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Domain wall-type solution with oscillating thickness in a real, scalar
field model is investigated with the help of a polynomial approximation.
We propose a simple extension of the polynomial approximation method.
In this approach we calculate higher order corrections to the planar do-
main wall solution and find that the domain wall with oscillating thickness
radiates.

PACS numbers: 11.10.Lm

1. Introduction

Topological defects constitutes an important class of solutions in field-
theoretical models with degenerate vacua. They play very important role in
several branches of physics. Let us mention here field-theoretical cosmology
and the cosmic strings hypothesis (see [1-3]), dynamics of superconductors,
superfluids and liquid crystals in condensed matter physics (see [3,7]) as well
as a flux tube in QCD.

This short and incomplete list shows the necessity of having effective
computing methods to study the dynamics of topological defects. In spite
of the increasing development of mathematical techniques to solve nonlinear
equations, exact solutions seem not to be the rule and numerical methods
have been the most common approach to study properties of topological
defects. Therefore analytical and perturbative methods are of great interest
and importance.

In this paper we study domain wall type solution in the A@* model. In
paper [8] excited domain wall of this kind was considered and the radiation
emitted from the domain wall was found. In our approach we further develop
the method of a so-called polynomial approximation (see [9,10]), which is
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used to construct the domain wall type solution with time-dependent thick-
ness. We show how to compute corrections to the polynomial solution. The
corrections consist of two parts: the static one and the time-dependent one.
The time-dependent part of the correction contains radiation emitted by
domain wall with oscillating thickness.

The plan of our paper is the following. In the next section we present
the model. In Section 3 we derive the time-dependent planar domain wall
solution in the polynomial approximation. Section 4 is devoted to the de-
tailed analysis of this solution. We present the method of finding correction
to the polynomial solution. In Sections 5 and 6 we calculate static and time-
dependent part of this correction. In Section 7 we shortly summarize the
main points of our work.

2. The model

We consider the model with single, scalar, real-valued field @, defined by
the action

S = /d% [—%nﬂyaf‘@ay@ — %(@2 — %)%, (1)

where 7, = diag(—1,1,1,1) and A, v are positive constants. The corre-
sponding equation of motion for the field @ has the form

0,0" P — 2)P(P* — v?) = 0. (2)
The energy functional for the model is given by the formula

B[d) = % / PE[(DD) + (250 + @ )] . (3)

It is convenient to rescale the space-time coordinates and the scalar field as
follows

P
(p =
v
t ozxo,
3
§ = ax’,
= az!, = aa?, (4)

where a = VAv2. The new variables are dimensionless. The vacuum values
of ¢ in the considered model are equal to 1. Configuration of the field
which smoothly interpolates between these two vacua is called the domain
wall. Our goal is to construct the domain wall configuration, localized on
the &' — #? plane, with the time-dependent width. The planar domain
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wall distinguishes the direction perpendicular to the wall plane, given in our
case by the coordinate lines of £&. As we consider the configuration with ¢
independent of the coordinates &' and 2, we can restrict our approach to
the 1 4+ 1 dimensional model. Equation (2) then takes the form

SR+ S8 =29 1) =0, @
Static solutions of this equation are well-known. They have the form

¢(&) = £tanh¢. (6)

3. Domain wall solution in the polynomial approximation

In this section we construct approximate domain wall type solution of
Eq. (5) with time-dependent width. In order to realize this we use the
method of a polynomial approximation, whose detailed description is given
in [9]. The basic idea of this approach is to approximate the scalar field inside
the domain wall by the polynomial in the variable ¢ with time-dependent
coefficients. Thus, inside an interval [—&1,&o] (o and &; are positive) we
have

H1,6) = alt)E + O + gel)E’ ©

The domain wall solution is characterized by the fact, that for sufficiently
large | £ | the field approaches its vacuum values +1

(p(tag) = +1 for 52507
p(t,§) = -1 for <& (8)

It is possible (see [9]) to adopt more accurate asymptotics for large | £ |, with
exponential correction exp(—2a€) to the vacuum values £1. For simplicity
of further calculations we use expressions (8).

We can tune accuracy of our approximation changing degree of the poly-
nomial (7). One can easily notice, that the cubic Ansatz presented above is
the simplest, nontrivial choice. The Ansatz (7) should be smoothly matched
with the vacuum solutions at & = &y and ¢ = —£;. The matching conditions
follow in a standard manner from Eq. (5). One integrates Eq. (5) over ¢ in
arbitrary small intervals [—&; — e, =& +¢] ; [€o — &,&0 + €] and lets € — 0.
This implies

aqu(taf) |§=§0 = Oa
Ied(t,8) le=—¢e, = 0. (9)
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From Eq. (8) one gets

¢(t7£0) = +1,
¢(t,—&1) = —1. (10)

The Ansatz (7) with matching conditions (9)-(10) allows us to find solu-
tion of Eq. (5) in the proposed form. Inserting the expansion (7) into the
matching conditions we get, analogously to the case of cylindrical domain
wall discussed in [9], the following conditions for functions a(t), b(t), c(t)
and parameters &g, &1

3 8a3
ég,mﬂzmcm:——f (11)

9
Then we insert the expansion (7) into (5) and equate to zero coefficients
in front of successive powers of £. After some easy algebra, considering
conditions (11) we get the following equation

§o=¢1, a(t) =

8
a+ gas —2a =0. (12)

Function ¢(t) is related to a(t) (see formula (11)) and the last step in our
approach is to solve Eq. (12). We construct an approximate solution of
Eq. (12), which is convenient for the further analysis. With variables rede-
fined as follows 3

alt) = SA(), T =21, (13)

Eq. (12) takes the form )
A=A- A3 (14)

where now dot denotes the derivative with respect to 7. It is easy to notice
that there exist periodic solutions. Eq. (14) can be regarded as equation of
motion for a particle moving in one dimensional potential field (see Fig. 1)
A2 A%

U(A) = 2 + i (15)

In the further part of our discussion we consider only the periodic solu-
tions oscillating around A = 1, because of the connection between A and the
domain wall thickness parameter ;. When A(t) > 0 for all 7 we have also
£o0,&1 > 0, which is consistent with the interpretation of these parameters.
The periodic solutions oscillating around A = —1 are symmetric (in the
sense that when one changes £y and &; by each other it has no influence on
the dynamics of our system), so we don’t discuss this situation. Considering
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Fig. 1. The potential field U(A) = —A; + AT4.

all these remarks we restrict our investigation to solutions oscillating with
small amplitude around A = 1. We can write

A(T) =1+ 9(7), (16)
where ¥(7) is small, periodic function. Inserting (16) into Eq. (14) one gets

. 1 3
V4= —§w3 — 5@? (17)

Expression (17) has the form of oscillator equation with nonlinear terms.
Our goal is to find its perturbative solution with initial conditions: ¥(0) =
Y, W(O) = 0, which describes initially static, sqeezed wall. One can solve the
nonlinear oscillator equation of type (17) using Krylov—Bogolubov method
(see [19]).The general solution has the form

U(r) =wcosp(T) + ao +Zak ) cos ko(T) + B (w) sinkp(T), (18)
k>1

where functions w, ¢, @, ( can be calculated in a standard manner (see [19])
with initial condition w(0) = §. In our case we find

(1) = cos [(1 + %) 7':| - % + Z—Q cos [2 <1 + %) r] +0(6%), (19)

where § is a small parameter. Thus we get solution a(t)

a(t):% <1+5cos [2 <1+%) t] —34i2+§ cos [4 <1+%) tD + 0.
(20)
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Formula (20) agrees well with the numerical solutions of Eq. (12). In the
last step we have to insert the solution (20) into the Ansatz (7) considering
conditions (11). The final expression for the field of the oscillating domain
wall in the polynomial approximation has the form

pO(t,¢) = [g <§ - %53’) + 25 cos 2t (¢ — &%) + 252 cos 202t (¢ — 3¢?)

-5 (e~ 3¢) | e@i- 1€
+O(E —&o(t)) — O(—& (1) — &) +0(8%), (21)
where
(2:2+%52+O(63). (22)

The function £y(t) can be regarded as the half-width of the domain wall in
the & coordinate. It is given by the formula

&(t) =1—0dcos 2t + %52 + %52 cos 202t + O(8?). (23)

From Eq. (22) one can get period of oscillation of the domain wall T' =
2w/ : T = 7 — O(0?). In the case of linear oscillations around static
solution (one can regard this situation neglecting nonlinear terms in (17)
— it is admissible because ¥ is small by definition) one gets 2 = 2 and
T = 2. The formula (21) can be adopted to the special, static case of
domain wall solution, taking § = 0. It is equivalent to the (1,0) central,
critical point of Eq. (17). The general solution ¢(*)(¢,£) can be then treated
as a small oscillation (with amplitude given by the parameter §) around the

static solution ¢§°) (&)

000 =3 (e~ 3¢) eu- 1€ en

Accordingly to Eq. (21) initially the domain wall is a bit sqeezed. Then it
oscillates with small amplitude around the static solution.

4. Correction to the polynomial solution

In this section we propose a simple extension of the pure polynomial
solution obtained above. Formula (21) gives us the simplest, approximate
domain wall-type solution in our model. One can study wider range of phe-
nomena (e.g. nontrivial asymptotics of the domain wall solution as well as
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radiation, which can be emitted by the oscillating domain wall) considering
higher-order corrections to this solution. Our goal is to calculate perturba-
tively corrections to the zeroth order polynomial solution. Let us denote it
by ¢V (¢,€). Thus, we can write the field satisfying Eq. (2) as

¢(t,€) = O (t,€) + ¢V (1, ). (25)

In order to find the correction ¢(!) (¢, €) let us insert expression (25) into the
field equation (5). Neglecting nonlinear terms in the field ¢ we get

9,04V — 2 [3¢(o>2 _ 1] $) = —9,04¢© +2 [¢<0)2 _ 1} 0. (26)

We expect that global character of the domain wall solution during time
evolution won’t change because of topological stability (in the other words:
the solution remains the planar domain wall type all the time, only small
corrections can occur). That’s why the linearization in (26) may be done.
Eq. (26) is a linear one with source term j(¢,&) given by the formula

9260 9240
o2 g2

j(t,€) = +2[p02 —1]¢". (27)

As it was done for the polynomial solution ¢(®) we can split 4(t, &) into static
and time-dependent part

From Eq. (21) one gets

3
jile) = [2{ (6-3¢) +€

where prim denotes derivative with respect to &, and

O1- [~ (I(E-1)+d(E+1), (29)

ja(t, &) = —;502(5 — &%) cos 2t — 36(4€ — €3) cos 2t

O(&o(t)— 1 £ 1)

€3 ) cos 2t — 36 sgn £(1 — 3€%) cos Qt| 5(&o(t)— | € )
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+gsgng<1 — &) (&)~ | € 1) — 01— | £]))
3

+§5(§ — €3 cos Qt 8 (&o(t)— | € |)

- (5 - %53) [(olt)— 1 €)= 81— | £])]
+062% cos Qt[5(€ + &o(t)) — 0(€ — &o(t))]
(€ — €o(t) — 8'(€ — 1)] — [3/(€ + Eo(8)) — (€ + 1)) (30)

Eq. (26) is complicated due to unpleasant form of the polynomial solution
given by Eq. (21). We can simplify the operator on the left-hand side of
Eq. (26) noticing, that ng(O) can be split into static and time-dependent part,
and predominant component tanh ¢ (which is exact, static solution of the
initial field equation) can be extracted from the static part as follows

¢ = tanh & + 66 (€) + 567 (¢, ), (31)

Inserting expression (31) into the evolution equation and rewriting some
terms on the right-hand side we get finally

0,0" ") — 2 [3tanh® € — 1] ¢ = ji(&) + ja(t, &)
+6 (¢g0>2 — tanh? 5) s
+65¢ (54520) +264© + 2tanh g) o). (32)

The component in front of ¢() in the third term on the right-hand side is
nonzero only on the border of the domain wall and quickly tends to zero when
| € | = oo. Analogously, the component in front of ¢(!) in the fourth term
is of order of the small parameter §. Thus, we have the following, strongly
suggested method of solving Eq. (32): in the first step we put ¢ =0 on
the right-hand side of Eq. (32) and solve linear equation for ¢{!) with source
term js (&) +ja(t, &). The solution obtained in this way can be inserted to the
right-hand side of Eq. (32), so in the second step we have to solve equation
with the same linear operator but a new source term. We find full solution
as a result of such as iterating procedure. Nevertheless if components in
front of ¢(!) on the right-hand side are small (and that is our case), we can
find predominant part of full solution in the first step.

Due to the form of source term (which consist of static and time
-dependent part) it seems natural to split #M) into two components: the
static one and the time-dependent one. They are denoted respectively by

gzﬁgl) and ¢((11). From Eq. (32) we get

0" — 2 (3tanh? ¢ — 1) ¢ = j,(¢) + 6 (9 — tanh?¢) 9V, (33)



Dynamics of a Planar Domain Wall with... 625

for the static part of solution, and

0¢) -2 [3tanh® & — 1] ¢y = ja(t,)
+65¢" (565" +2640) +2tann¢) (4 +4V)

+6 (472 — tanb?¢) 41!, (34)
for the time-dependent part. In the last equation we use the standard no-
tation o2 o2

O=—— 4+ —.
5 + 982 (35)

5. Static correction to the polynomial solution

Our goal in this section is to solve Eq. (33) and find static part of the
function qﬁ(l)(t,f). We adopt the method of solving, which was discussed

in the previous section. In the first step we put qﬁgl) = 0 on the right-hand
side of Eq. (33) and solve it in a standard way as a linear, inhomogeneous

equation. Then solution gzﬁgl) found in this way is inserted to the r.h.s. of
Eq. (33) and in the next step equation with a new source term should be
solved. Nevertheless, if expression which occur in a new source term as a
result of this procedure is small we get pretty good approximation in the
first step. The term in front of gzﬁgl) on the r.h.s. of Eq. (33) is nonzero only
on the border of the domain wall and quickly tends to zero when | £ |— oc.
Eventually we expect to have a good approximation in the region outside
the wall. This result seems to be acceptable — inside the domain wall the
accuracy can be improved by higher degree of the polynomial in Ansatz (7).
Finally we are going to solve the linear equation

¢V — 2 [3tanh?¢ — 1] (Y = j,(¢). (36)

The solution can be found by the standard Green’s function technique.

There exist two linearly independent solutions of the homogenous part of
Eq. (36)

1
ne) = e
1. 3 3 z
fQ(I) = gSlnhQ.’L‘—f—gtanhI—Fgm. (37)

As the Green’s function we take

G(&, z) = fi(z) f2(£)O(€ — )
—f1(8) fo(2)[O(€ — ) — O(—1)]. (38)
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The Green’s function G(&, z) obeys the condition
G¢=0,z)=0 for =z € (—o0,00). (39)

The general solution of Eq. (36) has then the form

o0 (&) = AF1(6) + B fole / G(¢,2)js (o (40)

where A and B are arbitrary constants. Inserting the Green’s function (38)
into the formula (40) we get

3 £
s (¢) = (A / fQ(I)js(w)dw) £1(6) + <B+ / fl(I)js(w)dw) £2(6).
0 —00

(41)
We have to put A =0 and B = 0 because we are looking for a solution gen-
erated by source term, not for the homogeneous equation solution. Another
reason for keeping B = 0 is quick (exponential) growth of the function fo(x)
for | £ | oo. In the case B # 0 the solution qﬁgl)(f) grows exponentially

and doesn’t meet requirements of the perturbative calculus. Combining ex-
pressions (29), (38) and (41) we get finally

A > 1) = l/b ) (e ;3)3+x3)dx]f1(5), (42)

and

+ [ifl(I) (24—7 <x - %I3>3 +:E3> dﬂﬁ] f2(8). (43)

1

Solution for ¢ < 0 has opposite sign.
Integration in the formula (42) can be done numerically, yielding

g(E>1) = (44)

cosh?(¢&)’
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where C' ~ —0.731. As one can expect qﬁgl)(f) tends to zero when & — 0.
The static solution with the correction qﬁgo) + qﬁgl) is presented in Fig. 2,
where one can compare it with the pure polynomial solution qﬁgo) and the
strict, static solution tanh £. As it is easy to notice the correction obtained
above forces the polynomial solution to the well-known strict, static solution.
It gives us a strong argument, that splitting the static part of polynomial
solution into two parts (one of them is tanh £ ) is acceptable. This fact will
be used in the next section.

Eq. (33) can be also solved in a straightforward way using numerical
methods. Numerical analysis confirms the results obtained above.

1.0+
0.8 =
0.6 -
< 4
044 .
4 g The static polynomial solution.
0.2 = A The strict solution tanh &.
—— The improved polynomial solution.
0.0 T T T T T T T T T T T 1
0.0 1.0 20 3.0 4.0 5.0 6.0

g

Fig.2. The static polynomial solution, the improved polynomial solution and the
strict solution tanh &.

6. Time-dependent correction to the polynomial solution

In this section we find time-dependent correction to the polynomial ap-
proximation. We have to solve Eq. (34) using the iterative method proposed
in Section 4. The second term on the r.h.s. of the Eq. (34) is of the order
of the small parameter § and can be neglected in the first approximation.

The coefficient in front of ¢((il) in the third term on the r.h.s. is the same as
in Eq. (33) discussed in the previous section. Now it is necessary to specify
more precisely the scenario of evolution of the discussed domain wall. For
t < 0 the domain wall is static and, as was discussed in the Section 6 has the
form of the strict, static solution tanh & (see (6)). In t = 0 the domain wall
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is squeezed by 24 as a result of action of an external force. The evolution at
later times is governed by the field equation (34).

This scenario helps us to understand the role of the last term on the r.h.s.
of Eq. (34). In the simplest case we can state that it is small for £ — +oo,
and by neglecting it we obtain good approximation in the first step in this
region. Nevertheless from the discussion presented above we can conclude
that we get quite good solution in the whole range of £. To prove this we
rewrite the third term on the L.h.s. Thus we have

a6y — 2 [362(0) - 1] 6 = ju(t.¢)
+656y" (605 + 200 +2tann¢) (¢ +6(). (45)

Due to the results of Section 6 the static part of the polynomial solution is
corrected by the function qﬁgl), which has been calculated above. When we
take some terms of higher order (which can be obtained in the next steps
of calculation) we can change ¢§°) % on the r.hus. of Eq. (34) by "improved"

expression (qﬁgo) +¢§”)2. From the discussion presented above and illustrated
in Fig. 2 we have
0 + ¢ ~ tanh¢. (46)

In the first step we are then going to solve the linear, inhomogeneous equa-
tion

06 — 2 [3tanh®¢ — 1] ¢\ = ju(t, &) (47)
This can be rewritten as a wave equation
0? .
[@ + DQ] b3 (8,) = ~ja(t.€). (48)
where operator D? has the form
2 A 2
D*=— [8—62—2(3tanh E—-1)]. (49)

Eq. (48) can be solved by the standard Green’s function technique. We
calculate Green’s function for operator D? using expansion in eigenfunctions.
We are looking for the Green’s function G(&,t; ¢, '), which fulfil the equation

82
[@ + D2] G ¢ 1) =a(t — )i - &), (50)

and obeys the condition

G tE,t)=0 for t<t. (51)
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If the set of eigenfunctions {1, } is given, we can construct Green’s function
in a standard manner. Detailed description of this procedure is given in [20].
The Green’s function can be written as

G(& ¢ 1) = K& ¢, 1)e(t -1, (52)
where propagator K (&,t;&',t) has the form

sin [\/E (t— t’)}

K (& 1:€',t') = ()5 (€) (¢t~ 1) +§)¢n(é)w:;(£’) =
The solution of the inhomogeneous equation is given by the formula
t
86 == [de [ @K ue )€, (54)
R —00
Because j4(t < 0,£) = 0 we can simplify (54) as follows
t
by (1,6) = — [ e’ [ AK€ ) jalt ). (55)
[«]

The problem of calculating time-dependent correction to the polynomial
solution is then reduced to finding the system of eigenfunctions of operator
D?. This system is well-known (see e.g. [8])and consists of two discrete
eigenvalues and continuous spectrum with corresponding eigenfunctions

V3 o1

Po(z) = 5 s for Ao =0, (56)
3 sinhz
¢1(I) = \/;m fOI' )\1 = 3, (57)
1
P (z) = e'ke [ - 5— — diktanhz — E*|, (58)
V2r (k2 + 1) (k2 +4) cosh” z
where

Ne = k>+4, keRT.

The eigenfunctions from the continuous part of the spectrum correspond to
the real eigenvalues and can be split into two sets of eigenfunctions, orthog-
onal to each other

Dy — 1
) = T DR D)

3
X [(2—k2— 5 )coskx+3ksinkxtanhx ,  (59)

cosh” x
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and

@)y _ 1
) = R T D)

x[<2—k2— 32 )sinkm—3kcoskxtanhx . (60)

cosh” x

Inserting formulae (56)—(60) into (52)—(55) we get the expression for the
retarded Green’s function

G (& t:€,t) =0t 1) ((t = t)1o()¥5(€)

L gin [\/_(t ~t )]¢1 (w1 ()

NG
< sm 2 44t — t’)} , .

+ dk ) (é)w(”*(é')) . (61)
b / T4 (e

We get the solution gzﬁfil)(t, €) integrating G,.(&,t; ¢, ') with the source term
Ja(t', &) in the whole range of £'. As jg(t',¢') is odd in variable ¢, part of
G, even in this variable does not give any contribution to the final solution.
The Green’s function can be rewritten as

Gr(&,1:€,1) = Ot~ ) (% sin [V3( — )] 91 (€)91(€)

% sin [VEZ F Fa(t—t)
0

Finally, inserting Eq. (62) into (55) we can write solution qﬁg)(t,f). For
convenience we split it into two parts due to the parts of Green’s function
(62). It reads

(1)

o) (,6) = ¢ (t€)+¢d ) (:€), (63)

where ¢,(11()N) and ¢((il(_) are given by formulae

W 1 / sm VEZ 4+ 4(t — 1) o
Pug(h:8) = / /dt/ (k? +1) 14:2+4)3/2 Jalt &)
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x <(2 — k?)sin k¢ — 3k cos k€ tanh € — W)
cosh” ¢
/
X <(2 — k?)sin k¢’ — 3k cos k¢’ tanh ¢’ — %) ; (64)
cosh” ¢/

¢
(1) V3 3 sinh{ / // [ /i| sinh ¢’
&) = ——= de' [ dt'ja(t', &) sin |V3(t—t . (65
00 = =5 2o [ [ttt ¢y sin [VB—1)] T (65)
0
Let us give an interpretation of these two parts of the final solution.
qﬁfil()i) is connected with the 1y mode in the system of eigenfunctions of
the operator D?. The interaction with 1, generates in the time-dependent
correction qﬁg) the component, which exponentially vanishes for large ¢ and
oscillates. It can be treated as a form of excitation of the domain wall
given by 1. The crucial role which this component plays in dynamics of
our system is more transparently visible in the process of collision of kinks
(see [16] and [17]).
The component qﬁfil()N) has the form of a wavepacket — the oscillations of

the domain wall generate radiation. Thus we have the following scenario of
the discussed phenomena: in ¢ = 0 the external force squeezed the domain
wall by 25. The wall oscillates around the static configuration. The oscil-
lations generate radiation as in the formula (64). It is natural to restrict

¢Ell()~) to waves going out from the wall

t

Byl = By (LE>0) = / /dt’ ey k2+4)3/23d( &)

0

« cos [k(£ &) — V2 At - t’)] [3k tanh ¢ <2 K2 L)

cosh? ¢/
—3k tanh ¢’ <2 .y 3 )]

cosh? &
: ! ! 3
+sin [k(f—f) - \/k2+4(t—t)] [—2 <2—k2 - m)
X <2 — k2 _cosflg g/) — 9k? tanhgtanhg'] . (66)

For ¢ < 0 the result is analogous.
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The solution ng(l) has the form of a wavepacket
(=)
$L0 0.6 = [ kP (kg gtV (67
0

The waves have the frequency w(k) = Vk? + 4 so they satisfy the dispersion
relation

w?(k) — k* = 4. (68)

It agrees well with our expectations, because for large | £ | Eq. (47) reads

0¢l) — 44" = 0. (69)

To plot the function ¢((il() ) given by the formula (66) we calculate it numer-
ically for some fixed values of ¢ and £ € (0,20), with the step A& = 0.1. The
final result is presented in Fig. 3-7. One can easily see the causal character
of obtained solution. In the region outside the light-cone the field ¢((il() )
is nearly equal to 0. The fluctuations are caused mainly by computation
errors. This fact was checked by decreasing the step of integration — the
fluctuations decrease then too. The field ¢((il() ) is small — on the figures

it is multiplied by factor 102. This once again confirms the approximation
used in our approach.

127
0.8 ’f’\‘
17
i
04 { ,"At
g 1+ 1
* 1 ¥
<= 0.0 4 ] Aptvrnsst i s e >
[
i v
v/
-0.4 |7
17
] 1/
4
0.8 T T T T l
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Fig. 3. The radiation emitted by the oscillating domain wall for ¢ = 3.
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Fig.5. The radiation emitted by the oscillating domain wall for ¢ = 9.
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Fig.6. The radiation emitted by the oscillating domain wall for ¢ = 12.
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Fig. 7. The radiation emitted by the oscillating domain wall for ¢ = 15.

7. Remarks

Let us briefly summarize the main points of our work. We have derived
the planar domain wall solution with the time-dependent thickness in the
polynomial approximation. The planar domain wall oscillates with small
amplitude. We have then proposed an approach enabling us to calculate the
correction to the pure polynomial solution. We have split this correction
into two parts. The time-dependent part contains the component which is
interpreted as the radiation from the oscillating domain wall.

There are several possible extensions and generalizations of our approach.
It can be applied without much trouble to the other field-theoretical mod-
els. In our paper we discuss only the case of small oscillations around the
static solution. As one can easily see in Fig. 1 there exist also solutions
oscillating with amplitude which is not small. This case should be discussed
separately. Another problem is the backreaction of the radiation in the con-
sidered, oscillating domain wall. As we have the energy flowing out from
the domain wall, one can expect dumping of oscillations. We have checked
that the energy per unit area of the domain wall is conserved up to terms
neglected. The problem of the backreaction of the domain wall deserve a
separate investigation. It will be discussed in the next paper.

I would like to thank Professor H. Arodz for his help and many stimu-

lating discussions. I am also grateful to dr L. Hadasz for reading the paper
and helpful remarks.
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