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THE VORTEX OSCILLATIONS INABELIAN HIGGS MODELJ. KarkowskiInstitute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polandand Z. �wier
zy«skiInstitute of Physi
s, Pedagogi
al UniversityPod
hor¡»y
h 2, 30-084 Kraków, Poland(Re
eived September 7, 1999)The ex
itations of the vortex in Abelian Higgs model with small ratioof ve
tor and Higgs parti
le masses are 
onsidered. Three main modesen
ountered in numeri
al 
omputations are des
ribed in detail. They arealso 
ompared to analyti
 results obtained re
ently by Arod¹ and Hadaszin Phys. Rev. D54, 4004 (1996).PACS numbers: 03.65.Sq 1. Introdu
tionThe vortex type solutions of nonlinear �eld equations are found to beimportant in many areas of physi
s. They are useful in 
onsiderations 
on-
erning di�erent phenomena in �eld theory, 
osmology and 
ondensed mat-ter physi
s [2℄. However both stati
 and dynami
 vortex 
on�gurations areknown only approximately sin
e they are usually des
ribed by 
ompli
atednon-linear di�erential equations. Therefore the numeri
al methods must beapplied to examine time-dependent vortex solutions.The authors of paper [1℄ have investigated an ex
itation of the vortex inthe Abelian Higgs model with the mass of the Higgs �eld mu
h bigger thanthe mass of the ve
tor parti
le. They 
onsidered time dependent, axiallysymmetri
 �elds with time and radial 
omponents of the gauge potentialequal to zero. In the 
entral part of the vortex the �elds were approxi-mated by polynomials. These polynomials were 
ontinuously mat
hed tothe asymptoti
s des
ribing outer part of the vortex. The authors beganwith �nding an approximation to the stati
 vortex solution. Next they as-sumed that the evolution of the Higgs �eld and the azimuthal 
omponent(601)



602 J. Karkowski, Z. �wier
zy«skiof the gauge potential is frozen and 
onsidered harmoni
 os
illations of thegauge potential 
omponent parallel to the vortex axis. Finally they found
orre
tions to the Higgs �eld and the azimuthal 
omponent of the gaugepotential.In the present paper we would like to investigate des
ribed above ex-
itation of the vortex with the help of numeri
al 
omputations. We have
omputed evolution of axially symmetri
 �elds with appropriately 
hoseninitial data. The approximation used in [1℄ was simple, and it led to thepredi
tion of os
illations of the Higgs �eld and of the azimuthal 
omponentof the gauge potential with the frequen
y equal to the doubled frequen
yof the os
illations of the gauge potential 
omponent parallel to the vortexaxis. The solutions we have obtained are more 
ompli
ated. Apart from thepredi
ted mode, they 
ontain also os
illations 
orresponding to other vortexmodes.Our paper is organized as follows. In Se
. 2 we introdu
e an axiallysymmetri
 ansatz and transform the equations to the form whi
h is more
onvenient in numeri
al 
omputations. Se
. 3 has rather te
hni
al 
hara
-ter: 
ontains des
ription of our 
omputations. The results are presentedand dis
ussed in Se
. 4. Finally Se
. 5 involves some general remarks and
on
lusions summarizing our paper.2. Abelian Higgs ModelThe Abelian Higgs model is des
ribed by the following Euler�Lagrangeequations (�� + iqA�)(�� + iqA�)� + �2�(j � j2 �2m2� ) = 0; (1)��F �� = iq (������ �����)� 2q2A� j � j2 : (2)Our notation follows the paper [1℄. Here � is a 
omplex s
alar �eld, A�is U(1) gauge �eld, m, q, and � are positive 
onstants. The signature of themetri
 tensor is (+;�;�;�) .We restri
t our 
onsiderations to the axially symmetri
 �eld 
on�gura-tions des
ribed by the following Ansatz� = r2m2� ei�F (t; r) ; (3)A0 = 0 ; A3 = A (t; r) ; (4)A1 = p2mqr sin � (1� � (t; r)) ; (5)A2 = �p2mqr 
os � (1� � (t; r)) ; (6)



The Vortex Os
illations in Abelian Higgs Model 603where r = p2m2 ((x1)2 + (x2)2), � = ar
tan �x2=x1�, t = p2mx0. The�elds have to be non-singular on the x3 axis. This requirement impliesF (t; 0)) = 0 ; � (t; 0) = 1 ; ddrF (r = 0; t) = 0 : (7)The axially symmetri
 ansatz (3)�(6) applied to the equations (1), (2) sim-pli�es them to the form�F = F 00 + 1rF 0 �� 1r2�2 + q2m2A2�F + 12 �F � F 3� ; (8)�� = �00 � 1r�0 � �2F 2� ; (9)�A = A00 + 1rA0 � �2F 2A ; (10)where dot denotes the time derivative and prime the derivative with respe
tto the variable r. The dimensionless parameter � =p2q2=� is equal to theratio of the ve
tor parti
le mass and the mass of the Higgs parti
le. In thispaper we restri
t ourselves to small values of � (0:05; 0:1; 0:2). We also as-sume that q=m = 1. This does not limit the generality of our 
onsiderationssin
e it 
an be a
hieved by res
aling the �eld A.Let us note that all �eld 
on�gurations of the form (3)�(6) with �niteenergy per unit of length in the x3 dire
tion have unit topologi
al 
harge.If in addition we assume that the fun
tions f and � are time independentsolutions of the equations (8), (9) with A3 � A � 0 then we obtain the wellknown Nielsen�Olesen vortex. This stati
 solution was examined in manypapers. However its exa
t analyti
al form is not known. Only approximatemethods (both analyti
al and numeri
al) have been worked out and 
an beadopted as the starting point to the pre
ise numeri
al 
al
ulations. Theseare ne
essary as the time dependent analysis is very subtle.The equations (8)�(10) are singular in r = 0. Therefore we apply tothem the following transformation whi
h removes the singularityx = r21 + r ; (11)f(t; x) = F (t; r)r ; (12)h(t; x) = �(t; r)� 1r2 ; (13)a(t; x) = A(t; r) : (14)
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zy«skiThus we obtain the equations of the form�f = �(2 + r) r(1 + r)2 �2 f 00 +� 2(1 + r)3 + 2 + r(1 + r)2� f 0� �2h+ r2h2 + a2� f + 12f �1� r2f2� ; (15)�h = �(2+r) r(1+r)2 �2 h00+� 2(1 + r)3 + 2 + r(1 + r)2� h0��2f2 �1 + r2h� ; (16)�a = �(2 + r) r(1 + r)2 �2 a00 + 2(2 + r)2(1 + r)3 � 4 + r(1 + r)2! a0 � �2r2f2a : (17)Here prime denotes the derivative with respe
t to x, r=�x+px (4+x)� =2.Some disadvantage of the transformation (11) is that the neighbourhood ofthe point r = 0 is mapped into a very small x interval (dx=dr jr=0= 0).Therefore the detailed solution in this region has to be examined separately.3. The methodIn this paper we investigate the os
illations of the vortex 
aused by theex
itations of the �eld A. The �rst step is to have the pre
ise solutions forthe fun
tions f and � in the stati
 vortex 
on�guration. In [1℄ these �eldsin the 
entral part of the vortex were approximated by polynomials. Thesepolynomials were 
ontinuously mat
hed to the appropriate asymptoti
s de-s
ribing external part of the vortex. There also exist more pre
ise numeri
alapproximations of the stati
 vortex [3℄ but their a

ura
y is not su�
ienttoo. Therefore we have started with one of these approximate methods andthen in order to improve the solutions we have applied the average method,that is we have examined the time evolution of the vortex alone averagingthe fun
tions f and � around their equilibrium state.The next step is to ex
ite the vortex. We have done this by adding anon-zero �eld A. Following [1℄ we have used a 
on�guration whi
h gives har-moni
 os
illations of this �eld while the vortex �elds are frozen. SubstitutingA(t; r) = â(r) 
os!t into (10) one obtainsâ00 + 1r â0 � �2F 2â+ !2â = 0 : (18)As was noti
ed in [1℄ this equation has the form of the one-dimensionalS
hrödinger equation and possesses at least one bound state. Rewriting it



The Vortex Os
illations in Abelian Higgs Model 605in the variable x we obtain�(2 + r) r(1 + r)2 �2 d2âdx2 + 2(2 + r)2(1 + r)3 � 4 + r(1 + r)2! dâdx � ��2r2f2 � !2� â = 0 :(19)On the uniform grid with the spa
ing � Eq. (19) leads to the following �nitedi�eren
e equations 4�(â1 � â0) + !2â0 = 0 ; (20)�(2 + r) r(1 + r)2 �2� 1�2� (âk+1 � 2âk + âk�1)+ 2(2 + r)2(1 + r)3 � 4 + r(1 + r)2! 1�(âk+1 � âk)� ��2r2f2 � !2� âk = 0; k = 1; 2 ; : : : (21)For small values of the parameter � the frequen
y ! is approximately equalto � [1℄. Therefore we 
an solve the above di�eren
e equations (20), (21)where ! is repla
ed by �: We 
hoose arbitrary â0 and su

essively determineâ1, â2; : : :. The graphs of the fun
tion A(r) = a(r2=(1 + r)) obtained fromformulae (20), (21) with � = 0:01 and the approximation of the fun
tion Aobtained in the paper [1℄ for � = 0:1 are plotted in Fig. 1.
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Fig. 1. The initial state of the �eld A � numeri
al and polynomial approximations.
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zy«skiNow we are going to investigate the evolution of the ex
ited vortex usingnumeri
al 
omputations. We solve the following �nite di�eren
e equationsfj+1;k = 2fj;k � fj�1;k +�34�2�(2 + r)r(1 + r)2�2 (fj;k+1 � 2fj;k + fj;k�1)+�34�2� 2(2 + r)2(1 + r)3 + r(1 + r)2! (fj;k+1 � fj;k) (22)+�34�2�2�12 � 2hj;k � 12r2f2j;k � r2h2j;k � a2j;k� fj;k ;hj+1;k = 2hj;k � hj�1;k +�34�2�(2 + r) r(1 + r)2 �2 (hj;k+1 � 2hj;k + hj;k�1)+�34�2� 2(2 + r)2(1 + r)3 + r(1 + r)2! (hj;k+1 � hj;k)��34�2�2�2(1 + r2hj;k)f2j;k ; (23)aj+1;k = 2aj;k � aj�1;k +�34�2�(2 + r) r(1 + r)2 �2 (aj;k+1 � 2aj;k + aj;k�1)+�34�2� 2(2 + r)2(1 + r)3 � 4 + r(1 + r)2! (aj;k+1 � aj;k)��34�2�2�2r2aj;kf2j;k ; (24)where � is the spa
e between the grid points in the x-dire
tion; the spa
ebetween time sli
es is 3�=4. As the initial values for the �elds f and hat t = 0 we take found earlier fun
tions 
orresponding to the stati
 vortexsolution. The initial values of the �eld a are 
omputed from the formulae(20), (21) with â0 = 0:1. We also assume that initially the derivatives withrespe
t to time of all �elds are equal to zero. In order to remove disturban
esof the solution 
aused by the right boundary of our grid we have performed
omputations on the larger area and then we removed the part of the gridwhi
h 
ould be disturbed.
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illations in Abelian Higgs Model 6074. Numeri
al resultsWe have 
omputed the evolution of the vortex for 0 � t � 600 and �=0:05; 0:1; 0:2 taking �=0:01. The �eld A os
illates with the frequen
y !��.Figs. 2�7 present the evolution of the fun
tions Æfx(t)=f(t; x)!�f(0; x);
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Fig. 2. The di�eren
e Æfx(t) of the dynami
al and stati
 values of the �eld f forx = 5:0 and � = 0:1.
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Fig. 3. The di�eren
e Æfx(t) of the dynami
al and stati
 values of the �eld f forx = 160:0 and � = 0:1.
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zy«skiÆhx(t) = h(t; x) � h(0; x) (i.e. the di�eren
es of the time-dependent andstati
 values of the �elds f and h respe
tively) at the points x = 5 andx = 160. We have 
hosen these values of the variable x to 
ompare theos
illations near the vortex 
ore with those far from it. The authors of the
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Fig. 4. The di�eren
e Æhx(t) of the dynami
al and stati
 values of the �eld h forx = 5:0 and � = 0:1.
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Fig. 5. The di�eren
e Æhx(t) of the dynami
al and stati
 values of the �eld h forx = 160:0 and � = 0:1. Note the delay time � x.
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Fig. 6. The di�eren
e Æhx(t) of the dynami
al and stati
 values of the �eld h forx = 160:0 and � = 0:05. Note the delay time � x.
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Fig. 7. The di�eren
e Æhx(t) of the dynami
al and stati
 values of the �eld h forx = 160:0 and � = 0:2. Note the delay time � x.paper [1℄ predi
t os
illations of the �eld f and � with the frequen
y ! = 2�but they have only analysed the modes for
ed by the os
illations of the �eldA. The numeri
al results we have obtained are more 
ompli
ated and in-volve also other vortex modes. These modes will be presented below in more
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zy«skidetail. It is also interesting that while the os
illations of the Higgs �eld fstart at on
e for all values of x the os
illations of the �eld h are delayed forpoints far from the vortex 
entre. They begin at the vortex 
ore and thenpropagate outside. This fa
t is also illustrated in Figs. 8�10 whi
h show theplots of the fun
tions Æhx for �xed time values t = 100; 200; 300. One 
ansee that in the region r > t the fun
tion Æhx is almost equal to zero. It startsto os
illate only when the disturban
e of the �eld h arrives from the vortex
entre.
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Fig. 8. The snapshot of the di�eren
e Æhx for t = 100:0.Let us now present the frequen
ies of the vortex os
illations in the neigh-bourhood of its equilibrium state. We have 
omputed the Fourier transfor-mations for the fun
tions Æfx and Æhx for three di�erent values of � men-tioned above eg. � = 0:05; 0:1; 0:2. These 
al
ulations have been performedfor two distan
es from the vortex 
ore. As before we have 
hosen pointsx = 5 and 160. We have presented our results for the Fourier transforma-tions in Figs. 11�16. The most important 
on
lusions 
an be summarizedas follows. The main frequen
y of the vortex os
illation is equal to 2�. Theappropriate peak 
an be easily observed in ea
h of the �gures Figs. 11�16.These os
illations are explained in detail in [1℄ on the basis of the approxi-mate analyti
 
al
ulations. They are for
ed by the 
orresponding os
illationsof the �eld A with frequen
y �. But the other vortex modes are also ex
ited.Let us stress that their frequen
ies do not depend on the parameter �. Theapproximate numeri
al values of these frequen
ies are 
orrespondingly equalto the mass of the Higgs parti
le (1:0 in our 
ase) and 90% of this mass(that is 0:9). Let us note that these values seem to be independent from
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Fig. 9. The snapshot of the di�eren
e Æhx for t = 200:0.
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Fig. 10. The snapshot of the di�eren
e Æhx for t = 300:0.
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zy«skithe �eld a and are two points in the whole spe
trum of frequen
ies of thevortex os
illations 
omputed in [4℄. However it is interesting that the lowerfrequen
y was not dete
ted for the �eld f far from the vortex 
ore (Fig. 12).
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Fig. 11. The Fourier transformations modules of the di�eren
e Æfx(t) for x = 5:0and � = 0:05; 0:1; 0:2.
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Fig. 13. The Fourier transformations modules of the di�eren
e Æhx(t) for x = 5:0and � = 0:1; 0:2.
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Fig. 15. The Fourier transformation modules of the di�eren
e Æhx(t) for x = 5:0and � = 0:05.
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Fig. 16. The Fourier transformation modules of the di�eren
e Æhx(t) for x = 160:0and � = 0:05. 5. Ending remarksThe ex
itation of the vortex we have investigated was obtained by 
hoos-ing some parti
ular initial data for the 
omponent Az of the gauge �eldparallel to the vortex axis. In the stati
 vortex solution this 
omponent ofthe gauge �eld is equal to zero; in our 
ase it os
illates with the frequen
y



The Vortex Os
illations in Abelian Higgs Model 615approximately equal to �: the ratio of the ve
tor boson and Higgs masses.The other �elds also os
illate. Performing the Fourier transformation wefound that the frequen
ies of these os
illations are grouped near 2�; 0:9; 1:0.The �rst value was predi
ted in [1℄ and is 
aused by the term proportionalto A2 in (8). The os
illations with the se
ond frequen
y appear mainly onthe vortex 
ore and are probably 
on
erned with the bound state of thestati
 vortex solution [4℄. The third frequen
y simply equals to the mass ofthe Higgs parti
le. However it should be noted that our 
omputations in-
lude about ten periods of the �eld A os
illations and therefore the question
on
erning the long time behaviour of the system is still open. The �eld
on�guration we have 
onsidered was 
onstru
ted in su
h a way that the�eld A starts its os
illations at on
e in the whole spa
e. These os
illationsex
ite the Higgs �eld for all values of the spatial 
oordinate. However themotion of the azimuthal 
omponent of the gauge �eld looks di�erently. Itbegins at the vortex 
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