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DYNAMICS OF A PLANAR DOMAIN WALL WITHOSCILLATING THICKNESS IN ��4 MODELMa
iej �lusar
zykInstitute of Physi
s, Jagiellonian UniversityReymonta 4, 30-059 Cra
ow, Polande-mail: mslus�thris
.if.uj.edu.pl(Re
eived April 22, 1999; revised version re
eived O
tober 10, 1999)Domain wall-type solution with os
illating thi
kness in a real, s
alar�eld model is investigated with the help of a polynomial approximation.We propose a simple extension of the polynomial approximation method.In this approa
h we 
al
ulate higher order 
orre
tions to the planar do-main wall solution and �nd that the domain wall with os
illating thi
knessradiates.PACS numbers: 11.10.Lm 1. Introdu
tionTopologi
al defe
ts 
onstitutes an important 
lass of solutions in �eld-theoreti
al models with degenerate va
ua. They play very important role inseveral bran
hes of physi
s. Let us mention here �eld-theoreti
al 
osmologyand the 
osmi
 strings hypothesis (see [1�3℄), dynami
s of super
ondu
tors,super�uids and liquid 
rystals in 
ondensed matter physi
s (see [3,7℄) as wellas a �ux tube in QCD.This short and in
omplete list shows the ne
essity of having e�e
tive
omputing methods to study the dynami
s of topologi
al defe
ts. In spiteof the in
reasing development of mathemati
al te
hniques to solve nonlinearequations, exa
t solutions seem not to be the rule and numeri
al methodshave been the most 
ommon approa
h to study properties of topologi
aldefe
ts. Therefore analyti
al and perturbative methods are of great interestand importan
e.In this paper we study domain wall type solution in the ��4 model. Inpaper [8℄ ex
ited domain wall of this kind was 
onsidered and the radiationemitted from the domain wall was found. In our approa
h we further developthe method of a so-
alled polynomial approximation (see [9,10℄), whi
h is(617)
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zykused to 
onstru
t the domain wall type solution with time-dependent thi
k-ness. We show how to 
ompute 
orre
tions to the polynomial solution. The
orre
tions 
onsist of two parts: the stati
 one and the time-dependent one.The time-dependent part of the 
orre
tion 
ontains radiation emitted bydomain wall with os
illating thi
kness.The plan of our paper is the following. In the next se
tion we presentthe model. In Se
tion 3 we derive the time-dependent planar domain wallsolution in the polynomial approximation. Se
tion 4 is devoted to the de-tailed analysis of this solution. We present the method of �nding 
orre
tionto the polynomial solution. In Se
tions 5 and 6 we 
al
ulate stati
 and time-dependent part of this 
orre
tion. In Se
tion 7 we shortly summarize themain points of our work. 2. The modelWe 
onsider the model with single, s
alar, real-valued �eld �, de�ned bythe a
tion S = Z d4x ��12���������� �2 (�2 � v2)2� ; (1)where ��� = diag (�1; 1; 1; 1) and �, v are positive 
onstants. The 
orre-sponding equation of motion for the �eld � has the form������ 2��(�2 � v2) = 0: (2)The energy fun
tional for the model is given by the formulaE[�℄ = 12 Z d3~x h(�t�)2 + (�~x�)2 + �(�2 � v2)2i : (3)It is 
onvenient to res
ale the spa
e-time 
oordinates and the s
alar �eld asfollows � = �v ;t = �x0;� = �x3;~x1 = �x1; ~x2 = �x2; (4)where � = p�v2. The new variables are dimensionless. The va
uum valuesof � in the 
onsidered model are equal to �1. Con�guration of the �eldwhi
h smoothly interpolates between these two va
ua is 
alled the domainwall. Our goal is to 
onstru
t the domain wall 
on�guration, lo
alized onthe ~x1 � ~x2 plane, with the time-dependent width. The planar domain
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s of a Planar Domain Wall with... 619wall distinguishes the dire
tion perpendi
ular to the wall plane, given in our
ase by the 
oordinate lines of �. As we 
onsider the 
on�guration with �independent of the 
oordinates ~x1 and ~x2, we 
an restri
t our approa
h tothe 1 + 1 dimensional model. Equation (2) then takes the form��2��t2 + �2���2 � 2�(�2 � 1) = 0: (5)Stati
 solutions of this equation are well-known. They have the form�(�) = � tanh � : (6)3. Domain wall solution in the polynomial approximationIn this se
tion we 
onstru
t approximate domain wall type solution ofEq. (5) with time-dependent width. In order to realize this we use themethod of a polynomial approximation, whose detailed des
ription is givenin [9℄. The basi
 idea of this approa
h is to approximate the s
alar �eld insidethe domain wall by the polynomial in the variable � with time-dependent
oe�
ients. Thus, inside an interval [��1; �0℄ (�0 and �1 are positive) wehave �(t; �) = a(t)� + 12!b(t)�2 + 13!
(t)�3: (7)The domain wall solution is 
hara
terized by the fa
t, that for su�
ientlylarge j � j the �eld approa
hes its va
uum values �1�(t; �) = +1 for � � �0;�(t; �) = �1 for � � ��1: (8)It is possible (see [9℄) to adopt more a

urate asymptoti
s for large j � j, withexponential 
orre
tion exp(�2��) to the va
uum values �1. For simpli
ityof further 
al
ulations we use expressions (8).We 
an tune a

ura
y of our approximation 
hanging degree of the poly-nomial (7). One 
an easily noti
e, that the 
ubi
 Ansatz presented above isthe simplest, nontrivial 
hoi
e. The Ansatz (7) should be smoothly mat
hedwith the va
uum solutions at � = �0 and � = ��1. The mat
hing 
onditionsfollow in a standard manner from Eq. (5). One integrates Eq. (5) over � inarbitrary small intervals [��1 � ";��1 + "℄ ; [�0 � "; �0 + "℄ and lets " ! 0.This implies ���(t; �) j�=�0 = 0;���(t; �) j�=��1 = 0: (9)



620 M. �lusar
zykFrom Eq. (8) one gets �(t; �0) = +1;�(t;��1) = �1: (10)The Ansatz (7) with mat
hing 
onditions (9)�(10) allows us to �nd solu-tion of Eq. (5) in the proposed form. Inserting the expansion (7) into themat
hing 
onditions we get, analogously to the 
ase of 
ylindri
al domainwall dis
ussed in [9℄, the following 
onditions for fun
tions a(t), b(t), 
(t)and parameters �0, �1�0 = �1; a(t) = 32�0 ; b(t) = 0; 
(t) = �8a39 : (11)Then we insert the expansion (7) into (5) and equate to zero 
oe�
ientsin front of su

essive powers of �. After some easy algebra, 
onsidering
onditions (11) we get the following equation�a+ 89a3 � 2a = 0: (12)Fun
tion 
(t) is related to a(t) (see formula (11)) and the last step in ourapproa
h is to solve Eq. (12). We 
onstru
t an approximate solution ofEq. (12), whi
h is 
onvenient for the further analysis. With variables rede-�ned as follows a(t) = 32A(t); � = 2t; (13)Eq. (12) takes the form �A = A�A3; (14)where now dot denotes the derivative with respe
t to � . It is easy to noti
ethat there exist periodi
 solutions. Eq. (14) 
an be regarded as equation ofmotion for a parti
le moving in one dimensional potential �eld (see Fig. 1)U(A) = �A22 + A44 : (15)In the further part of our dis
ussion we 
onsider only the periodi
 solu-tions os
illating around A = 1, be
ause of the 
onne
tion between A and thedomain wall thi
kness parameter �0. When A(t) > 0 for all � we have also�0; �1 > 0, whi
h is 
onsistent with the interpretation of these parameters.The periodi
 solutions os
illating around A = �1 are symmetri
 (in thesense that when one 
hanges �0 and �1 by ea
h other it has no in�uen
e onthe dynami
s of our system), so we don't dis
uss this situation. Considering



Dynami
s of a Planar Domain Wall with... 621

Fig. 1. The potential �eld U(A) = �A22 + A44 .all these remarks we restri
t our investigation to solutions os
illating withsmall amplitude around A = 1. We 
an writeA(�) = 1 + 	(�); (16)where 	(�) is small, periodi
 fun
tion. Inserting (16) into Eq. (14) one gets�	 + 	 = �12	3 � 32	2: (17)Expression (17) has the form of os
illator equation with nonlinear terms.Our goal is to �nd its perturbative solution with initial 
onditions: 	(0) =	0, _	(0) = 0, whi
h des
ribes initially stati
, sqeezed wall. One 
an solve thenonlinear os
illator equation of type (17) using Krylov�Bogolubov method(see [19℄).The general solution has the form	(�) = ! 
os'(�) + 12�0(!) +Xk�1�k(!) 
os k'(�) + �k(!) sin k'(�); (18)where fun
tions !; '; �; � 
an be 
al
ulated in a standard manner (see [19℄)with initial 
ondition !(0) = Æ. In our 
ase we �nd	(�) = Æ 
os ��1 + 3Æ216 � ��� 3Æ24 + Æ24 
os �2�1 + 2Æ216 � ��+O(Æ3); (19)where Æ is a small parameter. Thus we get solution a(t)a(t)= 32 �1+Æ 
os �2�1+3Æ216 � t�� 3Æ24 + Æ24 
os �4�1+3Æ216 � t��+O(Æ3):(20)



622 M. �lusar
zykFormula (20) agrees well with the numeri
al solutions of Eq. (12). In thelast step we have to insert the solution (20) into the Ansatz (7) 
onsidering
onditions (11). The �nal expression for the �eld of the os
illating domainwall in the polynomial approximation has the form�(0)(t; �) = "32 �� � 13�3�+ 32Æ 
os
t �� � �3�+ 38Æ2 
os 2
t �� � 3�3��98Æ2�� � 13�3�#�(�0(t)� j � j)+�(� � �0(t))��(��0(t)� �) +O(Æ3); (21)where 
 = 2 + 38Æ2 +O(Æ3): (22)The fun
tion �0(t) 
an be regarded as the half-width of the domain wall inthe � 
oordinate. It is given by the formula�0(t) = 1� Æ 
os
t+ 34Æ2 + 14Æ2 
os 2
t+O(Æ3): (23)From Eq. (22) one 
an get period of os
illation of the domain wall T =2�=
 : T = � � O(Æ2). In the 
ase of linear os
illations around stati
solution (one 
an regard this situation negle
ting nonlinear terms in (17)� it is admissible be
ause 	 is small by de�nition) one gets 
 = 2 andT = 2. The formula (21) 
an be adopted to the spe
ial, stati
 
ase ofdomain wall solution, taking Æ = 0. It is equivalent to the (1; 0) 
entral,
riti
al point of Eq. (17). The general solution �(0)(t; �) 
an be then treatedas a small os
illation (with amplitude given by the parameter Æ) around thestati
 solution �(0)s (�)�(0)s (�) = 32 �� � 13�3��(1� j � j): (24)A

ordingly to Eq. (21) initially the domain wall is a bit sqeezed. Then itos
illates with small amplitude around the stati
 solution.4. Corre
tion to the polynomial solutionIn this se
tion we propose a simple extension of the pure polynomialsolution obtained above. Formula (21) gives us the simplest, approximatedomain wall-type solution in our model. One 
an study wider range of phe-nomena (e.g. nontrivial asymptoti
s of the domain wall solution as well as
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s of a Planar Domain Wall with... 623radiation, whi
h 
an be emitted by the os
illating domain wall) 
onsideringhigher-order 
orre
tions to this solution. Our goal is to 
al
ulate perturba-tively 
orre
tions to the zeroth order polynomial solution. Let us denote itby �(1)(t; �). Thus, we 
an write the �eld satisfying Eq. (2) as�(t; �) = �(0)(t; �) + �(1)(t; �): (25)In order to �nd the 
orre
tion �(1)(t; �) let us insert expression (25) into the�eld equation (5). Negle
ting nonlinear terms in the �eld �(1) we get�����(1) � 2 h3�(0)2 � 1i�(1) = ������(0) + 2 h�(0)2 � 1i�(0): (26)We expe
t that global 
hara
ter of the domain wall solution during timeevolution won't 
hange be
ause of topologi
al stability (in the other words:the solution remains the planar domain wall type all the time, only small
orre
tions 
an o

ur). That's why the linearization in (26) may be done.Eq. (26) is a linear one with sour
e term j(t; �) given by the formulaj(t; �) = �2�(0)�t2 � �2�(0)��2 + 2h�(0)2 � 1i�0: (27)As it was done for the polynomial solution �(0) we 
an split j(t; �) into stati
and time-dependent part j(t; �) = js(�) + jd(t; �): (28)From Eq. (21) one getsjs(�) = "274 �� � 13�3�3 + �3#�(1� j � j)� �Æ0(� � 1) + Æ0(� + 1)� ; (29)where prim denotes derivative with respe
t to �, andjd(t; �) = "�32Æ
2(� � �3) 
os
t� 3Æ(4� � �3) 
os
t+814 Æ�� � 13�3�2 (� � �3) 
os
t#�(�0(t)� j � j)+ �274 �� � 13�3�+ �3� [�(�0(t)� j � j)��(1� j � j)℄+ �32Æ
2�� � 13�3� 
os
t� 3Æ sgn �(1� 3�2) 
os
t� Æ(�0(t)� j � j)
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zyk+32sgn �(1� �2) (Æ(�0(t)� j � j)� Æ(1� j � j))+32Æ(� � �3) 
os
t Æ0(�0(t)� j � j)�32 �� � 13�3��Æ0(�0(t)� j � j)� Æ0(1� j � j)�+Æ
2 
os
t [Æ(� + �0(t))� Æ(� � �0(t))℄� �Æ0(� � �0(t))� Æ0(� � 1)�� �Æ0(� + �0(t))� Æ0(� + 1)� : (30)Eq. (26) is 
ompli
ated due to unpleasant form of the polynomial solutiongiven by Eq. (21). We 
an simplify the operator on the left-hand side ofEq. (26) noti
ing, that �(0) 
an be split into stati
 and time-dependent part,and predominant 
omponent tanh � (whi
h is exa
t, stati
 solution of theinitial �eld equation) 
an be extra
ted from the stati
 part as follows�(0) = tanh � + Æ�(0)s (�) + Æ�(0)d (t; �); (31)Inserting expression (31) into the evolution equation and rewriting someterms on the right-hand side we get �nally�����(1) � 2 �3 tanh2 � � 1��(1) = js(�) + jd(t; �)+6��(0)2s � tanh2 ���(1)+6 Æ�(0)d �Æ�(0)d + 2 Æ�(0)s + 2 tanh ���(1): (32)The 
omponent in front of �(1) in the third term on the right-hand side isnonzero only on the border of the domain wall and qui
kly tends to zero whenj � j! 1. Analogously, the 
omponent in front of �(1) in the fourth termis of order of the small parameter Æ. Thus, we have the following, stronglysuggested method of solving Eq. (32): in the �rst step we put �(1) = 0 onthe right-hand side of Eq. (32) and solve linear equation for �(1) with sour
eterm js(�)+jd(t; �). The solution obtained in this way 
an be inserted to theright-hand side of Eq. (32), so in the se
ond step we have to solve equationwith the same linear operator but a new sour
e term. We �nd full solutionas a result of su
h as iterating pro
edure. Nevertheless if 
omponents infront of �(1) on the right-hand side are small (and that is our 
ase), we 
an�nd predominant part of full solution in the �rst step.Due to the form of sour
e term (whi
h 
onsist of stati
 and time-dependent part) it seems natural to split �(1) into two 
omponents: thestati
 one and the time-dependent one. They are denoted respe
tively by�(1)s and �(1)d . From Eq. (32) we get�(1) 00s � 2 �3 tanh2 � � 1��(1)s = js(�) + 6��(0)2s � tanh2 ���(1)s ; (33)



Dynami
s of a Planar Domain Wall with... 625for the stati
 part of solution, and2�(1)d � 2 �3 tanh2 � � 1��(1)d = jd(t; �)+6 Æ�(0)d �Æ�(0)d + 2 Æ�(0)s + 2 tanh ����(1)d + �(1)s �+6��(0)2s � tanh2 ���(1)d ; (34)for the time-dependent part. In the last equation we use the standard no-tation 2 = � �2�t2 + �2��2 : (35)5. Stati
 
orre
tion to the polynomial solutionOur goal in this se
tion is to solve Eq. (33) and �nd stati
 part of thefun
tion �(1)(t; �). We adopt the method of solving, whi
h was dis
ussedin the previous se
tion. In the �rst step we put �(1)s = 0 on the right-handside of Eq. (33) and solve it in a standard way as a linear, inhomogeneousequation. Then solution �(1)s found in this way is inserted to the r.h.s. ofEq. (33) and in the next step equation with a new sour
e term should besolved. Nevertheless, if expression whi
h o

ur in a new sour
e term as aresult of this pro
edure is small we get pretty good approximation in the�rst step. The term in front of �(1)s on the r.h.s. of Eq. (33) is nonzero onlyon the border of the domain wall and qui
kly tends to zero when j � j! 1.Eventually we expe
t to have a good approximation in the region outsidethe wall. This result seems to be a

eptable � inside the domain wall thea

ura
y 
an be improved by higher degree of the polynomial in Ansatz (7).Finally we are going to solve the linear equation�(1) 00s � 2 �3 tanh2 � � 1��(1)s = js(�): (36)The solution 
an be found by the standard Green's fun
tion te
hnique.There exist two linearly independent solutions of the homogenous part ofEq. (36) f1(x) = 1
osh2 x;f2(x) = 18 sinh 2x+ 38 tanhx+ 38 x
osh2 x: (37)As the Green's fun
tion we takeG(�; x) = f1(x) f2(�)�(� � x)�f1(�) f2(x)[�(� � x)��(�x)℄: (38)
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zykThe Green's fun
tion G(�; x) obeys the 
onditionG(� = 0; x) = 0 for x 2 (�1;1): (39)The general solution of Eq. (36) has then the form�(1)s (�) = Af1(�) +B f2(�) + ZR G(�; x)js(x)dx; (40)where A and B are arbitrary 
onstants. Inserting the Green's fun
tion (38)into the formula (40) we get�(1)s (�) =0�A� �Z0 f2(x)js(x)dx1A f1(�) +0�B + �Z�1 f1(x)js(x)dx1A f2(�):(41)We have to put A = 0 and B = 0 be
ause we are looking for a solution gen-erated by sour
e term, not for the homogeneous equation solution. Anotherreason for keeping B = 0 is qui
k (exponential) growth of the fun
tion f2(x)for j � j! 1. In the 
ase B 6= 0 the solution �(1)s (�) grows exponentiallyand doesn't meet requirements of the perturbative 
al
ulus. Combining ex-pressions (29), (38) and (41) we get �nally�(1)s (� > 1) = �24 1Z0 f2(x)�274 (x� 13x3)3 + x3� dx35 f1(�); (42)and �(1)s (0 � � � 1) = 24 �Z0 f2(x) 274 �x� 13x3�3 + x3! dx35 f1(�)+24 �Z�1 f1(x) 274 �x� 13x3�3 + x3! dx35 f2(�): (43)Solution for � < 0 has opposite sign.Integration in the formula (42) 
an be done numeri
ally, yielding�(1)s (� > 1) = C
osh2(�) ; (44)



Dynami
s of a Planar Domain Wall with... 627where C ' �0:731. As one 
an expe
t �(1)s (�) tends to zero when � ! 1.The stati
 solution with the 
orre
tion �(0)s + �(1)s is presented in Fig. 2,where one 
an 
ompare it with the pure polynomial solution �(0)s and thestri
t, stati
 solution tanh �. As it is easy to noti
e the 
orre
tion obtainedabove for
es the polynomial solution to the well-known stri
t, stati
 solution.It gives us a strong argument, that splitting the stati
 part of polynomialsolution into two parts (one of them is tanh � ) is a

eptable. This fa
t willbe used in the next se
tion.Eq. (33) 
an be also solved in a straightforward way using numeri
almethods. Numeri
al analysis 
on�rms the results obtained above.

Fig. 2. The stati
 polynomial solution, the improved polynomial solution and thestri
t solution tanh �.6. Time-dependent 
orre
tion to the polynomial solutionIn this se
tion we �nd time-dependent 
orre
tion to the polynomial ap-proximation. We have to solve Eq. (34) using the iterative method proposedin Se
tion 4. The se
ond term on the r.h.s. of the Eq. (34) is of the orderof the small parameter Æ and 
an be negle
ted in the �rst approximation.The 
oe�
ient in front of �(1)d in the third term on the r.h.s. is the same asin Eq. (33) dis
ussed in the previous se
tion. Now it is ne
essary to spe
ifymore pre
isely the s
enario of evolution of the dis
ussed domain wall. Fort < 0 the domain wall is stati
 and, as was dis
ussed in the Se
tion 6 has theform of the stri
t, stati
 solution tanh � (see (6)). In t = 0 the domain wall



628 M. �lusar
zykis squeezed by 2Æ as a result of a
tion of an external for
e. The evolution atlater times is governed by the �eld equation (34).This s
enario helps us to understand the role of the last term on the r.h.s.of Eq. (34). In the simplest 
ase we 
an state that it is small for � ! �1,and by negle
ting it we obtain good approximation in the �rst step in thisregion. Nevertheless from the dis
ussion presented above we 
an 
on
ludethat we get quite good solution in the whole range of �. To prove this werewrite the third term on the l.h.s. Thus we have2�(1)d � 2 h3�(0) 2s (�)� 1i�(1)d = jd(t; �)+6 Æ�(0)d �Æ�(0)d + 2 Æ�(0)s + 2 tanh ����(1)d + �(1)s � : (45)Due to the results of Se
tion 6 the stati
 part of the polynomial solution is
orre
ted by the fun
tion �(1)s , whi
h has been 
al
ulated above. When wetake some terms of higher order (whi
h 
an be obtained in the next stepsof 
al
ulation) we 
an 
hange �(0) 2s on the r.h.s. of Eq. (34) by "improved"expression (�(0)s +�(1)s )2. From the dis
ussion presented above and illustratedin Fig. 2 we have �(0)s + �(1)s � tanh �: (46)In the �rst step we are then going to solve the linear, inhomogeneous equa-tion 2�(1)d � 2 �3 tanh2 � � 1��(1)d = jd(t; �): (47)This 
an be rewritten as a wave equation� �2�t2 +D2��(1)d (t; �) = �jd(t; �); (48)where operator D2 has the formD2 = � � �2��2 � 2(3 tanh2 � � 1)� : (49)Eq. (48) 
an be solved by the standard Green's fun
tion te
hnique. We
al
ulate Green's fun
tion for operatorD2 using expansion in eigenfun
tions.We are looking for the Green's fun
tion G(�; t; �0; t0), whi
h ful�l the equation� �2�t2 +D2�G(�; t; �0; t0) = Æ(t� t0)Æ(� � �0); (50)and obeys the 
onditionG(�; t; �0; t0) = 0 for t < t0: (51)
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s of a Planar Domain Wall with... 629If the set of eigenfun
tions f ng is given, we 
an 
onstru
t Green's fun
tionin a standard manner. Detailed des
ription of this pro
edure is given in [20℄.The Green's fun
tion 
an be written asG(�; t; �0; t0) = K(�; t; �0; t0)�(t� t0); (52)where propagator K(�; t; �0; t) has the formK(�; t; �0; t0) =  0(�) �0(�0)(t� t0)+Xn 6=0 n(�) �n(�0)sin hp�n(t� t0)ip�n : (53)The solution of the inhomogeneous equation is given by the formula�(1)d (t; �) = �ZR d�0 tZ�1 dt0K(�; t; �0; t0) jd(t0; �0): (54)Be
ause jd(t < 0; �) = 0 we 
an simplify (54) as follows�(1)d (t; �) = �ZR d�0 tZ0 dt0K(�; t; �0; t0) jd(t0; �0): (55)The problem of 
al
ulating time-dependent 
orre
tion to the polynomialsolution is then redu
ed to �nding the system of eigenfun
tions of operatorD2. This system is well-known (see e.g. [8℄)and 
onsists of two dis
reteeigenvalues and 
ontinuous spe
trum with 
orresponding eigenfun
tions 0(x) = p32 1
osh2 x for �0 = 0; (56) 1(x) = r32 sinhx
osh2 x for �1 = 3; (57) k(x) = 1p2�(k2 + 1)(k2 + 4) eikx �2� 3
osh2 x � 3ik tanhx� k2� ; (58)where �k = k2 + 4; k 2 R+:The eigenfun
tions from the 
ontinuous part of the spe
trum 
orrespond tothe real eigenvalues and 
an be split into two sets of eigenfun
tions, orthog-onal to ea
h other (1)k (x) = 1p2�(k2 + 1)(k2 + 4)� ��2� k2 � 3
osh2 x� 
os kx+ 3k sinkx tanh x� ; (59)
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zykand  (2)k (x) = 1p2�(k2 + 1)(k2 + 4)� ��2� k2 � 3
osh2 x� sinkx� 3k 
os kx tanhx� : (60)Inserting formulae (56)�(60) into (52)�(55) we get the expression for theretarded Green's fun
tionGr(�; t; �0; t0) = �(t� t0) (t� t0) 0(�) �0(�0)+ 1p3 sin hp3(t� t0)i 1(�) �1(�0)+ Xi=1;2 1Z0 dk sin hpk2 + 4(t� t0)ipk2 + 4  (i)k (�) (i)�k (�0)!: (61)We get the solution �(1)d (t; �) integrating Gr(�; t; �0; t0) with the sour
e termjd(t0; �0) in the whole range of �0. As jd(t0; �0) is odd in variable �0, part ofGr even in this variable does not give any 
ontribution to the �nal solution.The Green's fun
tion 
an be rewritten asGr(�; t; �0; t0) = �(t� t0) 1p3 sin hp3(t� t0)i 1(�) �1(�0)+ 1Z0 dk sin hpk2 + 4(t� t0)ipk2 + 4  (1)k (�) (1)�k (�0)! : (62)Finally, inserting Eq. (62) into (55) we 
an write solution �(1)d (t; �). For
onvenien
e we split it into two parts due to the parts of Green's fun
tion(62). It reads �(1)d (t; �) = �(1)d (�)(t; �) + �(1)d (�)(t; �); (63)where �(1)d (�) and �(1)d (�) are given by formulae�(1)d (�)(t; �) = � 12� ZR d�0 tZ0 dt0 1Z0 dk sin hpk2 + 4(t� t0)i(k2 + 1)(k2 + 4)3=2 jd(t0; �0)
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os k� tanh � � 3 
os k�
osh2 � ���(2� k2) sin k�0 � 3k 
os k�0 tanh �0 � 3 
os k�0
osh2 �0 � ; (64)
�(1)d (�)(t; �) = �p32 sinh �
osh2 � ZR d�0 tZ0 dt0jd(t0; �0) sin hp3(t�t0)i sinh �0
osh2 �0 : (65)Let us give an interpretation of these two parts of the �nal solution.�(1)d (�) is 
onne
ted with the  1 mode in the system of eigenfun
tions ofthe operator D2. The intera
tion with  1 generates in the time-dependent
orre
tion �(1)d the 
omponent, whi
h exponentially vanishes for large � andos
illates. It 
an be treated as a form of ex
itation of the domain wallgiven by  1. The 
ru
ial role whi
h this 
omponent plays in dynami
s ofour system is more transparently visible in the pro
ess of 
ollision of kinks(see [16℄ and [17℄).The 
omponent �(1)d (�) has the form of a wavepa
ket � the os
illations ofthe domain wall generate radiation. Thus we have the following s
enario ofthe dis
ussed phenomena: in t = 0 the external for
e squeezed the domainwall by 2Æ. The wall os
illates around the stati
 
on�guration. The os
il-lations generate radiation as in the formula (64). It is natural to restri
t�(1)d (�) to waves going out from the wall�(1)d (�) ! �(1)d (!)(t; � > 0) = � 14� ZR d�0 tZ0 dt0 1(k2 + 1)(k2 + 4)3=2 jd(t0; �0)� 
os hk(� � �0)�pk2 + 4(t� t0)i �3k tanh ��2� k2 � 3
osh2 �0��3k tanh �0�2� k2 � 3
osh2 ���+sin hk(� � �0)�pk2 + 4(t� t0)i ��2�2� k2 � 3
osh2 ����2� k2 � 3
osh2 �0�� 9k2 tanh � tanh �0� : (66)For � < 0 the result is analogous.
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zykThe solution �(1)d (!) has the form of a wavepa
ket�(1)d (!)(t; �) = 1Z0 dkF (k; t; �)ei(k��pk2+4t): (67)The waves have the frequen
y !(k) = pk2 + 4 so they satisfy the dispersionrelation !2(k)� k2 = 4: (68)It agrees well with our expe
tations, be
ause for large j � j Eq. (47) reads2�(1)d � 4�(1)d = 0: (69)To plot the fun
tion �(1)d (!) given by the formula (66) we 
al
ulate it numer-i
ally for some �xed values of t and � 2 (0; 20), with the step �� = 0:1. The�nal result is presented in Fig. 3�7. One 
an easily see the 
ausal 
hara
terof obtained solution. In the region outside the light-
one the �eld �(1)d (!)is nearly equal to 0. The �u
tuations are 
aused mainly by 
omputationerrors. This fa
t was 
he
ked by de
reasing the step of integration � the�u
tuations de
rease then too. The �eld �(1)d (!) is small � on the �guresit is multiplied by fa
tor 102. This on
e again 
on�rms the approximationused in our approa
h.

Fig. 3. The radiation emitted by the os
illating domain wall for t = 3.
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Fig. 4. The radiation emitted by the os
illating domain wall for t = 6.

Fig. 5. The radiation emitted by the os
illating domain wall for t = 9.

Fig. 6. The radiation emitted by the os
illating domain wall for t = 12.
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Fig. 7. The radiation emitted by the os
illating domain wall for t = 15.7. RemarksLet us brie�y summarize the main points of our work. We have derivedthe planar domain wall solution with the time-dependent thi
kness in thepolynomial approximation. The planar domain wall os
illates with smallamplitude. We have then proposed an approa
h enabling us to 
al
ulate the
orre
tion to the pure polynomial solution. We have split this 
orre
tioninto two parts. The time-dependent part 
ontains the 
omponent whi
h isinterpreted as the radiation from the os
illating domain wall.There are several possible extensions and generalizations of our approa
h.It 
an be applied without mu
h trouble to the other �eld-theoreti
al mod-els. In our paper we dis
uss only the 
ase of small os
illations around thestati
 solution. As one 
an easily see in Fig. 1 there exist also solutionsos
illating with amplitude whi
h is not small. This 
ase should be dis
ussedseparately. Another problem is the ba
krea
tion of the radiation in the 
on-sidered, os
illating domain wall. As we have the energy �owing out fromthe domain wall, one 
an expe
t dumping of os
illations. We have 
he
kedthat the energy per unit area of the domain wall is 
onserved up to termsnegle
ted. The problem of the ba
krea
tion of the domain wall deserve aseparate investigation. It will be dis
ussed in the next paper.I would like to thank Professor H. Arod¹ for his help and many stimu-lating dis
ussions. I am also grateful to dr L. Hadasz for reading the paperand helpful remarks.
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