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We have investigated the evolution of the field quantum entropy and
the entanglement of the atom-field in the two-photon process, taking into
account the level shifts produced by Stark effect with an additional Kerr-like
medium for one mode. The exact results are employed to perform a careful
investigation of the temporal evolution of the entropy. A factorization
of the initial density operator is assumed, with the privileged field mode
being in a coherent state. We invoke the mathematical notion of maximum
variation of a function to construct a measure for entropy fluctuations. The
effect of both the Stark shift and the presence of a Kerr-like medium on
the entropy is analyzed. It is shown that the addition of the Kerr medium
and the Stark shift has an important effect on the properties of the entropy
and entanglement. The results show that, the effect of the Kerr medium
and the Stark shift changes the quasiperiod of the field entropy evolution
and entanglement between the atom and the field. The general conclusions
reached are illustrated by numerical results.

PACS numbers: 03.65.Ge, 42.50.Vk, 32.80.—t

1. Introduction

One of the curious features of quantum mechanics is that it is a theory
in which probabilities play a most central role and yet, from a foundational
point of view, the concept of entropy is conspicuously absent. Entropy
appears only later as an auxiliary quantity to be used only when a problem
is sufficiently complicated that clean deductive methods have failed and one
is forced to use inference methods. This is curious indeed because once the
use of the notion of probability has been accepted, the issue of whether
or not quantum mechanics is a theory of inference has been unequivocally
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settled. Quantum theory should be regarded as a set of rules for reasoning in
situations where even under optimal conditions the information available to
predict the outcome of an experiment may still turn out to be insufficient.
In such a theory entropy, as a measure of the amount of information [1],
should play a central role.

In recent years much attention has been focused on the properties of the
entanglement between the field and the atom and in particular the entropy
of the system [2-11]. The authors in [2-4] have shown that entropy is a
very useful operational measure of the purity of the quantum state, which
automatically includes all moments of the density operator. The time evo-
lution of the field (atomic) entropy reflects the time evolution of the degree
of entanglement between the atom and the field. The higher the entropy,
the greater the entanglement. An expression for the field entropy for the
entangled state of a single two-level atom interacting with a single electro-
magnetic field mode in an ideal cavity with the atom undergoing either a
one or a two-photon transition has been studied [10]. However, these results
are obtained for the case where the Stark shift is ignored. To make the
two-photon processes closer to the experimental realization, the effect of the
dynamic Stark shift in the evolution of the field entropy, which is necessary
and interesting is added [11]. Furthermore, we examine the effect of the dy-
namic Stark shift in the evolution of the field entropy and entanglement in
the presence of a Kerr-like medium. This model consists of a single two-level
atom undergoing a two-photon processes in a single-mode field surrounded
by a nonlinear Kerr-like medium contained inside a very good quality cavity.
The cavity mode is coupled to the Kerr medium as well as to the two-level
atom. The Kerr medium can be modeled as an anharmonic oscillator with
frequency w. Physically this model may be realized as if the cavity contains
two different species of Rydberg atoms, of which one behaves like a two-
level atom undergoing two-photon transition and the other behaves like an
anharmonic oscillator in the single-mode field of frequency w, [12,13]. Such
a model is interesting by itself as another exactly solvable quantum model
[14] that gives nontrivial results, but we can also think of its possible appli-
cations. This Hamiltonian is natural for local modes in molecular physics
or for a nonlinear Jahn-Teller effect, although long-time behavior in either
case might be obscured by omnipresent damping. There may also be optical
applications, since this type of nonlinearity may be realized by letting the
electromagnetic radiation pass through a nonlinear Kerr medium [15]. One
can think of an experiment with a Rydberg atom in a nonlinear Kerr-like
cavity. We will keep in mind this last situation throughout this paper.

The material of this paper is arranged as follows: In Section 2, we intro-
duce the model and write the expressions for the final state vector at any
time ¢ > 0 and the field entropy calculation when the Stark shift and the
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Kerr-like medium effects are included. By a numerical computation, we ex-
amine the influence of the Stark shift and the Kerr-like medium on the field
entropy evolution and entanglement of the atom and the field for a coherent
field input in Section 3. Finally, conclusions are presented in Section 4.

2. Basic equation

The model considered here consists of a single-mode with an effective
two-level atom when the dipole forbidden transition is replaced by a two-
photon one. We consider the degenerate case, in which pairs of photons with
the same frequency are created or absorbed and the quantized radiation field
in the rotating wave approximation in an ideal cavity (Q = oo) filled with a
nonlinear Kerr-like medium. We also assume that the cavity mode interacts
with both the atom and the Kerr-like medium. However, a real cavity cannot
be ideal. But in Ref. [16] the influence of a cavity with finite bandwidth at
nonzero temperature T was studied and it was shown that for new available
experimental values of Q = 2'© and T' = 0.5K the effect of the bandwidth
and the temperature are negligible until the time ¢ ~ 1073 (\¢ = 30) from the
start of the interaction. The excited and ground states of the atom will be
designated by | e) and | g), respectively. We assume that these states have
identical parity, whereas the intermediate states, labeled | j)(j = 3,4, ...), are
coupled to | e) and | g) by a direct dipole transition and so located as to give
rise to a significant Stark shift. The intensity dependent Stark effect can be
employed in quantum nondemolition measurements [17-19]. Kerr effects can
be observed by surrounding the atom by a non-linear medium inside a high
Q-cavity [20]. The effective Hamiltonian of the model under consideration
in this paper in the rotating-wave approximation can be written as [21],

Hog = weala+ twed, +aa(Bs | e)le |
+B1 | 9)g |) + xaa® + Aa"o_ +a%6.), (1)

where w, is the field frequency and w, is the transition frequency between
the excited and ground states of the atom, & and af, are the annihilation
and the creation operators of the cavity field respectively, 81 and [y are
parameters describing the intensity-dependent Stark shifts of the two levels
that are due to the virtual transitions to the intermediate relay level, X is the
effective coupling constant, o, and o4 are the atomic pseudo-spin operators.
We denote by x the dispersive part of the third-order nonlinearity of the
Kerr-like medium, with the detuning parameter A = w, — 2we.
The initial state of the total atom-field system can be written as

| $ar(0)) =D an | nse), (2)
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where the field is assumed to be initially in a coherent state where ¢, =
e v/, a=|al|e?and i =| a|?> is the mean photon number
of the coherent field. However, at any time ¢t > 0 the atom-field state is
described by the entangled state

o0

(1)) = Z(An(ﬂ | nie) + Ba(t) | n+2;g>) , 3)

n

where the coefficients A, (t) and B, (t) are given by

(4)

- in A\tF,
Ap(t) = gne MGn <cos AtF, — ngM) ,

Fy

Bn(t) = —igyVne F, ) (5)
Gn = [n+7r*(n+2)]/2r + xn?/A, (6)
F, = vW,,%—i—VnQ, (7)
W, = AJ2X + [n —r?(n +2)]/2r — xn/X, (8)

r = p1/f2, Va=+(n+1)(n+2). (9)

With the wave function | 1)(¢)) calculated, any property related to the
atom or the field can be calculated. The reduced density matrix of the field
of the system can be written as pf(t) = Tratom| 9 (2)) (% (%) |,

o0

pr(t) = D [An(®) A (1) | n)(m | +Bu(t) By, (1)
n,m=0
X |n42)0(m+2[=C)C |+ [5)NS|, (10)

where -
=Y An(t) [n), | ZB ) | n+2).
n=0

Employing the reduced field density operator given by Eq. (10), we in-
vestigate the properties of the entropy. The quantum dynamics described
by the Hamiltonian (1) leads to an entanglement between the field and the
atom. In this paper, we use the field entropy as a measurement of the degree
of entanglement between the field and the atom of the system under con-
sideration. In order to derive a calculation formalism of the field entropy,
we must obtain the eigenvalues and eigenstates of the reduced field density
operator given by Eq. (10). Knight and co-workers [4] have developed a
general method to calculate the various field eigenstates in a simple way. By
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using this method we obtain the eigenvalues and eigenstates of the reduced
density operator,

Ni(t) = (C| C) exp[F0] | (O] S) |

= (S| 8) £ expl6] | (O] ). (1)
(D) = —————(expllis £6)/2]| )
2X¥ (t) cosh(6)
£ exp[—(i6h % 0)/2] | $)) (12)

where

_ a1 (C1C) = (S5]5)
0 = sinh 1( 2T S| ) (13)

We can express the field entropy Sf(¢) in terms of the eigenvalue )\?(t) of
the reduced field density operator,

Sp(t) = =[AF () In AT (8) + A7 (1) In A7 (1) (14)

It does not appear possible to express the sums in equation (10) in closed
form, but for not too large n, direct numerical evaluations can be performed.
In what follows we shall consider the effect of both Kerr and Stark shift on
dynamical behavior of the field entropy and entanglement of the system for
two-photon processes.

3. Results of calculations

On the basis of the analytical solution presented in the previous section,
we shall examine the temporal evolution of the field entropy. It should be
emphasized that in computing all infinite series for the atomic wave function
1(t), we have invoked mathematically sound truncation criteria. To ensure
an excellent accuracy the behavior of the field entropy function S¢(t) has
been determined with great precision. For regions exhibiting strong fluctu-
ation a resolution of 10% point per unit of time has been employed. For all
our plots the initial condition has been chosen, with coherence parameter «
real. Its square is equal to the mean photon number. We recall that time
t has been scaled; one unit of time is given by the inverse of the coupling
constant A.

We display the evolution of the field entropy for the initial coherent field
with the absence of both Stark and Kerr-like medium. In our computations,
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Fig.1. The evolution of the field entropy in the two-photon process with the inten-
sity of the initial coherent field equal to n = 25, and for different values of Stark

shift parameter r = /31 /82, where (a) —r =0, (b) —r =1 and (c) —r = 5.

we have taken 1 = 25. It is remarkable that the field entropy evolves periodi-
cally and in this case for the two-photon process is rather different compared
with the one-photon case [4]. As seen from Fig. 1(a) in two-photon process
entropy is a periodic function of time and the half of the revival time the
field entropy reaches its maximum(in the case of the one-photon entropy is
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minimized at the half of the revival time and its behavior is rather irreg-
ular). Also, we show that the field entropy S¢(t) evolved at periods m/A,
when X\t = nw(n = 0,1,2,3,...), the field entropy evolves to the minimum
values and the field is completely disentangled from the atom, while when
M= (n+ %)77 the field entropy evolves to the maximum value and the field is
strongly entangled with the atom. From Fig. 1(b) we show the effect of Stark
shift parameter r = 1(8; = f2), which corresponds to the case in which the
two levels of the atom are equally strongly coupled with the intermediate
relay level. By comparing Fig. 1(a) and Fig. 1(b), we see that the evolution
of the entropy is almost similar for both cases. This may be interpreted as
follows. First, physically, this result corresponds to the fact that the Stark
shift creates an effective intensity dependent detuning Ay = fo — £1[22].
When r = 1,i.e. Ay = 0, in this case, the Stark shift does not affect the
time evolution of the field entropy. Second, using an algebraic analysis in
the high-field limit 7 >> 1 (here n = 25 ), the Poissonian distribution of
the coherent state in the | n) representation means that the dominant con-
tributions from ¢, arise from n ~ f >> 1, and we can expand F, which
appears in Eq. (7) in powers of n~ !, thus, to order n°, F,, = A\(n + %) On
the other hand, if the Stark shift is ignored, we will get the same expression
for F, = A(n + 2). In Fig. 1(c), we show the case in which the two levels
have unequal Stark shifts (r > 1, in Fig. 1(c), r = 5). We see that the Stark
shift leads to a decreasing of the values of the maximum field entropy and
the evolution period of the field entropy decreases with the parameter r.

To visualize the influence of the Kerr-like medium in the field entropy
we set different values of x/A, and all the other parameters are the same
as in Fig. 1. The outcome is presented in Fig. 2. One can distinguish
between two stages of evolution, each of which has been pictured separately.
We show that weak nonlinear interaction of the Kerr-like medium with the
field mode leads to increasing values of the minimum entropy and of the
sustainment time of the maximum entropy. In this case, the field and the
atom almost retain a strong entanglement in the time evolution process.
With the increase of the nonlinear interaction of the Kerr-like medium with
field mode, the value of the maximum field entropy begins to decrease. In
this case the degree of entanglement between the field and the atom reduces.
We note that the amplitude of the field entropy decrease as x/\ increase. It
is evident that the field and the atom are in pure states when the Kerr-like
effect increases. This result corresponds to the fact that in the limit for
the very strong nonlinear interaction of the Kerr-like medium with the field
mode, the field and the atom are almost decoupled and the time evolution
of the field is governed by the Hamiltonian Heg ~ xa!2a2, which preserves
the field entropy’s tending to zero.
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Fig.2. The evolution of the field entropy in the two-photon process with the inten-
sity of the initial coherent field equal to i = 25, » = 0 and for different values of the
Kerr-like medium parameter x/\, where (a) — x/A = 0.01, (b)) — — — x/A = 0.1,
and (¢) — — — x/A =0.5.



Influence of the Stark Shift and... 597

entropy
0.8

06
05 -
0.4
0.3
02
0.1 |
O T T T T T T
0 2 4 6 8 10 12

sealed time At

0.8

0.6 -
0.5 -
0.4 -
0.3
0.2
0.1

0.8 -
0.7 - C
0.6 -
0.5
0.4 -
0.3
0.2 -
0.1

0 T T T T T

0 2 4 6 8 10 12

Fig.3. The evolution of the field entropy in the two-photon process with the in-
tensity of the initial coherent field equal to i = 25, x/A = 0.01, and for different
values of Stark shift parameter (a) — r = 0.2, (b) — r =1 and (¢) —r = 5.

It is to be remarked that Stark interaction behaves like the limiting
case of the Kerr interaction. This may be understood in the following way:
the Kerr interaction produces two separate effects, (a) a Kerr one, which
splits the field in phase space, producing a Schrodinger cat [21], and (b) a
Stark interaction with the field in a cat state. The atom-field interaction
when the field is initially in a cat state has been shown to be less pure
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than for the field in a coherent state. It has been shown that taking into
account Stark shifts in the atom-field interaction agress with experimental
results of micromasers [24]. Such as shifted transition lineshapes and those
asymmetrically distorted. When we further take the Kerr-like medium effect
through the parameter x /A, it is to be remarked that the amplitude of the
field entropy Sf(t) decreases as the Stark shift parameter r increase. The
existence of the Kerr nonlinearity adds irregularity to the field entropy. It is
evident that the field and the atom are in the disentangled pure state when
r increase further see Fig. 3.

In conclusion, we have studied the field entropy and the entanglement of
a coherent field interacting with a two-level atom when the dipole forbidden
transition is replaced by a two-photon one. We consider the degenerate case,
in which pairs of photons with the same frequency are created or absorbed
taking into account the presence of the Stark shift and the Kerr-like medium.
For small values of the Kerr-like medium, an increase of the sustainment time
of the maximum field entropy, and strong entanglement of the field with the
atom, while for large values, it results in a decrease of the field entropy, and
the field is disentangled from the atom during the time evolution. On the
other hand, the maximum field entropy and the atom-field entanglement are
reduced as the Stark shift parameter r is decreased. The periodicity shown
in the field entropy with Stark shift is no longer present once Kerr effect is
added.
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