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SUPERSYMMETRY AND BOGOMOL'NYI EQUATIONSIN THE MAXWELL CHERN-SIMONS SYSTEMSBogdan DamskiInstitute of Physi
s, Jagellonian UniversityReymonta 4, 30-059 Kraków, Polande-mail: bodzio�druid.if.uj.edu.pl(Re
eived June 14, 1999)We take advantage of the superspa
e formalism and expli
itly �nd theN = 2 supersymmetri
 extension of the Maxwell Chern�Simons model. Inour 
onstru
tion a spe
ial form of a potential term and indispensabilityof an additional neutral s
alar �eld arise naturally. By 
onsidering thealgebra of supersymmetri
 
harges we �nd Bogomol'nyi equations for theinvestigated model.PACS numbers: 11.30.Pb, 11.10.Ef, 11.10.Kk1. Introdu
tionIt has been shown [1�3℄ that in some models solutions 
an be obtainedby 
onsidering the �rst order di�erential equations, whi
h are 
alled Bogo-mol'nyi equations, instead of more 
ompli
ated Euler�Lagrange equations.The traditional method of obtaining su
h equations is based on rewritingan expression for the energy of a �eld 
on�guration, in su
h a way, thatthere is a lower bound on it, whi
h has topologi
al nature. Field 
on�gu-rations, whi
h saturate this bound satisfy Euler�Lagrange equations as wellas Bogomol'nyi equations.Another way to obtain su
h equations has also been pointed out [4, 5℄.This method is 
onne
ted with a N = 2 supersymmetri
 extension of aninvestigated model, and Bogomol'nyi equations arise naturally during de-tailed analysis of the algebra of super
harges. In this 
ase the energy of�eld 
on�guration is bounded below by the 
entral 
harge of the supersym-metri
 algebra. This method is more powerful than the previous one. Asa result of this approa
h, we know [4℄ that a Bogomol'nyi bound on theenergy is valid not only 
lassi
ally, but also quantum me
hani
ally. Anotherinteresting fa
t, indi
ated by this method, is that topologi
ally non-trival�eld 
on�gurations of a N = 1 supersymmetri
 theory must satisfy the Bo-gomol'nyi bound. This statement is based on the existen
e of the N = 2(637)



638 B. Damskisupersymmetri
 extension of the theory, whi
h is a N = 1 supersymmetri
and possesses a topologi
ally 
onserved 
urrent [6℄. This method has beensu

essfully applied to many models.As an example let us 
onsider the Abelian Higgs model, whi
h was stud-ied in [7℄. This model possesses vortex solution whi
h has a topologi
al
harge (quantized magneti
 �ux). It was shown that the 
entral 
harge ofthe N = 2 version of this model is in fa
t its topologi
al 
harge. Further-more, the spe
ial relation between 
oupling 
onstants in this model, whi
his indispensable for the existen
e of Bogomol'nyi equations, appears as thene
essary 
ondition for the existen
e of its N = 2 supersymmetri
 extension.There have been 
onsiderable interest in Chern�Simons systems [8℄.These systems typi
ally possess topologi
al 
harge, therefore they are good
andidates for investigations by the supersymmetri
 method. The Chern�Simons model without the Maxwell term but with a spe
ial sixth-order Higgspotential has been studied in this way [9℄. It was found that the requirementof existen
e of the N = 2 SUSY version of this model leads to the spe
ialform of the previously mentioned potential. When we want to 
onsider amore general 
ase, we add the Maxwell term to the a
tion. It was shown [10℄that when we do so we must also add the kineti
 term of a neutral s
alar�eld to the a
tion and 
onsiderably 
hange the potential. This model, infa
t, 
ontains two previously mentioned models. The �rst one is obtainedby putting 
oupling 
onstant, whi
h stays next to the Chern�Simons term,equal to zero. The se
ond one is obtained by making suitable limit of 
ou-pling 
onstants [10℄. Our aim is to study the Maxwell Chern�Simons modelby using the supersymmetri
 method, and �nd its Bogomol'nyi equations.It is worth to noti
e that also the Maxwell Chern�Simons theory withan additional magneti
 moment intera
tion was studied [11, 12℄. In the �rstpaper Bogomol'nyi equations were found by means of the supersymmetri
method. Nevertheless, the results from this paper 
annot be 
ompared withours. In the se
ond one the N = 2 supersymetri
 extension was found viaa dimensional redu
tion. This method is signi�
antly di�erent from the oneused in our paper, and it is instru
tive to 
ompare these two approa
hes.The plan of this paper is as follows: we start our 
onsiderations fromthe Abelian Higgs model with the Chern�Simons term. Then we 
onstru
tthe N = 1 supersymmetri
 version of this model. After that we indi
ate thedi�
ulties 
onne
ted with 
onstru
tion of the N = 2 supersymmetri
 a
tion,and we show how they 
an be understood and avoided. This leads to the
orre
t form of the Maxwell Chern�Simons a
tion. Next we �nd the Noether
urrent, and 
onstru
t appropriate real spinorial super
harges. Finally, weshow how Bogomol'nyi equations arise from their algebra and expli
itly �ndthese equations.



Supersymmetry and Bogomol'nyi Equations in the: : : 6392. ConventionsOur 
onventions are as follows. We use a metri
 with the signature(+;�;�), the 
ovariant derivative is de�ned as: D� = �� � ieA�.We take Dira
 matri
es (
�) �� to be
0 = � 0 �ii 0 � ; 
1 = � 0 ii 0 � ; 
2 = � i 00 �i � : (1)They obey the following equation
�
� = g�� + i����
�: (2)Superspa
e 
onventions are the same as those in [13℄, and are brie�ylisted below for the reader's 
onvenien
e. Spinor indi
es are lowered andraised by the se
ond-rank antisymmetri
 symbol C�� in the following way: � = C�� � ;  � =  �C��; C�� has the form(C��) = (�C��) = � 0 �ii 0 � = (�C��): (3)A s
alar super�eld � = (�;  ; F ) is de�ned as�(x�; ��) = �(x) + �� �(x)� �2F (x); (4)where �� is a real spinor, �2 = 12����, and � = 0; 1.A ve
tor super�eld V � = (A�; ��) in the Wess�Zumino gauge readsV �(x�; ��) = i��(
�) �� A�(x)� �22��(x): (5)The super
ovariant derivative is D� = ���� + i��(
�)����, and the gauge
ovariant super
ovariant derivative is r� = D� � ieV�.3. The modelIt was shown [10℄ that there are Bogomol'nyi equations in the modelde�ned by the a
tionS = Z d3x"�14F ��F�� + �"�����A�A� + 12(D��)�(D��)+12��N��N � e22 N2j�j2 � e28 ��4N�e + j�j2 � �20�2#; (6)



640 B. Damskiwhere � is a 
omplex s
alar �eld, N is a neutral real s
alar �eld and A� isa gauge �eld.We want to stress the fa
t that there are no Bogomol'nyi equations inthe Abelian Higgs model, whi
h was studied in [7℄, with the Chern�Simonsterm. The a
tion of this model 
an be written asS 0=Z d3x ��14F ��F��+�"�����A�A�+12(D��)�(D��)� �(j�j2 � �20)2� :(7)Our aim is to show, using supersymmetri
 formalism, that in order to obtainsu
h equations we have to modify the a
tion (7) to the form of the a
tion(6). Consequently, we start our 
al
ulations from the a
tion (7) and we arelooking for its supersymmetri
 version.4. N=1 and N=2 extensionsTo obtain Bogomol'nyi equations we must �nd a N = 2 supersymmetri
extension of our model. The 
onne
tion between Bogomol'nyi equations andthe supersymmetri
 form of the investigated model was explained in [5℄. Wewill dis
uss it in the next se
tion.We start our 
onsiderations from a N = 1 supersymmetri
 extension of(7). We 
onstru
t the appropriate a
tion from the 
omplex s
alar super�eld� = (�;  ; F ), the real s
alar super�eld 
 = (N;�;D), and the ve
tor su-per�eld V � = (A�; ��). The N = 1 version of (7) readsS 0N=1 = Z d3xd2� ��14(r��)�(r��)� 14(D�
)�(D�
)��4V �D�D�V �+ 116(D�D�V �)(D
D�V 
) + (2�) 12�20
 � (2�) 12���
� : (8)In terms of the 
omponents of the super�elds it takes the formS 0N=1 = Z d3x ��14F ��F��+�"�����A�A�+12(D��)�(D��)+ 12��N��N��(j�j2 � �20)2 � 4�N2j�j2 + i2 � =D + i2 ��=��+ i2 ��=���(2�) 12 �  N + ie2 ( � ��� �� ��)� (2�) 12 (�� �� + � ��) + ����� :(9)



Supersymmetry and Bogomol'nyi Equations in the: : : 641The non-propagating �elds F and D were eliminated by means of theirEuler�Lagrange equations of motion. The a
tion S 0N=1 is invariant underthe following N = 1 transformationsÆ � = �2(2�) 12N��� + i��(
�)��D��;Æ� = �� ;Æ�� = �2(2�) 12 (j�j2 � �20)�� + i��(
�)����N;ÆN = 12(���+ ���);Æ�� = i2"���F��(
�)����;ÆA� = i2(��
��� ��
��); (10)where �� is a real in�nitesimal spinor. Evidently, when we put all fermion�elds, as well as the �eld N , equal to zero, the a
tion (9) will have the sameform as the a
tion (7). We 
an put the �eld N equal to zero be
ause itsequations of motion allow us to do it. Therefore, the a
tion (8) is in fa
t theN = 1 extension of (7).To �nd the N = 2 extension of (9) we require its invarian
e under trans-formations (10) with an in�nitesimal 
omplex spinor �� instead of the real��. At this point, it is useful to 
hange notation. We introdu
e, following [7℄,the spinor �eld � � = �� i�: (11)The invarian
e under the N = 2 transformations 
an be a
hived by rewrit-ting the a
tion (9) in the terms of �,  , �, N, A�, and demanding itsinvarian
e under transformations� �! e�i��;  �! e�i� ; (12)where � is de�ned as follows: �� = ei���. Obviously, this requirement isequivalent to the previous one. To apply this method we rearranged thea
tion (9) to the formS 0N=1 = Z d3x"�14F ��F�� + �"�����A�A� + 12(D��)�(D��)+12��N��N � �(j�j2 � �20)2 � 4�N2j�j2 + i2 � =D + i2 ��=�� � (2�) 12 �  N � e4 + (2�) 122 ! ( � ��+ �� ��)+ e4 � (2�) 122 ! ( � ���+� ��) + �2 ��� + �4 ( �� �� ���)#:(13)



642 B. DamskiAs a 
onsequen
e of the term �4 ( �� �� � ��), this a
tion is not invariantunder transformations (12) even if we assume that� = e28 : (14)This relation is exa
tly the same as that in [7℄. To obtain the N = 2 SUSYversion of (7), we add to the a
tion (8) the following termZ d3xd2��

 = Z d3x[2�ND + ���℄= Z d3x h2�ND + �2 ��� � �4 ( �� �� ���)i : (15)One sees that the term (15) 
an
el the last term of (13), but it 
ontains a�eld D. As a result, this addition leads to the modi�
ation of the Higgs termin the a
tion. The a
tion, 
onstru
ted as a sum of (8) and (15), is invariantunder the N = 2 supersymmetri
 transformations if we impose 
ondition(14) on � and e, and 
an be written asSN=2 = Z d3x ��14F ��F�� + �"�����A�A� + 12(D��)�(D��)+12��N��N � e22 N2j�j2 � e28 ��4N�e + j�j2 � �20�2+ i2 � =D � e2 �  N + � ��� + i2 ��=�� � e2( � ��+ �� ��)� :(16)The N = 2 supersymmetri
 transformations readÆ � = �eN��� + i��(
�)��D��;Æ� = �� ;ÆA� = �12(��
�� + �
� ��);Æ�� = �2N�� e2�j�j2 � �20���� +�12"���F��(
�) �� � i(
�) �� ��N� ��;ÆN = 12 ���� + ���� : (17)Now, if we put all fermion �elds equal to zero, we 
an see that the require-ment that the a
tion (8) must be invariant under the N = 2 the transforma-tions leads to the a
tion that is the supersymmetri
 extension of the initialone (6).



Supersymmetry and Bogomol'nyi Equations in the: : : 6435. Bogomol'nyi equationsFollowing Hlousek and Spe
tor [5℄ we 
on
isely explain how Bogomol'nyiequations arise from the algebra of supersymmetri
 
harges. Due to theHaag��opusza«ski�Sohnius theorem [14℄, there are two real spinorial super-
harges qL� , where L = 0; 1 is an internal index, in our N = 2 supersymmetri
theory. These super
harges are obtained from the Noether 
onserved 
ur-rent. They obey the algebrafqL� ; qM� g = 2ÆLM (
�)��P� + TCLMC�� ; (18)where if we denote energy-momentum tensor by T�� , we have P� = R d2xT0�.T is the 
entral 
harge.The Noether 
urrent (J�)� was found by 
onsidering variation of thea
tion (16) under transformations (17) with spa
e-time dependent spinorialparameter �� ÆSN=2 = Z d3x[(J�)����� + h:
:℄: (19)In the present 
ase we have(J�)� = 12 ���(
�) �� F �� + i2"��� ���(
�) �� ��N + i4"���F�� ���+i� ���(
�) �� N + 12D�� � � + 12��N ��� � ie2 � �(
�) �� �N� ie4 ���(
�) �� (j�j2 � �20) + i2"��� � �(
�) �� D��; (20)and ��(J�)� = 0.We de�ned super
harges to beq1� = Z d2x[(J0)� + h:
:℄; q2� = �iZ d2x[(J0)� � h:
:℄: (21)In order to 
he
k the relation (18), we must impose 
anoni
al (anti)
ommuta-tion relations on our �elds. If we simplify 
al
ulations by putting all fermion�elds zero after 
omputing the anti
ommutator (18), we only need the fol-lowing 
anoni
al anti
ommutation relation for the �eld ����(~x); i2(
0) �� ���(~y)� = iÆ2(~x� ~y)Æ �� ; (22)and the same relation for the �eld  . We do not use a spe
ial symbol foroperators. It should be noti
ed that the relation (22) is valid when � is



644 B. Damskian operator, so this equation must be understood as the operator equation.If not stated otherwise, the expressions below are the operator equations,ex
ept the 
ase when they 
ontain the expe
tation value, whi
h is denotedby h i. After lenghty but straightforward 
al
ulations, one obtainshP0i = Z d2x"14(Fij)2 + 12(Fi0)2 + 12 jD0�j2 + 12 jDi�j2+12(�0N)2 + 12(�iN)2+e22 j�j2N2 + e28 ��4N�e + j�j2 � �20�2#; (23)hPii = Z d2x ��F k0 Fik + �0N�iN + 12D0�(Di�)� + 12(D0�)�Di�� ; (24)T = Z d2x"ij�j(e�20Ai � i��Di�) = e�20�; (25)where indi
es i; j; k = 1; 2. � = � R d2xF12, the magneti
 �ux, is the topo-logi
al 
harge of the Maxwell Chern�Simons theory [10℄. What's more, sin
ethe 
entral 
harge T is a s
alar, expression (25) 
ontains 
lassi
al �elds. Toattain the exa
t form of the 
entral 
harge Euler�Lagrange equations of mo-tion for the �eld N have been used. We have also assumed that Di� tendsto zero at in�nity.Now, we are ready to �nd Bogomol'nyi equations. Let us introdu
e Q1and Q2 by Q1 = 12(q11 + iq21);Q2 = 12(q22 � iq12): (26)Hen
e fQ1 �Q2; Qy1 �Qy2g = 2�P0 � T2 � ; (27)where a unit operator next to T is not written; the lower (upper) sign 
or-responds to a positive (negative) value of T . Taking the expe
tation valueof (27), one 
an 
on
lude that there is a Bogomol'nyi boundhP0i � jT j2 : (28)



Supersymmetry and Bogomol'nyi Equations in the: : : 645Moreover, this bound is saturated when(Q1 �Q2)jBi = 0 : (29)Using the relations (20), (21), (26), (29), one �ndsFi0 � �iN = 0 ;F12 � 2��N � e4(j�j2 � �20)� = 0 ;(D1 � iD2)� = 0 ;D0�� ie�N = 0 ;�0N = 0 ; (30)where �;N;A� are 
lassi
al �elds. These equations are pre
isely the Bogo-mol'nyi equations that we were looking for. They are of 
ourse the sameas those in [10℄. We want to emphasize that during these 
al
ulations wedid not 
hoose any parti
ular gauge 
hoi
e for the �eld A�, and we did notassume that our �elds are time-independent, as it was done in [7℄.To summarize, the supersymmetri
 method of �nding Bogomol'nyi equa-tions next time turned out to be a useful tool. We saw that a spe
ial formof the potential term and an absolute ne
essity of the additional real neutrals
alar �eld, in 
onsidered model, is due to existen
e of its N = 2 super-symmetri
 extension. We also 
he
ked that the topologi
al 
harge of theexamined model is the 
entral 
harge of its supersymetri
 extension.I would like to thank Dr. Leszek Hadasz for helpful dis
ussions andreading the manus
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