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the study of single-particle and giant resonance states in exotic nuclei and
in fast rotating hot nuclei are presented.
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1. Introduction

Mean field is one of the most useful approximations in all of physics
and chemistry. In it, the many-particle Schrodinger equation is replaced
by a single-particle one. The many-body effects are embedded in the single-
particle potential produced by the particles themselves, in particular the nu-
clear Hartree-Fock potential (HF). Excited states of the nuclear mean-field
are (in general) collective vibrations of different multipolarity and carry-
ing different spin—-isospin quantum numbers. They are described in terms of
correlated particle-hole excitations (Random Phase Approximation (RPA)).
Often, use is done of effective interactions in a self-consistent approach, in-
cluding the coupling to the continuum.

* Invited talk presented at the XXVI Mazurian Lakes School of Physics, Krzyze,
Poland, September 1-11, 1999.

(335)



336 P.F. BORTIGNON ET AL.

The coupling between single-particle states and the excited states at the
next level of complexity, the so called doorway states [1,2] represented by two-
particle-one-hole (2p-1h) or 1p-2h states containing a collective vibration
(in particular a surface vibration), renormalizes the properties of the single-
particle motion. Eventually, a nucleon effective mass m*/m and a finite
lifetime (spreading width Fsﬁg) are obtained, both determined by the “single-
particle self-energy X, (w)”.

Among the vibrational states are the Giant Resonances (GR), excited at
energies higher than the nucleon separation energy with large cross section,
close to the maximum allowed by sum rule arguments, implying that a large
number of nucleons participate in a very coherent motion. Their properties
as obtained in the HF+RPA approach are modified by the effects of the s.p.
self-energy X, that is of the coupling to doorway states of (for the GR) 2p—2h
character. In this, the coherence of the nuclear motion in the GR plays a
special role in preserving the appropriate symmetries and sum rules. Thus,
the spreading width FéR is added to the fragmentation (Landau damping)
and escape width I'" to determine the total width of the GR to be compared
with the experimental ones.

In the last decades, the doorway coupling approach was successful in
describing s.p. and GR properties, including those of the Giant Dipole
Resonance thermally excited on compound nuclei at high excitation energy
and spin and of the double GDR (DGDR), although several problems of
different type remain. This is well testified in the references (a selection)
reported in [3-9]. The alert student will also find connections with concepts
used in the lectures of J.-P. Blaizot, W. Cassing and V. Metag.

The success of the doorway coupling approach is justified by the smooth
properties of the coupling to the chaotic background of many-particle-many-
hole states in the compound nucleus (CN), which will not alter the main
features of the strength functions obtained in the doorway coupling [2,10,11].

Rather than review in detail what described above, I will use my single
lecture to discuss in Sect. 2 and 3, very recent calculations of the s.p. self-
energy 2 in weakly bound nuclei and in deformed, very fast rotating nuclei
as examples of problems on the frontier in this subfield of nuclear physics.

2. Doorway coupling in exotic nuclei

In this section, I discuss novel features of the physics discussed above in
the exotic nuclei far from [-stability, (see, e.g., the review articles in Ref. [12]
and the lectures of W. Nazarewicz and of Y. Blumenfeld) in connection with
the unusual ratio between the number of protons and neutrons and with
the small binding energies of the least bound nucleons. The first feature
challenges the isovector properties of the existing effective interactions, and
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the knowledge of the novel properties of the giant resonances excited in
such exotic nuclei [13] will be crucial, as discussed in, e.g. Ref. [14, 15].
The second feature requires a careful handling of the continuum, as briefly
discussed below.

2.1. Mean field results for neutron-rich nuclei

The isotope 280 was chosen as an example of neutron-rich nucleus in
Ref. [16]. Is is double magic, if we assume that the usual magic numbers
are still valid, by extrapolating somehow the HF results for nuclei along
the valley of stability. Indeed, a HF calculation with one of the “standard”
Skyrme effective interactions, the SIII parametrization [17], results in a value
of the energy of the least bound ds/, neutron of —1.1 MeV (a number of
experimental evidences point to the non existence of this isotope as a bound
system [18], while essentially all mean field theories predict it to be bound).
The protons are all bound by more than 30 MeV. The small value of the
neutron separation energy requires to properly include, in the calculation of
the excited states, transitions from bound states to particle states lying in the
continuum, by means of the so-called continuum-RPA. This can be exactly
performed if one uses Green’s functions defined in the coordinate space [19],
and the strength function PRPA(w) for a given excitation operator F

PPPA(w) = 3 Fd(w — wo) (1)
!

can be calculated.

The large asymmetry between the neutron and proton mean fields has
dramatic consequences on the multipole response, as remarked in Refs. [16,
20, 21]. Indeed, we have calculated [22] the strength functions associated
with isoscalar quadrupole, octupole and isovector dipole operators in the
continuum-RPA. The low-energy part, is characterized by a pronounced
“threshold effect”, that is, by a sudden increase of the strength function
PRPA(4) above wyy, [20-22]. On ground of simple arguments, it is expected
that

PRPA(w) ~ (w _ wth)l’+1/2, (2)

where [’ is the orbital angular momentum of the particle states contributing
to PRPA(w). Eventually, a well-defined bump is produced by the single-
particle transitions from the d3 /o neutron state to s- (in the case of quadru-
pole) or p-states (in the other two cases) in the continuum. Because of the
small d3 /5 binding energy, the wave function of these neutrons is so extended
that its overlap with continuum wave functions is large and this makes the
matrix elements of the multipole operators quite large. On the other hand,
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the higher energy region of the strength functions is characterized by states
to which more ph configurations partecipate (neutron excess states play a
predominant role but neutron core states are not negligible). Transitions
from proton states are completely decoupled and lie above 30 MeV.

2.2. Imaginary part of the single-particle self-energy in exotic nuclei
The analytic expression of imaginary part of the single-particle self-
energy reads

~(e—wy) (e—wx)
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The quantum numbers 1,5 (I’,j') refer to the initial (intermediate) state,
u(r) are radial wave functions of the particles, dp(r) are transition densities
of 1p—1h pairs coupled to multipolarity A (or of a collective RPA state) and
v(r) is the p—h interaction derived from the effective force from which the
HF mean field is determined (in our case, the Skyrme force SIII). The link
between Eq. (3) and the empirical imaginary part of the optical potential
W is as follows,

2 +1
W(r,r';s):; o Ilej(r,r';e). (4)
j

The real part is obtained in a similar way, or through dispersion relation
techniques (see Ref. [4] and references therein).

The novel feature of Eq. (3), in comparison with what has been used in
the past, is that we treat properly the continuum also at the level of the
2p—1h doorway states [23]|. In the calculations performed in the seventies in
well-bound nuclei like 208Pb, discrete particle states were employed as the
whole system was set in a box and an averaging parameter was employed
in Eq. (3) to ensure the match of the initial 1p and intermediate 2p—1h
energies (see Ref. [4] and references therein). This procedure is satisfactory
for well-bound systems as was confirmed by making use of Eq. (3) for a test
calculation in 2%Pb. The results of Ref. [24] were essentially reproduced.
For systems with loosely bound nucleons, the use of discrete particle states
is not able to reproduce the results that we illustrate below.

To get some insight in the qualitative low-energy behavior of Im X' (by
“low-energy” we mean for values of the energy ¢ close to the particle emission
threshold wyy), let us consider a single term of the sum appearing in Eq. (3)
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and fix r = r’. A plane-wave approximation for ﬂg,ngwA)(r) suggests that it
contributes with a factor kg;;tlﬂ if kpart = h1y/2m(e — wy) is close to zero.

Adding the condition on the normalization of the radial transition densities

given by
2

= PRPA ),

‘/dr r2 509N (r)

with the asymptotic behaviour of the strength recalled in Eq. (2), we obtain

S~ [ doy (e =) 201 - wi) 2 (5)

Wth

If € is close to wp, i.6., € = wyy + 0 and wy = wy, + §/2, we find that the
imaginary part of the optical potential behaves approximately like 5l'+l”+2,
that is, a fast increase just after threshold which has no counterpart in stable
nuclei (where Im ¥ ~ (e —ep)", with 1 <n < 2 [3,4]) and has consequences
on the qualitative features of scattering experiments with exotic beams. A
realistically calculated Im X' follows indeed this asymptotic behaviour, as
shown in [23].

It is also shown that the function W (r,r' = r;¢) is surface peaked, as
in stable nuclei. On the other hand, the width of the peak is rather large,
as can be expected if the nucleus has extended radial wave functions. It
is also noticed, that for ¢ = 25 MeV a second bump, at the interior of the
nucleus, shows up. This can be interpreted as follows. In the calculation of
the terms of the sum appearing in Eq. (4), one performs integrals of the type
f:th dwy. If ¢ is large, one includes contributions from proton transitions,
and these are of course not peaked on the nuclear surface, since the protons
are confined in a much smaller region. In this respect, this interior peak is
another example of the general statement that the core particles and excess
particles are decoupled in this light, exotic isotopes.

2.3. Real part of the single-particle self-energy in exotic nuclei

Using dispersion relation techniques as in Eq. (6) of Ref. [23] with the
Im X (r,r'; €") discussed above, results for the real part of the single-particle
self-energy in 280 were also obtained [23]. In particular, for the energy shift
due to the coupling with the states labelled by A, w) (which are collective
vibrations if wy is around 15 MeV and are single-particle transitions at lower
energy). This shift is given by

ABy, = / dFdF s (7) Re Zij(r,1":€) outi (), (6)
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where ¢ is usually fixed as the unperturbed (i.e., HF) energy E'SB of the level
under consideration. The expressions for Re j; in the case of hole states are
analogous to those derived above for the case of particles. Actually, in the
case of 220 calculated within the SIII-HF procedure, no unoccupied particle
states can be found at negative energy and the only particle resonance at
positive energy is the f7 /5, so the particle spectrum consists essentially only
of a smooth continuum. Therefore, the shift AE,;; for neutron hole states,

in particular the loosely bound dj/, orbital was calculated.

We find a positive shift of 330 keV, to be compared with E(0) =—1.1 MeV.
This makes the nucleus even more close to being unbound and would very
much affect the strength functions of the multipoles we have considered in
the previous section. The following considerations are in order: while in
stable nuclei corrections of the order of less than 1 MeV to the energy of
states which are usually 7-10 MeV bound are important to give the correct
density of states around the Fermi energy and effective mass but do not
alter the predictive power of theories like the standard RPA in which these
corrections are not taken into account, results like the presents (likely to
be obtained in existing exotic nuclei and including the pairing contribution
as well) must force us to ask questions about the reliability of simple mean
field methods to predict the single-particle energies and consequently the
position of drip lines, as well as properties of the excited states.

3. Doorway coupling in deformed, fast rotating nuclei

While much effort has been concentrated in the study of the s.p. self-
energy X and its consequences for the structure of spherical nuclei (¢f. e.g.
Refs. [4] and the recent wotks in [25-28] at finite temperature T'), little has
been done concerning deformed nuclei let alone hot, rotating systems. This
situation is not a particularly brilliant, if one thinks:

a) that to extract information from the decay of compound nuclei (i.e.
systems corresponding to a statistical ensemble of shapes) which can
be directly compared to model predictions one needs to know the level
density as a function of temperature and of angular momentum, a
quantity which depends, through the level density parameter, on the
nucleon effective mass and thus on the ability the particles have to
couple to surface vibration in deformed nuclei,

b) to accurately calculate the alignment of single-particle levels, a quan-
tity needed in the study of rotating nuclei in general, and the study
of the superfluid-normal nuclear phase transition as a function of the
angular momentum and of temperature in particular, as well as in the
study of the damping of rotational motion, one needs to calculate the
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coupling of single-particle motion to pairing vibrations and thus also
to surface vibrations of deformed nuclei,

c) that to determine the properties of the levels of a cranked Hartree—
Fock Hamiltonian entering in the calculation of the intrinsic states
of rotational bands as well as in the calculation of giant resonances
in general, and of the GDR in particular, one needs to know both
the single-particle effective mass and width, and thus its coupling to
surface vibrations of deformed nuclei.

The reason for such asymmetry in the study of the particle-vibration
phenomenon (essentially no calculations exist in the literature for deformed
nuclei) is quite simple and is associated with the special role spurious states
play in deformed nuclei as compared to spherical nuclei, as well to the very
large number of two-quasiparticle excitations (RPA roots), of the order of
10* for a typical medium-heavy nucleus.

In fact, within mean field theory of deformed, superfluid nuclei, there are
two classes of spurious states. One, associated with the violation of rota-
tional invariance. The other, with the violation of gauge invariance. In other
words, because the BCS wave function in the Nilsson basis has neither a fixed
value of the angular momentum nor of the number of particles, the system
described by this wave function displays modes with vanishing frequency and
divergent matrix elements of the quadrupole and of the two-particle transfer
operators. These spurious states, together with that associated with the
violation of translational invariance typical of the shell model, can be made
orthogonal to all physical states by diagonalizing the corresponding particle-
vibration coupling Hamiltonian, in the Random Phase Approximation (cf.
e.g. Ref. [2] and references therein).

However, when a particle is added to the system, the spurious states,
through the coupling to the odd-nucleon, mix again into the spectrum. The
solution to this problem is a necessary condition to be able to carry out
nuclear structure calculations in deformed, superfluid nuclei which go be-
yond mean field theory. While in the case of spherical nuclei, the spurious
state associated with the non-conservation of the number of particles typ-
ical of superfluid nuclei does not mix , as a rule, with surface vibrational
modes (quadrupole, octupole, multipole vibrations) due to angular momen-
tum conservation, in deformed nuclei, the pairing spurious modes do mix
with surface modes.

Recently, an operative and economic solution to the question of how to
deal with the spurious states in superfluid, deformed nuclei, to calculate the
s.p. (quasi-particle) self-energy has been discussed in two papers [29, 30]
in terms of RPA linear response and complex integration techniques. All
details may be found there.
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Preliminary calculations were carried out based on the yrast states of
168Ybh. The potential energy surface of this nucleus, taking into account
Nilsson—Strutinsky corrections, displays a stable minimum up to spin I =
60A. The deformation parameters are € = 0.262 and v = 0°. The resulting
quasiparticle spectrum (routhians), that is, the eigenvalues of the cranked
Nilsson plus mean field pairing Hamiltonian were thus calculated and, in
the basis of two quasiparticle states, the RPA linear response of the system
determined with residual separable interactions describing both quadrupole
(8 —andy—) and octupole vibrations. Making use of these elements the self-
energy of quasiparticles build on single-particle states lying around the Fermi
energy, have been calculated as a function of the rotational frequency [31,32].
State dependent energy shifts |[AF| of the order of 300-500 keV are obtained,
decreasing as function of the rotational frequency because of the increasing
rigidity of the nuclear surface. This means that the self- energy effects
may not be described by a simple readjustement of the parameters of the
cranked Nilsson potential, and fully self-consistent calculations are called
for. T deeply miss the discussion with Zdzistaw (Szymanski) of these results.
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