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Some problems of the deformation quantization for the particle on the
circle are considered. It is argued that, from the physical point of view, it
seems to be necessary to deal with “quantized” classical phase space. The
compact form of the Moyal *-product is given.
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1. Introduction

The idea of deformation quantization was introduced by Bayen, Flato,
Fronsdal, Lichnerowicz and Sternheimer, in their beautiful papers [1| where,
starting from the old ideas of Weyl [2]|, Wigner [3]|, Moyal [4], Gerstenhaber
[5] and Vey [6], they “.. suggest that quantization be understood as a
deformation of the structure of the algebra of classical observables, rather
than a radical change in the nature of the observables.” This quantization
arises as a deformation of the usual product algebra of the smooth functions
on the classical phase space and then as a deformation of the Poisson bracket
algebra. The deformed product is called the *-product (in our paper we
call it the Moyal *-product) and it has been proved that such a product
exists for any symplectic manifold [7,8,9]. (Recently it has been shown by
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Kontsevich [10] that a deformation quantization exists also for any Poisson
manifold). This result evidently justifies the suggestion of Bayen, Flato et al.
However, the crucial point is to make that formal deformation quantization
be a physical theory corresponding to quantum mechanics. Although it
appears to be an easy problem in the case of Cartesian phase space R?", it
is not so in more general cases.

In this paper we deal with the deformation quantization on the cylinder
and we show that it seems to be necessary to reduce the classical phase space
R x S' to the following subset: /Z x S'. This result is in agreement with the
previous results by Mukunda [11], Berry [12| and Kasperkovitz and Peev [13]
and we suppose that similar reduction or quantization of the classical phase
space will be observed in other cases when the topology of the coordinate
space is non-trivial.

Our paper is organized as follows. In Section 2 we consider the deforma-
tion quantization on R x R. We deal with operator bases: ﬁ(,u, A) (unitary

A~ ~ A~

basis), Q(p,q) (the Stratonovich-Weyl quantizer) and I(u, ) (I(u, ) =
ﬁ(u, )\)]3 with P being the parity operator) and we find the relations be-
tween these bases. Then the Moyal *-product and the Moyal bracket are
presented.

In Section 3 the deformation quantization on the cylinder R x S! is
investigated. We argue that from the physical point of view one should use
the discrete Stratonovich-Weyl quantizer given by Mukunda [11], rather than
the usual Stratonovich-Weyl quantizers considered by Gadella et al [14] or
Arratia and del Olmo [15]. Finally, the compact form of the Moyal *-product
on the cylinder is found and it is pointed out that in the case of (physical)
deformation quantization on the cylinder the classical phase space R x S!
should be quantized to be AZ x S'.

2. Deformation quantization on R X R

We recall some results concerning the deformation quantization on the
Cartesian phase space (for details see [1-4,13,16-20]). The symplectic 2-form
w is defined by

w=dpAdq, (p,q)eR. (2.1)

Let f = f(p,q) be a tempered distribution on R? and f: f()\,u)

F=Ffp) = /f(p, q) exp {—i(Ap + pq)} dpdq (2.2)
RQ
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its Fourier transform. Then, according to the Weyl rule, the quantum oper-
ator corresponding to f is defined as follows

-~

fzwum@wzangﬂxmmmmww, (2.3)
R2

where the family of unitary operators {ﬁ(u, A) (A € R2} is given by

~

U(p, A) = exp {i(Ap +ud)}, (1, A) € R? (2.4)

with p and g being the momentum and position operators, respectively.
Using the Baker-Campbell-Hausdorff formula we get

A~

1 Iy~ C
U(p, A) = exp <—§h/\u> exp(iAp) exp(iuq)
= exp <%ﬁ)\u) exp(iuq) exp(iAp) . (2.5)

Using also the relations

exp(iAp) | q) =[ ¢ — hA),
exp(ipq) | p) =| p + hy) (2.6)

one quickly finds that the unitary operator ﬁ(,u, A) can also be written in
the following equivalent forms

050 = [ 0s2) | a)data |

+eo . h\ hA
= [ exp(ipg) | ¢ — B )de{qg+ % |,

—0o0

0s) = T 0 3) | 9ot |

400
= [ exp(idp) | p+ Mydp(p — M 1. (2.7)

—0o0
Employing (2.7) we easily obtain the important relations

_27r

Te {0 } = Z26(w)s) (2.8)
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and
~ A~ ’ / 27'{' ! !
Te {0 (. NT (0, X)) = 22600 = u)30 = N). (2.9)

Multiplying the both sides of (2.3) by ﬁ*‘(,u, A), taking the trace and using
(2.9) one gets

F=F\p) = 20hTr {ﬁ"’(u,)\)f} . (2.10)

From (2.2) and (2.3) it is evident that we can relate f = f(p,q) and f
directly according to the following rule

(2.11)

A~

where Q = ﬁ(p, q) is the operator-valued distribution

)

—0p.0) = o [ expl=i0p +p0) Ul NN (212
R2

called the Stratonovich—Weyl quantizer [18-20].
From (2.7) and (2.12) we get

+o00

%0 = [ () oo Saelo-
oo .
= oo (-8) b Sip-§ o

Then one quickly finds the following important properties of ﬁ(p, q) :

Ot (p,q) = Qp, q) (2.14)
T {0, q)} —1 (2.15)
Tr {Q(p, 9)Qp q')} = 27hd(p —p )o(g —q') (2.16)

Consequently, from (2.11) and (2.16) we have

=t =T {0}, (2.17)
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Therefore (2.15) which can be rewritten in the form Tr {ﬁ(p, q)/l\} =1
means that under the quantization process the obvious correspondence

11 (2.18)

holds.
Then one gets also the useful conditions

Tr {(Af*(u, N Q(p, q)} =exp{—i(Ap+pq)} ,
Tr {Q(p, )T (1, 2) } = exp{iCp + ua)} (2.19)

which enable us to write the correspondence between two operator bases
U(p, A) and Q(p, q) in the following form

/ T {0 (1. 0)(p. )} 0. \lAds.

dpdq

ot (2.20)

/Tr {06,001 } 0o, ) T

It is well known that there exists a close relation between the Stratonovich-
Weyl quantizer Q(p, q) and the parity operator P defined by

+00 +00
P:= / | a)dg(—q |= / | p)dp{—p | (2:21)

(see [21] and [13] for details).
Define

T=T1(uN) =0U(u,\P. (2.22)

Of course f(0,0) — P. Substituting (2.7) and (2.21) into (2.22) one gets

+0o
~ ) i)
I(p,A) = / exp(wq)‘q - 7>dq< g
—
e h h
= / exp(i)\p)‘p + 7“>dp< -p+ 7“‘ . (2.23)

—0o0
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From (2.23) we easily obtain

T () = T, A) = T (1, ) (2.24)

i.e., the operator f(,u,)\) is both, self-adjoint and unitary for every
(1, \) € R2.
Then from (2.22) with (2.24) one has

() =T <‘2‘ ;) PU <—%—%) . (2.25)

Finally, comparing (2.13) with (2.23) one arrives at the following important
relation

. (9 2 . ~ .
Qp,q) = 21 <—p ——q> — 0(0,0) = 27(0,0) = 2P. (2.26)

Consequently, the operator bases ﬁ(p, q) and QT(M,)\) overlap for the
R? case.

As we will see in the next section this situation changes drastically when
the cylindrical phase space is considered.

Let the functions f1 = fi(p,q) and fo = fg(p, ) correspond to the

operator f; and f2, respectively, i.e., fi(p,q) = Y(f1) = Te{Q(p.q) 1}
and fao(p,q) = (f2) = Tr{Q(p, )fg} The questlon is what a function
corresponds to the product of operators fifo. Denoting this function by

(f1 * fo)(p,q) :== Wﬁl(ﬁﬁ) and employing (2.11) and (2.17) one quickly
finds

(f1+ ), ) = Tr {Q(p, @) i o

o~ o~ ~ / ’ " g 2,27
= [ A0 )T {0,000 )00 ")} falp, g g 22T
R4

using (2.13) we have

Tr {Q(p,q)ﬁ(p’ Q" q )}
= 4exp{21 [(q
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Substituting (2.28) into (2.27) one gets the Moyal x-product of f1 and f,
[4,16-20]

(fi* f2)(p,q) =4 f{fl(P+P',fI+ql)

XeXp{ / " // / }f2 p_{_p//’q_}_q//)}%‘ (2‘29)

Assuming that fi, fo € C®°(R?) we can expand fi(p + p',q + ¢') and
fa(p +p",q+ ¢") in the formal Taylor series at the point (p,q) € R?. Then
performing some simple manipulations (see [20] for details) we obtain the
following formal result (also called the Moyal x-product of f1 and f3)

ih
s £ = resw (57 ) 1 (2.30)
where ? is the Poisson operator
P = a%azp_aiaz: 8zi%’ ni=12
(z',2%) = (p,q); (2.31)

w' stands for the inverse tensor to the symplectic form w defined by (2.1),
i.e., wwjp = 0.
Then the Moyal bracket is defined by

1
U feby = = (frx fa = fax o). (2.32)
One quickly finds that
Jim (f1 o}y = AP o= () (2:33)
(assuming that %J;; =0=922)

Gathering, we are led to the following conclusion.
Let C*°(R2)[[h]] be a linear space of formal power series

paQa thak b,q (234)

with ag(p,q) € C®°(R?). Then the associative, non-commutative algebra
(C>(R?)[[A]], *) where the Moyal *-product is given by (2.30) is called the
Moyal *-algebra and this algebra is the first known example of the so called
deformation quantization [1,8,9,22].
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The Lie algebra (C*(R?)[[A]],{-, -} ) known as the Moyal bracket alge-
bra, is a deformation of the Poisson bracket algebra (C*°(R?),{-,-}p).

Now we find the Fourier transform f; % fo of fi * fo. From (2.3) and
(2.10) one gets

(fluf;) () = (El%) () = 2T {TH(u, N fufo |

= b J [0 T (T e VT )T 0}

% fo( M ! )}dXdM AN"dp" . (2.35)
But

Tr {ﬁw,x)ﬁ(u' )T (", X" }

(2.36)
eXp{m )\/ " )\//M/)}(S(M/_i_u//_M)d(x_i_)\//_)\) .

Substituting (2.36) into (2.35) we obtain

(ﬂﬂﬁ) (A1)

re 4 r 237
Lo [ ROV exp {2 (V= M)} o= X = pyixa 337
RQ

(compare with [13]).

The Weyl correspondence between the tempered distributions on the
phase space R? and the operators in the rigged Hilbert space (or the Gelfand
triplet)

S(R) c L*(R) ¢ S'(R), (2.38)
where S(R) is the Schwartz space and S'(R) is the space of tempered dis-

tributions on R, has two natural properties. Namely, if f = f(p) then from
(2.11) and (2.13) one has

- [ ()l 4580

- / 1) | p(o |= £(P): (2.39)

if g = g(q) then



Remarks on Deformation Quantization on the Cylinder 569

7= Joten () o ) 5o

“+oo

_ / 9(q) | q)dala |= 9(@).- (2.40)

—0o0

Another important question which should be also considered is the one con-
cerning the transformation law for the Stratonovich-Weyl quantizer 2 =
Q(p, q) under the characteristic group for our physical system i.e., the Galilei
group

¢ =q+vt+q,
' =t+0b,
pl :p+m0U7 baQO € Ra (241)

where t,v and mg denote time, velocity and mass, respectively.

Inserting (2.41) into (2.13), using also (2.6) one quickly finds

~ +o0 .
Qp',d) = | exp{ilg(ptimov)}‘q—i-vt—i-%—i- >d£<q+vt—|—qo—§

— 00

- Fion () (422) o -t 0

><|qﬂL §)dé(q — 5 | exp {4 (vt + q)p}}

= f {exp (Z£p> exp{ (vt + qq) }exp{ﬁmovq}

X |q+ )df(q——|exp{ movq}exp{ (vt + qo) p}}

= {eXP{Z [ vt—l—QO)p-i-monﬂ}Q (p,q

xexp{—% [~ (vt + go)P + movq] } } - (2.42)

The formula (2.42) says that Q(p, ¢) transforms according to the irreducible
projective unitary representation of the Galilei group.
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Finally, we consider some facts concerning the Wigner function and the

evolution equations.

If p = pt is the density operator representing the state of our system

then according to Weyl correspondence (2.17)
p=p(p,q) =W () =Tr {ﬁ(p, q)ﬁ} :

Wigner function w = w(p, q) is defined to be

1

= ﬁp(pa Q) .

w = w(p,q)
It is an easy matter to show the following relations
p=p = w=1w,
Tr(p) =1+ /w(p,q)dpdq =1,
R2

Tr (5575) > 0 / @+ 9) (0, q)w(p, q)dpdg > 0,
RQ

where the overbar stands for the complex conjugation.

(2.43)

(2.44)

(2.45)
(2.46)

(2.47)

[Note that by (2.47) the states in terms of deformation quantization, are
defined as the positive functionals on the Moyal x-algebra 4.e., the functionals

w = w(p,q) which satisfy the condition

/(§ *g) (p,q)w(p, q)dpdqg > 0
R2

for every g = g(p, q) (compare with [23])].
The expected value of an observable f reads

[ (0, q)w(p, q)dpdq
]RQ

<f> ~ Jw(p.q)dpdg

]RQ

The Liouville-von Neumann evolution equation takes the form of

dw
% = {H’w}M

(2.48)

(2.49)

(2.50)
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where H is the Hamiltonian of our system.
Finally, the Heisenberg equation can be written as follows

af
a - {f7 H}M : (2'51)

3. Quantization on the cylinder

Here we deal with the quantization of the system consisting of a spinless
particle on the circle S'. The phase space is now the cylinder Rx S'. We
denote the angle coordinate by € € [—7, 7) and the momentum conjugated
with 6 by p € (—o0,00). The symplectic form w is

w=dpAdf. (3.1)

First we recall the quantization procedure given by Mukunda [11] and
Berry [12] and we also consider some results obtained by Kasperkovitz and
Peev [13] although we don’t use their formalism in which the extension of
the period to 47 is assumed.

By analogy to the R? case consider the family of unitary operators

A~

U(v,7) =exp {z (%f)\—f— Vé\)} , (v,7) € R®. (3.2)

However, as the operators (3.2) act on the Hilbert space L?(S'), v must be
an integer.
Moreover, for any k,l,m € Z

A~

U(m,7+2kn) |1) = {exp{—L(7+2km)m} exp { % (7 + 2k7)p}

X exp (m@) 1)}

= (=1)™ exp (—=%7m) exp (£7p) | I + m)
(=1)™T (m,7) |1) (3.3)

where | [) denotes the eigenket of p
pll)=In|l), leZ. (3.4)

Hence,

~ ~

U (m,7 + 2kn) = (=1)™ U (m, ) (3.5)



572 J.F. PLEBANSKI ET AL.

and therefore, in order to have the family of independent unitary operators
one can take —m < 7 < 7. Gathering, in the present case the analogue of

the family (2.4) reads

{ mGZ—T{'<T<T&'}
U

(m )_exp{ (%ﬁ—kmg)}

Then U (m,7) can be written in the form of

ﬁ(m,r):k:i O (m,7) | k) |

= i exp (——Tm) exp (%Tﬁ) exp (zmé\) | B)(k |
k=—o00
:k_i% exp (it (k+2)} | k+m){k |

or in terms of the coordinate basis | )

7' 0)doo =1,  (0]6) =6 (0 - 0’) :

(where 6(5) () is the Dirac delta on the circle §'), in the form of
+7

0 (m,7) = / 0 (m,7) | 0)do(0 |

—T

+m

— [exp{im (0~ 7)} 116 - hasce

—T

+m

— /exp (imf) ‘ o - —]>d9<[9 + %} :

—T

(3.7)

(3.9)

where the symbol [# — 7] means that [0 — 7] := 0 — 7+ 2k7 with such a k € Z

that [0 — 7] € [-m, 7).
Then one finds the following relations

o0

Tr {ﬁ (maT)} = Z exp (1kT) O = 27T5m,05(5) (1)

k=—00

(3.10)
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and
Tr {ﬁ"’ (m,T) U (m/, T’)}

= Omm’ i exp {%m (r" — T)} exp {ik (' — 7)}

k=—o00

= 278, 0 (1 — 7') . (3.11)

Now we are going to find the Weyl rule of quantization on the cylinder. Let

f = f(p,0) be a function on the cylinder and let f = W(f(p,6)) be the
corresponding operator.

We can expand fwith respect to U (m, T) basis

(o¢] i

F=W (f(p,0) = (2717)2 3 /ﬁ(r,m)ﬁ(m,r)dr, (3.12)

m=—00_"_

where F = ﬁ(T, m) is some function. By the analogy to the R? case one
can expect that F'(7,m) should be assumed to be the Fourier transform of
f(p,0). But if so then a severe problem arises. From (3.12) using (3.11) we
get

F(r,m) =2nTr {ﬁJr(m,T)f}, meZ and—nm<1<m7. (3.13)

Thus (3.13) shows that the operator f given by (3.12) defines the function

ﬁ(T, m), m € Z, only for 7 € [—m, 7). Consequently, if we want F' = F(1,m)
to be the Fourier transform of f = f(p,f) we are not able to extract all
the information about this transform from the formula (3.12) but only its
values for —m < 7 < 7 (and not for all 7 € (—o0,00)). Thus one cannot also
reconstruct the function f = f(p,0) from the corresponding operator f

Therefore we propose another interpretation of the expansion coefficients

F(r,m) (This approach within slightly different formalism was given by
Mukunda [11]).

Consider the following distribution on the cylinder Rx S!

F=F(p,0):= Y f(nh,0)(p—nh). (3.14)

n=—oo
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Then we define F = F(r,m) to be the Fourier transform of F

o0 +
F=F(r,m):= /dp/doF(p,o) exp{—i (%p—i—m@)}
o0 +71'
-y /dof(nﬁ 0) exp {—i (rn + m0)} . (3.15)

—T

From the definition (3.15) it follows that F'(7 4 2kw, m) = F(r,m) for every
T € (—00,00) and m € Z. Hence, the formula (3.13) gives all the information
about F and, consequently, about F' given by (3.14). But of course F is
completely defined by the values of the function f = f(p,#) on the following
set

hZxS' Cc RxS'. (3.16

)
Concluding, the Weyl rule of quantization given by (3.12), (3.14) and (3.15)
gives the one to one correspondence between functions on hZxS' C Rx S!
and the operators in the Hilbert space L*(S').
Inserting (3.15) into (3.12) one gets

Fow Z /f (nh, 0)) )dz, (3.17)

n=—00__

where

ﬁ(n,@) = o nioo [ exp{—i(tn+mb)} U(m T)dT,

nel,—rm<0<m.

(3.18)

Comparing (3.17) and (3.18) with (2.11) and (2.12) we find that Q(n,6)
resembles very much the Stratonovih—Weyl quantizer Q(p, ¢). The important

difference is that ﬁ(n, 6) is defined on ZxS' and not on all the classical phase
space Rx S'. Therefore we call it the discrete Stratonovich-Weyl quantizer
for the cylinder.

From (3.18) with (3.10) and (3.11) one quickly gets the following prop-

erties of ﬁ(n, 0)
QO (n,0) = Q(n, 0), (3.19)
Q(n

{ } (3.20)

Tr {ﬁ(n, ) (n' ,9')} - 27T5n7n/5(5)(0 —9). (3.21)
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Then using (3.7) or (3.9) we have

O(n,0) = exp (—2in0) 3 {exp (2ik6) | 2n — k) (k |

k=—00

% Z 2l+1 Sexp {—i (21 +1) 0} | 20 +1) — ks + 1) {k [[} (3.22)

or (compare with [11])

+m

G(n,0) = / exp(irn)| [0+ ] Yar ([0 - 7] |. (3.23)

—T

Employing (3.21) one can easily extract f(nh,#) from (3.17) to be
f(nh,0) = Tr {ﬁ(n,e)f} . (3.24)

Note also that ﬁ(n, 0) leads to two natural relations which hold also in the
R? case (see (2.39) and (2.40)). Namely if f = f(p) then by (3.17) with
(3.22)

o0

Z F(kR) | k) (k |= f (D) (3.25)

if g = g(exp(i0), exp(—i0)) then by (3.23)
+m

§=/9(exp(i9),exp( 6)) | 0)d6(6 |= glexp(if), exp(—if)).  (3.26)

—T

We now prove a simple theorem that shows how restrictive is the condition
(3.25).

Theorem 1 There doesn’t exist a family of operators in L?(S').
{EI\)(p,H) peR —7<O< 7T} such that i) Tr {5(1), 0)} =a € R for every
p and 0 ii) f dp f P)®(p,0) = £(p) for every f = f(p).

Proof. Assume that u) holds true. Then,

o

+m
[ dot) [ 520 180.0) | ) = s(an (3.27)

—00 -7
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for every | k) and every function f = f(p). Hence

+m

L a0tk | B(0,0) | B) = 6 (p — kF) . (3.28)

2

-7

Summing up both sides of (3.28) with respect to k and using i) one gets

a= i 0 (p— kh) (3.29)

k=—o00
which is, of course a contradiction. W

This theorem leads to an important conclusion. If one wants the quan-
tization of the particle on the circle S! to satisfy a simple and natural con-
dition (3.25), then the corresponding Stratonovich-Weyl quantizer must be
defined on JxS!, where J is some discrete subset of R. Moreover, it is an
easy matter to prove that J = Z. Indeed we have

Theorem 2 Let {5(6,0) :LeEJCR, —n<0< 7r} be a family of oper-
ators in L?(S') such that i) Tr {:I;(ﬁ,ﬁ)} =a € R for every f € J and

0€l-mm) i), f f ,Bh (8,0) = f(p) for every function f = f(p) on

pel—n
Rx St then ] = Z and a = 1.
Proof. Let f = f(p) be of the form

1 for p=mh
fF=1p) = { 0 for p # mh

for some m € Z. Then from i) and ii) one has

S F(ph / e {8(6.0)) = S af ) = (F @) =1, (3:30)

BeT g BeT

Hence m € J and a = 1. As m is an arbitrary element of Z, Z C J. Let
now By € I be any element of J and assume the function f = f(p) to be of
the following form

_ _ 1 for p = Boh
f=1p)= { 0 Jor p # ol
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Thus we have (rememeber that a = 1)

> 1(pn) [ LT {8(8,0)} = £(pon) =1 ="Tx {£ (P}

BEJ -7
=S (k| f(B) | k)= 3 F(kR). (3.31)
kEeZ keZ

Hence By € 7Z. = J C Z. Consequently, J] = 7Z.. The proof is complete. m

This result can be interpreted as the quantization (discretization) of the
classical phase space. In another word one can assume that the deformation
quantization on the cylinder consists not only in the Moyal *-deformation of
the usual product algebra C*(Rx S!) but also in reducing the classical phase
space Rx S! to its subset AZxS'. We suppose that similar discretization of
the phase space should be observed for other coordinate spaces of non-trivial
topology.

Of course this changes the original idea of deformation quantization and
also the idea of an axiomatic approach to the Stratonovich-Weyl correspon-
dence between functions on the phase space and the quantum operators
[14,15,18,19].

Now we study the rule of transformation for ﬁ(n, 0) under the following
group of transformations acting on ZxS!

n' = n + ng, n',n,ng € Z;
0 =[0+0,, —7<6,0,00<r.

(3.32)
Substituting (3.32) into (3.22) after straightforward calculations one gets
Q(n + no, [0+ 00]) = U(ng, —00)Q(n., )T (ng, —6p) , (3.33)

where, according to (3.6),

ﬁ(ng, —bp) = exp {z <—%Oﬁ+ n0§) } . (3.34)
(Compare (3.33) with (2.42)). Therefore
Q(n,0) = U(n, —0)(0,0)U (n, —6). (3.35)

Consequently, having Q(0,0) and the group property (3.33) we can find

~

Q(n, ) for every n € Z and every 0 € [—m, ).
An interesting question arises. Assume that we don’t know the family of

operators {ﬁ(n, 0)} which enter into the formula (3.17), but we assume that
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the group property (3.33) and the natural properties (3.25) and (3.26) are
satisfied for this family. The question is what information one can extract
from these assumptions. Simple calculations show that with (3.33) assumed
we get

(3.25) <= (k | Q(0,0) | k) = 6o VkEZ (3.36)
and
(3.26) <> i (n]90,0) | n+k)=1 VkeZ. (3.37)

Of course Q(n,6) considered by Mukunda [11] and given here by (3.18)
satisfies (3.36) and (3.37). Note, that taking in (3.37) & = 0 we obtain

Tr {ﬁ(o,o)} ~1. (3.38)

The same condition follows from (3.36) when the sum of both sides of the
relation (k| €2(0,0) | k) = di0 is considered.

By (3.35) Tr {ﬁ(n, 0)} =Tr {Q(0,0)}. Thus one arrives at the conclu-
sion that the group property (3.33) and the conditions (3.25) or (3.26) yield
the trace condition (3.20). R

Now we examine the relation between (n,6) given by (3.18) and the
parity operator P which is defined as follows

o t7
P= S |R)k|= / | 0YdO(—0 | (3.39)

k=—o00 -
(compare with (2.21)). Then analogously as in the R? case we define

I(n,0) :==U(n,0)P. (3.40)
Inserting (3.7) or (3.9) and (3.39) into (3.40) one has
~ e . n
Tn,0) = 3~ exp{io (b + 5) b1k +n)(—k | (3.41)
or k=00
+7

T(n, 0) = / exp (in7) |[r - g]>d7< [+ g] , (3.42)

-7

respectively.
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It is an easy matter to prove the following properties of i (n,0)

T (n,0) = I(n,0) (3.43)
Tr {T(n,o)} - %{1 AL (3.44)
Tr {f(n,e)f(n', 9')} = 270,05 (0 — 0). (3.45)

Then one has also the group property similar to (3.33) but only for i (2n,0)
i.e.,

T2(n + n). [0 + 05]) = T <n0 92 ) T(2n, )0+ < 920) (3.46)

n,ng € Z, 9,906[—7‘(’,7‘&').

From (3.22), (3.39) and (3.41) employing also (3.21) and (3.45) we get

9(0,0)=ﬁ+%k§ ém | 20—k +1)(k |, (3.47)
0(n.0) = T(2n, [-20) + 2 > exp(2ikh)
k=—o00

x { :i S exp {—i(20 + 1)8} | 2(n +1) — k + 1){k |} . (3.48)
G(n,0) = ;f_ fT_r{ (0!, 6)0(n, ) } Tn',0) 42, (3.49)
A oo +7 ~ ~ ~ ,

fn6)= ¥ [ {Q(n’,H’)I(n,H)}Q(n 04 (3.50)

where

'I‘.r{f(n’,&’)ﬁ( )}_QW S {60906 (0 + 20)

k=—00

+ [1 - (_1)n’} (CyTn exp(—in'0)85) ()} . (3.51)

3=

Now it is evident that one can use the family {f(n, 0):neZ,be [—7r,7r)}

as the basis of operators acting in the Hilbert space L?(S'). This basis has
been used in the paper by Kasperkovitz and Peev [13].
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Thus we can define the correspondence between functions on the phase
space Rx S' and the operators in the following form

Z / b, 0)T(n,0) 2 (3.52)

where ¢ # 0 is some real number. Using (3.45) one gets

f(nh,0) = %Tr {f(n,e)f} . (3.53)

However, we can easily show that the correspondence given by (3.52) and
(3.53) doesn’t satisfy both (3.25) and (3.26) conditions. Indeed, for f =1
one has

:c<i+% > %|21—k+1)(—k|>¢i Ve e R—{0}.
(3.54)

Moreover, as we know from (3.46), only the family {IA (2n, 0)} has the group
property similar to that given by (3.33). Consequently, the operator basis
{ﬁ(n,@)} seems to be more justified from the physical point of view than

{f(n,e)}.

From the considerations of the present section it follows that the basis
{ﬁ(n,@)} defines a one to one correspondence between functions on the
"quantized” phase space hZxS' and the operators acting in L2(S') (or more
precisely in the Gelfand triplet C*°(S') c L2(S') c (C*=(Sh))").

Now we are in a position to find the Moyal *-product for the quantization
on the cylinder.
Let fi = fi(nh,0) and fo = fa(nh,0) be arbitrary functions on hZ xS!

and let f1 and f2 be the corresponding operators. As in the R? case we
denote by f1 * fo = (f1 * f2)(nh,0) the function which corresponds to the

product f1fo.
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From (3.24) and (3.17) one gets

(fo On0) =T (Bm0f L) = X [ (35

+m ~ ~ ~
x [ do" { F1(n'B, 0" Tr {Q(n,e)Q(n',e')Q(n”,e")} fa(n"h, 9")} .

Employing (3.22) and the formula

118

X 1)k . _1)k
2y Silme{i2k+ 10} =2 Y Sk cos {(2k +1)0}
k=—00 k=0
= sgn {cos(6)} , (3.56)
where, as usual, the function sgn(z) is defined by

x>0
sgn(z z=0 (3.57)
z<0

we find the fundamental result
Tr {Q(n,a)ﬁ(n',af)ﬁ(n",o")}
— exp {20[(n" — n)(®' — 0) — (W —n)(@" — )]}
x {1+ sgn (cos (6" — 0)) sgn (cos (6' — 0))
+ sgn (cos (6" — 6)) sgn (cos (6" — "))
+ sgn (cos (0" — 0')) sgn (cos (6" — 0))} . (3.58)

Inserting (3.58) into (3.55) and changing the variables, ¢’ := 6 — 0, ¢" :=
0" — 0, m' :=n' —n and m"” := n” — n one obtains

00 +m
(fix f)(nh,0) = 7 > [ d¢f

—+7
x [ do" fi((n+m')h,0+¢)
/ //

}x{1 + sgn (cos ¢") sgn (cos ¢')
+ sgn (cos ¢') sgn (COS (<P —¢")
+sgn (cos (9" — ¢')) sgn (cos ")} fo((n +m")h, 0 + ") } . (3.59)

x exp {2i (m"¢' —
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Now we show that using the formal expansions of f1((n+ m')h, 0 + ¢') and
fo((n +m")h,0 + ¢") one can bring (3.59) to the form similar to (2.30).

To this end we insert into (3.59)

filln+mh 0+ ') = 3 HELLGED | (mh)k

k=0
" " o 1 9%y 2 (p,0+¢" gk
fa((n+m")h, 0 + ¢") = k_i’b:nh(m h)* . (3.60)
k=0
Thus
00 oo +T y
(fl*f2)(nh70) = 4 Z Z f d(p f dey
m/m/'=—co kg k'=0—7
ak 0+¢' ’ .
i T (! ) (" ) exp {2 (! — m/ ")}
x {1 + sgn (cos ") sgn (cos ') + sgn (cos ¢') sgn (cos (¢" — ¢))
ak’ 2(p,0+ 1
+sgn (cos (¢ = ¢')) sgn (cos ")} LELEED |,
1 00 oo +7 y
=Y > [y f dep
m/ \m/'=—0c0 g k'=0—T

1 0" fi(p,o+
X RN fupd1 2)

x

+ sgn (cos ') sgn (cos (¢" — ¢'))

k k .
apk |p:nﬁ (_QEZ) |:8Z,,k. eXp( 27’mIQ0”)i|

—)k [a‘%k, exp(2im” ¢")]{1 + sgn (cos ¢") sgn (cos ¢')

3

+ sgn (cos (¢" — ¢')) sgn (cos ") }Wb:nh- (3.61)
Employing the formula
1 o0
o Z exp(+2imy) = Z e+ ml) (3.62)
s

m=-—00 l——oo
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and integrating by parts one gets

o0 i +
(fi* fo)(nhi,0) = 1 > [ d¢' [ dy”
kk'=0—T -7

6k’+k O+ n\k n\k
X T 7agif(§pk W)|p=nﬁ(2_i) (—2)

x {6(¢") +6(¢" +m) + (¢ —m)}
x {0(¢") +6(¢" +m) +6(¢" — )}
x {1+ sgn (cos ") sgn (cos ¢')

+ sgn (cos ¢') sgn (cos (¢" — ¢'))

ak+k' ,9 11
+sgn (cos (¢ = ¢')) sgn (cos ") SR BLRE) |y

oo 7 +7
— Z f dQDI f d(p”
kk'=0—m -

k k' gk +k
b ()" (-3)" G e

ak+k’ 3 ,9_*_ 1
X 3(")3 (") B |

o ! 7
_ 1 in\k (in\k" 0 * f1(p,0) 9" TK fa(p,0)
- {k 1%2—0 k'E™ (_%) (%) agk’;l)pk 80k82pk’ |P:"h' (3‘63)

Finally, we find the fundamental result

(f1 % f2) 0, 0) = { 71 0.0 exp () 2(p.0) | lpn

h
Il
gt
|

93
ap 90
= i\ GF = in\k Gk k
{ ,2_: % (7) 0K Gpk’ } {kz_:OF (_7) WW} :
(3.64)

Concluding, one obtains the Moyal *-product of the form given for the R?
case (see(2.30)) and the only difference is that in the case of cylinder, after
performing calculations, one must put p = nh, n € Z.

We suppose that analoguos facts will be observed in more general cases.
In other words if we want the general theory of deformation quantization
[1,9,10] to give the "physical” results then we should expect that, in general,
the non-trivial topology of the coordinate space will cause the quantization
of the classical phase space in the form similar to the case of the cylinder.
This very interesting problem is now under consideration and we hope to
present some results soon.
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Here we consider also the Wigner function for the cylinder (compare with
[11,12]). If p = p" is the density operator of the system then analogously as
in the R? case (see (2.43) and (2.44)) we define the corresponding Wigner
function by

w = w(nh, ) = ;ﬁ {ﬁ(n,e)ﬁ} . (3.65)
If
= 0 LT, |, (T | ) = b5 (3.66)
=0

is the spectral representation of p then inserting (3.22) and (3.66) into (3.65)
one gets

o0
w = w(nh,0)=5- L exp(—2inf) " p; Z {exp(2ik0)
7=0 k——oo

x[(W; | 20— K)(k | 0)
+2 3 gy expl =i+ DO | 200 +1) — k+ 1)(k ] 9]}

(3.67)
One quickly shows that
o0 +m
=Y /w(nh, 0)Q(n,0)d6 (3.68)
n=-—00_"_
and
ﬁ:ﬁ(:)wzw (3.69)
T (p _1<:>Z/ (nh,0)d (3.70)
n=—oo__
Tr (pg'g) > 0 <~ Z / g *g) (nh,0)w(nh,0)do > 0. (3.71)
n=—00_"
Then, the expected value of an observable f is given by
oo  +7
S>> [ f(nh,0)w(nh,0)do
<f> =T . (3.72)
> f (nh,6)d

n=—0o0—7m
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Finally, the Liouville-von Neumann equation reads

dw
i {H,w},, (3.73)

and the Heisenberg equation is given by

df
i {fsH} s (3.74)

where the Moyal bracket {-,-},, is defined as follows

Ui fodar = 55 Ui s fo = fos 1) (b 6) (3.75)

and H stands for the Hamiltonian.

4. Conclusions

As it has been shown, in order to obtain physically correct results for
deformation quantization on the cylinder it is necessary to reduce (quantize)
the classical phase space Rx S! to its subset AZxS! like in [11,13]. Conse-
quently, the Stratonovich-Weyl quantizer is also defined on this quantized
phase space. It is expected that the same will be observed in the case of any
phase space with non-trivial topology (see [24]).

Similar results concerning quantization of the classical phase space Rx S!
were recently obtained by del Olmo and Gonzélez [25,26].

We must note another promising aproach to the quantization on the
cylinder, namely the method of coherent states [25,27,28]. The relation
between deformation quantization and the coherent states method for the
cylinder has been considered in [25]. Nevertheless this relation and also the
relation between deformation quantization and quantization on the ”quan-
tum cylinder” [29] are not clear.

This paper is partially supported by CINVESTAV and CONACyT (Méx-
ico) and by KBN (Poland). We are indebted to Héctor Uriarte for his help
in preparing this text for publication. One of us (M.P.) thanks the staff of
Departamento de Fisica at CINVESTAYV for warm hospitality. We are also
grateful to the Referee for pointing out the papers [27,28,29].
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