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The excitations of the vortex in Abelian Higgs model with small ratio
of vector and Higgs particle masses are considered. Three main modes
encountered in numerical computations are described in detail. They are
also compared to analytic results obtained recently by Arodz and Hadasz
in Phys. Rev. D54, 4004 (1996).
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1. Introduction

The vortex type solutions of nonlinear field equations are found to be
important in many areas of physics. They are useful in considerations con-
cerning different phenomena in field theory, cosmology and condensed mat-
ter physics [2]. However both static and dynamic vortex configurations are
known only approximately since they are usually described by complicated
non-linear differential equations. Therefore the numerical methods must be
applied to examine time-dependent vortex solutions.

The authors of paper [1] have investigated an excitation of the vortex in
the Abelian Higgs model with the mass of the Higgs field much bigger than
the mass of the vector particle. They considered time dependent, axially
symmetric fields with time and radial components of the gauge potential
equal to zero. In the central part of the vortex the fields were approxi-
mated by polynomials. These polynomials were continuously matched to
the asymptotics describing outer part of the vortex. The authors began
with finding an approximation to the static vortex solution. Next they as-
sumed that the evolution of the Higgs field and the azimuthal component
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of the gauge potential is frozen and considered harmonic oscillations of the
gauge potential component parallel to the vortex axis. Finally they found
corrections to the Higgs field and the azimuthal component of the gauge
potential.

In the present paper we would like to investigate described above ex-
citation of the vortex with the help of numerical computations. We have
computed evolution of axially symmetric fields with appropriately chosen
initial data. The approximation used in [1] was simple, and it led to the
prediction of oscillations of the Higgs field and of the azimuthal component
of the gauge potential with the frequency equal to the doubled frequency
of the oscillations of the gauge potential component parallel to the vortex
axis. The solutions we have obtained are more complicated. Apart from the
predicted mode, they contain also oscillations corresponding to other vortex
modes.

Our paper is organized as follows. In Sec. 2 we introduce an axially
symmetric ansatz and transform the equations to the form which is more
convenient in numerical computations. Sec. 3 has rather technical charac-
ter: contains description of our computations. The results are presented
and discussed in Sec. 4. Finally Sec. 5 involves some general remarks and
conclusions summarizing our paper.

2. Abelian Higgs Model

The Abelian Higgs model is described by the following Euler—Lagrange
equations
2m2)
A

O F" = iq(D*0"P — 9" P*) — 2¢°A” | D |* . (2)

Our notation follows the paper [1]. Here @ is a complex scalar field, 4,
is U(1) gauge field, m, ¢, and X are positive constants. The signature of the
metric tensor is (4, —, —, —) .

We restrict our considerations to the axially symmetric field configura-
tions described by the following Ansatz

b = M@é"ﬁ’ (t,r) , (3)

A
(0, +iqA,) (0" +iqA”)® + §<I>(| d |2 - =0, (1)

Ao :0, A3:A(t,1"), (4)
A, = ‘/jf” sinf (1 — x (t,7)) , (5)
4y = V2 cos (1 — x (t,7)) , (6)
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where 7 = /2m2 ((z1)2 + (22)2), @ = arctan (z?/2'), t = v2ma®. The
fields have to be non-singular on the z* axis. This requirement implies

d
F(t,O)):O, X(t,O):l, %F(Tzoat)zo (7)
The axially symmetric ansatz (3)—(6) applied to the equations (1), (2) sim-
plifies them to the form

o lp (Lo, @ p2\p, g ps 8
= +r rQX +m2 +2( ), (8)

. 1
xzx"—;xl—ka?F?x, (9)

; 1
A=A"+-A —K*F?A, (10)

T

where dot denotes the time derivative and prime the derivative with respect
to the variable r. The dimensionless parameter k = /2¢?/\ is equal to the
ratio of the vector particle mass and the mass of the Higgs particle. In this
paper we restrict ourselves to small values of  (0.05, 0.1, 0.2). We also as-
sume that ¢/m = 1. This does not limit the generality of our considerations
since it can be achieved by rescaling the field A.

Let us note that all field configurations of the form (3)-(6) with finite
energy per unit of length in the 2 direction have unit topological charge.
If in addition we assume that the functions f and x are time independent
solutions of the equations (8), (9) with A3 = A = 0 then we obtain the well
known Nielsen—Olesen vortex. This static solution was examined in many
papers. However its exact analytical form is not known. Only approximate
methods (both analytical and numerical) have been worked out and can be
adopted as the starting point to the precise numerical calculations. These
are necessary as the time dependent analysis is very subtle.

The equations (8)—(10) are singular in » = 0. Therefore we apply to
them the following transformation which removes the singularity

2

T (11)
fle) = T80 (12)
ey = XL (13)

a(t,z) = A(t,r). (14)
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Thus we obtain the equations of the form

P () e (o ari)

(
—(2h+r2h2+a2)f+%f (1—r2f2) , (15)

7 (2+T)T 2 " 2 2471 1242 9
"= < 1+r)2) " +<(1+7’)3+(1+r)2>h w17 (L4 7°h), (16)

(
a 2+7)r ? " 2+ 2 447 /
‘7 <ﬁ) @t (221 11";3 - (1 —:—7’)2> a — k*r?fa. (17)

Here prime denotes the derivative with respect to z, r= (aH—\/ac (4+$)) /2.

Some disadvantage of the transformation (11) is that the neighbourhood of
the point r = 0 is mapped into a very small z interval (dz/dr |,—o= 0).
Therefore the detailed solution in this region has to be examined separately.

3. The method

In this paper we investigate the oscillations of the vortex caused by the
excitations of the field A. The first step is to have the precise solutions for
the functions f and x in the static vortex configuration. In [1]| these fields
in the central part of the vortex were approximated by polynomials. These
polynomials were continuously matched to the appropriate asymptotics de-
scribing external part of the vortex. There also exist more precise numerical
approximations of the static vortex [3] but their accuracy is not sufficient
too. Therefore we have started with one of these approximate methods and
then in order to improve the solutions we have applied the average method,
that is we have examined the time evolution of the vortex alone averaging
the functions f and x around their equilibrium state.

The next step is to excite the vortex. We have done this by adding a
non-zero field A. Following [1] we have used a configuration which gives har-
monic oscillations of this field while the vortex fields are frozen. Substituting
A(t,r) = a(r) coswt into (10) one obtains

i — K’F?a +w?a=0. (18)

>
+
S =

As was noticed in [1] this equation has the form of the one-dimensional
Schrédinger equation and possesses at least one bound state. Rewriting it
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in the variable x we obtain

@+r)r\* da 241 dtr \di 0. o
<(1+r)2> d$2+<2(1+7')3 (1+7')2>dx (5'r°f* —w?)a=0.

(19)
On the uniform grid with the spacing A Eq. (19) leads to the following finite
difference equations

(41 — ag) + w?ag =0, (20)

2
2 +r)? 4+ 1
: ( El ir;?’ . (1:r)2> At =)

— (K22 — W) a =0, k=1,2,... (21)

D]

For small values of the parameter x the frequency w is approximately equal
to k£ [1]. Therefore we can solve the above difference equations (20), (21)
where w is replaced by . We choose arbitrary Gg and successively determine
ay, @z,.... The graphs of the function A(r) = a(r?/(1 + r)) obtained from
formulae (20), (21) with A = 0.01 and the approximation of the function A
obtained in the paper [1] for k = 0.1 are plotted in Fig. 1.
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Fig. 1. The initial state of the field A — numerical and polynomial approximations.
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Now we are going to investigate the evolution of the excited vortex using
numerical computations. We solve the following finite difference equations

3\? /(2 2
fivig = 2fjp — ficip + <Z> <%) (fiks1 = 2fjk + fin-1)

247 P
+< ) A( E + ;3+(1+7’)2) (fj,k+1—fj,k) (22)

3\? , /1 [y 2,2 2
+ 1 A 5—2hj,k_§7" fj,k_'rhj,k_aj,k fj,ka

3\ (241
hjvie = 2hje = hj-1k + <Z) <m) (Aje+1 = 2hjk + hjjp—1)

2 2
O RICCEE S T

3 2
- (3) a0+ e, (23)

w

3\? ((247)r\
Ajt1k = 205k = Gj—1p + <Z) <7((1 n T))z ) (@41 = 205k + ajp—1)

2 2
- (%) 4 (223 i 7';3 B (14:7«)2> (ki1 = 2]

3\ 2
- <Z) A%g2r? a;, kf]k, (24)

where A is the space between the grid points in the z-direction; the space
between time slices is 3A/4. As the initial values for the fields f and h
at t = 0 we take found earlier functions corresponding to the static vortex
solution. The initial values of the field a are computed from the formulae
(20), (21) with @y = 0.1. We also assume that initially the derivatives with
respect to time of all fields are equal to zero. In order to remove disturbances
of the solution caused by the right boundary of our grid we have performed
computations on the larger area and then we removed the part of the grid
which could be disturbed.
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4. Numerical results

We have computed the evolution of the vortex for 0 < ¢ < 600 and k=
0.05,0.1,0.2 taking A=0.01. The field A oscillates with the frequency w= k.
Figs. 2-7 present the evolution of the functions §f,(t)=f (¢, z) —f(0,2),
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Fig.2. The difference ¢f,(t) of the dynamical and static values of the field f for
x =25.0and k =0.1.
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Fig.3. The difference ¢f,(t) of the dynamical and static values of the field f for
x =160.0 and x = 0.1.
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Ohy(t) = h(t,z) — h(0,x) (i.e. the differences of the time-dependent and
static values of the fields f and h respectively) at the points 2z = 5 and
x = 160. We have chosen these values of the variable z to compare the
oscillations near the vortex core with those far from it. The authors of the
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Fig.4. The difference dh,(t) of the dynamical and static values of the field h for
z =25.0and k =0.1.
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Fig.5. The difference dh,(t) of the dynamical and static values of the field h for
z = 160.0 and £ = 0.1. Note the delay time ~ x.



The Vortex Oscillations in Abelian Higgs Model 609

6e-07 T T T T T T T T T

4e-07 |- g

2e-07 - B

-2e-07 - 4

-2e-07 - -

-6e-07 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
(time)

Fig.6. The difference dh,(t) of the dynamical and static values of the field h for
z = 160.0 and xk = 0.05. Note the delay time ~ z.
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Fig. 7. The difference dh,(t) of the dynamical and static values of the field h for
z = 160.0 and xk = 0.2. Note the delay time =~ z.

paper [1] predict oscillations of the field f and x with the frequency w = 2k
but they have only analysed the modes forced by the oscillations of the field
A. The numerical results we have obtained are more complicated and in-
volve also other vortex modes. These modes will be presented below in more
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detail. It is also interesting that while the oscillations of the Higgs field f
start at once for all values of x the oscillations of the field h are delayed for
points far from the vortex centre. They begin at the vortex core and then
propagate outside. This fact is also illustrated in Figs. 810 which show the
plots of the functions dh, for fixed time values ¢ = 100,200, 300. One can
see that in the region r > t the function dh, is almost equal to zero. It starts
to oscillate only when the disturbance of the field h arrives from the vortex
centre.

-0.05 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
(distance from the vortex core)

Fig. 8. The snapshot of the difference dh, for t = 100.0.

Let us now present the frequencies of the vortex oscillations in the neigh-
bourhood of its equilibrium state. We have computed the Fourier transfor-
mations for the functions df; and dh, for three different values of x men-
tioned above eg. k = 0.05,0.1,0.2. These calculations have been performed
for two distances from the vortex core. As before we have chosen points
x = 5 and 160. We have presented our results for the Fourier transforma-
tions in Figs. 11-16. The most important conclusions can be summarized
as follows. The main frequency of the vortex oscillation is equal to 2. The
appropriate peak can be easily observed in each of the figures Figs. 11-16.
These oscillations are explained in detail in [1] on the basis of the approxi-
mate analytic calculations. They are forced by the corresponding oscillations
of the field A with frequency k. But the other vortex modes are also excited.
Let us stress that their frequencies do not depend on the parameter x. The
approximate numerical values of these frequencies are correspondingly equal
to the mass of the Higgs particle (1.0 in our case) and 90% of this mass
(that is 0.9). Let us note that these values seem to be independent from
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Fig.9. The snapshot of the diffarence dh, for t = 200.0.
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Fig. 10. The snapshot of the difference dh, for ¢ = 300.0.
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the field a and are two points in the whole spectrum of frequencies of the
vortex oscillations computed in [4]. However it is interesting that the lower
frequency was not detected for the field f far from the vortex core (Fig. 12).
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Fig.11. The Fourier transformations modules of the difference ¢ f,(t) for z = 5.0
and x = 0.05,0.1,0.2.
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Fig.12. The Fourier transformations modules of the difference § f,(¢) for z = 160.0
and x = 0.05,0.1,0.2.
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Fig.13. The Fourier transformations modules
and k = 0.1,0.2.
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Fig. 14. The Fourier transformations modules of the difference §h, (t) for z = 160.0

and k = 0.1,0.2.
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Fig.15. The Fourier transformation modules of the difference dh,(t) for z = 5.0
and £ = 0.05.
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Fig. 16. The Fourier transformation modules of the difference dh,(t) for z = 160.0
and x = 0.05.

5. Ending remarks

The excitation of the vortex we have investigated was obtained by choos-
ing some particular initial data for the component A, of the gauge field
parallel to the vortex axis. In the static vortex solution this component of
the gauge field is equal to zero; in our case it oscillates with the frequency
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approximately equal to x: the ratio of the vector boson and Higgs masses.
The other fields also oscillate. Performing the Fourier transformation we
found that the frequencies of these oscillations are grouped near 2k, 0.9, 1.0.
The first value was predicted in [1] and is caused by the term proportional
to A% in (8). The oscillations with the second frequency appear mainly on
the vortex core and are probably concerned with the bound state of the
static vortex solution [4]. The third frequency simply equals to the mass of
the Higgs particle. However it should be noted that our computations in-
clude about ten periods of the field A oscillations and therefore the question
concerning the long time behaviour of the system is still open. The field
configuration we have considered was constructed in such a way that the
field A starts its oscillations at once in the whole space. These oscillations
excite the Higgs field for all values of the spatial coordinate. However the
motion of the azimuthal component of the gauge field looks differently. It
begins at the vortex centre and then propagates outside.
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