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A MODIFIED FORM OF THE POLAR MODELOF CRYSTALS�L. DidukhTernopil State Te
hni
al University, Department of Physi
s56 Rus'ka St., Ternopil UA�46001, Ukrainee-mail: didukh�tu.edu.te.ua(Re
eived November 13, 2000)A modi�ed form of the polar model of 
rystals is proposed. A pe
u-liarity of the model is the dependen
e of the hopping integral on the siteo

upation. In the 
ases of weak and strong intera
tions the e�e
tive modelHamiltonian, whi
h generalises the known forms of the e�e
tive Hamilto-nian, is derived. It is shown that the model has the ele
tron-hole asym-metry, in 
ontrast to the Hubbard model. The metal-insulator transitionwithin the model is also studied. The obtained results are 
ompared withexperimental data for narrow-band materials. Some spe
i�
 narrow-bande�e
ts are dis
ussed.PACS numbers: 71.10.Fd, 71.27.+a, 71.28.+d1. Introdu
tion1. The fa
t that unique properties of narrow-band systems (for exampleoxides, sulphides and selenides of transition metals) are 
aused by ele
tron-ele
tron intera
tions is generally a

epted in our time. But, in spite of thegreat number of the papers 
on
erning this problem, it is still an a
tualproblem of 
ondensed matter physi
s to 
onstru
t the 
onsistent theory ofnarrow-band systems. During the re
ent years the range of problems 
on-ne
ted with the 
orrelation problem and an importan
e of investigating thenarrow band systems have intensi�ed with the dis
overy of high-T
 super-
ondu
tors.Important problems 
an be separated into three groups:(1) a 
onstru
tion of the narrow-band-system models using adequate Hamil-tonians;� Contributed to the XL Cra
ow S
hool of Theoreti
al Physi
s, Zakopane, PolandJune 3�11, 2000 (in the author absentia).(3097)



3098 L. Didukh(2) an elaboration of e�e
tive mathemati
al methods to study those modelHamiltonians;(3) a 
onstru
tion of the 
onsistent theory of 
orrelation e�e
ts and anexplanation of pe
uliarities of physi
al properties in the narrow-bandsystems.Problems (1) and (2) had been 
onsidered and partially solved by Shubinand Vonsovsky within their famous polar model [1℄. In this a model Hamilto-nian and its �
on�gurational� representation had been proposed. The polarmodel proves to be very meaningful due to the heuristi
 value of �
on�gura-tional� des
ription idea (basi
 for model treatment of 3d-
ompounds [2℄.) Inthe frame of the polar model a 
riterion of metal-insulator transition (MIT)was formulated for the �rst time; an explanation of fra
tional atom momen-tum in transition 3d-metals, a hypothesis of the possibility of 
harge orderingwere also proposed; a possibility of having a gapeless semi
ondu
tor and su-perex
hange intera
tion were predi
ted. Commonly used Hubbard model isa partial 
ase of the polar model [3℄.However, a dire
t use of the polar model (in the traditional form [1℄) tosolve the problems had been proved to be not e�e
tive in many 
ases.Firstly, the transition from the se
ond quantisation Hamiltonian in termsof ele
tron operators to its representation in terms of Shubin�Vonsovsky op-erators had been realized by the substitution of some 
ombination of ele
tronoperators through the 
ombination of Shubin�Vonsovsky operators with thesame a
tion on the wave fun
tion. Su
h transition is 
umbersome and di�-
ult even for the s-band situation (see for example [4℄).Se
ondly, the approximations underlying the mathemati
al treatment ofthe polar model are un
ontrollable (�rst of all, the postulation of Bose-type
ommutation rules for the operators of 
urrent ex
itation).2. The polar model theory was developed in two ways. The �rst oneis 
onne
ted with developing the methods of e�e
tive mathemati
al treat-ment of initial polar model Hamiltonian in the ele
tron representation. Thefundamental results in this way belong to Bogolubov [5℄. He proposed thee�e
tive Hamiltonian method whi
h took into a

ount high energy ele
tronstates with the help of spe
ial form of the perturbation theory. This methodis one of the most 
onsistent approa
hes to study of the ex
hange intera
-tions in magneti
 insulators [6℄. A use of the 
on�gurational representationof the polar model (polar and homeopolar states) proved to be helpful forinterpretation of the obtained results, and 
ontrol of the performed 
al
ula-tions (sometimes very bulky).The se
ond way is based on a dire
t use of the 
on�gurational repre-sentations. This approa
h is e�e
tive for investigation of pe
uliarities of



A Modi�ed Form of the Polar Model of Crystals 3099narrow-band systems, insulators and semi
ondu
tors, on one hand, metalsand materials in whi
h MIT is 
aused by external in�uen
es, on the other.Important a
hievement in this way was obtained in the works of Lvivbran
h in theory of solids. Here the works [7, 8, 9℄ of Glauberman, Vladimirov,Stasyuk were pre
ursory. In this way, the important problems of the polarmodel of non-metalli
 
rystals (the problem of 
onstru
ting model Hamilto-nians in the terms of site elementary ex
itations and the problem of 
om-mutation rules for operators of site elementary ex
itations) were solved.3. The wide use of the 
on�gurational forms of model Hamiltonians to
onsider physi
al properties of narrow-band materials is asso
iated with pa-per of Hubbard [10℄ in whi
h Xkli -operators had been introdu
ed and papers[11, 12℄ where the relation between ele
tron- and transition-operators hadbeen �rst established, an e�e
tive form of perturbation theory had beenproposed. It had been shown that the proper identi�
ation of the Shubin�Vonsovsky operators and transition-operators (the Hubbard operators)leads to formal equivalen
e of the traditional form of the polar model andits modern representations in terms of transition-operators. It also had beenshown that Xkli = �yik�il;where �yik; �il � Shubin�Vonsovsky operators of 
reation and destru
tionof jki-state and jli-state respe
tively on i-site.An expedien
y of using Xkli - or �yi��i�-representation is predi
ted byrequirements of 
onsidered problem. In 
al
ulations using diagrammati
Green fun
tions te
hnique or perturbation theory it is 
onvenient to useXkli -representation of Hamiltonian [13℄, in problems using approximate se
-ond quantisation method (e.g. to study MIT using the mean-�eld approx-imation (MFA) in generalised Hartree�Fo
k approximation [14℄) �yi��i�-representation is more 
onvenient. The b-
-representation (see Ref. [14℄)
an also be useful.4. The representation of a narrow-band Hamiltonian in the terms ofXkli ,b-
- or �yi��i�-operators are helpful for understanding the 
orrelation e�e
ts,to explain physi
al properties of narrow-band materials. This representationis 
onvenient from the point of view of mathemati
al treatment of models.Below a 
onsistent form of the polar model of narrow-band materials isproposed and the 
onsequen
es derived from this model are dis
ussed.



3100 L. Didukh2. The HamiltonianHamiltonian of the system of s-ele
trons in the Wannier-representationis written as H = ��Xi� ayi�ai� +X0ij�t(ij)ayi�aj�+12Xijkl�;�0 J(ijkl)ayi�aj�0al�0ak� ; (2.1)where ayi�, ai� � 
reation and destru
tion operators of ele
tron on site i,� ="; #, � � 
hemi
al potential, ni� = ayi�ai�, andt(ij) = Z ��(r �Ri)Xn V (r �Rn)�(r �Rj)dr ; (2.2)J(ijkl) = Z Z ��(r �Ri)�(r �Rk) e2jr � r0 j���(r0 �Rj)�(r0 �Rl)drdr0 ; (2.3)are respe
tively the matrix elements whi
h des
ribe hoppings of ele
tronsbetween nearest-neighbour sites of latti
e (V (r � Ri) is the potential en-ergy of ele
tron intera
ting with an ion on i-site), and the ele
tron�ele
tronintera
tions. The prime by the se
ond sum in Eq. (2.1) means that i 6= j.Narrow energy bands allow to simplify Hamiltonian (2.1). Here wavefun
tions 
losely resemble atomi
 3d-fun
tions (their overlapping de
reasequi
kly with in
rease of the inter-atomi
 spa
ing), so matrix elements t(ij)and J(ijkl) 
an be estimated from degree of overlapping. Thus quantitiesJ(iiii) and J(ikik) will be of zero order, J(iiij), J(ijkj) � of �rst order (ast(ij)), J(ijkl) at i 6= k; j 6= l � of se
ond order (immediate estimation ofJ(ijkl) is given in the paper [3℄). In a

ordan
e with this we limit ourselvesto a

ounting in Hamiltonian (2.1) matrix elements J(iiii) = U , J(ijij) =V (ij) (i and j are nearest neighbours), J(iiij) = T (ij), J(ijkj) (k 6= i; k 6=j), J(ijji) = J(ij); taking into a

ount quantity of se
ond order J(ij) ison prin
iple ne
essary to des
ribe ferromagnetism in this model in Mott�Hubbard insulator state. ThenH = � �Xi� ayi�ai� +X0ij�ayi�(t(ij) +Xk J(ikjk)nk)aj� + UXi ni"ni#+ 12X0ij��0J(ij)ayi�ayj�0ai�0aj� + 12X0ij��0V (ij)ni�nj�0 ; (2.4)where ni = ni" + ni#.



A Modi�ed Form of the Polar Model of Crystals 3101In Hamiltonian (2.4) we rewrite the sum P0ij�k J(ikjk)ayi�nkaj� in theform Xij� 0Xk 6=ik 6=j J(ikjk)ayi�nkaj� +Xij� 0 �J(iiij)ayi�aj�ni�� + h:
:� (2.5)(�� denotes spin proje
tion whi
h is opposite to �). We suppose (as in pa-pers [14, 15℄) thatXij� 0Xk 6=ik 6=j J(ikjk)ayi�nkaj� = nXk 6=ik 6=j J(ikjk)Xij� 0ayi�aj�with n = hni" + ni#i (sites i and j are nearest neighbours). It should benoted that this supposition is exa
t in the homeopolar limit (ni = 1).Thus Hamiltonian (2.4) takes the following formH = � �Xi� ayi�ai� +X0ij�tij(n)ayi�aj�+ X0ij� �T (ij)ayi�aj�ni�� + h:
:�+ UXi ni"ni#+ 12X0ij��0J(ij)ayi�ayj�0ai�0aj� + 12X0ij��0V (ij)ni�nj�0 ; (2.6)where tij(n) = t(ij) + nXk 6=ik 6=j J(ikjk) (2.7)is the e�e
tive hopping integral between nearest neighbours.Negle
ting all matrix elements in (2.6) ex
ept t(ij) and J(iiii) we obtainthe Hubbard Hamiltonian.The transition from the general form of Hamiltonian (2.6) to the Hub-bard Hamiltonian, i.e. taking into a

ount only the intra atomi
 Coulombrepulsion, it is often argued that the quantities J(iiij), J(ikjk), J(ijji) andJ(ijij) are small in 
omparison with J(iiii). However, taking in
lusion ofthese matrix elements 
an be in prin
iple important from the point of view ofboth the 
onstru
tion of 
orrelation e�e
ts theory in materials with narrowenergy bands and the interpretation of physi
al properties of these materials[13, 15�17℄.Negle
ting inter-atomi
 ex
hange intera
tion is justi�ed by a smallnessof J(ij) in 
omparison with U and hopping integral t(ij), on the one hand,



3102 L. Didukha possibility of ferromagneti
 ordering stabilisation in narrow energy band(NEB) as a 
onsequen
e of �translational� me
hanism of ex
hange, on theother hand. Without 
onsideration of a possibility of ferromagnetism real-ization in the one-band Hubbard model it should be noted that in NEB a
ontribution of translational part of energy in total system energy 
an besmaller then a 
ontribution of energy of inter-atomi
 ex
hange intera
tion(in spite of the fa
t that jt(ij)j � J(ij)). Really, in partially �lled NEB (forU � jt(ij)j) the 
ontribution of translational part of ground state energy� nÆw (Æ � degree of deviation from half-�lling, n is the average numberof ele
trons per site, 2w is the bandwidth) [16℄, and the 
ontribution of ex-
hange intera
tion in ground state energy � zn2J (J is the ex
hange integralbetween the nearest neighbours, z is the number of the nearest neighboursto a site). It is 
learly, that in NEB 
lose to half-�lling (Æ ! 0) the 
ontri-bution of energy of inter-atomi
 ex
hange intera
tion in total system energywill be the largest. In parti
ular, in non-doped Mott�Hubbard ferromagnetsmagneti
 ordering is stabilised by inter-atomi
 ex
hange intera
tion only.Taking into a

ount inter-atomi
 Coulomb intera
tion is also importantto understand a 
hara
ter of 
harge ordering in materials with NEB.Finally, we 
an negle
t the 
orrelated hopping term (2.5); this is justi�edby estimating the matrix elements [3℄. However, matrix elements J(ikjk)are the hopping integrals. Thus taking into a

ount (2.5) leads to the renor-malisation of those pro
esses des
ribing the band part of Hamiltonian (2.6).In e�e
t, t(ij), T (ij), J(ikjk) are the quantities of the same order of mag-nitude.If dire
t ex
hange intera
tion and inter-atomi
 Coulomb repulsion 
an betaken into a

ount by respe
tive renormalisation of 
hemi
al potential (fer-romagneti
 and 
harge orderings are absent) then Hamiltonian (2.6) takesthe form H = � �Xi� ni� +X0ij�tij(n)ayi�aj�+ X0ij� �T (ij)ayi�aj�ni�� + h:
:�+ UXi ni"ni#: (2.8)The pe
uliarity of the model of NEB material des
ribed by Hamilto-nian (2.8) relies on taking into a

ount inter-site hopping of ele
trons whi
hare 
aused by ele
tron�ele
tron intera
tion. In this 
onne
tion the followingfa
t should be noted. Formally, 
orrelated hopping has been introdu
ed inthe papers beginning from the pioneering work of Shubin and Vonsovsky [1℄;the possible renormalisation of �band� hopping as a 
onsequen
e of takinginto a

ount 
orrelated hopping had been noted in the papers [5, 18, 19℄.The important role of the 
orrelated hopping in NEB in generalizing the
on
ept of the Hubbard subbands had been pointed out in [20℄. In that



A Modi�ed Form of the Polar Model of Crystals 3103work, in parti
ular, it had been shown that NEB had ele
tron-hole asymme-try and essentially renormalised bandwidths 
onne
ted by hopping in �holeand doublon subbands�. This approa
h has been developed in the papers[21, 22℄, where it has been shown that some properties of narrow-band ma-terials 
an be interpreted using the idea of 
orrelated hopping and 
ausedby it ele
tron-hole asymmetry in NEB.The fa
t that the 
orrelated hopping is ne
essary, was pointed out alsoin the papers [23℄. In re
ent years models with 
orrelated hopping have beenstudied intensively [24�28℄.3. Parti
ular 
ases of the polar model3.1. Weak intra atomi
 intera
tionTo simplify the 
onsiderations we use model Hamiltonian (2.8). If intraatomi
 Coulomb intera
tion is weak (U < jtij(n)j) then we 
an take intoa

ount the ele
tron�ele
tron intera
tion in the Hartree-Fo
k approximation:ni"ni# = n"ni# + n#ni";ayi�ni��aj� = n��ayi�aj� + hayi�aj�ini��; (3.1)where the average value hni�i = n� is independent of the site index (ifassumed that distributions of ele
tron 
harge and magneti
 momentum arehomogenous). Taking into a

ount (3.1) we 
an write Hamiltonian (2.8) inthe following form: H = X0ij���(ij)ayi�aj� ; (3.2)where ��(ij) = ��+ �� + n��U + tij(n�) ; (3.3)�� = 2N Xij T (ij)hayi��aj��i ; (3.4)tij(n�) = tij(n) + 2n��T (ij) : (3.5)The use of (3.2) allows us to explain the pe
uliarities of the dependen
e ofbinding energy on atomi
 number in transition metals and also to modifythe theory of ferromagnetism in a 
olle
tive ele
tron model.



3104 L. Didukh3.2. Strong intra atomi
 intera
tionFor typi
al narrow-band materials the 
onditions of strong U � t(ij) ormoderate U � t(ij) intra atomi
 Coulomb repulsion are met. In this 
aseHamiltonian (2.6), using the �
on�gurational ideology� of the polar modelproposed in [12℄, 
an be written in the form suitable for a detailed treatment.For that purpose let us rewrite Hamiltonian (2.6) in �
on�gurational� repre-sentations[11, 12℄. The relations to the � operators are provided by the formulae:ayi� = �yi��i0 � ���yi2�i��; ai� = �yi0�i� � ���yi���i2;where �� = +1 when � =", �� = �1 when � =#, site i 
an be uno

upiedwith ele
tron (j0i), singly o

upied (j�i) or doubly o

upied (j2i). Therelations to the X operators are given by:ayi� = X�0i � ��X2��i ; ai� = X0�i � ��X ��2i ; (3.6)where Xkli � operators of site i transition from state jli to state jki, 1The Hamiltonian 
an be written then in the form:H = H0 +H1 +H 01 +Hex; (3.7)where H0 = ��Xi �X"i +X#i + 2X2i �+ UXi X2i+12Xij V (ij) �1�X0i +X2i � �1�X0j +X2j � ; (3.8)H1 = X0ij�tij(n)X�0i X0�j +Xij� ~tij(n)X2�i X�2j ; (3.9)H 01 = X0ij� �t0ij(n)�X#0i X"2j �X"0i X#2j �+ h:
:� ; (3.10)Hex = �12Xij� 0J(ij) ��X�i +X2i � �X�j +X2j �+X���i X���j � ; (3.11)where Xki is the number operator of jki-states on site i, and~tij(n) = tij(n) + 2T (ij) ; (3.12)t0ij(n) = tij(n) + T (ij) : (3.13)1 In the papers [11, 12℄ notations of site transition-operators Bikl was introdu
ed. Inthe present paper we use the modern notations Xkli , and more 
onvenient notationsof state jiki.



A Modi�ed Form of the Polar Model of Crystals 3105The essen
e of 
on�gurational representation is proved by the fa
t thatthe intra atomi
 intera
tion takes the diagonal form. Besides, e�e
ts of intraatomi
 Coulomb intera
tions 
orrelating ele
tron translations are des
ribedby Hamiltonians H1 and H 01.H1 des
ribes transitions of jj�i-
on�gurations to ji0i-
on�gurationsand jj "#i-
on�gurations to jj�i-
on�gurations of neighbouring sites, whi
hforms �-0-subband ��hole� subband and 2-�-subband ��doublon� subband,respe
tively (they are analog of �lower� and �upper� Hubbard subbands).H 01 des
ribes transitions between �� 0- and "# ��-subbands ( pro
essesof paired 
reation and destru
tion of holes and doublons). These pro
essesare �translational� in the distin
tion from �a
tivational �pro
esses des
ribedby H1.If we negle
t inter atomi
 Coulomb and ex
hange intera
tion in Hamil-tonian (3.7) then the Hamiltonian takes the operator stru
ture equivalentto the Hubbard Hamiltonian. However, in this model hopping integrals in�-0 and "# �-subbands and �interband� hopping integrals are dependenton 
on
entration and di�erent, in distin
tion from the Hubbard model (seeFig. 1). Properties of this �asymmetri
al Hubbard model� 
an be essentiallydi�erent. 3.3. Generalised t�J modelCon�gurational representation is espe
ially useful in an investigation ofnarrow-band system, in whi
h the 
ondition U � t(ij) is satis�ed. In this
ase system 
an be both Mott�Hubbard insulator at n = 1 and doped Mott�Hubbard insulator at n 6= 1. Then general Hamiltonian using suitable formof the perturbation theory [12℄ generalising Bogolubov perturbation the-ory [5℄ for metalli
 systems 
an be written in the form of e�e
tive Hamilto-nian, whi
h is 
onvenient to the mathemati
al treatment. Thus, transitionto the well-known t�J model is obtained (see the review [29℄ and also thepapers [12, 16℄ where modern form of t�J -model was formulated �rst). Letus use the approa
h proposed in [12℄ for generalised narrow-band Hamilto-nian (3.7). Namely, we perform the 
anoni
al transformation~H = esHe�s; (3.14)where S =Xij �L(ij)�X"0i X#2j �X#0j X"2i �� h:
:� : (3.15)If we limit ourselves to quantities of se
ond order of smallness in Eq. (3.14)(S is of �rst order), then



3106 L. Didukh~H = H0 +H1 +H 01 + [SH0℄+[SH1℄ + [SH 01℄ + 12 [S[SH0℄℄ : (3.16)Use the 
ondition of an elimination of �a
tivational� pro
essesH 01 + [SH0℄ = 0: (3.17)Taking into a

ount inter-atomi
 Coulomb intera
tion in the mean-�eld ap-proximation we obtain thatL(ij) = t0ij(n)=�; (3.18)where � = U � V + zV �hX0i i+ hX2i i� (3.19)is the a
tivation energy of hole-doublon pair (V is the strength of Coulombrepulsion between nearest neighbours ).The 
omponents of 
ommutator [S;H1℄ have operator stru
tures similarto stru
ture of H 0, but with �hopping integrals� of se
ond order; in the
onsidered approximation they do not 
ontribute to ~H. Thus for the 
aseof �-0- and "#-�-subbands are separated by energy gap and t0ij(n)� � theinitial Hamiltonian (2.6) has the form~H = H0 +X0ijtij(n)X�0i X0�j+X0ij�~tij(n)X2�i X�2j +Hex + ~Hex + ~Ht ; (3.20)where ~Hex = �12X0ij� ~J(ij)(X�i X ��j�X���i X ���j �X2i X0j ); (3.21)~Ht = �12X0ijk�J(ijk) �X�0i X ��j X0�k �X�0i X ���j X0��k ��12X0ijk�J(ijk) �X2�i X���j X ��2k �X2�i X ��j X�2k � : (3.22)Here ~J(ij) = 2t0ij(n)t0ij(n)=� (3.23)



A Modi�ed Form of the Polar Model of Crystals 3107� integral of indire
t ex
hange (through polar states),J(ijk) = 2t0ij(n)t0jk(n)=� (3.24)� integral of indire
t 
harge transfer in �-0- and "#-�-subbands; in sum(3.22) sites i and k are nearest neighbours to j.An elimination of the pro
esses of paired 
reation and destru
tion ofholes and doublons (in �rst order on hopping integral t0ij(n)) leads to a riseof two terms ~Hex and ~Ht in EH (3.20). ~Hex des
ribes indire
t ex
hangeintera
tion (superex
hange), ~Ht des
ribes indire
t hopping of ele
trons (su-perhopping). EH (3.20) generalises the EH obtained in [12℄ for the Hub-bard model. The distin
tions of EH (3.20) from the forms of t-J -models([30, 31℄) are 
aused by the 
on
entration-dependen
e of hopping integralsin �-0- and 2-�-subbands, �rstly, the di�eren
e of the noted hopping inte-grals (the absen
e of ele
tron-hole symmetry), se
ondly, unusual form of thesuperex
hange and superhopping integrals (the being of the 
on
entration-dependen
e in hopping integrals, formula (3.19) for �), thirdly.In the modi�ed in this way t-J -model, in parti
ular, the 
onditions ofa realization of high-T
 are more favourable than in the similar Spaªekmodel [32℄. A number of pe
uliarities of the model EH are useful to in-terpret physi
al properties of narrow-band materials.4. New two-pole approximations4.1. Approximation I4.1.1. Single-parti
le energy spe
trum. Metal�insulator transitionBeyond the frameworks of approximations 
onsidered in Se
t. 3 the re-gion of parameters remains, in whi
h the width of unperturbed band 2zjt(ij)jand a strength of Coulomb repulsion are 
lose to ea
h other. From generalphysi
al 
onsiderations in this region we have to expe
t the metal-insulatortransition (for n = 1). Although a great number of papers are devoted to thedetermining the energy gap, the question of a 
orre
t des
ription of metal-insulator transition attra
ts the attention of resear
hers (see, for example[34, 35℄).The most signi�
ant defe
t of the approximation �Hubbard-I� is the in-ability to des
ribe of the metal-insulator transition (MIT) be
ause of thepresen
e of an energy gap in a spe
trum at all values of U=w > 0. Otherapproximations are free from this defe
t, but have their own defe
ts [34, 35℄.We propose a new approa
h to 
al
ulating the single-parti
le energyspe
trum of narrow-band materials whi
h leads to 
orre
t des
ription ofmetal-insulator transition. The approa
h is based on a variant of the approx-imate se
ond quantisation representation method [36℄ within a generalisedHartree�Fo
k approximation (GHFA) [37℄.



3108 L. DidukhWe start from the Hamiltonian (3.7) without the Hex term. Suppose thatele
tron ordering is absent (taking into a

ount the inter-atomi
 intera
tionin the mean-�eld approximation leads to 
hemi
al potential renormalisa-tion).The single-parti
le Green fun
tionG�pp0(E) = DDap�jayp0�EE (4.1)in terms of Hubbard operators is written asG�pp0(E) = DDX0�p ���X�0p0 EE+ �� DDX0�p ���X2��p0 EE+ �� DDX ��2p ���X�0p0 EE+DDX ��2p ���X2��p0 EE : (4.2)The Green fun
tion DDX0�p ���X�0p0 EE is given by the equation(E + �)DDX0�p ���X�0p0 EE = Æpp02� hX�p +X0p i+ DD�X0�p ;H1� ���X�0p0 EE+DD�X0�p ;H 01� ���X�0p0 EE ; (4.3)with [A;B℄ = AB �BA, and�X0�p ;H1� = tXj �(X�p +X0p )X0�j +X ���p X0��j �� ~tXj X02p X2�j ; (4.4)�X0�p ;H 01� = �t0Xj X02p X ��0j + t0Xj X ���p X�2j�t0Xj (X�p +X0p )X ��2j : (4.5)To terminate the sequen
e of Green-fun
tion equations a

ording to thegeneralised Hartree�Fo
k approximation [37℄ we suppose that�X0�p ;H1� =Xj �(pj)X0�j ; �X0�p ;H 01� =Xj �1(pj)X ��2j ; (4.6)where �(pj) and �1(pj) are the non-operator expressions. The 
hoi
e of the
ommutators in form (4.2) and (4.3) is prompted by the operator stru
ture ofthese 
ommutators, whi
h maps the energy non-equivalen
e of the hopping
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esses pres
ribed by H1 and H 01. Taking into a

ount (4.4) we rewriteEq. (4.1) in the form(E + �)DDX0�p ���X�0p0 EE = Æpp02� hX�p +X0pi+Xj �(pj)DDX0�j ���X�0p0 EE+Xj �1(pj)DDX ��2j ���X�0p0 EE : (4.7)After anti
ommutating both sides of (4.4) with X�0k and with X2��k , we ob-tain, respe
tively�(pk)(X�k +X0k) = t(X�p +X0p )(X�k +X0k) + tX���k X ���p�ÆpktXj X ��0k X0��j + Æpk~tXj X2�j X�2k�~tX20k X02p ; (4.8)�1(pk)(X ��k +X2k) = �t0(X�p +X0p )(X ��k +X2k) + t0X ���p X���k�Æpkt0Xj X ��0j X0��k + Æpkt0Xj X2�k X�2j�t0X20k X02p : (4.9)Similarly, for the Green fun
tion DDX ��2p ���X�0p0 EE we 
an write the equa-tion (E + �� U)DDX ��2p ���X�0p0 EE = Xj ~�(pj)DDX ��2j ���X�0p0 EE+Xj �2(pj)DDX0�j ���X�0p0 EE ; (4.10)where ~�(pj) and �2(pj) are determined through the expressions whi
h areanalogous to (4.6) and (4.7). Thus we obtain the 
losed system of equationsfor the Green fun
tions DDX0�p ���X�0p0 EE and DDX ��2p ���X�0p0 EE.By negle
ting 
orrelated hopping and by averaging expressions (4.6)and (4.7) we obtain the approximations [3, 38℄; the defe
ts of these ap-proximations are well-known (see, for example Ref. [39℄). Here we use theapproa
h whi
h has been proposed in the papers [14, 40℄.To determine �(pj); �1(pj) we rewriteXkli -operator in Eqs. (4.8) and (4.9)in the form [41℄ Xkli = �yik�il, where �yik; �il are the operators of 
reation



3110 L. Didukhand destru
tion for jki- and jli-states on i-site respe
tively (the Shubin�Vonsovsky operators [1℄); thus X0i = �yi0�i0; X2i = �yi2�i2; X�i = �yi��i�.Let us substitute �-operators by 
-numbers in Eqs. (4.6) and (4.7) (herethere is a partial equivalen
e with slave boson method [42℄)�yi� = �i� = �1� 2d2 �1=2 ; �yi0 = �i0 = �yi2 = �i2 = d1=2 (4.11)(we 
onsider a paramagneti
 
ase, ele
tron 
on
entration on site n = 1);d is the 
on
entration of polar states (holes or doublons).The proposed approximation is based on the following physi
al idea. Letus 
onsider a paramagneti
 Mott�Hubbard insulator at temperature T 6= 0.In the temperature interval (kBT � U) the 
on
entration of polar states issmall (d� 1). An analogous 
onsideration is valid for a paramagneti
 Mott�Hubbard semimetal (hole and doublon subbands overlap weakly, d� 1). So,the 
hange of states and polar ex
itations in�uen
es on j�i-states weakly.Thus we may 
onsider j�i-states as the quasi
lassi
al system and substitutethe operators �yi�; �i� by 
-numbers. In addition, when we �nd �(pj); �1(pj)we substitute the 
reation and destru
tion operators of j0i- and j2i-statesthrough the respe
tive quasi
lassi
al expressions. A
tually the proposedapproximation is equivalent to a separation of the 
harge and spin degreesof freedom. Note that the present approa
h is justi�able when d! 0.Thus in k-representation we obtain [43℄�(k) = (1� d)2tk � 2d2~tk; �1(k) = �2dt0k; (4.12)where tk; ~tk; t0k are the Fourier transforms of the hopping integral t; ~t; t0respe
tively. Similarly, we �nd that~�(k) = (1� d)2~tk � 2d2tk; �2(k) = �2dt0k: (4.13)The Fourier transform of the Green fun
tion DDX0�p ���X�0p0 EE is foundfrom the system of equations (4.5) and (4.8)DDX0�p ���X�0p0 EEk = 14� E + �� U � (1� 2d+ 2d2)~tk + 2d2tk(E �E1(k))(E �E2(k)) ; (4.14)with E1;2(k) = ��+ (1� 2d)(tk + ~tk) + U2 � 12Fk; (4.15)Fk =q�B(tk � ~tk)� U�2 + (4dt0k)2; B = 1� 2d+ 4d2: (4.16)



A Modi�ed Form of the Polar Model of Crystals 3111An analogous pro
edure is realized also in the equations for the otherGreen fun
tions in Eq. (4.2).Finally, in k-representation the single-parti
le Green fun
tion isGk(E) = 12� � AkE �E1(k) + BkE �E2(k)� ; (4.17)Ak = 12 � 2dt0kFk ; Bk = 12 + 2dt0kFk : (4.18)Single-parti
le Green fun
tion (4.17) gives the exa
t atomi
 and bandlimits: if U = 0 and tk = ~tk = t0k = t0(k) (it means negle
ting 
orrelatedhopping) then Gk(E) takes the band form (d = 1=4 when U = 0), if tk =~tk = t0k ! 0 then we obtain the exa
t atomi
 limit.The pe
uliarities of obtained quasiparti
le energy spe
trum (4.15) ofnarrow-band system whi
h is des
ribed by Hamiltonian (2.5) are the de-penden
e on the 
on
entration of polar states and the non-equivalen
e ofthe lower and upper Hubbard bands. This non-equivalen
e is 
aused by thedi�eren
e of the hopping integrals t, ~t, t0.Quasiparti
le energy spe
trum (4.15) allows to study MIT in the pro-posed model whi
h has been investigated in the paper [43℄.With the help of energy spe
trum of ele
trons (4.15) we �nd the expres-sion for the energy gap width (di�eren
e of energies between bottom of theupper and top of the lower Hubbard bands):�E = �(1� 2d)(w + ~w) + 12(Q1 +Q2) ;Q1 = q[B(w � ~w)� U ℄2 + (4dzt0)2 ;Q2 = q[B(w � ~w) + U ℄2 + (4dzt0)2 ; (4.19)where w and ~w are the half-widths of the lower (hole) and upper (doublon)Hubbard bands respe
tively: w = zjtj; ~w = zj~tj (z is the number of nearestneighbours to a site).The pe
uliarities of the expression for energy gap (4.19) are dependen
eson the 
on
entration of polar states, on the widths of hole and doublonbands, on the hopping integral t0 (thus on external pressure). At givenU; t; ~t; t0 (
onstant external pressure) the 
on
entration dependen
e of �Eallows to study MIT under the a
tion of external in�uen
es: temperature
hange, photoe�e
t and magneti
 �eld. In parti
ular, �E(T )-dependen
e
an lead to the transition from a metalli
 state to an insulating state withthe in
rease of temperature (in this 
onne
tion the transition from thestate of a paramagneti
 metal to the paramagneti
 insulator state in the
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ompound [44, 45℄, in NiS2 [46℄ and in the NiS2�xSex sys-tem [46, 47℄ should be noted). Under the a
tion of light or magneti
 �eldthe 
on
entration of polar states 
an be 
hanged; it leads to the fa
t thatthe energy gap width is 
hanged also and MIT 
an o

ur.Distin
tion of formulae (4.15) and (4.19) from earlier obtained results(e.g., see reviews [34,35℄) is the dependen
e on 
on
entration of polar states.Let us �nd the expression for its 
al
ulation.The 
on
entration of polar states is given by the equationd = hX2i i = 1NXk +1Z�1 Jk(E)dE= 12N Xk 0� Ckexp E1(k)� + 1 + Dkexp E2(k)� + 11A ; (4.20)where Ck = 12 � B(~tk � tk)2Fk � U2Fk ;Dk = 12 + B(~tk � tk)2Fk + U2Fk ;� = kBT , kB is the Boltzmann's 
onstant, N is the number of sites, Jk(E)is the spe
tral intensity of the Green fun
tionDDX ��2p ���X2��p0 EEk = 14� � CkE �E1(k) + DkE �E2(k)� : (4.21)At T = 0 and the re
tangular density of states1N Xk Æ(E � tk) = 12w�(w2 �E2)(�(x) = 1 if x > 0; = 0 otherwise) from Eq. (4.20) we obtain that�Bz ~t� t� ['(�0)� '(��0)℄ + Uzp� �1� B2(~t� t)2� �� ln ����� p�'(�0)� ��0 �BU(~t� t)p�'(��0) + ��0 �BU(~t� t) ����� = 8d� 2 (U < w + ~w) (4.22)



A Modi�ed Form of the Polar Model of Crystals 3113with �0 = 2s �U � �2(1� 2d)2(t+ ~t)2 � �; � = (1� 2d+ 2d2)w � 2d2 ~w(1� 2d)(w + ~w) U;'(�) = ���2 � 2BU(~t� t)�+ U2	 12 ; � = B2(~t� t)2 + (4dt0)2:For narrow-band semimetal (d� 1) Eq. (4.22) takes the following form:d = 14 �1� Uw + ~w� : (4.23)Figure 1 shows the dependen
e of d on U=w whi
h is obtained fromEq. (4.22). The parameters �1 = T1=jt0j; �2 = T2=jt0j 
hara
terise thevalue of 
orrelated hopping. One 
an see that a value of d depends on theparameters of 
orrelated hopping �1; �2 (thus on ~w=w) weakly when U=w is
lose to zero. But with the in
rease of U=w the 
on
entration of polar statesbe
omes strongly dependent on the parameters �1; �2. It testi�es on the fa
tthat taking into a

ount the 
orrelated hopping is important to 
onsider themetal-insulator transition problem.

Fig. 1. Con
entration of polar states d as a fun
tion of U=w: the upper 
urve
orresponds to �1 = �2 = 0; the middle 
urve � �1 = �2 = 0:1; the lower 
urve ��1 = �2 = 0:2.Fig. 1 shows also that if U � w+ ~w then the 
on
entration of polar statesd = 0. In the spe
ial 
ase t + ~t = t0 = 0 this 
onsequen
e is in a

ordan
ewith the results of Refs. [48�50℄.



3114 L. DidukhAt T = 0 the energy gap width �E � 0 (i.e. MIT o

urs) when the
ondition U � w + ~w (4.24)is satis�ed (in agreement with general physi
al ideas [45℄). For the spe
ial
ase t0 = 0 
ondition (4.24) 
overs the exa
t results of Refs. [48�50℄.Fig. 2 whi
h is obtained from formula (4.19) using Eq. (4.24) showsthat in a metalli
 state the overlapping of energy subbands de
reases andin an insulating state the energy gap width in
reases with de
rease of theparameter ~w=w (at given U=w).

Fig. 2. Energy gap width �E as a fun
tion of U=w: the upper 
urve 
orrespondsto �1 = �2 = 0:2; the lower 
urve � �1 = �2 = 0.In the Hubbard model energy gap width (4.19) takes the following form:�E = �2w(1 � 2d) +pU2 + (4dw)2; (4.25)and the 
on
entration of polar states (4.22) isd = �14 + U32dw ln(1� 4d)� �(2w � U): (4.26)In the region of metal-insulator transition d = 1=4 � U=(8w); this de-penden
e is in qualitative a

ordan
e with the result of Brinkman andRi
e [51℄ obtained by use of Gutzwiller variational method [52℄, those ofthe general Gutzwiller-
orrelated wave fun
tions in in�nite dimensions [53℄and the Kotliar-Ru
kenstein slave bosons [42℄. For U=2w ! 0 we obtaind = 1=4 + U=(8w) ln(U=2w) (if we 
onsider Coulomb repulsion as pertur-bation then d(U ! 0) = 1=4 � O(U)); in order to 
ompare the obtaineddependen
e (4.26) d on U=w in the Hubbard model with other approximatetheories see e.g. [54℄). �E � 0 when the 
ondition 2w � U is satis�ed.
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ed metal-insulator transitionAt given U; w; ~w; t0 (
onstant exterior pressure) 
on
entration of polarstates (4.20) in
reases with the in
rease of temperature. It leads to the fa
tthat system 
an undergo transition from the state with �E � 0 to the statewith �E > 0, i.e. metal-to-insulator transition 
an o

ur. In this 
ase theresults obtained in the Hubbard model and those obtained in non-symmetri
Hubbard model 
an be essentially di�erent (Fig. 3 illustrates it) [55℄. Letus take for example U=w = 0:9. One 
an see that at T = 0 K the energygap width in both models is �E < 0 (a metalli
 state). With the in
reaseof temperature metal-to-insulator transition does not o

ur in the Hubbardmodel, in non-symmetri
 model the values of parameters �1; �2 exist atwhi
h metal-to-insulator transition o

urs.

Fig. 3. The dependen
e of energy gap on temperature at U=w = 0:9. The upper
urve 
orresponds to �1 = �2 = 0:2, the middle 
urve � �1 = �2 = 0:1, the lower
urve � �1 = �2 = 0 (the Hubbard model).In 
ase metal-to-insulator transition o

urs in both models from Fig. 3one 
an see that at given values of U=w in model with non-equivalent Hub-bard subbands metal-to-insulator transition o

urs at smaller temperaturethan in the Hubbard model. So, for example, for w0 = zjt0j �1:05 eV (su
hbandwidth of NiS2 was estimated in paper [56℄) in 
onsidered model in aparamagneti
 state metal-to-insulator transition o

urs at T � 280 K forU=w0 = 1:94 and �1 = �2 = 0:01 (the observable transitions temperatureof NiS2 is T � 280 K at p � 3 MPa [46℄). For the same value of U=w0metal-to-insulator transition o

urs at T � 940 K when �1 = �2 = 0 (ne-gle
ting of 
orrelated hopping, the Hubbard model) and at T =0 K when



3116 L. Didukh�1 = �2 = 0:015. If U=w0 = 1:98 then transition from a metalli
 state toan insulating state is realized at T � 290 K for �1 = �2 = 0; at T = 0 Kwhen �1 = �2 = 0:005. Note that at U � 2w the temperatures of metal-to-insulator transition found in both models are essentially di�erent; with adeviation from this ratio the di�eren
e de
reases.The obtained temperature dependen
e of energy gap 
an explain observ-able transition from the state of a paramagneti
 metal to the paramagneti
Mott�Hubbard insulator state in the (V1�xCrx)2O3 
ompound [44, 45℄ inNiS2 [46℄ and in the NiS2�xSex system [46, 47℄ with the in
rease of temper-ature. 4.2. Approximation II4.2.1. Single-parti
le Green fun
tion and energy spe
trumIn the present Se
tion re
ently proposed two-pole approximation [57℄ isused to study e�e
ts of ele
tron 
orrelations in the Hubbard model.The single-parti
le Green fun
tion is written in Xkli -operators asDDap"���ays"EE = DDX#2p ���X2#s EE� DDX0"p ���X2#s EE� DDX#2p ���X"0s EE+DDX0"p ���X"0s EE : (4.27)The fun
tions DDX#2p ���X2#s EE and DDX0"p ���X2#s EE satisfy the equations(E + �� U)DDX#2p ���X2#s EE = Æps2� DX#p +X2pE+��hX#2p ;H1i����X2#s ��+��hX#2p ;H 01i����X2#s �� ;(E + �)DDX0"p ���X2#s EE = ��hX0"p ;H1i����X2#s ��+��hX0"p ;H 01i����X2#s �� ; (4.28)with [A;B℄� = AB�BA. To obtain the 
losed system of equations we applynew two-pole approximation, proposed in work [57℄. Suppose in Eq. (4.28)that hX0"p ;H1i� =Xj �(pj)X0"j ; hX#2p ;H1i� =Xj ~�(pj)X#2j ; (4.29)where �(pj) and ~�(pj) are non-operator expressions whi
h we 
al
ulate usingthe method of work [36℄. At ele
tron 
on
entration n=1 in a paramagneti




A Modi�ed Form of the Polar Model of Crystals 3117state we have �(pj) = (1� 2d)tpj ; ~�(pj) = (1� 2d)tpj ; (4.30)with d = hX2p i being the 
on
entration of doublons.Let us take into a

ount the fun
tions ��hX#2p ;H 01i����X2#s ��and ��hX0"p ;H 01i����X2#s �� in the mean-�eld approximation:��hX#2p ;H 01i����X2#s ��= �Xi;i 6=p tiphDD(X#p +X2p )X0"i ���X2#s EE+ DDX02p X2"i ���X2#s EE�DDX#"p X0#i ���X2#s EEi ' �Xi;i 6=p tiphX#p +X2p iDDX0"i ���X2#s EE ;��hX0"p ;H 01i����X2#s ��= �Xi;i 6=p tiphDD(X0p +X"p )X#2i ���X2#s EE+ DDX02p X#0i ���X2#s EE�DDX#"p X"2i ���X2#s EEi ' �Xi;i 6=p tip DX0p +X"pEDDX#2i ���X2#s EE ;(4.31)in this way we negle
t the pro
esses des
ribing the �inter-band� hoppingsof ele
trons whi
h are 
onne
ted with spin turning over and �inter-band�hoppings with 
reation or annihilation of two ele
trons on the same site.So we obtain the 
losed system of equations(E � � + U)DDX#2p ���X2#s EE�Xi ~�(pi)DDX#2i ���X2#s EE+ DX#p +X2pEXi;i 6=p tip DDX#2i ���X2#s EE = DX2p +X#pE2� Æps;(E � �)DDX0"p ���X2#s EE�Xi �(pi)DDX0"i ���X2#s EE+ DX0p +X"pEXi;i 6=p tip DDX#2i ���X2#s EE = 0 : (4.32)



3118 L. DidukhAfter the Fourier transformation we obtain solutions of system of Eqs. (4.32):DDX#2p ���X2#s EEk = DX2p +X#pE2� � A1kE �Eh(k) + B1kE �Ed(k)� ; (4.33)A1k = 12 �1� U � �(k) + ~�(k)Ed(k)�Eh(k) � ; B1k = 1�A1k;DDX0"p ���X2#s EEk = hX2p +X#p ihX0p +X"pi2�� t(k)Ed(k)�Eh(k) � 1E �Eh(k) � 1E �Ed(k)� :(4.34)Here t(k) is the hopping integral in k�representation andEh(k) = ��+ U2 + �(k) + ~�(k)2� 12q[U � �(k) + ~�(k)℄2 + hX0p +X"p ihX#p +X2pi(t(k))2 ;(4.35)Ed(k) = ��+ U2 + �(k) + ~�(k)2+ 12q[U � �(k) + ~�(k)℄2 + hX0p +X"pihX#p +X2p i(t(k))2(4.36)are the energies of ele
tron in lower (�hole�) and upper (�doublon�) subbands,respe
tively; �(k) and ~�(k) are the Fourier 
omponents of �(pj) and ~�(pj).Analogous pro
edure gives for fun
tions DDX#2p ���X"0s EE and DDX0"p ���X"0s EEthe following expressions:DDX#2p ���X"0s EEk = DDX0"p ���X2#s EEk ;DDX0"p ���X"0s EEk = DX0p +X"pE2� � A2kE �Eh(k) � B2kE �Ed(k)� ;A2k = B1k; B2k = A1k : (4.37)Finally, in k-representation the single-parti
le Green fun
tion (4.27) weobtainDDap"���ays"EEk = 12� � AkE �Eh(k) + BkE �Ed(k)� ;



A Modi�ed Form of the Polar Model of Crystals 3119Ak = 12 �1� (C1 � C2)(U � �(k) + ~�(k)) + 4t(k)C1C2Ed(k)�Eh(k) � ;Bk = 1�Ak ; (4.38)where C1 = DX0p +X"pE, C2 = DX2p +X#pE.In the important for an investigation of metal-insulator transition 
asen = 1 in a paramagneti
 state �DX"pE = DX#pE� single-parti
le Green fun
-tion (4.38) has the formDDap"���ays"EEk = 12� � AkE �Eh(k) + BkE �Ed(k)� ;Ak = 12  1� t(k)pU2 + (t(k))2! ;Bk = 1�Ak ; (4.39)where single-parti
le energy spe
trum isEh(k) = (1� 2d)t(k)� 12pU2 + (t(k))2 ;Ed(k) = (1� 2d)t(k) + 12pU2 + (t(k))2 ; (4.40)(here we took into a

ount that � = U2 for n = 1).Single-parti
le Green fun
tion (4.39) and energy spe
trum (4.40) are ex-a
t in the band and atomi
 limits. It is worthwhile to note, that in distin
-tion from the results of two-pole approximations of Hubbard [3℄ and Ikeda,Larsen, Mattu
k [63℄ the energy spe
trum (4.40) depends on polar states
on
entration (thus on temperature). In distin
tion from approximationsbased on ideology of Roth [37℄ (in this 
onne
tion see also Refs. [30, 67℄)the energy spe
trum (4.40) des
ribes metal-insulator transition. Energyspe
trum whi
h des
ribes metal-insulator transition was earlier obtainedin work [36℄. Expressions (4.40) di�er from the respe
tive expressions inwork [36℄ by presen
e of termpU2 + t2(k) instead ofpU2 + 4d2t2(k). Thisleads to the series of distin
tions between results of this work and results ofwork [36℄ (d(U=w)�dependen
e, the 
ondition of metal-insulator transition,et
); at the same time expression (4.40) depends on polar state 
on
entrationsimilarly to respe
tive expression in work [36℄.4.2.2. Energy gap and polar states 
on
entrationThe energy gap (di�eren
e of energies between bottom of the upper andtop of the lower Hubbard bands) is given by�E = Ed(�w) �Eh(w) = �2w(1 � 2d) +pU2 + w2 : (4.41)



3120 L. DidukhExpression (4.41) des
ribes the vanishing of the energy gap in the spe
trumof paramagneti
 insulator at 
riti
al value �Uw �
 when the halfbandwidth win
rease (under pressure). Dependen
e of �E on temperature 
an lead tothe transition from metalli
 to insulator state with in
rease of temperature.

Fig. 4. The dependen
e of doublon 
on
entration d on U=w at zero temperature.

Fig. 5. The 
omparison of d(U=w) dependen
es: solid line � our result, dashedline � iterative-perturbative theory [62, 69℄, 
ir
les � QMC method [69℄.



A Modi�ed Form of the Polar Model of Crystals 3121For the 
al
ulation of polar states 
on
entration we use fun
tion (4.33).At T = 0 and re
tangular density of states the 
on
entration of polar statesis d = 14 + U8w ln�1� 4d3� 4d� (4.42)if �Uw � � �Uw �
 and d = 14 + U8w ln0�q1 + Uw 2 + 1q1 + Uw 2 � 11A (4.43)if �Uw � > �Uw �
. At T = 0 we have �Uw�
 = 1:672.The dependen
e d �Uw � given by Eqs.(4.42)�(4.43) is plotted on Fig. 4.One 
an see that in the point �Uw �
 the slope of d �Uw ��dependen
e 
hanges;the 
on
entration of doublons vanishes at Uw !1. Our result for d �Uw� inregion of MIT is in good agreement with result of papers [62, 69℄ obtainedin the limit of in�nite dimensions (Fig. 5). The parameter U is normalisedby averaged band energy in absen
e of 
orrelation "0.

Fig. 6. The dependen
es of doublon 
on
entration d on U=w at di�erent tempera-tures: the upper 
urve 
orresponds to kT=w = 0:16, the middle 
urve 
orrespondsto kT=w = 0:08, the lower 
urve 
orresponds to kT=w = 0.In Fig. 6 the dependen
es of polar states 
on
entration on parameter Uwat di�erent temperatures are presented. Note the important di�eren
e (see
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Fig. 7. The dependen
es of doublon 
on
entration d on temperature at di�erentU=w: values of U=w from down to up are 3, 2, 1.5, 1, 0.5, 0Fig. 7) of the dependen
e of d on temperature from result of papers [62, 69℄:we found that at any temperature polar states 
on
entration in
reases mono-toni
ally with in
reasing temperature at the �xed value of Uw when respe
tivedependen
e in [62, 69℄ has a minimum.The dependen
e of �EU on parameter Uw at zero temperature is plottedin Fig. 8. It is important to note that in the point of gap disappearan
ed 6= 0 in 
ontrast to the previously obtained result [36℄. At in
reasing Uwthe energy gap width in
reases (the negative values of �E 
orrespond tothe overlapping of the subbands). For 
omparison on Fig. 8 results of ap-proximation �Hubbard-I� [3℄ is also plotted. In the point of energy gapvanishing �Uw �
 = 1:672 what is very 
lose to result of �Hubbard-III� ap-proximation [68℄.At in
rease of temperature in metalli
 state the overlapping of subbandsde
reases and temperature indu
ed transition from metalli
 to insulatingstate 
an o

ur at some values of parameter Uw (Fig. 9). The obtainedresults allows us to draw the (w=U; T ) phase diagram of the model (Fig. 10).This phase diagram 
an explain the experimentally observed transitions frommetalli
 to insulating state with in
rease of temperature and from insulatingto metalli
 state with in
rease of bandwidth (under external pressure) inparamagneti
 state.
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Fig. 8. The dependen
es of energy gap width on U=w: �Hubbard-I� approximation(upper 
urve), our result (middle 
urve), approximation [36℄ (lower 
urve).

Fig. 9. The dependen
es of energy gap width on temperature at di�erent U=w:values of U=w from down to up are 0.5, 1.2, 1.5.
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Fig. 10. The obtained (kT;w=U)-phase diagram of the model.4.2.3. Ground state energyThe ground state energy of the modelE0N = 1N *Xij� tijayi�aj�++ Ud; (4.44)
al
ulated using single parti
le Green fun
tion (4.39) and expressions (4.42)-(4.43) for the 
on
entration of polar states has the form:E0N = �w2 + U4 (1 + 3d) � U22w (1� 4d)4(1 � 2d)2 � 1 (4.45)if �Uw � � �Uw �
 andE0N = �12pU2 + w2 + 2U �14 � d� (4.46)if �Uw � > �Uw �
. In Fig. 11 the dependen
e of the ground state energy onparameter Uw given by Eqs.(4.45)�(4.46) is 
ompared with the exa
t result,found in one-dimensional 
ase [70℄. The upper and lower bounds on groundstate energy in one-dimensional 
ase found in paper [71℄ are also shown. Ourresult for the ground state energy in metalli
 state lies slightly lower thanexa
t one and in insulator state �ts the exa
t ground state energy very well.
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Fig. 11. The 
omparison of ground state energies in one-dimensional 
ase: dashed
urves 
orrespond to upper and lower bounds given by Langer and Mattis, uppersolid 
urve 
orresponds to exa
t ground state (Lieb and Wu [70℄), lower solid 
urve
orresponds to result of this paper.

Fig. 12. The ground state energy found in this paper (upper 
urve), best upper(middle 
urve) and lower (lower 
urve) bounds on ground state energy in in�nite-dimensional 
ase [72℄.



3126 L. DidukhIn Fig. 12 our plot of the ground state energy is 
ompared with the bestupper and lower bounds on in in�nite-dimensional 
ase [72℄. In Fig. 13we have the 
omparison with bounds on ground state energy for three-dimensional simple 
ubi
 latti
e obtained in paper [71℄. In Figs. 11-13 theground state energy per ele
tron is normalised by averaged band energy inabsen
e of 
orrelation "0; in 
onsidered 
ase and re
tangular density of states"0 = �w2 . Figs. 11�13 show that our result present a good approximation forthe ground state energy of the system. In Fig. 14 we plot our result for thekineti
 part of ground state energy. This plot des
ribes the same behaviourof kineti
 energy of ele
trons with 
hange of 
orrelation strength in paramag-neti
 state as respe
tive result of work [69℄: in metalli
 state absolute valueof kineti
 energy de
reases rapidly due to rapid de
reases of doublon (hole)
on
entration. In insulating state absolute value of kineti
 energy de
reaseslowly what in the approximation of e�e
tive Hamiltonian (obtained for the
ase tijU � 1) is equivalent to the intera
tion of lo
al magneti
 moments.

Fig. 13. The upper (upper 
urve) and lower (lower 
urve) bounds on ground stateenergy in three-dimensional 
ase and the ground state energy found in this paper(middle 
urve).The 
omparison of 
al
ulated ground state energy with results of otherapproximations and the exa
t result found in one-dimensional 
ase showsthat the used method is a good approximation for the model under 
onsid-eration. The obtained phase diagram of the model 
an explain the tran-sitions from paramagneti
 metal state to paramagneti
 insulator state at
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Fig. 14. The kineti
 part of ground state energy as a fun
tion of U=w.in
rease of temperature and the paramagneti
 insulator � paramagneti
metal transitions under external pressure observed in the systems NiS2�xSex,(V1�xCrx)2O3 and Y1�xCaxTiO3.5. Spe
i�
 narrow-band e�e
ts5.1. Absen
e of ele
tron-hole asymmetry in NEBLet us 
onsider narrow-band system in whi
h the ele
tron 
on
entrationn < 1 and the energy subbands �-0 and "#-� are separated by gap �E.Thus at temperature kT � �E we 
an limit ourselves by a 
onsiderationof the lower � � 0-subband. State of su
h system (doped Mott�Hubbardinsulator � DMHI) will be des
ribed by EH (3.20) in whi
h we take thatthe expressions 
orresponding to hopping j "#i-states are equal to a zero.Let NEB is in the DMHI state with n > 1. In the Hubbard modelphysi
al properties of system of DMHI are equivalent both for n < 1 andfor n > 1 when the 
ondition hX0i i = hX2i i is satis�ed. This pe
uliarity ofthe Hubbard model (doublon-hole or ele
tron- hole symmetry) is a resultof hopping integrals equality in � � 0- and "#-�-subbands. In the proposedmodel hopping integrals in both subbands tij(n) and ~tij(n) 
an be essentiallydi�erent, besides at the transition of system from the state DMHI with n < 1to the state DMHI with n > 1 bandwidth have the jump equal to 2zT (ij)(and it 
ontinue to de
rease with in
rease of n in 
onsequen
e of takinginto a

ount 
orrelated hopping; see Fig. 15). So properties of narrow-band
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 intera
tion 
an be very di�erent for 
asesn < 1 and n > 1 in 
onsequen
e of the essential di�eren
e between subbandwidths (doublon-hole or ele
tron-hole asymmetry).

Fig. 15. The 
hange of bandwidth at transition from hole (n < 1) to ele
tron(n > 1) type of 
ondu
tivity in doped Mott�Hubbard insulator: 1 � 
orrespondsto Hubbard model (�1 = �2 = 0); 2 � �1 = �2 = 0:1; 3 � �1 = �2 = 0:25; � is theband narrowing fa
tor.This non-equivalen
e will be shown, in parti
ular, in dependen
e of
ondu
tivity on degree of subband �lling. In paper [22℄ had been shownthat for DMHI 
ondu
tivity at n < 1 � � 
nw=(2 � n), and for n > 1~� � d ~w(2 � n)=n, (
 = hX0i i; d = hX2i i). In the region of ele
tron 
on-
entration for whi
h ��=�n > 0(n < 1) and �~�=�n > 0(n > 1) we have
ondu
tivity n-type, for ��=�n < 0), �~�=�n < 0 � 
ondu
tivity p-type.One 
an see that n�p-type of 
ondu
tivity of narrow-band system in theDMHI state is 
hanged three time with 
hange of ele
tron 
on
entrationfrom 0 to 2: in a region of �rst and se
ond maximums (if we negle
t 
or-related hopping then n1 ' 0; 6 and n2 ' 1; 4) and at n = 1. In a regionof some 
ondu
tivity type the expressions for 
al
ulation of 
ondu
tivity
an be written in the Drude�Lorentz form with e�e
tive mass depending onele
tron 
on
entration [22℄.The non-equivalen
e of 
ases n < 1 and n > 1 in the 
on
entration-dependen
e of �(n) is 
on�rmed experimentally. In the paper [73℄ was shownthat in metalooxides with less than half-�lling of 3d-shell (Mn2O) 
ondu
tiv-ity is mu
h higher than in the 
ompounds with half or more than half-�llingof 3d-shell (MnO, NiO).
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ation of the model to narrow-band materialsLet us shortly 
onsider a possibility of appli
ation of the obtained resultsfor the explanation of some narrow-band systems properties.1. Cohesive energy of 3d-metals. The 
ohesive energy in our model isde�ned (for the 
ase of weak and moderate intra atomi
 intera
tion) by theformula Eb = �Xk� �k�h�yk��k�i � �U; (5.1)where �k� � Fourier-
omponent of tij , � = n2=4 for n < 1 and � = 1� n+n2=4 for n > 1. In the approximation of the re
tangular density of states
ohesive energy has the formEb = 12w(n) �w2(n)� t2
�� �U; (5.2)with w(n) = w0 [1� n(�1 + �2)℄ ; t
 = w(n)[n� 1℄;where �1; �2 are the parameters of 
orrelated hopping, 2w0 � unperturbedbandwidth. The dependen
e of 
ohesive energy on the d-ele
tron 
on
entra-tion in 3d-systems 
an be determined by a generalisation of Eq. (5.1) for the
ase of �ve equivalent d-subbands. Fig. 16 shows that the obtained resultsexplain the pe
uliarities of the dependen
e of 
ohesive energy on atomi
number: minimum for Mn and a presen
e of two non-equivalent maximums(V, Co) (as the result of taking into a

ount 
orrelated hopping).

Fig. 16. The dependen
es of 
ohesive energy in 
onsidered narrow-band model on�lling of the s-band; U=(2w0) = 0:8; 1 � �1 = �2 = 0; 2 � �1 = �2 = 0:1; 3 ��1 = �2 = 0:25.



3130 L. Didukh2. Change of n � p type of 
ondu
tivity. The noted 
hange of 
ondu
-tivity type at half-�lling is 
on�rmed experimentally for some 
ompounds,e.g. VOx; in the frame of the 
onsidered model the Mott�Hubbard insulatorstate at x = 1 
orresponds to the ele
tron 
on
entration n = 1 (modellinghalf-�lled t2g-band). At x > 1 in VOx holes (V3+) appear and at x < 1doublons (Vy) appear. In a

ordan
e with our results the experiment [45℄exhibits at x ' 1 the transition from p-type (at x > 1) to n-type 
ondu
tiv-ity (at x < 1). Analogous 
hange of the 
ondu
tivity type is observed alsoin CoxFe3�xO3 [74℄.3. Con
entration-dependen
e of the a
tivation energy. As a 
onsequen
eof the 
on
entration-dependen
e of the parameters in the quasiparti
le en-ergy spe
trum in �-0 and "#-�-subbands, at the transition from the statewith n < 1 to the state with n > 1, the a
tivation energy has a jump atn = 1. In this 
ase both in
rease and de
rease of a
tivation energy are pos-sible depending on a mutual arrangement of �-0 and "#-�-subbands relativeto other bands. This jump of a
tivation energy is 
on�rmed experimentallyfor MnxFe3�xO4 [74℄ and CoxFe3�xO4 [73℄.The author is grateful to the Organizing Committee and personally toProf. J. Spalek for kind invitation to parti
ipate in the XL Cra
ow S
hool ofTheoreti
al Physi
s �Quantum Phase Transitions in High Energy and Con-densed Matter Physi
s�. The valuable dis
ussions with Prof. J. Spalek andProf. I. Stasyuk are gratefully a
knowledged. The author also thanks Dr.V. Hankevy
h, O. Kramar and Yu. Skorenky for assistan
e in preparationof the manus
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