Vol. 31 (2000) ACTA PHYSICA POLONICA B No 2

CAPTURE REACTIONS OF ASTROPHYSICAL
INTEREST IN THE SHELL MODEL
EMBEDDED IN THE CONTINUUM™ **

K. BENNACEUR ?, F. NOWACKI ?, J. OKOLOWICZ #¢
AND M. PLOSZAJCZAK 2

& Grand Accélérateur National d’Tons Lourds (GANIL)
CEA/DSM-CNRS/IN2P3, BP 5027, F-14076 Caen Cedex 05, France
b Laboratoire de Physique Théorique Strashourg (EP 106)

3-5 rue de I’Universite, F-67084 Strasbourg Cedex, France
¢ Institute of Nuclear Physics

Radzikowskiego 152, 31-342 Krakéw, Poland
(Received November 20, 1999)

We apply the realistic shell model which includes the coupling between
many-particle (quasi-)bound states and the continuum of one-particle scat-
tering states, to the spectroscopy of mirror nuclei as well as to the descrip-
tion of low energy cross section in the capture reactions.
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1. Introduction

50 years have passed since the introduction the Shell Model (SM) [1]. Its
foundations have been understood when the connection between elementary
nucleon—nucleon interaction and the existence of a smooth effective nuclear
potential with the spin—orbit coupling was established [2]. The investigation
of how the residual two-body interaction acting between nucleons in this
effective nuclear potential can give rise to the observed spectra, started in
mid 50s with the first application of the multiconfigurational SM in p-ghell,
aiming at an understanding of the evolution of nucleon coupling scheme from
LS toward jj coupling with increasing mass number [3,4]. These works have
given birth to the nuclear structure theory which is flourishing nowadays
and whose breath taking achievements accompany the recent experimental
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efforts trying to reach drip-lines and testing limits of nuclear stability at
high angular momenta and extreme shapes.

At the beginning, the scattering continuum was absent in the SM. The
nucleons were assumed to occupy the single particle (s.p.) orbits of bound
average potential, perfectly isolated from the external environment of scat-
tering states. The success of SM was so convincing that even problems en-
countered early in describing the spectra of mirror nuclei (e.g. *C, *N [5]),
which revealed a subtle influence of continuum depending on the position of
respective particle emission thresholds, did not change the fundamental sep-
aration of the ‘nuclear structure’ and the ‘nuclear reaction’ methods. This
separation, which grew with time to a kind of paradigm of nuclear physics,
was weaker in early days. It was Feshbach at the end of 50s who expressed
the collision matrix of optical model in terms of matrix elements of the
nuclear Hamiltonian [6]. This has given strong push to the SM approach
to the nuclear reactions [7]. The basic idea of this continuum shell model
(CSM) approach is to use the finite depth s.p. potential and to consider
no more than one nucleon in the scattering state [8]. The latter limitation
restricts the applicability of the CSM to reaction involving one nucleon in
the continuum.

Description of weakly bound exotic nuclei close to the drip-lines such
as, e.g., °B or "'Li in their ground state (g.s.), is an exciting theoretical
challenge. The proximity of particle continuum in these nuclei imply that
virtual excitations to continuum states cannot be neglected as they mod-
ify the effective interactions and cause the large spatial extension of density
distribution (nuclear halo effect). The Shell Model Embedded in the Contin-
uum (SMEC), in which realistic N-particle SM solutions for (quasi-)bound
states are coupled by the residual interaction to the one-particle scattering
continuum, is a recent development of the CSM [9] for the description of
complicated low energy excitations of weakly bound nuclei.

2. Few remarks on Shell Model Embedded in the Continuum

In SMEC, the bound (interior) states together with its environment of
one-nucleon channels form a closed quantum system. Using the projection
operator technique, one separates the P subspace of asymptotic channels
from the ) subspace of many-body localized states which are build up by
the bound s.p. wave functions and by the s.p. resonance wave functions.
P subspace is assumed to contain (N — 1)-particle states with nucleons
on bound s.p. orbits and one nucleon in the scattering state. Also the s.p.
resonance wave functions outside of the cutoff radius R, are included in the
P subspace. The resonance wave functions for r < Ry are included in the
@ subspace. The wave functions in () and P are then properly renormalized
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in order to ensure the orthogonality of wave functions in both subspaces.

The discussion of SMEC formalism can be found in Ref. [10,11]. The
complete solution in SMEC is constructed in three steps. In the first step,
one calculates the (quasi-) bound many-body states in @ subspace by solving
the multiconfigurational SM problem: Hgo®; = E;®;, where Hpg is the SM
effective Hamiltonian which is appropriate for the SM configuration space
used. To generate both the radial s.p. wave functions in the @) subspace and
the scattering wave functions in P subspace we use the average potential
of Saxon-Woods (SW) type with the spin—orbit and Coulomb potentials
included [10,11]. For the continuum part, one solves the coupled channel
equations:

SO(EH - H, )6 =0, (1)

/
c

where index ¢ denotes different channels and the superscript (4) means
that boundary conditions for incoming wave in the channel ¢ and outgoing
scattering waves in all channels are used. The channel states are defined
by coupling of one nucleon in the scattering continuum to the many-body
SM state in (N — 1)-nucleus. Finally, the third system of equations consists
of inhomogeneous coupled channel equations with the source term which
couples the N-nucleon localized SM states with (N — 1)-nucleon localized

SMEC states plus one nucleon in the continuum. These equations define
functions wgﬂ
continuum.
Using the SM Hamiltonian in ) subspace implies that the coupling be-
tween (quasi-) bound and scattering states has to be generated by the resid-
ual interaction (for that purpose we use the zero-range interaction with the
spin-exchange included). The matrix elements of this interaction enter both
in the source term of inhomogeneous coupled channel equations and in the

channel-channel coupling potential (1): H_+ = (T + U)é ./ + vgc, , where

, which describe the decay of quasi-bound state @; in the

T is the kinetic energy operator and v({ , is the coupling generated by the
residual interaction. The potential for channel ¢ consists of “initial guess”,
U(r), and diagonal part of coupling potential Ugc which depends on both the
s.p. orbit ¢;; and the considered many-body state J". This modification
of the initial potential U(r) change the generated s.p. wave functions ¢y ;
defining ) subspace, which in turn modify the diagonal part of the residual
force, the source term, etc. Hence, the solution of coupled channel equa-
tions (1) is accompanied by the self-consistent iterative procedure which, for
each channel independently, yields the corresponding self-consistent poten-
tial: UG (r) = U(r) + V) (r), and consistent with it the renormalized
matrix elements of coupling force. The parameters of U(r) are chosen in
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such a way that U®)(r) reproduces energies of experimental s.p. states,
whenever their identification is possible.

3. Example of applications: 8Li, B

The solution of solar neutrino problem, 7.e., an observed deficit of neu-
trinos with respect to predictions of the Standard Solar Model (SSM) [12],
is passing through an understanding of the capture reaction: "Be(p,y)®B.
(8 B produced in the solar interior is the principal source of high energy
neutrinos detected in solar neutrino experiments.) At the solar energies
(Ecm ~ 20keV), this cross-section is too small to be directly measur-
able. For this reason, the theoretical analysis of this reaction is so im-
portant. On the other hand, whenever measurement is feasible (> 150 keV),
the exact value of the capture cross section depends: (i) on the normal-
ization obtained indirectly from the "Li(d, p)®Li cross section and, () on
the model dependent extrapolation of measured values of the cross-section
down to the interesting domain of solar energies. Measured values for
"Be(p,)®B cross section are varying strongly, though recent experiments
consistently indicate low values (S < 20 eV:b) of the astrophysical factor
S = ocm(Ecm)Ecy exp(—27n), where n = €27, Zy /v [13,14].

Part of the theoretical ambiguities can be removed by a simultaneous
study of the "Li(n,~)8Li mirror reaction, which has also been studied by sev-
eral experimental groups [15]. In the context of the solar neutrino problem,
the "Li(n,v)8Li cross section is often used to extrapolate the "Be(p,)®B
cross section down to the solar energies [13]. The Li(n,y)3Li reaction at
very low energies is also extremely interesting in itself as it provides the es-
sential element of rapid process of primordial nucleosynthesis of nuclei with
A > 12 in the inhomogeneous big-bang models [16] allowing to bridge the
gap of mass A = 8 and to produce heavy elements.

3.1. The self-consistent determination of Q@ subspace

Construction of @) subspace by the SMEC with the SM source implies
that the self-consistent s.p. potential U(®¢)(r) depends on the s.p. wave func-
tion ¢, j, the total spin J of the N-nucleon system as well as on the one-body
matrix elements of (N —1) - nucleon daughter system. In the studied cases of
8B, 8Li, all these potentials have the same parameters of radius Ry = 2.4 fm,
surface diffuseness a = 0.52fm, and spin-orbit coupling Vso = —4 MeV.
Cohen-Kurath (CK) interaction [17] is used as a SM interaction and the

strength of the residual interaction is: V1(20) = 650 MeV-fm? [10]. Fig. 1
shows typical examples of potentials in ®B | here for the proton s.p. orbital
Op3/2, in two different total spin states: J™ = 1*,2%7 . The same initial
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Fig. 1. Example of finite-depth s.p. potentials for Opz /> radial s.p. wave functions
in J™ = 17,27 (T = 1) bound states and resonances of B [10]. Different curves
denote: the initial potential U(r) (the dashed line), the self-consistent potential
UG (r) (the solid line), and the equivalent potential U(¢% (1) (the dotted line) of
the SW type which yields the proton Ops/, orbit at the same energy as in the
self-consistent potential.

potential U(r) is taken both for 27 and 17 states. The spectroscopic factor
of proton Ops /s s.p. state in the g.s. is close to 1 [17]. This allows to identify
position of proton Opz/p s.p. orbit in J™ = 27T state, i.e., we demand that
UG (r) provides Op3/2 s.p. state at —137keV, corresponding to the binding
energy of the 2] g.s. in ®B.

U¢) exhibits for small r a clear maximum which is absent in U(r). The
self-consistent potentials U5 (2+) and U®) (1) are different , in spite of the
fact that the initial potential U(r) is the same in both cases. The dotted lines
in Fig. 1 show the equivalent s.p. average potentials U (r). For the same
SW parameterization as in U(r), the depth parameter is adjusted in U (r)
to reproduce the energy of Opz/y s.p. orbit in UG (r). Clearly, U (r) and
UG () differ strongly in the potential interior. On the contrary, the surface
region shows in general weak sensitivity to the self-consistent correction,
except for weakly-bound many-body states having an important admixture
of I =0 and I = 1 neutron s.p. states.

There is no clear indication concerning the position of proton Op; /3 s.p.
orbit. Using the same U(r) as used to determine U®%)(r) for Op3/2 s.p.
state, we get the Op;/, proton s.p. orbit in UG (r) at Epyj, = 10.731 MeV in
J"™ = 2% states and at €, , = +0.311 MeV in J™ = 17 states . Consequently,
the energy splitting of p3 /o and py 5 orbitals is also state dependent.

Many spectroscopic observables have been calculated for B and ®Li [10].
The quadrupole moment (Q) of ®B provides a useful test of the SMEC
wave function, in particular of its radial part. The SMEC solutions yields:
(Q)in = 6.99 e fm?, in good agreement with the experimental value [18]:
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(Q)exp = 6.83+£0.21 e fm?. This theoretical value has been obtained assum-
ing the effective charges: e, = 1.35, e, = 0.35, and the SM spectroscopic fac-
tors for the CK interaction. The analogous calculation in ®Li yields: (Q), =
2.78 e fm?, close to the experimental value [18]: (Q)exp = 3.27+0.06 e fm?.

3.2. Radiative capture cross-sections

Once the parameters of the initial SW potential and the residual in-
teraction coupling states in ) and P have been fixed based on the struc-
tural informations, we calculate the capture cross-section for "Be(p,~)®B
(see Fig. 2). We found that the E1 and E2 contributions as well as the
total cross-section are insensitive to the size of spin-exchange term in the
residual force. On the contrary, the M1 contribution and particularly its
resonant part, are sensitive to it. Hence, the Coulomb dissociation (CD)
experiments, in which the contributions of £2 and M1 multipolarities as
well as nuclear breakup can be disproportionately enhanced in certain kine-
matical regimes will hopefully give some information about the continuum
coupling [19]. The low energy dependence of S(E) (see Fig. 2) can be fitted
by: S(E) = 5(0) exp(@E+BE?). In the range of c.m. energies up to 100 keV
the fit yields: S(0) = 19.594 éV-b, & = —1.544 MeV 1, 3 = 6.468 MeV 2.
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Fig.2. The astrophysical S-factor for the reaction "Be(p,7)®B is plotted as a
function of c.m. energy. The SMEC calculations have been done using the spin-
exchange parameter 0.05 [10]. The experimental points are from Refs. [13, 14].
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Fig.3. The cross-section for the reaction "Li(n,~)®Li is plotted as a function of
c.m. energy. The experimental points are taken from [15].

The mirror reaction: "Li(n,y)8Li together with a simultaneous descrip-
tion of energy spectra and particle decay widths of B and 8Li, provides a
stringent test for SMEC calculations. The SM interaction and SM many-
body wave functions (e.g. the spectroscopic amplitudes) are identical in
both cases. The self-consistent one-body potentials which take into account
residual coupling of ) and P subspaces and which determine the radial
formfactors of s.p. wave functions used in the calculation of matrix elements
of the residual interaction, are optimized in the same way in 8B and in 8Li.
Finally, the parameters of direct and spin-exchange terms in the residual
interaction are also the same, so the modification of coupling matrix ele-
ments in 8B and 8Li is solely due to the different radial shape of s.p. wave
functions in the corresponding self-consistent potentials for different J” of
many-body states. In the case of neutrons, the collision integral is sensi-
tive to the nuclear interior even in the low energy limit. The scattering
lengths ag, where S is the channel spin, are known from elastic scattering
of neutrons. So for the s-wave in the initial channel we use a procedure of
readjustment of appropriate s-wave scattering potentials in order to repro-
duce experimental values of scattering lengths [20]. Fig. 3 shows the total
neutron capture cross-section as a function of the c.m. energy. The SMEC
calculation reproduces very well the experimental data at these very low
energies.
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3.3. Coulomb dissociation cross section

The CD method provides an alternative indirect way to determine the
cross sections for the radiative capture reactions at low energies. The double
differential cross-section for the Coulomb excitation of 8B from its g.s. to
the continuum, with a definite multipolarity of order 7\ is given by [21]:

d20' 1 dnﬂ)\ A
Y0 N o™NE,), 2
df23,.dEcm %ECM dfdg,. 7 (&) @

In Eq. (2), £23,. defines the direction of the c.m. of the [p —7 Be] system

(to be referred as ®B*) with respect to the beam direction. afyr)‘(E7) is the

cross-section for the photo-disintegration process: y+8B —"Be + p, with
photon energy FE,, and multipolarity 7 = E (electric) or M (magnetic),
and order A = 1,2..., which is related to that of the radiative capture
process: 'Be + p — 8B + #, through the theorem of detailed balance. E, is
given by Ecv = E, + Q, with @ = 0.137 MeV. In most cases, only one or
two multipolarities dominate the radiative capture as well as the Coulomb
dissociation cross sections. n.x(E,) in Eq. (2) represents the number of
equivalent (virtual) photons provided by the Coulomb field of the target to
the projectile [22].

8B + 2®pp 250 MeV/nucleon

200 |

= =
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o

Fig.4. Comparison of the E1 + E2 (solid lines) CD cross sections calculated
for the two versions of SMEC for different amount of the spin-exchange [19] with
the experimental data [23]. The individual E1 and E2 components are shown by
dashed and dotted lines respectively.
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In Fig. 4, we present the comparison of the measured CD cross sections
for the reaction ®B + 208Pb — 8B* + 208Ph at E/A = 250MeV [23], with
those calculated for two different input capture cross sections of SMEC,
which differ by the amount of the spin-exchange. In (a) the spin-exchange
parameter equals 0.27 and in (b) it equals 0.05. The latter case corresponds
to an almost pure Wigner force limit for this coupling. The CD data at
these high energies seem to show sensitivity to the capture cross sections, in
particular to its M1 and E2 components, calculated within different models
of 8B structure. We would like to recall that at lower beam energies (e.g., the
RIKEN experiments [24]), the contribution of M1 multipolarity was almost
negligible. On the other hand, one can see from Fig. 4, where we show the CD
calculations for only F1 (dashed lines) and E2 (dotted lines) multipolarities
and their sum (solid line) that it is not possible to explain the data in the
region of Ecy between 500-750 keV without the contribution of the M1
multipolarity. This sensitivity of the higher energy breakup data to the M1
multipolarity makes it possible to use this to supplement the information on
the continuum structure of 8B which was not feasible by similar studies at
lower beam energies.

4. Conclusions

We have shown here few selected applications of the SMEC, which is
a natural extension of the SM for the study of both nuclear structure and
nuclear reactions for weakly bound nuclei. The coherent treatment of the
@ and P subspaces allows to cross-check the effective interactions both on
the structure data and the reaction data. This allows for a fruitful reex-
amination of the SM effective interactions for nuclei far from the §-stability
line. Moreover, reaction data can be used to gain further information about
the effective interactions by analyzing the N-body nature of resonances.
SMEC model in its present form includes the coupling to one-nucleon con-
tinuum. The wealth of experimental data can be described in a unified
framework of SMEC. These include: (i) the calculation of energy spectra,
B(II)) transition matrix elements and various static nuclear moments such
as the magnetic or mass/charge quadrupole moments etc., (i7) the calcula-
tion of various radiative capture processes: (p,7), (n,7), Coulomb breakup
processes: (7, p), (7,n) and elastic or inelastic cross sections (p,p ), (n,n');
some of these observables have been discussed in this work. Problem of
isospin symmetry breaking due to the coupling to the continuum can be
addressed by comparing electromagnetic processes, e.g., B(IT\) transition
matrix elements for certain states in mirror nuclei, and weak interaction
processes like the first-forbidden S-decay in mirror reactions. Finally, for
nuclei close and beyond the proton (neutron) drip lines, the spontaneous
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proton (neutron) radioactivity can be studied in the microscopic framework
of SMEC (SM). These unifying features of SMEC approach are extremely
useful for understanding of the structure of exotic nuclei far from the (-
stability for which the available experimental information will be scarce.

Complicated resonance structures play vital role in the near threshold
behaviour of various capture processes involved in the stellar nucleosynthe-
sis. We have shown some results for mirror reactions: "Be(p,v)®B and
"Li(n,)8Li. Further applications to O(p,¥)!"F can be found in [11].
Other important reactions of CNO-cycles, like: *N(p,v)'O, '"F(p,v)'®Ne,
9Ne(p, v)?°Na or 2'Ne(p,y)?2Na are presently under the investigation (for
further discussion see [25]). The SMEC can be easily extended also for
the description of v-nucleosynthesis [25,26]. More complicated decay chan-
nels involving, e.g., a particle, 3He or *H in the continuum, are beyond the
scope of SMEC in its present form, though future extension of the SMEC for
such cluster configurations is possible in a framework proposed by Balashov
et al. |27].
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