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THE VORTEX OSCILLATIONS INABELIAN HIGGS MODELJ. KarkowskiInstitute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polandand Z. �wierzy«skiInstitute of Physis, Pedagogial UniversityPodhor¡»yh 2, 30-084 Kraków, Poland(Reeived September 7, 1999)The exitations of the vortex in Abelian Higgs model with small ratioof vetor and Higgs partile masses are onsidered. Three main modesenountered in numerial omputations are desribed in detail. They arealso ompared to analyti results obtained reently by Arod¹ and Hadaszin Phys. Rev. D54, 4004 (1996).PACS numbers: 03.65.Sq 1. IntrodutionThe vortex type solutions of nonlinear �eld equations are found to beimportant in many areas of physis. They are useful in onsiderations on-erning di�erent phenomena in �eld theory, osmology and ondensed mat-ter physis [2℄. However both stati and dynami vortex on�gurations areknown only approximately sine they are usually desribed by ompliatednon-linear di�erential equations. Therefore the numerial methods must beapplied to examine time-dependent vortex solutions.The authors of paper [1℄ have investigated an exitation of the vortex inthe Abelian Higgs model with the mass of the Higgs �eld muh bigger thanthe mass of the vetor partile. They onsidered time dependent, axiallysymmetri �elds with time and radial omponents of the gauge potentialequal to zero. In the entral part of the vortex the �elds were approxi-mated by polynomials. These polynomials were ontinuously mathed tothe asymptotis desribing outer part of the vortex. The authors beganwith �nding an approximation to the stati vortex solution. Next they as-sumed that the evolution of the Higgs �eld and the azimuthal omponent(601)



602 J. Karkowski, Z. �wierzy«skiof the gauge potential is frozen and onsidered harmoni osillations of thegauge potential omponent parallel to the vortex axis. Finally they foundorretions to the Higgs �eld and the azimuthal omponent of the gaugepotential.In the present paper we would like to investigate desribed above ex-itation of the vortex with the help of numerial omputations. We haveomputed evolution of axially symmetri �elds with appropriately hoseninitial data. The approximation used in [1℄ was simple, and it led to thepredition of osillations of the Higgs �eld and of the azimuthal omponentof the gauge potential with the frequeny equal to the doubled frequenyof the osillations of the gauge potential omponent parallel to the vortexaxis. The solutions we have obtained are more ompliated. Apart from thepredited mode, they ontain also osillations orresponding to other vortexmodes.Our paper is organized as follows. In Se. 2 we introdue an axiallysymmetri ansatz and transform the equations to the form whih is moreonvenient in numerial omputations. Se. 3 has rather tehnial hara-ter: ontains desription of our omputations. The results are presentedand disussed in Se. 4. Finally Se. 5 involves some general remarks andonlusions summarizing our paper.2. Abelian Higgs ModelThe Abelian Higgs model is desribed by the following Euler�Lagrangeequations (�� + iqA�)(�� + iqA�)� + �2�(j � j2 �2m2� ) = 0; (1)��F �� = iq (������ �����)� 2q2A� j � j2 : (2)Our notation follows the paper [1℄. Here � is a omplex salar �eld, A�is U(1) gauge �eld, m, q, and � are positive onstants. The signature of themetri tensor is (+;�;�;�) .We restrit our onsiderations to the axially symmetri �eld on�gura-tions desribed by the following Ansatz� = r2m2� ei�F (t; r) ; (3)A0 = 0 ; A3 = A (t; r) ; (4)A1 = p2mqr sin � (1� � (t; r)) ; (5)A2 = �p2mqr os � (1� � (t; r)) ; (6)



The Vortex Osillations in Abelian Higgs Model 603where r = p2m2 ((x1)2 + (x2)2), � = artan �x2=x1�, t = p2mx0. The�elds have to be non-singular on the x3 axis. This requirement impliesF (t; 0)) = 0 ; � (t; 0) = 1 ; ddrF (r = 0; t) = 0 : (7)The axially symmetri ansatz (3)�(6) applied to the equations (1), (2) sim-pli�es them to the form�F = F 00 + 1rF 0 �� 1r2�2 + q2m2A2�F + 12 �F � F 3� ; (8)�� = �00 � 1r�0 � �2F 2� ; (9)�A = A00 + 1rA0 � �2F 2A ; (10)where dot denotes the time derivative and prime the derivative with respetto the variable r. The dimensionless parameter � =p2q2=� is equal to theratio of the vetor partile mass and the mass of the Higgs partile. In thispaper we restrit ourselves to small values of � (0:05; 0:1; 0:2). We also as-sume that q=m = 1. This does not limit the generality of our onsiderationssine it an be ahieved by resaling the �eld A.Let us note that all �eld on�gurations of the form (3)�(6) with �niteenergy per unit of length in the x3 diretion have unit topologial harge.If in addition we assume that the funtions f and � are time independentsolutions of the equations (8), (9) with A3 � A � 0 then we obtain the wellknown Nielsen�Olesen vortex. This stati solution was examined in manypapers. However its exat analytial form is not known. Only approximatemethods (both analytial and numerial) have been worked out and an beadopted as the starting point to the preise numerial alulations. Theseare neessary as the time dependent analysis is very subtle.The equations (8)�(10) are singular in r = 0. Therefore we apply tothem the following transformation whih removes the singularityx = r21 + r ; (11)f(t; x) = F (t; r)r ; (12)h(t; x) = �(t; r)� 1r2 ; (13)a(t; x) = A(t; r) : (14)



604 J. Karkowski, Z. �wierzy«skiThus we obtain the equations of the form�f = �(2 + r) r(1 + r)2 �2 f 00 +� 2(1 + r)3 + 2 + r(1 + r)2� f 0� �2h+ r2h2 + a2� f + 12f �1� r2f2� ; (15)�h = �(2+r) r(1+r)2 �2 h00+� 2(1 + r)3 + 2 + r(1 + r)2� h0��2f2 �1 + r2h� ; (16)�a = �(2 + r) r(1 + r)2 �2 a00 + 2(2 + r)2(1 + r)3 � 4 + r(1 + r)2! a0 � �2r2f2a : (17)Here prime denotes the derivative with respet to x, r=�x+px (4+x)� =2.Some disadvantage of the transformation (11) is that the neighbourhood ofthe point r = 0 is mapped into a very small x interval (dx=dr jr=0= 0).Therefore the detailed solution in this region has to be examined separately.3. The methodIn this paper we investigate the osillations of the vortex aused by theexitations of the �eld A. The �rst step is to have the preise solutions forthe funtions f and � in the stati vortex on�guration. In [1℄ these �eldsin the entral part of the vortex were approximated by polynomials. Thesepolynomials were ontinuously mathed to the appropriate asymptotis de-sribing external part of the vortex. There also exist more preise numerialapproximations of the stati vortex [3℄ but their auray is not su�ienttoo. Therefore we have started with one of these approximate methods andthen in order to improve the solutions we have applied the average method,that is we have examined the time evolution of the vortex alone averagingthe funtions f and � around their equilibrium state.The next step is to exite the vortex. We have done this by adding anon-zero �eld A. Following [1℄ we have used a on�guration whih gives har-moni osillations of this �eld while the vortex �elds are frozen. SubstitutingA(t; r) = â(r) os!t into (10) one obtainsâ00 + 1r â0 � �2F 2â+ !2â = 0 : (18)As was notied in [1℄ this equation has the form of the one-dimensionalShrödinger equation and possesses at least one bound state. Rewriting it



The Vortex Osillations in Abelian Higgs Model 605in the variable x we obtain�(2 + r) r(1 + r)2 �2 d2âdx2 + 2(2 + r)2(1 + r)3 � 4 + r(1 + r)2! dâdx � ��2r2f2 � !2� â = 0 :(19)On the uniform grid with the spaing � Eq. (19) leads to the following �nitedi�erene equations 4�(â1 � â0) + !2â0 = 0 ; (20)�(2 + r) r(1 + r)2 �2� 1�2� (âk+1 � 2âk + âk�1)+ 2(2 + r)2(1 + r)3 � 4 + r(1 + r)2! 1�(âk+1 � âk)� ��2r2f2 � !2� âk = 0; k = 1; 2 ; : : : (21)For small values of the parameter � the frequeny ! is approximately equalto � [1℄. Therefore we an solve the above di�erene equations (20), (21)where ! is replaed by �: We hoose arbitrary â0 and suessively determineâ1, â2; : : :. The graphs of the funtion A(r) = a(r2=(1 + r)) obtained fromformulae (20), (21) with � = 0:01 and the approximation of the funtion Aobtained in the paper [1℄ for � = 0:1 are plotted in Fig. 1.
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Fig. 1. The initial state of the �eld A � numerial and polynomial approximations.



606 J. Karkowski, Z. �wierzy«skiNow we are going to investigate the evolution of the exited vortex usingnumerial omputations. We solve the following �nite di�erene equationsfj+1;k = 2fj;k � fj�1;k +�34�2�(2 + r)r(1 + r)2�2 (fj;k+1 � 2fj;k + fj;k�1)+�34�2� 2(2 + r)2(1 + r)3 + r(1 + r)2! (fj;k+1 � fj;k) (22)+�34�2�2�12 � 2hj;k � 12r2f2j;k � r2h2j;k � a2j;k� fj;k ;hj+1;k = 2hj;k � hj�1;k +�34�2�(2 + r) r(1 + r)2 �2 (hj;k+1 � 2hj;k + hj;k�1)+�34�2� 2(2 + r)2(1 + r)3 + r(1 + r)2! (hj;k+1 � hj;k)��34�2�2�2(1 + r2hj;k)f2j;k ; (23)aj+1;k = 2aj;k � aj�1;k +�34�2�(2 + r) r(1 + r)2 �2 (aj;k+1 � 2aj;k + aj;k�1)+�34�2� 2(2 + r)2(1 + r)3 � 4 + r(1 + r)2! (aj;k+1 � aj;k)��34�2�2�2r2aj;kf2j;k ; (24)where � is the spae between the grid points in the x-diretion; the spaebetween time slies is 3�=4. As the initial values for the �elds f and hat t = 0 we take found earlier funtions orresponding to the stati vortexsolution. The initial values of the �eld a are omputed from the formulae(20), (21) with â0 = 0:1. We also assume that initially the derivatives withrespet to time of all �elds are equal to zero. In order to remove disturbanesof the solution aused by the right boundary of our grid we have performedomputations on the larger area and then we removed the part of the gridwhih ould be disturbed.



The Vortex Osillations in Abelian Higgs Model 6074. Numerial resultsWe have omputed the evolution of the vortex for 0 � t � 600 and �=0:05; 0:1; 0:2 taking �=0:01. The �eld A osillates with the frequeny !��.Figs. 2�7 present the evolution of the funtions Æfx(t)=f(t; x)!�f(0; x);
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Fig. 2. The di�erene Æfx(t) of the dynamial and stati values of the �eld f forx = 5:0 and � = 0:1.
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Fig. 3. The di�erene Æfx(t) of the dynamial and stati values of the �eld f forx = 160:0 and � = 0:1.



608 J. Karkowski, Z. �wierzy«skiÆhx(t) = h(t; x) � h(0; x) (i.e. the di�erenes of the time-dependent andstati values of the �elds f and h respetively) at the points x = 5 andx = 160. We have hosen these values of the variable x to ompare theosillations near the vortex ore with those far from it. The authors of the
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Fig. 4. The di�erene Æhx(t) of the dynamial and stati values of the �eld h forx = 5:0 and � = 0:1.
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Fig. 5. The di�erene Æhx(t) of the dynamial and stati values of the �eld h forx = 160:0 and � = 0:1. Note the delay time � x.
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Fig. 6. The di�erene Æhx(t) of the dynamial and stati values of the �eld h forx = 160:0 and � = 0:05. Note the delay time � x.
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Fig. 7. The di�erene Æhx(t) of the dynamial and stati values of the �eld h forx = 160:0 and � = 0:2. Note the delay time � x.paper [1℄ predit osillations of the �eld f and � with the frequeny ! = 2�but they have only analysed the modes fored by the osillations of the �eldA. The numerial results we have obtained are more ompliated and in-volve also other vortex modes. These modes will be presented below in more



610 J. Karkowski, Z. �wierzy«skidetail. It is also interesting that while the osillations of the Higgs �eld fstart at one for all values of x the osillations of the �eld h are delayed forpoints far from the vortex entre. They begin at the vortex ore and thenpropagate outside. This fat is also illustrated in Figs. 8�10 whih show theplots of the funtions Æhx for �xed time values t = 100; 200; 300. One ansee that in the region r > t the funtion Æhx is almost equal to zero. It startsto osillate only when the disturbane of the �eld h arrives from the vortexentre.
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Fig. 8. The snapshot of the di�erene Æhx for t = 100:0.Let us now present the frequenies of the vortex osillations in the neigh-bourhood of its equilibrium state. We have omputed the Fourier transfor-mations for the funtions Æfx and Æhx for three di�erent values of � men-tioned above eg. � = 0:05; 0:1; 0:2. These alulations have been performedfor two distanes from the vortex ore. As before we have hosen pointsx = 5 and 160. We have presented our results for the Fourier transforma-tions in Figs. 11�16. The most important onlusions an be summarizedas follows. The main frequeny of the vortex osillation is equal to 2�. Theappropriate peak an be easily observed in eah of the �gures Figs. 11�16.These osillations are explained in detail in [1℄ on the basis of the approxi-mate analyti alulations. They are fored by the orresponding osillationsof the �eld A with frequeny �. But the other vortex modes are also exited.Let us stress that their frequenies do not depend on the parameter �. Theapproximate numerial values of these frequenies are orrespondingly equalto the mass of the Higgs partile (1:0 in our ase) and 90% of this mass(that is 0:9). Let us note that these values seem to be independent from
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Fig. 9. The snapshot of the di�erene Æhx for t = 200:0.
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Fig. 10. The snapshot of the di�erene Æhx for t = 300:0.



612 J. Karkowski, Z. �wierzy«skithe �eld a and are two points in the whole spetrum of frequenies of thevortex osillations omputed in [4℄. However it is interesting that the lowerfrequeny was not deteted for the �eld f far from the vortex ore (Fig. 12).
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Fig. 11. The Fourier transformations modules of the di�erene Æfx(t) for x = 5:0and � = 0:05; 0:1; 0:2.
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Fig. 12. The Fourier transformations modules of the di�erene Æfx(t) for x = 160:0and � = 0:05; 0:1; 0:2.
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Fig. 13. The Fourier transformations modules of the di�erene Æhx(t) for x = 5:0and � = 0:1; 0:2.
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Fig. 14. The Fourier transformations modules of the di�erene Æhx(t) for x = 160:0and � = 0:1; 0:2.
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Fig. 15. The Fourier transformation modules of the di�erene Æhx(t) for x = 5:0and � = 0:05.
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Fig. 16. The Fourier transformation modules of the di�erene Æhx(t) for x = 160:0and � = 0:05. 5. Ending remarksThe exitation of the vortex we have investigated was obtained by hoos-ing some partiular initial data for the omponent Az of the gauge �eldparallel to the vortex axis. In the stati vortex solution this omponent ofthe gauge �eld is equal to zero; in our ase it osillates with the frequeny



The Vortex Osillations in Abelian Higgs Model 615approximately equal to �: the ratio of the vetor boson and Higgs masses.The other �elds also osillate. Performing the Fourier transformation wefound that the frequenies of these osillations are grouped near 2�; 0:9; 1:0.The �rst value was predited in [1℄ and is aused by the term proportionalto A2 in (8). The osillations with the seond frequeny appear mainly onthe vortex ore and are probably onerned with the bound state of thestati vortex solution [4℄. The third frequeny simply equals to the mass ofthe Higgs partile. However it should be noted that our omputations in-lude about ten periods of the �eld A osillations and therefore the questiononerning the long time behaviour of the system is still open. The �eldon�guration we have onsidered was onstruted in suh a way that the�eld A starts its osillations at one in the whole spae. These osillationsexite the Higgs �eld for all values of the spatial oordinate. However themotion of the azimuthal omponent of the gauge �eld looks di�erently. Itbegins at the vortex entre and then propagates outside.This work was supported in part by KBN grant No. 2 P03B 095 13.REFERENCES[1℄ H. Arod¹, L. Hadasz, Phys. Rev. D54, 4004 (1996).[2℄ See e.g. J.S. Ball, F. Zahariasen, Phys. Rep. 209, 73 (1991); C. Ol-son, M.G. Olson, K. Williams, Phys. Rev. D45, 4307 (1992); W.B. Kib-ble, J. Phys. A9, 1387 (1976); A.L. Vilenkin, Phys. Rep. 121, 263 (1985);R.P. Heubener,Magneti Flux Strutures in Superondutors, Springer-Verlag,Berlin�Heidelberg�New York, 1979; R.J. Donally, Quantised Vorties in Hell,Cambridge University Press, Cambridge, 1991.[3℄ J. Karkowski, Z. �wierzy«ski, Ata Phys. Pol. 30, 73 (1999).[4℄ M. Goodband, M. Hindmarsh, Phys. Rev. D52, 4621 (1995).


