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A modified form of the polar model of crystals is proposed. A pecu-
liarity of the model is the dependence of the hopping integral on the site
occupation. In the cases of weak and strong interactions the effective model
Hamiltonian, which generalises the known forms of the effective Hamilto-
nian, is derived. It is shown that the model has the electron-hole asym-
metry, in contrast to the Hubbard model. The metal-insulator transition
within the model is also studied. The obtained results are compared with
experimental data for narrow-band materials. Some specific narrow-band
effects are discussed.

PACS numbers: 71.10.Fd, 71.27.+a, 71.28.+d

1. Introduction

1. The fact that unique properties of narrow-band systems (for example
oxides, sulphides and selenides of transition metals) are caused by electron-
electron interactions is generally accepted in our time. But, in spite of the
great number of the papers concerning this problem, it is still an actual
problem of condensed matter physics to construct the consistent theory of
narrow-band systems. During the recent years the range of problems con-
nected with the correlation problem and an importance of investigating the
narrow band systems have intensified with the discovery of high-T, super-
conductors.

Important problems can be separated into three groups:

(1) aconstruction of the narrow-band-system models using adequate Hamil-
tonians;
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(2) an elaboration of effective mathematical methods to study those model
Hamiltonians;

(3) a construction of the consistent theory of correlation effects and an
explanation of peculiarities of physical properties in the narrow-band
systems.

Problems (1) and (2) had been considered and partially solved by Shubin
and Vonsovsky within their famous polar model [1]. In this a model Hamilto-
nian and its “configurational” representation had been proposed. The polar
model proves to be very meaningful due to the heuristic value of “configura-
tional” description idea (basic for model treatment of 3d-compounds [2].) In
the frame of the polar model a criterion of metal-insulator transition (MIT)
was formulated for the first time; an explanation of fractional atom momen-
tum in transition 3d-metals, a hypothesis of the possibility of charge ordering
were also proposed; a possibility of having a gapeless semiconductor and su-
perexchange interaction were predicted. Commonly used Hubbard model is
a partial case of the polar model [3].

However, a direct use of the polar model (in the traditional form [1]) to
solve the problems had been proved to be not effective in many cases.

Firstly, the transition from the second quantisation Hamiltonian in terms
of electron operators to its representation in terms of Shubin—Vonsovsky op-
erators had been realized by the substitution of some combination of electron
operators through the combination of Shubin—Vonsovsky operators with the
same action on the wave function. Such transition is cumbersome and diffi-
cult even for the s-band situation (see for example [4]).

Secondly, the approximations underlying the mathematical treatment of
the polar model are uncontrollable (first of all, the postulation of Bose-type
commutation rules for the operators of current excitation).

2. The polar model theory was developed in two ways. The first one
is connected with developing the methods of effective mathematical treat-
ment of initial polar model Hamiltonian in the electron representation. The
fundamental results in this way belong to Bogolubov [5]. He proposed the
effective Hamiltonian method which took into account high energy electron
states with the help of special form of the perturbation theory. This method
is one of the most consistent approaches to study of the exchange interac-
tions in magnetic insulators [6]. A use of the configurational representation
of the polar model (polar and homeopolar states) proved to be helpful for
interpretation of the obtained results, and control of the performed calcula-
tions (sometimes very bulky).

The second way is based on a direct use of the configurational repre-
sentations. This approach is effective for investigation of peculiarities of
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narrow-band systems, insulators and semiconductors, on one hand, metals
and materials in which MIT is caused by external influences, on the other.

Important achievement in this way was obtained in the works of Lviv
branch in theory of solids. Here the works [7, 8, 9] of Glauberman, Vladimirov,
Stasyuk were precursory. In this way, the important problems of the polar
model of non-metallic crystals (the problem of constructing model Hamilto-
nians in the terms of site elementary excitations and the problem of com-
mutation rules for operators of site elementary excitations) were solved.

3. The wide use of the configurational forms of model Hamiltonians to
consider physical properties of narrow-band materials is associated with pa-
per of Hubbard [10] in which X¥-operators had been introduced and papers
[11, 12] where the relation between electron- and transition-operators had
been first established, an effective form of perturbation theory had been
proposed. It had been shown that the proper identification of the Shubin-
Vonsovsky operators and transition-operators (the Hubbard operators)
leads to formal equivalence of the traditional form of the polar model and
its modern representations in terms of transition-operators. It also had been
shown that

kl
Xi = O‘:L!‘kaila

where oe;[k, a;; — Shubin—Vonsovsky operators of creation and destruction

of |k)-state and |l)-state respectively on i-site.

An expediency of using X¥.- or oz;-ryaw—representation is predicted by

requirements of considered problem. In calculations using diagrammatic
Green functions technique or perturbation theory it is convenient to use
X _representation of Hamiltonian [13], in problems using approximate sec-
ond quantisation method (e.g. to study MIT using the mean-field approx-
imation (MFA) in generalised Hartree-Fock approximation [14]) a;-ryaw—
representation is more convenient. The b-c-representation (see Ref. [14])
can also be useful.

4. The representation of a narrow-band Hamiltonian in the terms of Xfl,

b-c- or a;-ryozw—operators are helpful for understanding the correlation effects,
to explain physical properties of narrow-band materials. This representation
is convenient from the point of view of mathematical treatment of models.
Below a consistent form of the polar model of narrow-band materials is
proposed and the consequences derived from this model are discussed.
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2. The Hamiltonian

Hamiltonian of the system of s-electrons in the Wannier-representation

is written as
_ T ! syt
H = —yu E a;,Gig + g ijgt(”)aiﬂaj”

+= ZJ ’ijl w jglalglakg, (2.1)
ijkl
!
g,0
where ajg, a;c — creation and destruction operators of electron on site 1,

o =T,], u — chemical potential, n;, = aJ-r »Gio, and

t(ij) = /¢ r— ZV (r — R,)¢(r — R;)dr, (2.2)

s = [ [ ¢ Rk)%

x ™ ( r —Rj)gb(r —Rl)drdr , (2.3)

are respectively the matrix elements which describe hoppings of electrons
between nearest-neighbour sites of lattice (V(r — R;) is the potential en-
ergy of electron interacting with an ion on i-site), and the electron—electron
interactions. The prime by the second sum in Eq. (2.1) means that 7 # j.

Narrow energy bands allow to simplify Hamiltonian (2.1). Here wave
functions closely resemble atomic 3d-functions (their overlapping decrease
quickly with increase of the inter-atomic spacing), so matrix elements #(ij)
and J(ijkl) can be estimated from degree of overlapping. Thus quantities
J(7i13) and J(ikik) will be of zero order, J(i1ij), J(ijkj) — of first order (as
t(ig)), J(ijkl) at 1 # k, j # 1 — of second order (immediate estimation of
J(ijkl) is given in the paper [3]). In accordance with this we limit ourselves
to accounting in Hamiltonian (2.1) matrix elements J(iz7i1) = U, J(ijij) =
V(i) (i and j are nearest neighbours), J(iiij) = T'(ij), J(ijkj) (k # 1, k #
7), J(ijji) = J(ij); taking into account quantity of second order J(ij) is
on principle necessary to describe ferromagnetism in this model in Mott—
Hubbard insulator state. Then

H= — uZawaw—i—Z t(ij) —i—ZJ ikjk) nk)a][,—i-UanTnu

A oaa L N
+ szo_o_ 7',7 za ]alalala/jg+ QZi]’gg'V(Z])nwnW s (24)

where n; = n;p +nyy.
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In Hamiltonian (2.4) we rewrite the sum > (zkjk)azankaja in the

zyak
form
Z ZJ ikjk) awnkajg + Z ( 1117) a »GjoNiG —|—h.c.> (2.5)
ijo  k#i ijo
k]

(6 denotes spin projection which is opposite to o). We suppose (as in pa-
pers [14, 15]) that

! !
Z Z J(ikjk)a;-rankajg = nz J(ikjk)z a;-rgajg
ijo  k#i k#i ijo
k% k7
with n = (n;y + n;)) (sites ¢ and j are nearest neighbours). It should be
noted that this supposition is exact in the homeopolar limit (n; = 1).
Thus Hamiltonian (2.4) takes the following form

!
T
H= - ,uZa Qjg +Zijgtij(n)aigajg
+ ZZJ ( (i7) awajgnw + h. c) + UZ"ZT”N

I ot .
+ §Zijm7' J(Z])aig’a‘jg”a’iala’j(f + Ezijgg,v(zj)nianja’ 3 (26)
where

tij(n) = t(ij) +n Y _ J(ikjk) (2.7)
ki
k#j
is the effective hopping integral between nearest neighbours.

Neglecting all matrix elements in (2.6) except ¢(ij) and J(i4i7) we obtain
the Hubbard Hamiltonian.

The transition from the general form of Hamiltonian (2.6) to the Hub-
bard Hamiltonian, i.e. taking into account only the intra atomic Coulomb
repulsion, it is often argued that the quantities J(4ii7), J(ikjk), J(ijji) and
J(ijij) are small in comparison with J(i7i7). However, taking inclusion of
these matrix elements can be in principle important from the point of view of
both the construction of correlation effects theory in materials with narrow
energy bands and the interpretation of physical properties of these materials
[13, 15-17].

Neglecting inter-atomic exchange interaction is justified by a smallness
of J(ij) in comparison with U and hopping integral ¢(ij), on the one hand,
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a possibility of ferromagnetic ordering stabilisation in narrow energy band
(NEB) as a consequence of “translational” mechanism of exchange, on the
other hand. Without consideration of a possibility of ferromagnetism real-
ization in the one-band Hubbard model it should be noted that in NEB a
contribution of translational part of energy in total system energy can be
smaller then a contribution of energy of inter-atomic exchange interaction
(in spite of the fact that |t(ij)| > J(ij)). Really, in partially filled NEB (for
U > |t(ij)|) the contribution of translational part of ground state energy
~ ndw (0 — degree of deviation from half-filling, n is the average number
of electrons per site, 2w is the bandwidth) [16], and the contribution of ex-
change interaction in ground state energy ~ zn®.J (J is the exchange integral
between the nearest neighbours, z is the number of the nearest neighbours
to a site). It is clearly, that in NEB close to half-filling (6 — 0) the contri-
bution of energy of inter-atomic exchange interaction in total system energy
will be the largest. In particular, in non-doped Mott-Hubbard ferromagnets
magnetic ordering is stabilised by inter-atomic exchange interaction only.

Taking into account inter-atomic Coulomb interaction is also important
to understand a character of charge ordering in materials with NEB.

Finally, we can neglect the correlated hopping term (2.5); this is justified
by estimating the matrix elements [3]. However, matrix elements J(ikjk)
are the hopping integrals. Thus taking into account (2.5) leads to the renor-
malisation of those processes describing the band part of Hamiltonian (2.6).
In effect, t(ij), T'(ij), J(ikjk) are the quantities of the same order of mag-
nitude.

If direct exchange interaction and inter-atomic Coulomb repulsion can be
taken into account by respective renormalisation of chemical potential (fer-
romagnetic and charge orderings are absent) then Hamiltonian (2.6) takes

the form
= - p an + Z tzy a'wafja

+ ZZJU ( (i7) awajgnw + h.c. ) + UZ”ZT"N (2.8)

The peculiarity of the model of NEB material described by Hamilto-
nian (2.8) relies on taking into account inter-site hopping of electrons which
are caused by electron—electron interaction. In this connection the following
fact should be noted. Formally, correlated hopping has been introduced in
the papers beginning from the pioneering work of Shubin and Vonsovsky [1];
the possible renormalisation of “band” hopping as a consequence of taking
into account correlated hopping had been noted in the papers [5, 18, 19].
The important role of the correlated hopping in NEB in generalizing the
concept of the Hubbard subbands had been pointed out in [20]. In that
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work, in particular, it had been shown that NEB had electron-hole asymme-
try and essentially renormalised bandwidths connected by hopping in “hole
and doublon subbands”. This approach has been developed in the papers
[21, 22], where it has been shown that some properties of narrow-band ma-
terials can be interpreted using the idea of correlated hopping and caused
by it electron-hole asymmetry in NEB.

The fact that the correlated hopping is necessary, was pointed out also
in the papers [23]. In recent years models with correlated hopping have been
studied intensively [24-28].

3. Particular cases of the polar model

3.1. Weak intra atomic interaction

To simplify the considerations we use model Hamiltonian (2.8). If intra
atomic Coulomb interaction is weak (U < |t;;(n)|) then we can take into
account the electron—electron interaction in the Hartree-Fock approximation:

NNy = NNy + NN,
al,nizaje = nzalyajs + (al,a;0)mis, (3.1)
where the average value (n;;) = n, is independent of the site index (if
assumed that distributions of electron charge and magnetic momentum are

homogenous). Taking into account (3.1) we can write Hamiltonian (2.8) in
the following form:

H =3 elij)alyajo. (3.2)
where
(i) = —p+ Bo + 15U +tij(no); (3.3)
b = & YTl alyais), (3.4
tij(no) = tij(rz])+2n5T(ij). (3.5)

The use of (3.2) allows us to explain the peculiarities of the dependence of
binding energy on atomic number in transition metals and also to modify
the theory of ferromagnetism in a collective electron model.
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3.2. Strong intra atomic interaction

For typical narrow-band materials the conditions of strong U >> (ij) or
moderate U ~ t(ij) intra atomic Coulomb repulsion are met. In this case
Hamiltonian (2.6), using the “configurational ideology” of the polar model
proposed in [12], can be written in the form suitable for a detailed treatment.
For that purpose let us rewrite Hamiltonian (2.6) in “configurational” repre-
sentations
[11, 12]. The relations to the a operators are provided by the formulae:

azg = aggaio - 7]005220%6’ Ajg = Oé;-rooéia - 77004;-[60%2,
where 7, = +1 when ¢ =1, 17, = —1 when ¢ =, site ¢ can be unoccupied
with electron (]|0)), singly occupied (|o)) or doubly occupied (|2)). The
relations to the X operators are given by:

(Z;LU :ngo _%Xi%a Qig :XZOU _naXZ'&Q, (36)

where X! — operators of site 4 transition from state |I) to state |k), !
The Hamiltonian can be written then in the form:

H = Hy+ H, + H{ + He,, (3.7)
where

Hy = —uY_ (X] + X} +2X2) + U X7
i 7

1 .
+5 2 V) (1= X7+ X7) (1- X7+ X7) (3.8)
ij
I ~
H, = Zijatij(n)XgOX]Qa + th‘j(n)ngX}T?, (3.9)
ijo
!
H =3 (#m) (XX = X1°X/) + e, (3.10)
I« ,,.. L
Hex = =53 J(i5) (X7 +X7) (X7+X3) + X77X77) . (3.11)
ijo

where X¥ is the number operator of |k)-states on site i, and
tij(n) = tij(n) + 2T(i5), (3.12)
t ](n) = t;j(n) + T(ij) . (3.13)
! Tn the papers [11, 12] notations of site transition-operators B}, was introduced. In

the present paper we use the modern notations X!, and more convenient notations
of state |ik).

SN S
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The essence of configurational representation is proved by the fact that
the intra atomic interaction takes the diagonal form. Besides, effects of intra
atomic Coulomb interactions correlating electron translations are described
by Hamiltonians Hy and Hj.

H, describes transitions of |jo)-configurations to |i0)-configurations
and |j 1T))-configurations to |jo)-configurations of neighbouring sites, which
forms o-0-subband —“hole” subband and 2-o-subband —“doublon” subband,
respectively (they are analog of “lower” and “upper” Hubbard subbands).

Hj describes transitions between o — 0- and 1| —o-subbands ( processes
of paired creation and destruction of holes and doublons). These processes
are “translational” in the distinction from “activational ”processes described
by Hl.

If we neglect inter atomic Coulomb and exchange interaction in Hamil-
tonian (3.7) then the Hamiltonian takes the operator structure equivalent
to the Hubbard Hamiltonian. However, in this model hopping integrals in
0-0 and 1| o-subbands and “interband” hopping integrals are dependent
on concentration and different, in distinction from the Hubbard model (see
Fig. 1). Properties of this “asymmetrical Hubbard model” can be essentially
different.

3.3. Generalised t—J model

Configurational representation is especially useful in an investigation of
narrow-band system, in which the condition U >> t(ij) is satisfied. In this
case system can be both Mott—Hubbard insulator at » = 1 and doped Mott—
Hubbard insulator at n # 1. Then general Hamiltonian using suitable form
of the perturbation theory [12] generalising Bogolubov perturbation the-
ory [5] for metallic systems can be written in the form of effective Hamilto-
nian, which is convenient to the mathematical treatment. Thus, transition
to the well-known #-J model is obtained (see the review [29] and also the
papers [12, 16] where modern form of ¢—J-model was formulated first). Let
us use the approach proposed in [12] for generalised narrow-band Hamilto-
nian (3.7). Namely, we perform the canonical transformation

H=¢"He™*, (3.14)
where

s=% (L(ij) (XZTOXj2 - XjOXZT?) - h.c.) . (3.15)
i

If we limit ourselves to quantities of second order of smallness in Eq. (3.14)
(S is of first order), then
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H = Hy+ Hy+ H| + [SHy]
+[SH] + [SH]] + & [S[SHo]] - (3.16)

Use the condition of an elimination of “activational” processes
Hi + [SHy] = 0. (3.17)

Taking into account inter-atomic Coulomb interaction in the mean-field ap-
proximation we obtain that

L(ij) = tj;(n)/A, (3.18)
where
A=U-V+z2V (X)) +(X?)) (3.19)

is the activation energy of hole-doublon pair (V is the strength of Coulomb
repulsion between nearest neighbours ).

The components of commutator [S; Hq] have operator structures similar
to structure of H', but with “hopping integrals” of second order; in the
considered approximation they do not contribute to H. Thus for the case
of o-0- and 1]-o-subbands are separated by energy gap and t,j(n) < A the
initial Hamiltonian (2.6) has the form

~ !
H = Hy+ Zijtij(n)XfoXjQ”
!

+Zijafij('n)Xi2”X]‘72 + Hex + Hex + Hy (3.20)
where
~ 1 I~ _
Hex = —gzijUJ(w)(XfX;’
—XJ7X77 - X7 X)), (3.21)
- 1 g ; 50 105
Hy = =3 k) (XOX] X7 = X7 XT7 X))
1 g 55 3
—§ZiijJ(z]k) (XPXP°X7? - XPPXTX[?) . (3.22)
Here

J(if) = 2tj;(n)t};(n)/A (3.23)
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— integral of indirect exchange (through polar states),
J(ijk) = 2t3;(n)t}(n) /A (3.24)

— integral of indirect charge transfer in o-0- and 1}-o-subbands; in sum
(3.22) sites 7 and k are nearest neighbours to j.

An elimination of the processes of paired creation and destruction of
holes and doublons (in first order on hopping integral #;;(n)) leads to a rise

of two terms Hex and H; in EH (3.20). Hyy describes indirect exchange
interaction (superexchange), H; describes indirect hopping of electrons (su-
perhopping). EH (3.20) generalises the EH obtained in [12] for the Hub-
bard model. The distinctions of EH (3.20) from the forms of ¢-J-models
([30, 31]) are caused by the concentration-dependence of hopping integrals
in 0-0- and 2-o-subbands, firstly, the difference of the noted hopping inte-
grals (the absence of electron-hole symmetry), secondly, unusual form of the
superexchange and superhopping integrals (the being of the concentration-
dependence in hopping integrals, formula (3.19) for A), thirdly.

In the modified in this way t-J-model, in particular, the conditions of
a realization of high-T. are more favourable than in the similar Spalek
model [32]. A number of peculiarities of the model EH are useful to in-
terpret physical properties of narrow-band materials.

4. New two-pole approximations

4.1. Approzimation I

4.1.1. Single-particle energy spectrum. Metal-insulator transition

Beyond the frameworks of approximations considered in Sect. 3 the re-
gion of parameters remains, in which the width of unperturbed band 2z|t(ij)|
and a strength of Coulomb repulsion are close to each other. From general
physical considerations in this region we have to expect the metal-insulator
transition (for n = 1). Although a great number of papers are devoted to the
determining the energy gap, the question of a correct description of metal-
insulator transition attracts the attention of researchers (see, for example
[34, 35]).

The most significant defect of the approximation “Hubbard-1” is the in-
ability to describe of the metal-insulator transition (MIT) because of the
presence of an energy gap in a spectrum at all values of U/w > 0. Other
approximations are free from this defect, but have their own defects [34, 35].

We propose a new approach to calculating the single-particle energy
spectrum of narrow-band materials which leads to correct description of
metal-insulator transition. The approach is based on a variant of the approx-
imate second quantisation representation method [36] within a generalised
Hartree-Fock approximation (GHFA) [37].
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We start from the Hamiltonian (3.7) without the Heyx term. Suppose that
electron ordering is absent (taking into account the inter-atomic interaction
in the mean-field approximation leads to chemical potential renormalisa-
tion).

The single-particle Green function

Gy (B) = {{apdal, ) (4.1)

in terms of Hubbard operators is written as

) = (X)) (X)) 0 (7] 5))
(7)) -

The Green function <<X£"

XI‘)’,0>> is given by the equation

o) = gy + ()

+ <<[X;3”,H1] ‘X;;,O>> , (4.3)

(B + ) { (x5

with [A, B] = AB — BA, and

(X0, H] = tz (X7 + X)X + X7 X)7) - EZ XPX37, (4.4)

J J
0 02 yva0 G 2
(Xpr ) = XT3 XN
j j
—t' ) (X7 + X)) X7, (4.5)

J

To terminate the sequence of Green-function equations according to the
generalised Hartree-Fock approximation [37] we suppose that

(X9, Hi] = elpi)X§7, [Xp7, Hi] =Y ea(pi) XJ?, (4.6)
J J

where €(pj) and €;(pj) are the non-operator expressions. The choice of the

commutators in form (4.2) and (4.3) is prompted by the operator structure of

these commutators, which maps the energy non-equivalence of the hopping
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processes prescribed by Hy and H{. Taking into account (4.4) we rewrite
Eq. (4.1) in the form
0
X))

o7 g+ 3 K (o
X"°>> (4.7)

27r
+Z€1 pj) <<

After anticommutating both sides of (4.4) with X% and with X2?, we ob-
tain, respectively

e(ph) (XY + X)) = H(XJ + X)) (X7 + X)) + tX77 X7
—Opkt Y X7OXI7 + S0ty XJ?”X,Z?
' j
XX, (4.8)

e1(pk) (X7 + Xp) = —t'(XJ+ X)(X] +Xp) +t'X]°X[°
—Opt’ Y XTOXPT + ot > XRXT?
j j
—t' XX ). (4.9)

Similarly, for the Green function <<X]‘;72

tion

XI‘)’,0>> we can write the equa-

x30))

(E+p—U) <<X§2

W)= S (s
+Z€2 pj << >> (4.10)

where €(pj) and ez(pj) are determined through the expressions which are
analogous to (4.6) and (4.7). Thus we obtain the closed system of equations
for the Green functions <<X£” XZ‘)’,0>> and <<X]‘;’2 XI‘)’,0>>.

By neglecting correlated hopping and by averaging expressions (4.6)
and (4.7) we obtain the approximations [3, 38]; the defects of these ap-
proximations are well-known (see, for example Ref. [39]). Here we use the
approach which has been proposed in the papers [14,40].

To determine e(p7), €1(pj) we rewrite X Fl-operator in Eqs. (4.8) and (4.9)

in the form [41] Xikl = a;.[kail, where oz;[k, oy are the operators of creation
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and destruction for |k)- and |I)-states on i-site respectively (the Shubin-
] i agaaiff'
Let us substitute a-operators by c-numbers in Eqs. (4.6) and (4.7) (here
there is a partial equivalence with slave boson method [42])

Vonsovsky operators [1]); thus X? = 0420041'0, X? = oz;-r2ozi2, X?

1-2d\"?
al, = aip = <T> . ajg=ap=a=ap=d"? (411

(we consider a paramagnetic case, electron concentration on site n = 1);
d is the concentration of polar states (holes or doublons).

The proposed approximation is based on the following physical idea. Let
us consider a paramagnetic Mott—Hubbard insulator at temperature T' # 0.
In the temperature interval (kgT < U) the concentration of polar states is
small (d < 1). An analogous consideration is valid for a paramagnetic Mott—
Hubbard semimetal (hole and doublon subbands overlap weakly, d < 1). So,
the change of states and polar excitations influences on |o)-states weakly.
Thus we may consider |o)-states as the quasiclassical system and substitute

the operators ozga, @, by c-numbers. In addition, when we find €(pj), €1(pj)
we substitute the creation and destruction operators of |0)- and |2)-states
through the respective quasiclassical expressions. Actually the proposed
approximation is equivalent to a separation of the charge and spin degrees
of freedom. Note that the present approach is justifiable when d — 0.

Thus in k-representation we obtain [43]
e(k) = (1 — d)*ty, — 2d°tg, e (k) = —2dt}, (4.12)

where tg, tg, t) are the Fourier transforms of the hopping integral ¢, £, #
respectively. Similarly, we find that

é(k) = (1 — d)*ty, — 2d%tg, ex(k) = —2dt},. (4.13)

The Fourier transform of the Green function <<X£” X]‘)’,0>> is found

from the system of equations (4.5) and (4.8)

1 E+p—U~—(1—2d+2d?*)ty + 2d°t,
x| x 90 = 4.14
<< P p>>k Amr (E — Ei(k))(E — Ey(k)) » (414)
with
(1-2d)(tg +t) +U _ 1
Eis(k)=—p+ 5 F §Fk, (4.15)

By = \/[B(tk — k) —U]* + (4dt})?, B=1—2d+4d>. (4.16)
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An analogous procedure is realized also in the equations for the other
Green functions in Eq. (4.2).
Finally, in k-representation the single-particle Green function is

1 Ay, By,
E) = — 4.1
GrlB) = o <E—E1(k’) " E—E2(k)) ’ @17
1 2dt, 1 2dt,
Ap = - - =k = k. 4.1
k=5 Bregt R (4.18)

Single-particle Green function (4.17) gives the exact atomic and band
limits: if U = 0 and ty, = 5 = t}, = to(k) (it means neglecting correlated
hopping) then Gg(F) takes the band form (d = 1/4 when U = 0), if t} =
tr, = tj, — 0 then we obtain the exact atomic limit.

The peculiarities of obtained quasiparticle energy spectrum (4.15) of
narrow-band system which is described by Hamiltonian (2.5) are the de-
pendence on the concentration of polar states and the non-equivalence of
the lower and upper Hubbard bands. This non-equivalence is caused by the
difference of the hopping integrals t, ¢, t'.

Quasiparticle energy spectrum (4.15) allows to study MIT in the pro-
posed model which has been investigated in the paper [43].

With the help of energy spectrum of electrons (4.15) we find the expres-
sion for the energy gap width (difference of energies between bottom of the
upper and top of the lower Hubbard bands):

AE = —(1 —2d)(w + ) + %(Q1 +Q2),

Q1 = \[Bw - @) - U + (ddzt')?,

Q> = \[Bw - @) + U + (4dzt')2, (4.19)

where w and @ are the half-widths of the lower (hole) and upper (doublon)
Hubbard bands respectively: w = z|t|, W = z|t| (z is the number of nearest
neighbours to a site).

The peculiarities of the expression for energy gap (4.19) are dependences
on the concentration of polar states, on the widths of hole and doublon
bands, on the hopping integral ¢ (thus on external pressure). At given
U, t, t, t' (constant external pressure) the concentration dependence of AF
allows to study MIT under the action of external influences: temperature
change, photoeffect and magnetic field. In particular, AE(T)-dependence
can lead to the transition from a metallic state to an insulating state with
the increase of temperature (in this connection the transition from the
state of a paramagnetic metal to the paramagnetic insulator state in the
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(V1-4Cry;)203 compound [44,45], in NiSy [46] and in the NiSy_,Se, sys-
tem [46,47]| should be noted). Under the action of light or magnetic field
the concentration of polar states can be changed; it leads to the fact that
the energy gap width is changed also and MIT can occur.

Distinction of formulae (4.15) and (4.19) from earlier obtained results
(e.g., see reviews [34,35]) is the dependence on concentration of polar states.
Let us find the expression for its calculation.

The concentration of polar states is given by the equation

“+00
1
w2y
d=(X? = NZ /Jk(E)d,E
k —
1 Ck Dy,
= — + ,  (4.20)
2N exp Elék) +1 exp EQék) +1
where
1 Bltpg—tx) U
Ck: o - )
2 2F}, 2,
1 Blty—tr) U
Dy ==
k=0t T om Tamy

0 = kT, kp is the Boltzmann’s constant, N is the number of sites, Jg(F)
is the spectral intensity of the Green function

((x7[x7)), = ﬁ <E _%l(k) g —IZZ(k)) ' (4.21)

At T = 0 and the rectangular density of states

1
—Za — i) = wH(w - E?)

(0(z) =1 if z > 0, = 0 otherwise) from Eq. (4.20) we obtain that
Bt—t U B2(t — t)?
2 — o= 1—
PEESY [(P(GO) (P( 60)] + Z\/X < A )

\/_<p(60) Aeo — BU(t — t)
\/_go( €0) + Xeg — BU(t — 1)

x 1

=8d—2 (U< w+d)(4.22)
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with

_ pU — p2 (1 —2d+2d*)w — 2d*w
N a2z N T A 2w ra)

p(e) = {\e® —2BU(f —t)e + U2}% . A= BX(i—t)? + (4dt")?.

For narrow-band semimetal (d < 1) Eq. (4.22) takes the following form:

d:i(l— v ) (4.23)

w4+ w

Figure 1 shows the dependence of d on U/w which is obtained from
Eq. (4.22). The parameters 7, = Ti/|to|, 72 = T»/|to| characterise the
value of correlated hopping. One can see that a value of d depends on the
parameters of correlated hopping 7y, 79 (thus on w/w) weakly when U/w is
close to zero. But with the increase of U/w the concentration of polar states
becomes strongly dependent on the parameters 7, 7. It testifies on the fact
that taking into account the correlated hopping is important to consider the
metal-insulator transition problem.

0.25
0.20
0.15
0.10
0.05

0.00
0.00 0.50 1.00 1.50 2.00

Uu/w
Fig.1. Concentration of polar states d as a function of U/w: the upper curve
corresponds to 71 = 7 = 0; the middle curve — 71 = 7 = 0.1; the lower curve —
T — Ty = 0.2.

Fig. 1 shows also that if U > w+w then the concentration of polar states
d = 0. In the special case t +t = t' = 0 this consequence is in accordance
with the results of Refs. [48-50].
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At T = 0 the energy gap width AE < 0 (i.e. MIT occurs) when the
condition

U <w+1i (4.24)

is satisfied (in agreement with general physical ideas [45]). For the special
case t' = 0 condition (4.24) covers the exact results of Refs. [48-50].

Fig. 2 which is obtained from formula (4.19) using Eq. (4.24) shows
that in a metallic state the overlapping of energy subbands decreases and
in an insulating state the energy gap width increases with decrease of the
parameter w/w (at given U/w).

0.50 -

0.00 J

0.00 1.00 2 (IJO 3.60

U/w

Fig.2. Energy gap width AFE as a function of U/w: the upper curve corresponds
to 71 = 7 = 0.2; the lower curve — 7 = 75 = 0.

In the Hubbard model energy gap width (4.19) takes the following form:

AE = —2w(1 — 2d) + /U2 + (4dw)?, (4.25)
and the concentration of polar states (4.22) is
i= (11 Y i —aa)) 0w -u) (4.26)
—\4 7" 32dw " v ‘

In the region of metal-insulator transition d = 1/4 — U/(8w); this de-
pendence is in qualitative accordance with the result of Brinkman and
Rice [51] obtained by use of Gutzwiller variational method [52], those of
the general Gutzwiller-correlated wave functions in infinite dimensions [53]
and the Kotliar-Ruckenstein slave bosons [42]. For U/2w — 0 we obtain
d=1/44U/(8w)In(U/2w) (if we consider Coulomb repulsion as pertur-
bation then d(U — 0) = 1/4 — O(U)); in order to compare the obtained
dependence (4.26) d on U/w in the Hubbard model with other approximate
theories see e.g. [54]). AE < 0 when the condition 2w > U is satisfied.
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4.1.2. Temperature-induced metal-insulator transition

At given U, w, w, t' (constant exterior pressure) concentration of polar
states (4.20) increases with the increase of temperature. It leads to the fact
that system can undergo transition from the state with AE < 0 to the state
with AE > 0, i.e. metal-to-insulator transition can occur. In this case the
results obtained in the Hubbard model and those obtained in non-symmetric
Hubbard model can be essentially different (Fig. 3 illustrates it) [55]. Let
us take for example U/w = 0.9. One can see that at 7' = 0 K the energy
gap width in both models is AE < 0 (a metallic state). With the increase
of temperature metal-to-insulator transition does not occur in the Hubbard
model, in non-symmetric model the values of parameters 7, 7o exist at
which metal-to-insulator transition occurs.

0.20

0.00 7

-0.20

AE/U

—0.40

—0.60 ]

—0.80 Frrrrrrrr Beaaszzas T Bemamzzz Bemaszzss ]

Fig.3. The dependence of energy gap on temperature at U/w = 0.9. The upper
curve corresponds to 71 = 7 = 0.2, the middle curve — 7, = 7 = 0.1, the lower
curve — 71 = 75 = 0 (the Hubbard model).

In case metal-to-insulator transition occurs in both models from Fig. 3
one can see that at given values of U/w in model with non-equivalent Hub-
bard subbands metal-to-insulator transition occurs at smaller temperature
than in the Hubbard model. So, for example, for wy = z|tg| =1.05 eV (such
bandwidth of NiSy was estimated in paper [56]) in considered model in a
paramagnetic state metal-to-insulator transition occurs at T =~ 280 K for
U/wg = 1.94 and 71 = 79 = 0.01 (the observable transitions temperature
of NiSy is T ~ 280 K at p ~ 3 MPa [46]). For the same value of U/wq
metal-to-insulator transition occurs at T' = 940 K when 71 = 75 = 0 (ne-
glecting of correlated hopping, the Hubbard model) and at 7' =0 K when
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71 = 1o = 0.015. If U/wy = 1.98 then transition from a metallic state to
an insulating state is realized at T' ~ 290 K for 71 = 7o = 0; at T =0 K
when 71 = 79 = 0.005. Note that at U ~ 2w the temperatures of metal-
to-insulator transition found in both models are essentially different; with a
deviation from this ratio the difference decreases.

The obtained temperature dependence of energy gap can explain observ-
able transition from the state of a paramagnetic metal to the paramagnetic
Mott—Hubbard insulator state in the (Vi_;Cr;)203 compound [44,45] in
NiSs [46] and in the NiSo_,Se, system [46,47] with the increase of temper-
ature.

4.2. Approzimation I

4.2.1. Single-particle Green function and energy spectrum

In the present Section recently proposed two-pole approximation [57] is
used to study effects of electron correlations in the Hubbard model.
The single-particle Green function is written in Xikl—operators as

(antlale)) = Qi) - (o)) - (7))
+<<X£T‘on>> . (4.27)

The functions <<X$2‘X§¢>> and <<X£T‘Xs2¢>> satisfy the equations

(E+M—U)<<X$2\X3¢>> _ ‘; (xp+x2)+ <<[X Q,Hl}_‘X§¢>>

+<<[X¢2 ' X2¢>>
e () = (] [x2))

+ << [XST,H{]_‘X§¢>> , (4.28)

with [A, B]_ = AB—BA. To obtain the closed system of equations we apply
new two-pole approximation, proposed in work [57]. Suppose in Eq. (4.28)
that

\ 0 S yl2
(XS] =S ey, (X2 m| =Y e X, (429)
J J
where €(pj) and €(pj) are non-operator expressions which we calculate using
the method of work [36]. At electron concentration n=1 in a paramagnetic
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state we have
e(pj) = (1 = 2d)tyj, é(pj) = (1 — 2d)ty;, (4.30)
with d = (X2) being the concentration of doublons.
Let us take into account the functions << [Xf, Hﬂ ‘Xs2¢>>

and << [XST, H {} ‘X s2¢>> in the mean-field approximation:

(o))

=- >t o[ (((X5 + XD)X]

1,0#p

-

*))
2)).,

M)
R AR N

137D
(o] |xz))
- 3 e[t ) ()
137D
(Y] = - X (380 3 ()Y

1,0 7p
(4.31)

in this way we neglect the processes describing the “inter-band” hoppings
of electrons which are connected with spin turning over and “inter-band”
hoppings with creation or annihilation of two electrons on the same site.
So we obtain the closed system of equations
X))

(E—pu + U) <<Xf‘X2¢>> - Z é(pi) <<X}2
(x2+x{)

)=,
)

X2¢>> 0. (4.32)

+ (x5 + X2 3 b (P2

1,0#p

® = ((57])) = 3 etoi) (X
+ (X0+x)) > <<

1,i#p
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After the Fourier transformation we obtain solutions of system of Eqgs. (4.32):

X2+ X 1 )
Oy, - SIS (A By

1 U—ek)+ék) -
Ak = §<1‘ Ed<k)—Eh<k))’ B =1- 4

(xpry), = B

27
t(k) 1 - 1
“Bq(k) - En(k) <E —En(k)  E- Ed<k)) '
(4.34)
Here t(k) is the hopping integral in k—representation and
k) = —u+ o4 BLAR)
- §¢ [U = e(k) + &(k)]> + (X0 + X)) (X5 + X2)(t(k))?,
) (4.35)
Balk) = —p+ O WL
+ %\/[U —e(k) + &(k)]2 + (X9 + X)) (X5 + X2)(t(k))?
(4.36)

are the energies of electron in lower (“hole”) and upper (“doublon”) subbands,
respectively; (k) and é(k) are the Fourier components of €(pj) and é(pj).

Analogous procedure gives for functions <<X1i2 ‘X I >> and <<X12T x1° >>
the following expressions:

(), = (1),

X0+ x} A2 2
ey, - S (A
A? = B, Bi=A;. (4.37)

Finally, in k-representation the single-particle Green function (4.27) we
obtain

(fon

A
“ZT>>k - % <E—;h(k) + E—Bbfd(k)> ’
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A, = L <1 (O~ C)(U — e(k) + E(k)) +4t(k)016’2> |

— 6(
2 Eq(k) — Ep(k)
By = 1— Ag, (4.38)
where C) = (X0 + X} ), Cy = (X2 + X}).
In the important for an investigation of metal-insulator transition case
n = 1 in a paramagnetic state (<X;> = <X1;L>> single-particle Green func-
tion (4.38) has the form

(o)), = 2 (e )

Y R
2 0%+ (1(k))?

Bp = 1— Ay, (4.39)

where single-particle energy spectrum is

Bu(k) = (1~ 2)i(k) ~ 5 /T + (@(R))?.

Byk) = (1 - 24)t(k) + 5/T7F (WR))E, (4.40)

(here we took into account that p = % forn =1).

Single-particle Green function (4.39) and energy spectrum (4.40) are ex-
act in the band and atomic limits. It is worthwhile to note, that in distinc-
tion from the results of two-pole approximations of Hubbard [3] and Ikeda,
Larsen, Mattuck [63] the energy spectrum (4.40) depends on polar states
concentration (thus on temperature). In distinction from approximations
based on ideology of Roth [37] (in this connection see also Refs. [30, 67])
the energy spectrum (4.40) describes metal-insulator transition. Energy
spectrum which describes metal-insulator transition was earlier obtained
in work [36]. Expressions (4.40) differ from the respective expressions in
work [36] by presence of term /U? + t2(k) instead of /U? + 4d?t?(k). This
leads to the series of distinctions between results of this work and results of
work [36] (d(U/w)-dependence, the condition of metal-insulator transition,
etc); at the same time expression (4.40) depends on polar state concentration
similarly to respective expression in work [36].

4.2.2. Energy gap and polar states concentration

The energy gap (difference of energies between bottom of the upper and
top of the lower Hubbard bands) is given by

AE = Ey(—w) — Ep(w) = —2w(1 — 2d) + VU? + w?. (4.41)
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Expression (4.41) describes the vanishing of the energy gap in the spectrum

of paramagnetic insulator at critical value (%)c when the halfbandwidth w

increase (under pressure). Dependence of AE on temperature can lead to
the transition from metallic to insulator state with increase of temperature.

0.25

0.20

0.05

0do T 1do T 260 3do

U/w

T T a0 T T e
Ule,

Fig.5. The comparison of d(U/w) dependences: solid line — our result, dashed

line — iterative-perturbative theory [62, 69], circles — QMC method [69].
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For the calculation of polar states concentration we use function (4.33).
At T = 0 and rectangular density of states the concentration of polar states
is

1 U, (1-4d
ST P (i 4.42
d 4+8wn<3—4d> (4.42)
if (§) < (%), and

1+ Y2741
d 1Jrll 2 (4.43)

4 sw 14+42% 1

w

if (£)>(Z),. At T =0 we have (%) =1.672.
The dependence d (%) given by Eqs.(4.42)-(4.43) is plotted on Fig. 4.
One can see that in the point (%)C the slope of d (%) —dependence changes;

the concentration of doublons vanishes at % — 00. Our result for d (%) in
region of MIT is in good agreement with result of papers [62,69] obtained
in the limit of infinite dimensions (Fig. 5). The parameter U is normalised
by averaged band energy in absence of correlation gg.
0.25
0.20
0.15

0.10

0.05

U/w

Fig.6. The dependences of doublon concentration d on U/w at different tempera-
tures: the upper curve corresponds to k7' /w = 0.16, the middle curve corresponds
to kT /w = 0.08, the lower curve corresponds to kT /w = 0.

In Fig. 6 the dependences of polar states concentration on parameter %
at different temperatures are presented. Note the important difference (see
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Fig.7. The dependences of doublon concentration d on temperature at different
U/w: values of U/w from down to up are 3, 2, 1.5, 1, 0.5, 0

Fig. 7) of the dependence of d on temperature from result of papers [62, 69]:
we found that at any temperature polar states concentration increases mono-
tonically with increasing temperature at the fixed value of % when respective
dependence in [62,69] has a minimum.

The dependence of % on parameter % at zero temperature is plotted
in Fig. 8. It is important to note that in the point of gap disappearance
d # 0 in contrast to the previously obtained result [36]. At increasing %
the energy gap width increases (the negative values of AF correspond to
the overlapping of the subbands). For comparison on Fig. 8 results of ap-
proximation “Hubbard-1” [3] is also plotted. In the point of energy gap
vanishing (%)C = 1.672 what is very close to result of “Hubbard-III" ap-
proximation [68].

At increase of temperature in metallic state the overlapping of subbands
decreases and temperature induced transition from metallic to insulating
state can occur at some values of parameter % (Fig. 9). The obtained
results allows us to draw the (w/U, T') phase diagram of the model (Fig. 10).
This phase diagram can explain the experimentally observed transitions from
metallic to insulating state with increase of temperature and from insulating
to metallic state with increase of bandwidth (under external pressure) in
paramagnetic state.
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Fig.8. The dependences of energy gap width on U/w: “Hubbard-I” approximation
(upper curve), our result (middle curve), approximation [36] (lower curve).
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Fig.9. The dependences of energy gap width on temperature at different U/w:
values of U/w from down to up are 0.5, 1.2, 1.5.
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Fig. 10. The obtained (kT,w/U)-phase diagram of the model.

4.2.3. Ground state energy
The ground state energy of the model

B, 1
== <Z tijajgajg> +Ud, (4.44)

ijo

calculated using single particle Green function (4.39) and expressions (4.42)-
(4.43) for the concentration of polar states has the form:

Ey w U U?  (1-4d)

—:——+—(1+3d)—%m (4.45)

N 2 4

E 1 1

N

if (%) > (%)C In Fig. 11 the dependence of the ground state energy on

parameter < given by Eqs.(4.45)—(4.46) is compared with the exact result,
found in one-dimensional case [70]. The upper and lower bounds on ground
state energy in one-dimensional case found in paper [71] are also shown. Our
result for the ground state energy in metallic state lies slightly lower than
exact one and in insulator state fits the exact ground state energy very well.
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¥ e .

Fig.11. The comparison of ground state energies in one-dimensional case: dashed
curves correspond to upper and lower bounds given by Langer and Mattis, upper
solid curve corresponds to exact ground state (Lieb and Wu [70]), lower solid curve
corresponds to result of this paper.

0.00
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Fig.12. The ground state energy found in this paper (upper curve), best upper
(middle curve) and lower (lower curve) bounds on ground state energy in infinite-
dimensional case [72].
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In Fig. 12 our plot of the ground state energy is compared with the best
upper and lower bounds on in infinite-dimensional case [72]. In Fig. 13
we have the comparison with bounds on ground state energy for three-
dimensional simple cubic lattice obtained in paper [71]. In Figs. 11-13 the
ground state energy per electron is normalised by averaged band energy in
absence of correlation £¢; in considered case and rectangular density of states
g9 = —%. Figs. 11-13 show that our result present a good approximation for
the ground state energy of the system. In Fig. 14 we plot our result for the
kinetic part of ground state energy. This plot describes the same behaviour
of kinetic energy of electrons with change of correlation strength in paramag-
netic state as respective result of work [69]: in metallic state absolute value
of kinetic energy decreases rapidly due to rapid decreases of doublon (hole)
concentration. In insulating state absolute value of kinetic energy decrease
slowly what in the approximation of effective Hamiltonian (obtained for the

case % < 1) is equivalent to the interaction of local magnetic moments.

0.00 o

a.00 . . 3

Ule, |

Fig. 13. The upper (upper curve) and lower (lower curve) bounds on ground state
energy in three-dimensional case and the ground state energy found in this paper
(middle curve).

The comparison of calculated ground state energy with results of other
approximations and the exact result found in one-dimensional case shows
that the used method is a good approximation for the model under consid-
eration. The obtained phase diagram of the model can explain the tran-
sitions from paramagnetic metal state to paramagnetic insulator state at
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Fig. 14. The kinetic part of ground state energy as a function of U/w.

increase of temperature and the paramagnetic insulator — paramagnetic
metal transitions under external pressure observed in the systems NiSo_,Se,,
(Vl_l-crl-)QOg and Yl_mcamTiOz;.

5. Specific narrow-band effects

5.1. Absence of electron-hole asymmetry in NEB

Let us consider narrow-band system in which the electron concentration
n < 1 and the energy subbands 0-0 and 1]-0 are separated by gap AFE.
Thus at temperature kT < AFE we can limit ourselves by a consideration
of the lower o — 0-subband. State of such system (doped Mott—Hubbard
insulator — DMHI) will be described by EH (3.20) in which we take that
the expressions corresponding to hopping | 1) )-states are equal to a zero.

Let NEB is in the DMHI state with n > 1. In the Hubbard model
physical properties of system of DMHI are equivalent both for n < 1 and
for n > 1 when the condition (X?) = (X?) is satisfied. This peculiarity of
the Hubbard model (doublon-hole or electron- hole symmetry) is a result
of hopping integrals equality in ¢ — 0- and 1|-o-subbands. In the proposed
model hopping integrals in both subbands #;;(n) and #;;(n) can be essentially
different, besides at the transition of system from the state DMHI with n < 1
to the state DMHI with n > 1 bandwidth have the jump equal to 227'(i7)
(and it continue to decrease with increase of m in consequence of taking
into account correlated hopping; see Fig. 15). So properties of narrow-band
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system with strong intra atomic interaction can be very different for cases
n < 1 and n > 1 in consequence of the essential difference between subband
widths (doublon-hole or electron-hole asymmetry).

2w
a
ZWn 1
\\2
3
0.0 o5 T 10 T 1s T T ZIO]:]_

Fig.15. The change of bandwidth at transition from hole (n < 1) to electron
(n > 1) type of conductivity in doped Mott—-Hubbard insulator: 1 — corresponds
to Hubbard model (1 = =0);2 — 1 =7 =0.1;3 — 11 = 7» = 0.25; « is the
band narrowing factor.

This non-equivalence will be shown, in particular, in dependence of
conductivity on degree of subband filling. In paper [22] had been shown
that for DMHI conductivity at n < 1 0 ~ cnw/(2 — n), and for n > 1
G ~ dw(2 —n)/n, (c = (XP),d = (X?)). In the region of electron con-
centration for which do/on > 0(n < 1) and 96/9n > 0(n > 1) we have
conductivity n-type, for do/dn < 0), d6/0n < 0 — conductivity p-type.
One can see that n—p-type of conductivity of narrow-band system in the
DMHI state is changed three time with change of electron concentration
from 0 to 2: in a region of first and second maximums (if we neglect cor-
related hopping then ny ~ 0,6 and ny ~ 1,4) and at n = 1. In a region
of some conductivity type the expressions for calculation of conductivity
can be written in the Drude-Lorentz form with effective mass depending on
electron concentration [22].

The non-equivalence of cases n < 1 and n > 1 in the concentration-
dependence of o(n) is confirmed experimentally. In the paper [73] was shown
that in metalooxides with less than half-filling of 3d-shell (Mn50O) conductiv-
ity is much higher than in the compounds with half or more than half-filling
of 3d-shell (MnO, NiO).
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5.2. An application of the model to narrow-band materials

Let us shortly consider a possibility of application of the obtained results
for the explanation of some narrow-band systems properties.

1. Cohesive energy of 3d-metals. The cohesive energy in our model is
defined (for the case of weak and moderate intra atomic interaction) by the
formula

Ey = — Z 6k0’<a};;o'ak0'> —vU, (51)
ko

where €g, — Fourier-component of #;;, v = n?/dforn<landv=1-n+
n?/4 for n > 1. In the approximation of the rectangular density of states
cohesive energy has the form

1
2w(n)

Ey = [w?(n) — 2] — vT, (5.2)

with
w(n) =wo [1 —n(r +7m2)], t.=w(n)n-1],

where 71, To are the parameters of correlated hopping, 2wy — unperturbed
bandwidth. The dependence of cohesive energy on the d-electron concentra-
tion in 3d-systems can be determined by a generalisation of Eq. (5.1) for the
case of five equivalent d-subbands. Fig. 16 shows that the obtained results
explain the peculiarities of the dependence of cohesive energy on atomic
number: minimum for Mn and a presence of two non-equivalent maximums
(V, Co) (as the result of taking into account correlated hopping).

E/W
0.4 1

0.2 1

0%% 1.0 20 n

Fig. 16. The dependences of cohesive energy in considered narrow-band model on
filling of the s-band; U/(2wg) =0.8; 1 — 11 =15 =0;2 — 71 = 75 = 0.1; 3 —
T — Ty = 0.25.
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2. Change of n — p type of conductivity. The noted change of conduc-
tivity type at half-filling is confirmed experimentally for some compounds,
e.g. VOg; in the frame of the considered model the Mott—Hubbard insulator
state at © = 1 corresponds to the electron concentration n = 1 (modelling
half-filled t9,-band). At z > 1 in VO, holes (V3T) appear and at = < 1
doublons (V1) appear. In accordance with our results the experiment [45]
exhibits at 2 ~ 1 the transition from p-type (at z > 1) to n-type conductiv-
ity (at < 1). Analogous change of the conductivity type is observed also
in CogFes_,03 [74].

3. Concentration-dependence of the activation energy. As a consequence
of the concentration-dependence of the parameters in the quasiparticle en-
ergy spectrum in -0 and t}-o-subbands, at the transition from the state
with n < 1 to the state with n > 1, the activation energy has a jump at
n = 1. In this case both increase and decrease of activation energy are pos-
sible depending on a mutual arrangement of -0 and 1}-o-subbands relative
to other bands. This jump of activation energy is confirmed experimentally
for MngFes_,O4 [74] and Co,Fes_,O4 [73].

The author is grateful to the Organizing Committee and personally to
Prof. J. Spalek for kind invitation to participate in the XL Cracow School of
Theoretical Physics “Quantum Phase Transitions in High Energy and Con-
densed Matter Physics”. The valuable discussions with Prof. J. Spalek and
Prof. 1. Stasyuk are gratefully acknowledged. The author also thanks Dr.
V. Hankevych, O. Kramar and Yu. Skorenky for assistance in preparation
of the manuscript.
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