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Pairing in nuclei is shortly overviewed from the perspective of mean-field
theory which is the only model where particle-particle channel is uniquely
defined. Attention is paid to the effects of pairing correlations on odd-even
mass staggering and nuclear rotational motion. Basic theoretical concepts
and effects associated with proton—neutron pairing in N &~ Z nuclei are also
discussed. It is pointed out that, with the present accuracy of mean-field
calculations, no clear constraints can be set on spatial characteristics or
density dependence of pairing interaction.

PACS numbers: 21.30.Fe, 21.60.Jz

1. Introduction

It has taken almost 50 years to understand microscopic origin of one
of the most fascinating discovery of our century, the phenomenon of su-
perconductivity in metals. The goal was finally accomplished in 1957 by
Bardeen, Cooper and Schrieffer [1] who formulated proper trial wave func-
tion for quantal calculations of electrons moving pairwise in time-reversed
states. In the BCS theory of superconductivity it is exclusively the property
of attractiveness of the medium-mediated interaction at the Fermi energy
which leads to energy gap, A, separating ground-state of a fermionic system
from its low-lying elementary excitations. It was therefore soon pointed out
(first by D. Pines at the 1957 Rehovot Conference) that due to attractive-
ness of the effective nuclear forces at the Fermi energy similar effects might
also apply to nuclei. Soon after a notion of nuclear superconductivity was
formally introduced by Bohr, Mottelson and Pines [2] and Belyaev [3| in
order to explain energy gaps in low-lying spectra of even—even nuclei.
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In spite of its relatively long history rigorous microscopic theory of nu-
clear pairing is still lacking. Derivation of pairing interaction from the bare
nucleon—nucleon force still encounters many problems [4,5]. Hence, most
of the practical applications uses phenomenological pairing interactions.
Moreover, only at the level of mean-field approximation particle-particle
(pairing) channel is rigorously defined and separated from the particle-hole
channel. For example, within the nuclear shell-model particle-particle (p-p)
and particle-hole (p-h) representations can be transformed into each other.
Therefore, within the shell-model, there is no obvious procedure allowing to
extract pairing interaction which constitutes the integral part of the resid-
ual shell-model interaction. The multipole decomposition technique leads
to rather oversimplified pairing interaction [6]. It seems that much better
insight into pairing properties can be gained by pair-structure analysis of
the shell-model wave function [7].

The phenomenological pairing interactions most often used in mean-
field calculations are separable in p-p channel, U,4,5 o gaﬂgf;(s. The state-
independent seniority or multipole-pairing interactions are the best known
examples. These interactions are characterized by mean-values of gap
(order) parameters and are therefore easy to interprete and handle numer-
ically. These forces are perfectly suited for microscopic—-macroscopic calcu-
lations. Within the Skyrme-Hartree-Fock-Bogolyubov (SHFB) calculation
scheme the family of zero-range interactions is often used. It includes simple
volume-active delta-interaction Vi, o< (r — 7'), density-dependent, surface-
active delta-interaction (DDDI) [8,9] Vg oc d(r — 7')(1 — [p(7)/po]”) or cer-
tain parameterizations of Skyrme type forces [10]. Finally, the finite-range
Gogny force is used consistently in both p-h and p-p channels within fully
self-consistent HFB [11] or in p-p channel in relativistic Hartree-Bogolyubov
(RMF) calculations [12]. The advantage of finite-range over the zero-range
pairing forces is an automatic cut-off of high-momentum components. There-
fore, no energetical pairing window is required in the calculations involving
these forces.

Nuclear structure applications of mean-field models invoking different
pairing forces will be shortly overviewed in the next Section. It appears
that nuclear masses, high-spin properties, radii and isotopic shifts seem to
depend only weakly on spatial character (volume or surface type) or density
dependence of pairing interaction and that with present accuracy of nuclear
structure calculations it is difficult to constrain on these specific features of
nuclear pairing. Third Section will discuss briefly a proton-neutron (pn)
pairing phenomenon. Short summary will be given in the last Section.
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2. Effect of pairing correlations on nuclear properties

Although the effect of pairing correlations on nuclear masses is modest,
these correlations strongly modify gross nuclear properties. The odd—even
mass staggering (OES), moments of inertia, alignments, electromagnetic and
[-decay rates, particle or o emission rates etc. are all strongly modified
inside paired medium. The BCS theory allows for qualitative understand-
ing of all these phenomena within simple, intuitive framework. However,
quantitative description of these phenomena is far more difficult due to cou-
pling between single-particle field, pairing field, and the effects going beyond
mean-field. This will be demonstrated in the following two subsections where
odd—even mass staggering and pairing related high-spin phenomena will be
shortly overviewed.

2.1. Odd—even mass staggering

The odd-even mass staggering (OES) of nuclear binding energies is usu-
ally directly related to pairing. Indeed, within the BCS approximation the
quantity:
9>B(N
IBIN) g

ON?
can be interpreted as a measure of empirical pairing gap. However, be-

cause of strong contribution due to nuclear symmetry energy (o< (N — Z)?)
indicator (1) is usually replaced by the average:

AG(N) = %N [B(N — 1) — 2B(N) + B(N +1)] »

AON) = ¢ [ABN) + ABN +1)] | @)

which leads to the commonly used estimate A = 12/ VAMeV for the em-
pirical pairing gap. In the above formulas B(N) is the (negative) binding
energy of a system of N particles of number-parity mx = (—=1)V.
According to the Strutinsky-energy theorem [13]|, nuclear binding en-
ergy can be written as a sum of macroscopic and shell correction energies.
The indicator (2) properly separates out empirical gap provided that not

only macroscopic energy but also shell correction éFgpen = Eshe11~ — Eghen
[Eshen = Zoccup e; is a single-particle (s.p.) shell energy and Fgpey de-
notes Strutinsky-averaged s.p. energy| smoothly varies with particle num-
ber [14]. These smoothness criteria do not in fact apply. Indicator (2)
gives systematic values of the order of few hundred keV when applied to
single-particle energies calculated using Skyrme—Hartree-Fock model inde-
pendently on number-parity, see Fig. 1 in Ref. [15]. On the contrary, indi-
cator (1) gives single-particle OES:
1 1

AB) (N)gp = 556 = Z(l +7n)(ent1 — €n) (3)
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which can be traced back to the deformed single-particle field which lifts
spherical degeneracies leaving only two-fold Kramers degeneracy. This single-
particle mechanism behind OES is well recognized in metallic clusters [16].
In fact, similarities between OES pattern in light nuclei and small Na clus-
ters that emerged in calculations of Ref. [17] led them to conclude that
OES in light nuclei is a mere deformation effect rather than a consequence
of pairing. Closer examination shows, however, that OES in light nuclei
is rather democratically shared between shape and pairing effects. Both
effects can be separated from each other to large extent because contri-
butions to (1) due to macroscopic symmetry energy (~ 38/AMeV) and
Strutinsky-averaged energy (~ —36/A MeV) nearly cancel each other [15].
Consequently, A®)(N = 2n + 1) can be interpreted as empirical measure of
the pairing gap while AG)(N = 2n) strongly mixes shape and pairing ef-
fects. Similar interpretation and conclusions can be essentially drown based
on seniority model as well as on pairing-plus-quadrupole and equidistant
level models [18].

The new way of extracting pairing has far going consequences particu-
larly for light nuclei. The A = 12/v/AMeV estimate strongly overshoots
the data particularly in sd- and pf-shell nuclei. In fact, new experimental
gaps rather smoothly decrease with mass indicating much weaker mass de-
pendence of the average gap than ~ A~'/2 see Fig. 1. Apart of empirical
data Fig. 1 shows average neutron pairing gaps calculated using Gogny—-HFB
method [19]. The agreement between calculations and the data is surpris-
ingly good.
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Fig.1. The average neutron pairing gaps extracted from the empirical binding
energies (full symbols) and calculated using Gogny-HFB method (open symbols).
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2.2. Effect of pairing correlations on nuclear rotational motion

The Coriolis force acting on nucleons moving in uniformly cranked po-
tential [20]:

. -1
Hooriolis = =63 + 5m(& X 7)? (4)
can be rewritten as [j = [+ 8§ = 7 x p + 3]
A 1 9 1 - - 12 —_ =
Heoriolis = =5 P~ + 5~ [P—m(&d x 7)]" — &3. (5)

The latter Hamiltonian corresponds to the Hamiltonian of particle of sp1n
§ moving in constant magnetic field H provided that & < H. Then & x #
plays a role of vector magnetic potential A = H x #. The Coriolis force will
therefore try to brake nucleonic Cooper pairs in analogy to the well known
Meissner effect in metallic superconductivity [21]. This bulk disappearance
of nuclear pairing correlations is called the Mottelson—Valatin effect [22]. It
causes steady increase of nuclear moment of inertia [3,23]. In reality, the
disappearance of pairing correlations in nuclei is non-uniform. Strong struc-
tural changes causing back- or upbendings [24] in the evolution of nuclear
moment of inertia versus spin are due to the breaking of a pair of nucle-
ons occupying high-j intruder orbitals [25]. In cranked mean-field formalism
backbending phenomenon correspond to the rearrangement of vacuum con-
figuration or, alternatively, to the crossing of the ground-state band with
the lowest two-quasiparticle (2¢gp) band which is often called the S-band.
The gross systematics of ground-band—S-band crossing frequencies is quali-
tatively relatively well understood and reproduced within the cranked shell-
model. The details, however, depend in many cases upon delicate balance
between (coupled) pairing and shape effects.

Therefore, a lot of effort must be devoted to optimize simultaneously
both single-particle and pairing channels within mean-field to improve the
agreement to the data which in turn will also improve our understanding
of pairing correlations. For example, Xu an co-workers [26] investigated
recently in a systematic way energetics of high-K isomers, systematics of
the crossing frequencies, odd—even mass staggering effects and moments of
inertia in some rare-earth nuclei. In their study they used schematic pair-
ing interaction and phenomenological potential within the Total Routhian
Surface (TRS) model of Refs. [27-29] which takes into account shape polar-
ization effects and treats pairing effects (including blocking) self-consistently.
They have demonstrated that by enlarging of seniority pairing strength by
roughly ~5-10% as compared to the value determined from the average gap
method of Ref. [30] one can account for all these effects simultaneously. An
elegant, systematic study has been carried out recently by Chabanat and
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co-workers [31] in order to optimize Skyrme forces parameterization. The
family of forces which emerged from this study, the SLy-forces, is superior
as compared to the other commonly used Skyrme forces.

The alternative way to study pairing is to look into the cases where
pairing and shape effects are to large extend decoupled. The example are
superdeformed nuclei in Hg-Pb region. Strongly elongated, stable with ro-
tational frequency shapes, smooth processes of miy3/, and vj;5/9 alignment
make these systems almost ideal laboratories to study pairing correlations.
Indeed, a lot of effort was devoted lately to understand structure of these
nuclei in a framework of TRS method [28,32], Skyrme-HFB [33], Gogny—
HFB [34] and RMF [35] approaches. The state dependent pairing, self-
consistent treatment of pairing correlations including blocking, and proper
treatment of number fluctuations appeared to be necessary to obtain satis-
factory description of these bands. These conclusions was common for all
these studies. In fact, the techniques and concepts like double-stretched
quadrupole pairing [28], the surface-active density-dependent delta inter-
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Fig.2. The effect of time-odd (Au)=(21) pairing on dynamical moment of inertia
J®) in SD '9*Hg (lower part). Solid and long-dashed line illustrates J(*) calculated
using seniority pairing only while short—dashed line shows calculations including
seniority and quadrupole pairings. The corresponding average quadrupole pairing
gaps are shown in the upper part.
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action [8], Lipkin—-Nogami number-projection [36,37] were applied for the
first-time in large-scale calculations in A ~190 nuclei. Afterwards, follow-
ing the numerous applications in this mass region, they became standard
methods for large-scale calculations in high-spin physics.

Let us mention here also a particular importance of time-odd (Migdal)
pairing [38]. Although energetically very modest, it strongly affects mo-
ments of inertia particularly at low-frequencies, see Fig. 2 [28]. Moreover, it
clearly contributes to twinning of SD bands in odd and even nuclei reducing
(too)strong effect of blocking of seniority pairing on moment of inertia [32].

3. Proton—neutron pairing

A renaissance of our interest in proton—neutron (pn) pairing is stimulated
by technological development of Radioactive Ion Beams (RIB) facilities. The
first RIB experiments are targeted on heavy N ~ Z nuclei, where pn cor-
relations are expected to be strongly enhanced due to large spatial overlaps
between proton and neutron single-particle wave functions. Relatively large
valence spaces in these nuclei and expected large deformations do rise ex-
pectations for possibility to observe coherent pn-pairing phase. In spite of
theoretical and experimental efforts many problems related to pn-pairing still
remain not answered. It includes fundamental questions concerning experi-
mental fingerprints of pn-collectivity or the structure of effective pn-Cooper
pairs.

The necessary generalizations to include nn-, pp- and pn-pairing on the
same footing within the mean-field approach were worked out already in the
sixties [39]. The idea was to generalize Bogoliubov transformation to include
mixing of particles and holes as well as protons and neutrons:

dl = Z (UaT ka'ZcT + Varkaar + Uar, ka + Var kaom') ) (6)
at>0

where index a runs over single-particle states, 7 denotes third component
of isospin, and k labels the quasiparticles. Unlike in the standard like-
particle pairing applications, the coefficients of transformation (6) have to
be complex to simultaneously include T'= 1 and T" = 0 pairing correlations.

Many important features of pn-pairing can be deduced from simple model
assuming schematic pairing interaction:

7,7l E : T,—T E :
palr =G" aT,atl aT ar T G" aT,a— TPOtT,Ot—T (7)
a>0

based on pair- countmg mechanism [40]. Superimposing antilinear simplex
symmetry Sy = PTR, as a self-consistent symmetry further simplifies the



352 W. SATUEA

model. The price paid for the simplification is an absence of T' = 0 pairing
component in aa channel and therefore G™™ = G15! and G 7 = GT-0.
Although this component is very important [41], lack of it in the model can
be simulated by either T = 0 pn-pairing of aa type at frequency zero or
by isospin-broken Hamiltonian in cranking calculations, see Ref. [40] where
more details can be found.

The solution to the Hamiltonian (7) does depends on the ratio z =
GT=%/GT='. In N = Z nucleus and for z < 0 only isovector pairing exists
but energetically the solution is insensitive to direction A= (Apps Ann,s Agnzl).

For z = 1 energy does depend on A]%p + A2+ AZ,TI + |A;Fn:0 2 but again
is insensitive to the direction A = (Apps Apn,s Agnzl, Agnzo). In both cases
no energy is gained due to pn-pairing. Finally, for £ > 1 only T' = 0 phase
exists and the nucleus gains energy. For N # Z the T' = 1 pp- and nn-
correlations coexist with T' = 0 pn-pairing, provided that its strength is
larger than certain critical value £ > z¢i;. The proton or neutron excess
quenches/blocks the phase-space available for pn-pairs as shown schemati-
cally in Fig. 3. Therefore the critical parameter .. rapidly increases with
increasing [N — Z| and pn-paired solutions are possible only in the closest
vicinity of N = Z. Similar conclusions have been reached in Ref. [42| both
within schematic SO(8) model and realistic shell-model. The exclusiveness
of T =0 and T = 1 phases in N = Z nuclei is entirely due to simplicity
of the model. Already number-projection leads to mixed T =0 and T =1
solutions [40]. Also use of realistic interactions within resonable model-space
gives mixed solutions [43].
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Fig. 3. Schematic illustration of blocking of pn-pairing due to (say) neutron excess
(left panel) and the nn-pairing due to odd-neutron (right panel). Shaded areas
shows levels unavailable for pair scattering.
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The nuclear masses show slope discontinuity at N = Z line. This addi-
tional binding energy is known in the literature as a Wigner energy. Tradi-
tional mass models based on mean-field approach strongly underbind N ~ Z
nuclei [44-46] and a term [14,46]:

1 for odd-odd nuclei
0 otherwise
(8)

has to be added to correct for this deviation. The microscopic explanation
of the Wigner energy within the mean-field model is still lacking. The ’con-
gruence’ energy mechanism due to enhanced ph interaction at the N ~ Z
line proposed in [47] is essentially not present in traditional Skyrme-HFB
calculations [46,48] Instead strong congruence energy effects were found in
time-odd channel in odd-odd N = Z nuclei [49]. The isospin fluctuations do
actually produce even the anti-Wigner effect. The pn-pairing scenario which
naturally gives rise to |N — Z|-like term seems to be the most natural so far.
Note, that it requires the T' = 0 pairing to be on the average stronger than
T = 1 but not necessarily coherent to activate generalized blocking mecha-
nism shown in Fig. 3. There are strong experimental arguments that Wigner
energy is indeed due to isoscalar interaction [46]. Similar conclusion can be
drown from shell-model studies [46,50]. However, pair-structure analysis of
the shell-model wave function reveals rather complicated structure of the
Wigner energy [46].

At high-spins the T'=1 and T = 0 correlations are expected to respond
in different way to the Coriolis force. The traditional anti-pairing effect is
expected to destroy T' = 1 pairing and low-J, T' = 0 correlations. However,
high-J T = 0 correlations will survive and are expected to be even dominant
at high-spins [40, 51, 52]. The shell-model calculations [53] and complex
Excited VAMPIR calculations [54] provide detailed analysis of isospin and
pair structure changes with increasing spin in N = Z nuclei in A ~ 80
mass region. These calculations confirm the T =1 — T = 0 band transition
observed in Rb [55] and increasing role of high-J, T' = 0 pairs at high spins.
Important clues concerning pn-pairing at high-spin may be also gained by
analyzing evolution of rotational bands beyond their standard terminating
states (e.g. *®Cr above I=16A) [52] or moments of inertia of some SD-bands
in A ~80-90 mass region [56].

Ew = W(A)|N—-Z|+d(A)onzTpn , where m,, = {

4. Summary

Rigorous microscopic theory of pairing correlations in finite nuclei is
still lacking and phenomenological interactions are used in the applications.
Available nuclear data on nuclear masses, radii and isotopic shifts, moments
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of inertia, crossing frequencies and alignment patterns may all be well under-
stood within the mean-field theory. Unfortunately, these observables seem
to depend only weakly on spatial characteristics or density dependence of
pairing interaction and, with the present accuracy of nuclear structure mean-
field calculations, it is difficult to constrain on these specific features of nu-
clear pairing. This rather frustrating situation calls for either systematic
optimization of effective forces to improve overall agreement between theory
and the data or requires new data on exotic nuclei which can provide more
sensitive probes of specific parts of nuclear effective interaction. Particularly
desirable are nuclei of large isospins where, for example, density-dependence
of pairing force can be probed in the skin region. For review of pairing and
continuum effects I refer reader to [57].

The pn-pairing correlations in N ~ Z nuclei are important without
any doubt. Certain evidence of T = 1 pn-condensate is seen in N = Z
odd—odd nuclei but no evidence of isoscalar coherency has been reported
so far. Theoretically, physics of N ~ Z nuclei, is still a challenge particu-
larly within mean-field approach. A form of effective NN interaction, role
of self-consistent symmetries, isospin and/or number-projection, the issue
of congruence energy, proper treatment of residual pn interaction between
valence neutron and proton are still out of control.

This work was supported by the Swedish Institute (SI) and the
Polish State Committee for Scientific Research (KBN) under Contract
No. 2 P03B 040 14.
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