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have been measured. The Doppler Shift Attenuation and Recoil Distance
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1. Introduction

The present work is a part of systematic investigations of the T nu-
cleus. Level scheme of 19T was established in [1]. The lifetimes of excited
states in four bands formed by the hy;/; proton coupled to axially asym-
metric core were measured in [2,3]. In the present paper the lifetimes of
levels belonging to bands 1 and 4 (Fig. 1) are given and discussed. The ex-
periment was performed at the Tandem Accelerator Laboratory of the Niels
Bohr Institute. The '%?Ag(13C,3n)!"I reaction was used at a bombarding
energy of 54 MeV. The ~-y coincidences were collected and lifetime mea-
surements (using Doppler Shift Attenuation and Recoil Distance Methods)
were performed using the NORDBALL array equiped with plunger device.
The details of experiment and data analysis are given in |2, 3].
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Fig. 1. Partial level scheme of !°T.

2. Transition probabilities

In the present paper we concentrate our attention on transition proba-
bilities in bands 4 and 1. These bands (see Fig. 1) are interpreted as based
on strongly coupled gg /o proton hole state. The levels of band 4 above back-
bending (which occurs at 1~27/2) have (7gg/5) ™' ®(vhy9))? configuration.
The levels of the band 1 are interpreted as the 7-vibration built on the
(ng/g)_l state.

The results of our measurements are presented in Fig. 2. Very different
behavior of B(E2) for band 1 (~20 W.u.), band 4 (~20 W.u. for states with
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I < 27/2 and ~50 W.u. above backbending) and band 8 (~130 W.u.) is
observed.
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Fig.2. A — experimental B(E2; I — I — 2) values for band 1 (crosses), band 4
(black squares) and band 8 (open circles ). The results of calculations are based on
Eq. (1): dotted lines — for band 1 (K = 6.5, (7g9/2) ™" ® y-vib.), and for low spin
states of band 4 (K = 4.5, (7g9/2) ") and solid line for high spins states (K = 9.5,
(789/2) ™" ® (vhy1/2))?) of the band 4. B — experimental B(M1; I — I — 1)
values for band 1 (crosses) and band 4 (black squares) compared with results of
calculation based on Eq. (2). Dotted lines — calculations for band 1 (K; = 6.5,
K5 =0, i = 0) and for low spin part of band 4 (K; = 4.5, Ky = 0, i3 = 0), solid
lines - calculations taking into account constant alignment of 3-qp part of band 4,
and the i(I) model (Eq. (3) and (4)) for 1-qp part of band 4 and for band 1.

Results of calculations shown in Fig. 2A were carried out in the frame
of standard rotational formula with parameters corresponding to '19I:

B(E2; I; — I7) = 114.4(Qo (K20 [t K))?(W.u.). (1)

Values of @)y are taken from TRS calculation [1| except Qo = 4.1 eb for
high spin part of band 4 which was adjusted to reproduce absolute values of
B(E2).

For band 4 one observes that also the B(M1) values increase rapidly
above backbending. This effect can be explained by the “conflict coupling”
mechanism. In our case it is coupling of 2 neutrons in the hy; 5 state with the
89/2 proton hole. The designation “conflict coupling” is given to a coupling
of two angular momenta, originally restricted to case of vectors perpendic-
ular to each other [4,5]. Later on it was generalized to cases when any
angle, neither 0° nor 180° between angular momentum vectors is possible
and studied by lifetime measurements [6-8]. Nowadays, similar mechanism
leading to coherent enhancement of M1 transitions has been discovered for
4-gp bands [9] and for small deformation is called “magnetic rotation” [10].
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Results of B(M1) calculations, shown in Fig. 2B were done using the for-
mula [6] (similar to nowadays one — see e.g. [11]), valid for any orientation
of quasiparticle spin 7, and j, :

B(M1;T -1 —1)=0.067(a\/1 — 22 — bz)*(W.u.), (2)

where x — (Kl + KQ)/I, a — Klgl* + KQQQ*, b= ilgl* + iQQQ*, Kl,
Ko and 41, 19 are projections of j; and j5 on symmetry axis and collective
rotation axis respectively, g1* = g1 - gr, g2* — g2 - gr and gr = 0.45.

For 3-qp part of band 4, with configuration (ng/g)_l ® (Vh11/2)2 it is
deduced from [12]| that K1 = K, = 4.5, g1 = 1.27, K9 = 2K, = 5 and g9 =
-0.21. The total alignment i = 41 + 49 = 8 is deduced from alignment plot [1].
Although each neutron in the hyy/; state can be aligned to i, = 4 [12], but
due to blocking effect one has iy < 2i,. Assuming that for W(gg/Q)_l state
i1 = 1 (it follows from the initial alignment of band 4 — see Fig. 4 of [1])
we have got ig = 7. Calculations done with such parameters for 3-qp part
of band 4 give satisfactory agreement with the experimental data (Fig. 2)

For 1-qp configuration of band 4 and band 1 the standard rotational
formula (K7 = const inside the band, no alignment, Ko = 0, i = 0) gives
results shown by dotted lines in Fig. 2B. The lines are far away from experi-
mental points. For both cases a model which takes into account experimental
alignment i(hw) = i(I) is proposed. It follows from the experimental data [1]
that 4(I) dependence can be approximated by a linear function:

i(I):i(I:K0)+CX(I—K0). (3)

We took ¢ = 0.33, Ky = 4.5 (band 4) and Ky = 6.5 (band 1) and i(K))
= 0.5 for both bands. Having i(I) from Eq. (3) one can calculate value of
K (I) from the following condition:

K2(I) 4 i%(I) = K2 +i%(Iy) = const. (4)

In Fig. 2B the results of calculations using Eqgs. (2)-(4) with K9 = 0 and
19 = 0 are shown by solid lines. It is the result of application of the “con-
flict coupling” approach in which vectors j,. and R are coupled. An angle
between them is decreasing along a band. This kind of coupling in semiclas-
sical approximation is shown schematically in Fig. 3. In Fig. 3A the case for
0 = 90° corresponding to standard rotational approach is shown. Fig. 3B
illustrates more general case. Coupling described by Eq. (3) and Eq. (4) is
similar to one used in “shears” model [13,14], but here “shears” are built by
J . and rotation R vectors.

Fig. 3A corresponds to one point (I = 17/2) on dotted line K, = 4.5,
i = 0 of Fig. 2B. Fig. 3B corresponds to the similar point on solid line of
Fig. 2B for band 4.
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Fig. 3. Illustration of “conflict coupling” of 5, and R for 1-qp part of band 4 in a way
similar to the shears mechanism (Fig. 1 of [14]). A — illustration of standard strong
coupling in rotational axially symmetric model (6 = 90°, K, = 4.5 inside the band,
no alignment). Projection of j, on I3 axis is equivalent to K and projection on I;
axis to alignment ¢. B — illustration of generalised “conflict coupling” mechanism,
which takes into account variation of alignment inside the band (Eq. (3) and (4)).

N
o

|
X
|

150 L TGy, ty-vib. K=6.5
Band 1

=2) (1, /eb)’

1)/B(E2:al

oz K=45 Band 4

BM1:al

0
13 15 17 19 21 23 25
21

Fig.4. Experimental B(M1;] — I —1)/B(E2;I— I — 2) ratio for 1-qp structure
in band 1 (crosses) and band 4 (black squares). Smooth lines - calculations using
standard rotational formula: Eq. (1) for B(E2) and Eq. (2) for b(M1) (no alignment,
Ky = 01y = 0).

In Fig. 4 experimental B(M1)/B(E2) values based only on branching
ratios are compared with results of calculations where standard rotational
formulae 1 and 2 with condition K = const, no alignment, Ko = 0, 79 = 0,
were used. Fig. 4 shows that the results of calculations agree very well with
experimental B(M1)/B(E2) ratios although the theory does not reproduce
the absolute B(M1) and B(E2) values obtained from lifetime measurements
(Fig. 2). It means that B(M1)/B(E2) ratio alone can leads to ambiguous
conclusions.
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3. Summary

Using simple formula for “conflict coupling” and its generalization for the
case of 1-quasiparticle with increasing alignments, one can well reproduce the
B(M1) values for 1-qp, 3-gp and 1-qp coupled to «y-vibrations. Additionally
absolute B(E2) values of 3-qp structure are well reproduced by the simple
rotational formula. We found that B(M1)/B(E2) experimental ratio can be
well reproduced by simple rotational formulae even in case when absolute
B(M1) and B(E2) are not reproduced.
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