile en-ergy spetrum in �-0 and "#-�-subbands, at the transition from the statewith n < 1 to the state with n > 1, the ativation energy has a jump atn = 1. In this ase both inrease and derease of ativation energy are pos-sible depending on a mutual arrangement of �-0 and "#-�-subbands relativeto other bands. This jump of ativation energy is on�rmed experimentallyfor MnxFe3�xO4 [74℄ and CoxFe3�xO4 [73℄.The author is grateful to the Organizing Committee and personally toProf. J. Spalek for kind invitation to partiipate in the XL Craow Shool ofTheoretial Physis �Quantum Phase Transitions in High Energy and Con-densed Matter Physis�. The valuable disussions with Prof. J. Spalek andProf. I. Stasyuk are gratefully aknowledged. The author also thanks Dr.V. Hankevyh, O. Kramar and Yu. Skorenky for assistane in preparationof the manusript. REFERENCES[1℄ S. Shubin, S. Vonsovsky, Pro. Roy. So. A145, 159 (1934).[2℄ V.G. Samsonov, L.Ph. Priadko, I.Ph. Priadko, Eletron Loalization in a Solid,Nauka, Mosow 1976, in Russian.[3℄ J. Hubbard, Pro. Roy. So. A276, 238 (1963).[4℄ A.G. Samojlovih, V.M. Kondratenko, Ukr. Fiz. Zh. 3, 40 (1958), inUkrainian.[5℄ M.M. Bogolubov, Letures on Quantum Statistis, Radianska shkola, Kyiv1948, in Ukrainian.[6℄ S. Vonsovsky, B. Karpenko, Handbuh der Physik, Springer, Berlin 1968, inGerman.[7℄ A.Yu. Glauberman, V.V. Vladimirov, I.V. Stasyuk, Dokl. Akad. Nauk USSR126, 543 (1959), (in Russian).
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