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SUPERSYMMETRY AND BOGOMOL'NYI EQUATIONSIN THE MAXWELL CHERN-SIMONS SYSTEMSBogdan DamskiInstitute of Physis, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polande-mail: bodzio�druid.if.uj.edu.pl(Reeived June 14, 1999)We take advantage of the superspae formalism and expliitly �nd theN = 2 supersymmetri extension of the Maxwell Chern�Simons model. Inour onstrution a speial form of a potential term and indispensabilityof an additional neutral salar �eld arise naturally. By onsidering thealgebra of supersymmetri harges we �nd Bogomol'nyi equations for theinvestigated model.PACS numbers: 11.30.Pb, 11.10.Ef, 11.10.Kk1. IntrodutionIt has been shown [1�3℄ that in some models solutions an be obtainedby onsidering the �rst order di�erential equations, whih are alled Bogo-mol'nyi equations, instead of more ompliated Euler�Lagrange equations.The traditional method of obtaining suh equations is based on rewritingan expression for the energy of a �eld on�guration, in suh a way, thatthere is a lower bound on it, whih has topologial nature. Field on�gu-rations, whih saturate this bound satisfy Euler�Lagrange equations as wellas Bogomol'nyi equations.Another way to obtain suh equations has also been pointed out [4, 5℄.This method is onneted with a N = 2 supersymmetri extension of aninvestigated model, and Bogomol'nyi equations arise naturally during de-tailed analysis of the algebra of superharges. In this ase the energy of�eld on�guration is bounded below by the entral harge of the supersym-metri algebra. This method is more powerful than the previous one. Asa result of this approah, we know [4℄ that a Bogomol'nyi bound on theenergy is valid not only lassially, but also quantum mehanially. Anotherinteresting fat, indiated by this method, is that topologially non-trival�eld on�gurations of a N = 1 supersymmetri theory must satisfy the Bo-gomol'nyi bound. This statement is based on the existene of the N = 2(637)



638 B. Damskisupersymmetri extension of the theory, whih is a N = 1 supersymmetriand possesses a topologially onserved urrent [6℄. This method has beensuessfully applied to many models.As an example let us onsider the Abelian Higgs model, whih was stud-ied in [7℄. This model possesses vortex solution whih has a topologialharge (quantized magneti �ux). It was shown that the entral harge ofthe N = 2 version of this model is in fat its topologial harge. Further-more, the speial relation between oupling onstants in this model, whihis indispensable for the existene of Bogomol'nyi equations, appears as theneessary ondition for the existene of its N = 2 supersymmetri extension.There have been onsiderable interest in Chern�Simons systems [8℄.These systems typially possess topologial harge, therefore they are goodandidates for investigations by the supersymmetri method. The Chern�Simons model without the Maxwell term but with a speial sixth-order Higgspotential has been studied in this way [9℄. It was found that the requirementof existene of the N = 2 SUSY version of this model leads to the speialform of the previously mentioned potential. When we want to onsider amore general ase, we add the Maxwell term to the ation. It was shown [10℄that when we do so we must also add the kineti term of a neutral salar�eld to the ation and onsiderably hange the potential. This model, infat, ontains two previously mentioned models. The �rst one is obtainedby putting oupling onstant, whih stays next to the Chern�Simons term,equal to zero. The seond one is obtained by making suitable limit of ou-pling onstants [10℄. Our aim is to study the Maxwell Chern�Simons modelby using the supersymmetri method, and �nd its Bogomol'nyi equations.It is worth to notie that also the Maxwell Chern�Simons theory withan additional magneti moment interation was studied [11, 12℄. In the �rstpaper Bogomol'nyi equations were found by means of the supersymmetrimethod. Nevertheless, the results from this paper annot be ompared withours. In the seond one the N = 2 supersymetri extension was found viaa dimensional redution. This method is signi�antly di�erent from the oneused in our paper, and it is instrutive to ompare these two approahes.The plan of this paper is as follows: we start our onsiderations fromthe Abelian Higgs model with the Chern�Simons term. Then we onstrutthe N = 1 supersymmetri version of this model. After that we indiate thedi�ulties onneted with onstrution of the N = 2 supersymmetri ation,and we show how they an be understood and avoided. This leads to theorret form of the Maxwell Chern�Simons ation. Next we �nd the Noetherurrent, and onstrut appropriate real spinorial superharges. Finally, weshow how Bogomol'nyi equations arise from their algebra and expliitly �ndthese equations.



Supersymmetry and Bogomol'nyi Equations in the: : : 6392. ConventionsOur onventions are as follows. We use a metri with the signature(+;�;�), the ovariant derivative is de�ned as: D� = �� � ieA�.We take Dira matries (�) �� to be0 = � 0 �ii 0 � ; 1 = � 0 ii 0 � ; 2 = � i 00 �i � : (1)They obey the following equation�� = g�� + i�����: (2)Superspae onventions are the same as those in [13℄, and are brie�ylisted below for the reader's onveniene. Spinor indies are lowered andraised by the seond-rank antisymmetri symbol C�� in the following way: � = C�� � ;  � =  �C��; C�� has the form(C��) = (�C��) = � 0 �ii 0 � = (�C��): (3)A salar super�eld � = (�;  ; F ) is de�ned as�(x�; ��) = �(x) + �� �(x)� �2F (x); (4)where �� is a real spinor, �2 = 12����, and � = 0; 1.A vetor super�eld V � = (A�; ��) in the Wess�Zumino gauge readsV �(x�; ��) = i��(�) �� A�(x)� �22��(x): (5)The superovariant derivative is D� = ���� + i��(�)����, and the gaugeovariant superovariant derivative is r� = D� � ieV�.3. The modelIt was shown [10℄ that there are Bogomol'nyi equations in the modelde�ned by the ationS = Z d3x"�14F ��F�� + �"�����A�A� + 12(D��)�(D��)+12��N��N � e22 N2j�j2 � e28 ��4N�e + j�j2 � �20�2#; (6)



640 B. Damskiwhere � is a omplex salar �eld, N is a neutral real salar �eld and A� isa gauge �eld.We want to stress the fat that there are no Bogomol'nyi equations inthe Abelian Higgs model, whih was studied in [7℄, with the Chern�Simonsterm. The ation of this model an be written asS 0=Z d3x ��14F ��F��+�"�����A�A�+12(D��)�(D��)� �(j�j2 � �20)2� :(7)Our aim is to show, using supersymmetri formalism, that in order to obtainsuh equations we have to modify the ation (7) to the form of the ation(6). Consequently, we start our alulations from the ation (7) and we arelooking for its supersymmetri version.4. N=1 and N=2 extensionsTo obtain Bogomol'nyi equations we must �nd a N = 2 supersymmetriextension of our model. The onnetion between Bogomol'nyi equations andthe supersymmetri form of the investigated model was explained in [5℄. Wewill disuss it in the next setion.We start our onsiderations from a N = 1 supersymmetri extension of(7). We onstrut the appropriate ation from the omplex salar super�eld� = (�;  ; F ), the real salar super�eld 
 = (N;�;D), and the vetor su-per�eld V � = (A�; ��). The N = 1 version of (7) readsS 0N=1 = Z d3xd2� ��14(r��)�(r��)� 14(D�
)�(D�
)��4V �D�D�V �+ 116(D�D�V �)(DD�V ) + (2�) 12�20
 � (2�) 12���
� : (8)In terms of the omponents of the super�elds it takes the formS 0N=1 = Z d3x ��14F ��F��+�"�����A�A�+12(D��)�(D��)+ 12��N��N��(j�j2 � �20)2 � 4�N2j�j2 + i2 � =D + i2 ��=��+ i2 ��=���(2�) 12 �  N + ie2 ( � ��� �� ��)� (2�) 12 (�� �� + � ��) + ����� :(9)



Supersymmetry and Bogomol'nyi Equations in the: : : 641The non-propagating �elds F and D were eliminated by means of theirEuler�Lagrange equations of motion. The ation S 0N=1 is invariant underthe following N = 1 transformationsÆ � = �2(2�) 12N��� + i��(�)��D��;Æ� = �� ;Æ�� = �2(2�) 12 (j�j2 � �20)�� + i��(�)����N;ÆN = 12(���+ ���);Æ�� = i2"���F��(�)����;ÆA� = i2(����� ����); (10)where �� is a real in�nitesimal spinor. Evidently, when we put all fermion�elds, as well as the �eld N , equal to zero, the ation (9) will have the sameform as the ation (7). We an put the �eld N equal to zero beause itsequations of motion allow us to do it. Therefore, the ation (8) is in fat theN = 1 extension of (7).To �nd the N = 2 extension of (9) we require its invariane under trans-formations (10) with an in�nitesimal omplex spinor �� instead of the real��. At this point, it is useful to hange notation. We introdue, following [7℄,the spinor �eld � � = �� i�: (11)The invariane under the N = 2 transformations an be ahived by rewrit-ting the ation (9) in the terms of �,  , �, N, A�, and demanding itsinvariane under transformations� �! e�i��;  �! e�i� ; (12)where � is de�ned as follows: �� = ei���. Obviously, this requirement isequivalent to the previous one. To apply this method we rearranged theation (9) to the formS 0N=1 = Z d3x"�14F ��F�� + �"�����A�A� + 12(D��)�(D��)+12��N��N � �(j�j2 � �20)2 � 4�N2j�j2 + i2 � =D + i2 ��=�� � (2�) 12 �  N � e4 + (2�) 122 ! ( � ��+ �� ��)+ e4 � (2�) 122 ! ( � ���+� ��) + �2 ��� + �4 ( �� �� ���)#:(13)



642 B. DamskiAs a onsequene of the term �4 ( �� �� � ��), this ation is not invariantunder transformations (12) even if we assume that� = e28 : (14)This relation is exatly the same as that in [7℄. To obtain the N = 2 SUSYversion of (7), we add to the ation (8) the following termZ d3xd2��

 = Z d3x[2�ND + ���℄= Z d3x h2�ND + �2 ��� � �4 ( �� �� ���)i : (15)One sees that the term (15) anel the last term of (13), but it ontains a�eld D. As a result, this addition leads to the modi�ation of the Higgs termin the ation. The ation, onstruted as a sum of (8) and (15), is invariantunder the N = 2 supersymmetri transformations if we impose ondition(14) on � and e, and an be written asSN=2 = Z d3x ��14F ��F�� + �"�����A�A� + 12(D��)�(D��)+12��N��N � e22 N2j�j2 � e28 ��4N�e + j�j2 � �20�2+ i2 � =D � e2 �  N + � ��� + i2 ��=�� � e2( � ��+ �� ��)� :(16)The N = 2 supersymmetri transformations readÆ � = �eN��� + i��(�)��D��;Æ� = �� ;ÆA� = �12(���� + �� ��);Æ�� = �2N�� e2�j�j2 � �20���� +�12"���F��(�) �� � i(�) �� ��N� ��;ÆN = 12 ���� + ���� : (17)Now, if we put all fermion �elds equal to zero, we an see that the require-ment that the ation (8) must be invariant under the N = 2 the transforma-tions leads to the ation that is the supersymmetri extension of the initialone (6).



Supersymmetry and Bogomol'nyi Equations in the: : : 6435. Bogomol'nyi equationsFollowing Hlousek and Spetor [5℄ we onisely explain how Bogomol'nyiequations arise from the algebra of supersymmetri harges. Due to theHaag��opusza«ski�Sohnius theorem [14℄, there are two real spinorial super-harges qL� , where L = 0; 1 is an internal index, in our N = 2 supersymmetritheory. These superharges are obtained from the Noether onserved ur-rent. They obey the algebrafqL� ; qM� g = 2ÆLM (�)��P� + TCLMC�� ; (18)where if we denote energy-momentum tensor by T�� , we have P� = R d2xT0�.T is the entral harge.The Noether urrent (J�)� was found by onsidering variation of theation (16) under transformations (17) with spae-time dependent spinorialparameter �� ÆSN=2 = Z d3x[(J�)����� + h::℄: (19)In the present ase we have(J�)� = 12 ���(�) �� F �� + i2"��� ���(�) �� ��N + i4"���F�� ���+i� ���(�) �� N + 12D�� � � + 12��N ��� � ie2 � �(�) �� �N� ie4 ���(�) �� (j�j2 � �20) + i2"��� � �(�) �� D��; (20)and ��(J�)� = 0.We de�ned superharges to beq1� = Z d2x[(J0)� + h::℄; q2� = �iZ d2x[(J0)� � h::℄: (21)In order to hek the relation (18), we must impose anonial (anti)ommuta-tion relations on our �elds. If we simplify alulations by putting all fermion�elds zero after omputing the antiommutator (18), we only need the fol-lowing anonial antiommutation relation for the �eld ����(~x); i2(0) �� ���(~y)� = iÆ2(~x� ~y)Æ �� ; (22)and the same relation for the �eld  . We do not use a speial symbol foroperators. It should be notied that the relation (22) is valid when � is



644 B. Damskian operator, so this equation must be understood as the operator equation.If not stated otherwise, the expressions below are the operator equations,exept the ase when they ontain the expetation value, whih is denotedby h i. After lenghty but straightforward alulations, one obtainshP0i = Z d2x"14(Fij)2 + 12(Fi0)2 + 12 jD0�j2 + 12 jDi�j2+12(�0N)2 + 12(�iN)2+e22 j�j2N2 + e28 ��4N�e + j�j2 � �20�2#; (23)hPii = Z d2x ��F k0 Fik + �0N�iN + 12D0�(Di�)� + 12(D0�)�Di�� ; (24)T = Z d2x"ij�j(e�20Ai � i��Di�) = e�20�; (25)where indies i; j; k = 1; 2. � = � R d2xF12, the magneti �ux, is the topo-logial harge of the Maxwell Chern�Simons theory [10℄. What's more, sinethe entral harge T is a salar, expression (25) ontains lassial �elds. Toattain the exat form of the entral harge Euler�Lagrange equations of mo-tion for the �eld N have been used. We have also assumed that Di� tendsto zero at in�nity.Now, we are ready to �nd Bogomol'nyi equations. Let us introdue Q1and Q2 by Q1 = 12(q11 + iq21);Q2 = 12(q22 � iq12): (26)Hene fQ1 �Q2; Qy1 �Qy2g = 2�P0 � T2 � ; (27)where a unit operator next to T is not written; the lower (upper) sign or-responds to a positive (negative) value of T . Taking the expetation valueof (27), one an onlude that there is a Bogomol'nyi boundhP0i � jT j2 : (28)



Supersymmetry and Bogomol'nyi Equations in the: : : 645Moreover, this bound is saturated when(Q1 �Q2)jBi = 0 : (29)Using the relations (20), (21), (26), (29), one �ndsFi0 � �iN = 0 ;F12 � 2��N � e4(j�j2 � �20)� = 0 ;(D1 � iD2)� = 0 ;D0�� ie�N = 0 ;�0N = 0 ; (30)where �;N;A� are lassial �elds. These equations are preisely the Bogo-mol'nyi equations that we were looking for. They are of ourse the sameas those in [10℄. We want to emphasize that during these alulations wedid not hoose any partiular gauge hoie for the �eld A�, and we did notassume that our �elds are time-independent, as it was done in [7℄.To summarize, the supersymmetri method of �nding Bogomol'nyi equa-tions next time turned out to be a useful tool. We saw that a speial formof the potential term and an absolute neessity of the additional real neutralsalar �eld, in onsidered model, is due to existene of its N = 2 super-symmetri extension. We also heked that the topologial harge of theexamined model is the entral harge of its supersymetri extension.I would like to thank Dr. Leszek Hadasz for helpful disussions andreading the manusript. REFERENCES[1℄ A.A. Belavin, A.M. Polyakov, A.S. Shwartz, Yu.S. Tyupkin, Phys. Lett. B59,85 (1975).[2℄ H. J. de Vega, F.A. Shaposnik, Phys. Rev. D14, 1100 (1976).[3℄ E.B. Bogomol'nyi, Yad. Fiz. 24, 861 (1976).[4℄ D. Olive, E. Witten, Phys. Lett. B78, 97 (1978).[5℄ Z. Hlousek, D. Spetor, Nul. Phys. B397, 173 (1993).[6℄ Z. Hlousek, D. Spetor, Nul. Phys. B370, 143 (1992).[7℄ J. Edelstein, C. Núñez, F. Shaposnik, Phys. Lett. B 329, 39 (1994).[8℄ G. V. Dunne, hep-th/9902115.[9℄ C. Lee, K. Lee, E.J. Weinberg, Phys. Lett. B243, 105 (1990).
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