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DYNAMICS OF A PLANAR DOMAIN WALL WITHOSCILLATING THICKNESS IN ��4 MODELMaiej �lusarzykInstitute of Physis, Jagiellonian UniversityReymonta 4, 30-059 Craow, Polande-mail: mslus�thris.if.uj.edu.pl(Reeived April 22, 1999; revised version reeived Otober 10, 1999)Domain wall-type solution with osillating thikness in a real, salar�eld model is investigated with the help of a polynomial approximation.We propose a simple extension of the polynomial approximation method.In this approah we alulate higher order orretions to the planar do-main wall solution and �nd that the domain wall with osillating thiknessradiates.PACS numbers: 11.10.Lm 1. IntrodutionTopologial defets onstitutes an important lass of solutions in �eld-theoretial models with degenerate vaua. They play very important role inseveral branhes of physis. Let us mention here �eld-theoretial osmologyand the osmi strings hypothesis (see [1�3℄), dynamis of superondutors,super�uids and liquid rystals in ondensed matter physis (see [3,7℄) as wellas a �ux tube in QCD.This short and inomplete list shows the neessity of having e�etiveomputing methods to study the dynamis of topologial defets. In spiteof the inreasing development of mathematial tehniques to solve nonlinearequations, exat solutions seem not to be the rule and numerial methodshave been the most ommon approah to study properties of topologialdefets. Therefore analytial and perturbative methods are of great interestand importane.In this paper we study domain wall type solution in the ��4 model. Inpaper [8℄ exited domain wall of this kind was onsidered and the radiationemitted from the domain wall was found. In our approah we further developthe method of a so-alled polynomial approximation (see [9,10℄), whih is(617)



618 M. �lusarzykused to onstrut the domain wall type solution with time-dependent thik-ness. We show how to ompute orretions to the polynomial solution. Theorretions onsist of two parts: the stati one and the time-dependent one.The time-dependent part of the orretion ontains radiation emitted bydomain wall with osillating thikness.The plan of our paper is the following. In the next setion we presentthe model. In Setion 3 we derive the time-dependent planar domain wallsolution in the polynomial approximation. Setion 4 is devoted to the de-tailed analysis of this solution. We present the method of �nding orretionto the polynomial solution. In Setions 5 and 6 we alulate stati and time-dependent part of this orretion. In Setion 7 we shortly summarize themain points of our work. 2. The modelWe onsider the model with single, salar, real-valued �eld �, de�ned bythe ation S = Z d4x ��12���������� �2 (�2 � v2)2� ; (1)where ��� = diag (�1; 1; 1; 1) and �, v are positive onstants. The orre-sponding equation of motion for the �eld � has the form������ 2��(�2 � v2) = 0: (2)The energy funtional for the model is given by the formulaE[�℄ = 12 Z d3~x h(�t�)2 + (�~x�)2 + �(�2 � v2)2i : (3)It is onvenient to resale the spae-time oordinates and the salar �eld asfollows � = �v ;t = �x0;� = �x3;~x1 = �x1; ~x2 = �x2; (4)where � = p�v2. The new variables are dimensionless. The vauum valuesof � in the onsidered model are equal to �1. Con�guration of the �eldwhih smoothly interpolates between these two vaua is alled the domainwall. Our goal is to onstrut the domain wall on�guration, loalized onthe ~x1 � ~x2 plane, with the time-dependent width. The planar domain



Dynamis of a Planar Domain Wall with... 619wall distinguishes the diretion perpendiular to the wall plane, given in ourase by the oordinate lines of �. As we onsider the on�guration with �independent of the oordinates ~x1 and ~x2, we an restrit our approah tothe 1 + 1 dimensional model. Equation (2) then takes the form��2��t2 + �2���2 � 2�(�2 � 1) = 0: (5)Stati solutions of this equation are well-known. They have the form�(�) = � tanh � : (6)3. Domain wall solution in the polynomial approximationIn this setion we onstrut approximate domain wall type solution ofEq. (5) with time-dependent width. In order to realize this we use themethod of a polynomial approximation, whose detailed desription is givenin [9℄. The basi idea of this approah is to approximate the salar �eld insidethe domain wall by the polynomial in the variable � with time-dependentoe�ients. Thus, inside an interval [��1; �0℄ (�0 and �1 are positive) wehave �(t; �) = a(t)� + 12!b(t)�2 + 13!(t)�3: (7)The domain wall solution is haraterized by the fat, that for su�ientlylarge j � j the �eld approahes its vauum values �1�(t; �) = +1 for � � �0;�(t; �) = �1 for � � ��1: (8)It is possible (see [9℄) to adopt more aurate asymptotis for large j � j, withexponential orretion exp(�2��) to the vauum values �1. For simpliityof further alulations we use expressions (8).We an tune auray of our approximation hanging degree of the poly-nomial (7). One an easily notie, that the ubi Ansatz presented above isthe simplest, nontrivial hoie. The Ansatz (7) should be smoothly mathedwith the vauum solutions at � = �0 and � = ��1. The mathing onditionsfollow in a standard manner from Eq. (5). One integrates Eq. (5) over � inarbitrary small intervals [��1 � ";��1 + "℄ ; [�0 � "; �0 + "℄ and lets " ! 0.This implies ���(t; �) j�=�0 = 0;���(t; �) j�=��1 = 0: (9)



620 M. �lusarzykFrom Eq. (8) one gets �(t; �0) = +1;�(t;��1) = �1: (10)The Ansatz (7) with mathing onditions (9)�(10) allows us to �nd solu-tion of Eq. (5) in the proposed form. Inserting the expansion (7) into themathing onditions we get, analogously to the ase of ylindrial domainwall disussed in [9℄, the following onditions for funtions a(t), b(t), (t)and parameters �0, �1�0 = �1; a(t) = 32�0 ; b(t) = 0; (t) = �8a39 : (11)Then we insert the expansion (7) into (5) and equate to zero oe�ientsin front of suessive powers of �. After some easy algebra, onsideringonditions (11) we get the following equation�a+ 89a3 � 2a = 0: (12)Funtion (t) is related to a(t) (see formula (11)) and the last step in ourapproah is to solve Eq. (12). We onstrut an approximate solution ofEq. (12), whih is onvenient for the further analysis. With variables rede-�ned as follows a(t) = 32A(t); � = 2t; (13)Eq. (12) takes the form �A = A�A3; (14)where now dot denotes the derivative with respet to � . It is easy to notiethat there exist periodi solutions. Eq. (14) an be regarded as equation ofmotion for a partile moving in one dimensional potential �eld (see Fig. 1)U(A) = �A22 + A44 : (15)In the further part of our disussion we onsider only the periodi solu-tions osillating around A = 1, beause of the onnetion between A and thedomain wall thikness parameter �0. When A(t) > 0 for all � we have also�0; �1 > 0, whih is onsistent with the interpretation of these parameters.The periodi solutions osillating around A = �1 are symmetri (in thesense that when one hanges �0 and �1 by eah other it has no in�uene onthe dynamis of our system), so we don't disuss this situation. Considering
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Fig. 1. The potential �eld U(A) = �A22 + A44 .all these remarks we restrit our investigation to solutions osillating withsmall amplitude around A = 1. We an writeA(�) = 1 + 	(�); (16)where 	(�) is small, periodi funtion. Inserting (16) into Eq. (14) one gets�	 + 	 = �12	3 � 32	2: (17)Expression (17) has the form of osillator equation with nonlinear terms.Our goal is to �nd its perturbative solution with initial onditions: 	(0) =	0, _	(0) = 0, whih desribes initially stati, sqeezed wall. One an solve thenonlinear osillator equation of type (17) using Krylov�Bogolubov method(see [19℄).The general solution has the form	(�) = ! os'(�) + 12�0(!) +Xk�1�k(!) os k'(�) + �k(!) sin k'(�); (18)where funtions !; '; �; � an be alulated in a standard manner (see [19℄)with initial ondition !(0) = Æ. In our ase we �nd	(�) = Æ os ��1 + 3Æ216 � ��� 3Æ24 + Æ24 os �2�1 + 2Æ216 � ��+O(Æ3); (19)where Æ is a small parameter. Thus we get solution a(t)a(t)= 32 �1+Æ os �2�1+3Æ216 � t�� 3Æ24 + Æ24 os �4�1+3Æ216 � t��+O(Æ3):(20)



622 M. �lusarzykFormula (20) agrees well with the numerial solutions of Eq. (12). In thelast step we have to insert the solution (20) into the Ansatz (7) onsideringonditions (11). The �nal expression for the �eld of the osillating domainwall in the polynomial approximation has the form�(0)(t; �) = "32 �� � 13�3�+ 32Æ os
t �� � �3�+ 38Æ2 os 2
t �� � 3�3��98Æ2�� � 13�3�#�(�0(t)� j � j)+�(� � �0(t))��(��0(t)� �) +O(Æ3); (21)where 
 = 2 + 38Æ2 +O(Æ3): (22)The funtion �0(t) an be regarded as the half-width of the domain wall inthe � oordinate. It is given by the formula�0(t) = 1� Æ os
t+ 34Æ2 + 14Æ2 os 2
t+O(Æ3): (23)From Eq. (22) one an get period of osillation of the domain wall T =2�=
 : T = � � O(Æ2). In the ase of linear osillations around statisolution (one an regard this situation negleting nonlinear terms in (17)� it is admissible beause 	 is small by de�nition) one gets 
 = 2 andT = 2. The formula (21) an be adopted to the speial, stati ase ofdomain wall solution, taking Æ = 0. It is equivalent to the (1; 0) entral,ritial point of Eq. (17). The general solution �(0)(t; �) an be then treatedas a small osillation (with amplitude given by the parameter Æ) around thestati solution �(0)s (�)�(0)s (�) = 32 �� � 13�3��(1� j � j): (24)Aordingly to Eq. (21) initially the domain wall is a bit sqeezed. Then itosillates with small amplitude around the stati solution.4. Corretion to the polynomial solutionIn this setion we propose a simple extension of the pure polynomialsolution obtained above. Formula (21) gives us the simplest, approximatedomain wall-type solution in our model. One an study wider range of phe-nomena (e.g. nontrivial asymptotis of the domain wall solution as well as



Dynamis of a Planar Domain Wall with... 623radiation, whih an be emitted by the osillating domain wall) onsideringhigher-order orretions to this solution. Our goal is to alulate perturba-tively orretions to the zeroth order polynomial solution. Let us denote itby �(1)(t; �). Thus, we an write the �eld satisfying Eq. (2) as�(t; �) = �(0)(t; �) + �(1)(t; �): (25)In order to �nd the orretion �(1)(t; �) let us insert expression (25) into the�eld equation (5). Negleting nonlinear terms in the �eld �(1) we get�����(1) � 2 h3�(0)2 � 1i�(1) = ������(0) + 2 h�(0)2 � 1i�(0): (26)We expet that global harater of the domain wall solution during timeevolution won't hange beause of topologial stability (in the other words:the solution remains the planar domain wall type all the time, only smallorretions an our). That's why the linearization in (26) may be done.Eq. (26) is a linear one with soure term j(t; �) given by the formulaj(t; �) = �2�(0)�t2 � �2�(0)��2 + 2h�(0)2 � 1i�0: (27)As it was done for the polynomial solution �(0) we an split j(t; �) into statiand time-dependent part j(t; �) = js(�) + jd(t; �): (28)From Eq. (21) one getsjs(�) = "274 �� � 13�3�3 + �3#�(1� j � j)� �Æ0(� � 1) + Æ0(� + 1)� ; (29)where prim denotes derivative with respet to �, andjd(t; �) = "�32Æ
2(� � �3) os
t� 3Æ(4� � �3) os
t+814 Æ�� � 13�3�2 (� � �3) os
t#�(�0(t)� j � j)+ �274 �� � 13�3�+ �3� [�(�0(t)� j � j)��(1� j � j)℄+ �32Æ
2�� � 13�3� os
t� 3Æ sgn �(1� 3�2) os
t� Æ(�0(t)� j � j)



624 M. �lusarzyk+32sgn �(1� �2) (Æ(�0(t)� j � j)� Æ(1� j � j))+32Æ(� � �3) os
t Æ0(�0(t)� j � j)�32 �� � 13�3��Æ0(�0(t)� j � j)� Æ0(1� j � j)�+Æ
2 os
t [Æ(� + �0(t))� Æ(� � �0(t))℄� �Æ0(� � �0(t))� Æ0(� � 1)�� �Æ0(� + �0(t))� Æ0(� + 1)� : (30)Eq. (26) is ompliated due to unpleasant form of the polynomial solutiongiven by Eq. (21). We an simplify the operator on the left-hand side ofEq. (26) notiing, that �(0) an be split into stati and time-dependent part,and predominant omponent tanh � (whih is exat, stati solution of theinitial �eld equation) an be extrated from the stati part as follows�(0) = tanh � + Æ�(0)s (�) + Æ�(0)d (t; �); (31)Inserting expression (31) into the evolution equation and rewriting someterms on the right-hand side we get �nally�����(1) � 2 �3 tanh2 � � 1��(1) = js(�) + jd(t; �)+6��(0)2s � tanh2 ���(1)+6 Æ�(0)d �Æ�(0)d + 2 Æ�(0)s + 2 tanh ���(1): (32)The omponent in front of �(1) in the third term on the right-hand side isnonzero only on the border of the domain wall and quikly tends to zero whenj � j! 1. Analogously, the omponent in front of �(1) in the fourth termis of order of the small parameter Æ. Thus, we have the following, stronglysuggested method of solving Eq. (32): in the �rst step we put �(1) = 0 onthe right-hand side of Eq. (32) and solve linear equation for �(1) with soureterm js(�)+jd(t; �). The solution obtained in this way an be inserted to theright-hand side of Eq. (32), so in the seond step we have to solve equationwith the same linear operator but a new soure term. We �nd full solutionas a result of suh as iterating proedure. Nevertheless if omponents infront of �(1) on the right-hand side are small (and that is our ase), we an�nd predominant part of full solution in the �rst step.Due to the form of soure term (whih onsist of stati and time-dependent part) it seems natural to split �(1) into two omponents: thestati one and the time-dependent one. They are denoted respetively by�(1)s and �(1)d . From Eq. (32) we get�(1) 00s � 2 �3 tanh2 � � 1��(1)s = js(�) + 6��(0)2s � tanh2 ���(1)s ; (33)



Dynamis of a Planar Domain Wall with... 625for the stati part of solution, and2�(1)d � 2 �3 tanh2 � � 1��(1)d = jd(t; �)+6 Æ�(0)d �Æ�(0)d + 2 Æ�(0)s + 2 tanh ����(1)d + �(1)s �+6��(0)2s � tanh2 ���(1)d ; (34)for the time-dependent part. In the last equation we use the standard no-tation 2 = � �2�t2 + �2��2 : (35)5. Stati orretion to the polynomial solutionOur goal in this setion is to solve Eq. (33) and �nd stati part of thefuntion �(1)(t; �). We adopt the method of solving, whih was disussedin the previous setion. In the �rst step we put �(1)s = 0 on the right-handside of Eq. (33) and solve it in a standard way as a linear, inhomogeneousequation. Then solution �(1)s found in this way is inserted to the r.h.s. ofEq. (33) and in the next step equation with a new soure term should besolved. Nevertheless, if expression whih our in a new soure term as aresult of this proedure is small we get pretty good approximation in the�rst step. The term in front of �(1)s on the r.h.s. of Eq. (33) is nonzero onlyon the border of the domain wall and quikly tends to zero when j � j! 1.Eventually we expet to have a good approximation in the region outsidethe wall. This result seems to be aeptable � inside the domain wall theauray an be improved by higher degree of the polynomial in Ansatz (7).Finally we are going to solve the linear equation�(1) 00s � 2 �3 tanh2 � � 1��(1)s = js(�): (36)The solution an be found by the standard Green's funtion tehnique.There exist two linearly independent solutions of the homogenous part ofEq. (36) f1(x) = 1osh2 x;f2(x) = 18 sinh 2x+ 38 tanhx+ 38 xosh2 x: (37)As the Green's funtion we takeG(�; x) = f1(x) f2(�)�(� � x)�f1(�) f2(x)[�(� � x)��(�x)℄: (38)



626 M. �lusarzykThe Green's funtion G(�; x) obeys the onditionG(� = 0; x) = 0 for x 2 (�1;1): (39)The general solution of Eq. (36) has then the form�(1)s (�) = Af1(�) +B f2(�) + ZR G(�; x)js(x)dx; (40)where A and B are arbitrary onstants. Inserting the Green's funtion (38)into the formula (40) we get�(1)s (�) =0�A� �Z0 f2(x)js(x)dx1A f1(�) +0�B + �Z�1 f1(x)js(x)dx1A f2(�):(41)We have to put A = 0 and B = 0 beause we are looking for a solution gen-erated by soure term, not for the homogeneous equation solution. Anotherreason for keeping B = 0 is quik (exponential) growth of the funtion f2(x)for j � j! 1. In the ase B 6= 0 the solution �(1)s (�) grows exponentiallyand doesn't meet requirements of the perturbative alulus. Combining ex-pressions (29), (38) and (41) we get �nally�(1)s (� > 1) = �24 1Z0 f2(x)�274 (x� 13x3)3 + x3� dx35 f1(�); (42)and �(1)s (0 � � � 1) = 24 �Z0 f2(x) 274 �x� 13x3�3 + x3! dx35 f1(�)+24 �Z�1 f1(x) 274 �x� 13x3�3 + x3! dx35 f2(�): (43)Solution for � < 0 has opposite sign.Integration in the formula (42) an be done numerially, yielding�(1)s (� > 1) = Cosh2(�) ; (44)



Dynamis of a Planar Domain Wall with... 627where C ' �0:731. As one an expet �(1)s (�) tends to zero when � ! 1.The stati solution with the orretion �(0)s + �(1)s is presented in Fig. 2,where one an ompare it with the pure polynomial solution �(0)s and thestrit, stati solution tanh �. As it is easy to notie the orretion obtainedabove fores the polynomial solution to the well-known strit, stati solution.It gives us a strong argument, that splitting the stati part of polynomialsolution into two parts (one of them is tanh � ) is aeptable. This fat willbe used in the next setion.Eq. (33) an be also solved in a straightforward way using numerialmethods. Numerial analysis on�rms the results obtained above.

Fig. 2. The stati polynomial solution, the improved polynomial solution and thestrit solution tanh �.6. Time-dependent orretion to the polynomial solutionIn this setion we �nd time-dependent orretion to the polynomial ap-proximation. We have to solve Eq. (34) using the iterative method proposedin Setion 4. The seond term on the r.h.s. of the Eq. (34) is of the orderof the small parameter Æ and an be negleted in the �rst approximation.The oe�ient in front of �(1)d in the third term on the r.h.s. is the same asin Eq. (33) disussed in the previous setion. Now it is neessary to speifymore preisely the senario of evolution of the disussed domain wall. Fort < 0 the domain wall is stati and, as was disussed in the Setion 6 has theform of the strit, stati solution tanh � (see (6)). In t = 0 the domain wall



628 M. �lusarzykis squeezed by 2Æ as a result of ation of an external fore. The evolution atlater times is governed by the �eld equation (34).This senario helps us to understand the role of the last term on the r.h.s.of Eq. (34). In the simplest ase we an state that it is small for � ! �1,and by negleting it we obtain good approximation in the �rst step in thisregion. Nevertheless from the disussion presented above we an onludethat we get quite good solution in the whole range of �. To prove this werewrite the third term on the l.h.s. Thus we have2�(1)d � 2 h3�(0) 2s (�)� 1i�(1)d = jd(t; �)+6 Æ�(0)d �Æ�(0)d + 2 Æ�(0)s + 2 tanh ����(1)d + �(1)s � : (45)Due to the results of Setion 6 the stati part of the polynomial solution isorreted by the funtion �(1)s , whih has been alulated above. When wetake some terms of higher order (whih an be obtained in the next stepsof alulation) we an hange �(0) 2s on the r.h.s. of Eq. (34) by "improved"expression (�(0)s +�(1)s )2. From the disussion presented above and illustratedin Fig. 2 we have �(0)s + �(1)s � tanh �: (46)In the �rst step we are then going to solve the linear, inhomogeneous equa-tion 2�(1)d � 2 �3 tanh2 � � 1��(1)d = jd(t; �): (47)This an be rewritten as a wave equation� �2�t2 +D2��(1)d (t; �) = �jd(t; �); (48)where operator D2 has the formD2 = � � �2��2 � 2(3 tanh2 � � 1)� : (49)Eq. (48) an be solved by the standard Green's funtion tehnique. Wealulate Green's funtion for operatorD2 using expansion in eigenfuntions.We are looking for the Green's funtion G(�; t; �0; t0), whih ful�l the equation� �2�t2 +D2�G(�; t; �0; t0) = Æ(t� t0)Æ(� � �0); (50)and obeys the onditionG(�; t; �0; t0) = 0 for t < t0: (51)



Dynamis of a Planar Domain Wall with... 629If the set of eigenfuntions f ng is given, we an onstrut Green's funtionin a standard manner. Detailed desription of this proedure is given in [20℄.The Green's funtion an be written asG(�; t; �0; t0) = K(�; t; �0; t0)�(t� t0); (52)where propagator K(�; t; �0; t) has the formK(�; t; �0; t0) =  0(�) �0(�0)(t� t0)+Xn 6=0 n(�) �n(�0)sin hp�n(t� t0)ip�n : (53)The solution of the inhomogeneous equation is given by the formula�(1)d (t; �) = �ZR d�0 tZ�1 dt0K(�; t; �0; t0) jd(t0; �0): (54)Beause jd(t < 0; �) = 0 we an simplify (54) as follows�(1)d (t; �) = �ZR d�0 tZ0 dt0K(�; t; �0; t0) jd(t0; �0): (55)The problem of alulating time-dependent orretion to the polynomialsolution is then redued to �nding the system of eigenfuntions of operatorD2. This system is well-known (see e.g. [8℄)and onsists of two disreteeigenvalues and ontinuous spetrum with orresponding eigenfuntions 0(x) = p32 1osh2 x for �0 = 0; (56) 1(x) = r32 sinhxosh2 x for �1 = 3; (57) k(x) = 1p2�(k2 + 1)(k2 + 4) eikx �2� 3osh2 x � 3ik tanhx� k2� ; (58)where �k = k2 + 4; k 2 R+:The eigenfuntions from the ontinuous part of the spetrum orrespond tothe real eigenvalues and an be split into two sets of eigenfuntions, orthog-onal to eah other (1)k (x) = 1p2�(k2 + 1)(k2 + 4)� ��2� k2 � 3osh2 x� os kx+ 3k sinkx tanh x� ; (59)



630 M. �lusarzykand  (2)k (x) = 1p2�(k2 + 1)(k2 + 4)� ��2� k2 � 3osh2 x� sinkx� 3k os kx tanhx� : (60)Inserting formulae (56)�(60) into (52)�(55) we get the expression for theretarded Green's funtionGr(�; t; �0; t0) = �(t� t0) (t� t0) 0(�) �0(�0)+ 1p3 sin hp3(t� t0)i 1(�) �1(�0)+ Xi=1;2 1Z0 dk sin hpk2 + 4(t� t0)ipk2 + 4  (i)k (�) (i)�k (�0)!: (61)We get the solution �(1)d (t; �) integrating Gr(�; t; �0; t0) with the soure termjd(t0; �0) in the whole range of �0. As jd(t0; �0) is odd in variable �0, part ofGr even in this variable does not give any ontribution to the �nal solution.The Green's funtion an be rewritten asGr(�; t; �0; t0) = �(t� t0) 1p3 sin hp3(t� t0)i 1(�) �1(�0)+ 1Z0 dk sin hpk2 + 4(t� t0)ipk2 + 4  (1)k (�) (1)�k (�0)! : (62)Finally, inserting Eq. (62) into (55) we an write solution �(1)d (t; �). Foronveniene we split it into two parts due to the parts of Green's funtion(62). It reads �(1)d (t; �) = �(1)d (�)(t; �) + �(1)d (�)(t; �); (63)where �(1)d (�) and �(1)d (�) are given by formulae�(1)d (�)(t; �) = � 12� ZR d�0 tZ0 dt0 1Z0 dk sin hpk2 + 4(t� t0)i(k2 + 1)(k2 + 4)3=2 jd(t0; �0)



Dynamis of a Planar Domain Wall with... 631��(2� k2) sin k� � 3k os k� tanh � � 3 os k�osh2 � ���(2� k2) sin k�0 � 3k os k�0 tanh �0 � 3 os k�0osh2 �0 � ; (64)
�(1)d (�)(t; �) = �p32 sinh �osh2 � ZR d�0 tZ0 dt0jd(t0; �0) sin hp3(t�t0)i sinh �0osh2 �0 : (65)Let us give an interpretation of these two parts of the �nal solution.�(1)d (�) is onneted with the  1 mode in the system of eigenfuntions ofthe operator D2. The interation with  1 generates in the time-dependentorretion �(1)d the omponent, whih exponentially vanishes for large � andosillates. It an be treated as a form of exitation of the domain wallgiven by  1. The ruial role whih this omponent plays in dynamis ofour system is more transparently visible in the proess of ollision of kinks(see [16℄ and [17℄).The omponent �(1)d (�) has the form of a wavepaket � the osillations ofthe domain wall generate radiation. Thus we have the following senario ofthe disussed phenomena: in t = 0 the external fore squeezed the domainwall by 2Æ. The wall osillates around the stati on�guration. The osil-lations generate radiation as in the formula (64). It is natural to restrit�(1)d (�) to waves going out from the wall�(1)d (�) ! �(1)d (!)(t; � > 0) = � 14� ZR d�0 tZ0 dt0 1(k2 + 1)(k2 + 4)3=2 jd(t0; �0)� os hk(� � �0)�pk2 + 4(t� t0)i �3k tanh ��2� k2 � 3osh2 �0��3k tanh �0�2� k2 � 3osh2 ���+sin hk(� � �0)�pk2 + 4(t� t0)i ��2�2� k2 � 3osh2 ����2� k2 � 3osh2 �0�� 9k2 tanh � tanh �0� : (66)For � < 0 the result is analogous.



632 M. �lusarzykThe solution �(1)d (!) has the form of a wavepaket�(1)d (!)(t; �) = 1Z0 dkF (k; t; �)ei(k��pk2+4t): (67)The waves have the frequeny !(k) = pk2 + 4 so they satisfy the dispersionrelation !2(k)� k2 = 4: (68)It agrees well with our expetations, beause for large j � j Eq. (47) reads2�(1)d � 4�(1)d = 0: (69)To plot the funtion �(1)d (!) given by the formula (66) we alulate it numer-ially for some �xed values of t and � 2 (0; 20), with the step �� = 0:1. The�nal result is presented in Fig. 3�7. One an easily see the ausal haraterof obtained solution. In the region outside the light-one the �eld �(1)d (!)is nearly equal to 0. The �utuations are aused mainly by omputationerrors. This fat was heked by dereasing the step of integration � the�utuations derease then too. The �eld �(1)d (!) is small � on the �guresit is multiplied by fator 102. This one again on�rms the approximationused in our approah.

Fig. 3. The radiation emitted by the osillating domain wall for t = 3.
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Fig. 4. The radiation emitted by the osillating domain wall for t = 6.

Fig. 5. The radiation emitted by the osillating domain wall for t = 9.

Fig. 6. The radiation emitted by the osillating domain wall for t = 12.
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Fig. 7. The radiation emitted by the osillating domain wall for t = 15.7. RemarksLet us brie�y summarize the main points of our work. We have derivedthe planar domain wall solution with the time-dependent thikness in thepolynomial approximation. The planar domain wall osillates with smallamplitude. We have then proposed an approah enabling us to alulate theorretion to the pure polynomial solution. We have split this orretioninto two parts. The time-dependent part ontains the omponent whih isinterpreted as the radiation from the osillating domain wall.There are several possible extensions and generalizations of our approah.It an be applied without muh trouble to the other �eld-theoretial mod-els. In our paper we disuss only the ase of small osillations around thestati solution. As one an easily see in Fig. 1 there exist also solutionsosillating with amplitude whih is not small. This ase should be disussedseparately. Another problem is the bakreation of the radiation in the on-sidered, osillating domain wall. As we have the energy �owing out fromthe domain wall, one an expet dumping of osillations. We have hekedthat the energy per unit area of the domain wall is onserved up to termsnegleted. The problem of the bakreation of the domain wall deserve aseparate investigation. It will be disussed in the next paper.I would like to thank Professor H. Arod¹ for his help and many stimu-lating disussions. I am also grateful to dr L. Hadasz for reading the paperand helpful remarks.
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