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The role of pairing collective degrees of freedom is investigated within
microscopic approach based on the general collective Bohr model which
includes the effect of coupling with the pairing vibrations. The excitation
energies observed in transitional Gd and Er isotopes are reproduced in the
frame of the calculation containing no free parameters.
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The microscopic approach to the general collective Bohr Hamiltonian
(GBH) [1,2]| can be still successively used to interpret nuclear collective
modes directly referring to single-particle degrees of freedom and thus in-
troducing no adjustable parameters except those fixed for all nuclei: the
single-particle potential parameters and the strength of the residual pairing
interaction. However, in order to obtain in the frame of GBH (in its original
form as in [2]) excitation energies comparable to the experimental data one
has to enlarge mass parameters provided by the model. This situation can
be improved by more careful treatment of residual forces — it seems that the
renormalization of pairing strength needed in many calculations concerning
collective nuclear properties is due to the pairing dynamics which should be
included into description [3].

Recently we have proposed [4] the method of approximate treatment of
the coupling between quadrupole and pairing vibrations which allows us to
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get the proper scale of low-lying excitation energies and moreover, to describe
almost exactly collective properties of some transitional nuclei. The method
was applied in the neutron deficient Te, Xe, Ba, Ce, and Nd region [4] as
well as in the region of neutron rich Ru and Pd isotopes where it occurred
especially efficient. In continuation we would like to extend the discussion
to the rare-earth nuclei aiming to confirm the important or, at least, non
negligible influence of the coupling with collective pairing degrees of freedom
on nuclear movements.

The pure dynamical approach to such a coupling requires 9 dimensional
solutions: we have to deal with two intrinsic variables § and y parametrizing
the nuclear shape, three Euler angles for orientation in space (denoted in
short as £2), two pairing gap parameters A? and A™ for protons and neutrons
and two corresponding gauge angles. In a given nucleus the gauge angles
are constant so the "complete" hamiltonian takes the form

Heon = Hapu(B, 7, 25 AP, A") + Hpain (AP, A" B,9) + Hing. (1)

where (as in all following formulas) the variables placed after a semi-colon
do not appear in differential operators. However, the diagonalization of (1)
makes a problem because of the dimension of the appropriate basis. So
we assumed instead, that the interaction term 7:lint can be neglected and,
moreover, that only the ground state of the collective pairing hamiltonian
7:lpair comes into the function of a nuclear state when low-lying excitations
are considered. It means that the coupling of quadrupole and pairing vibra-
tions is realized through the inertial functions appearing in both, GBH and
pairing collective Hamiltonians.
At each deformation point 8,y we can easily solve the one-dimensional
eigen equation of each independent term in
Hpalr = 7-ll;inr HA d (2)

pair

which reads as [6,7]:

i V9 T Visir(4), 3)

9
2/g(A) 0A Ba ()

where N = Z, A = AP for protons and, respectively, NN = A — Z, A = A"
for neutrons and g(A) is the appropriate determinant of the metric tensor.
The collective pairing potential Vjair(A) (equal to the usual BCS energy
calculated for a given gap value) depends more-less parabolically on A while
its minimum corresponds to the equilibrium pairing gap Aeq obtained in
the BCS formalism. But the pairing mass parameter Baa(A) determined
according to known formulas [7] goes up so rapidly for small A values that the

YN
Hpair = =
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resulting pairing vibrational ground state function is shifted towards smaller
gaps. The ratio of the most probable gap value Ay;jp, to the equilibrium one is
of about 0.7 on average (it grows slightly with the number of particles). This
relatively small effect appears sufficient to obtain mass parameters of GBH
2-3 times larger then used to be. Assuming the A-shift as the main effect due
to the coupling of quadrupole and pairing vibrations (at least on average)
we should expect that low-lying (and low-spin) nuclear collective excitations
could be quite correctly described by means of the hamiltonian [4,5]:

Heon ~ Hapu (B, 7, 25 AP = AV (B,7), A" = A% (8,7)) + Epair,  (4)

where Fp,ir is the pairing vibrational ground state energy. The hamiltonian
(4) has the same form as the classic one: it composes of the collective poten-
tial Veon evaluated within the standard Strutinski macroscopic-microscopic
method and of kinetic vibrational 7Ty;, and rotational 7o terms depend-
ing on the set of inertial functions derived microscopically in the frame of
standard cranking method.

Hewn = Tvin(By7: ALy, A%p)
+Trot (B, 7, 23 ALy, Aly) + Veon (B, v; Ay ATy ), (5)

The inertial functions appearing in (5) i.e. mass parameters and moments
of inertia depend, in general, on intrinsic variables (5,7 and pairing gap
values. Thus approach to GBH differs from the standard one because here
all inertial functions as well as the collective potential at each deformation
point are calculated using the most probable values of proton and neutron
gap parameters A€ i Auyy, instead of the BCS equilibrium ones Af, Agy-

We should mention that in all our calculations the Nilsson single-particle
potential with the shell-dependent Seo parametrisation [8] and the standard
estimations for the monopole pairing strength [4] were adopted.

The simple method briefed above works quite well in all nuclei considered
up to now and it appears especially successful in describing collective prop-
erties of transitional triaxially deformed and/or soft nuclei [5]. Intensively
studied isotopes from the rare-earth region exhibit a very rich spectroscopic
structure: collective excitations of higher multipolarities as well as single
particle modes should be taken into account in the complex description of
their spectra. Nevertheless, in the frame of our approximation we are able
to reproduce ground state and + bands in 2716Er and 8-162Gd isotopes
(Fig. 1 and Fig. 2). Our results agree well with the experiment in spite of
some discrepancies occurring mostly for nuclei with 84 neutrons only. As it
is exemplified in Fig. 3 positions of levels built on the second 0T state are
also situated rather correctly regarding the lack of hexadecapole mode in
the description.



462 K. ZAJAC ET AL.

g.s. band
4.0 Er exp. th.
& —— 2t
& 4
3.0 1 ® o o
A —— g+
2.0 - Y V ¢ 10+
1.0
%_) 0.0
=
4.0
3.0F
20
10
i 1 1 1 1 1 1 1 1

84 86 88 90 92 94 96 98
neutron number

Fig. 1. The experimental [10] and the theoretical (connected with the straight lines)
energies of the ground state band levels in Gd and Er isotopes.
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Fig.2. The experimental [10] and the theoretical (connected with the straight line)
energies of the v band levels Er isotopes.

It should be pointed out that nuclei (Er isotopes) from the considered re-
gion were lately studied in the frame of the Triaxial Projected Shell Model [9]
with the comparable success in resulting ground- and v band positions. How-
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Fig.3. The comparison of experimental [10] and the theoretical (connected with
the straight lines) low-lying bands in 58Er.

ever, the mentioned calculation needs some fitting procedure in order to de-
termine the appropriate value of a triaxiality parameter while in our approx-
imation there are no fixed shape deformations and no adjusted parameters
at all.

Summarizing we can say that also in rare earths the role of coupling be-
tween quadrupole and pairing vibrations seems to be deciding for the proper
balance of different collective modes. Adopting the simple approximation we
are able to describe the main properties of low-lying collective excitations in
most of even—even transitional nuclei.
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